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Heliumlike geonium atom
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We study the quantum dynamics of two interacting electrons confined in a Penning trap. We determine the
characteristic frequencies of this system and we propose a way to perform measurement on spin and cyclotron
degrees of freedom as well as a way of preparing the geonium atom in any spin state.
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I. INTRODUCTION

It is well known that a single electron stored in a Penn
trap ~PT! @1# permits accurate measurements and provide
simple system to investigate the fundamental laws of na
@2#. This system has been called a hydrogenlike geon
atom since it resembles a hydrogen atom for which the b
ing for the electron was replaced by external trapping fie
@3#. Recently, the geonium system has been also studie
implement some interesting quantum optics situations, s
as quantum nondemolition measurements@4#, generation and
characterization of nonclassical states@5#, and implementa-
tion of quantum logic operations@6#.

In a previous work@6#, we have shown how to use th
spin and motional degrees of freedom of the confined e
tron in order to store and to manipulate two qubits throug
controlled-NOT gate~the qubit being the basic unit of infor
mation in a quantum computer@7#!. It would be, however,
interesting to replace the qubit associated with the motio
degree of freedom by a qubit associated with a second s
There are two immediate advantages of real spin over p
dospin: First, the qubit represented by a real spin 1/2 is
ways a well-defined qubit in the sense that the tw
dimensional Hilbert space is the entire space avalaible;
there are no extra dimensions into which the qubit st
could ‘‘leak.’’ Second, since the spin motion in a PT deca
via magnetic dipole radiation, which is exceedingly sma
we can guarantee the phase coherence of the qubits d
the computation time. The use of another spin as a qubit
be naturally achieved by introducing a second electron in
trap. This system consisting of two electrons confined i
PT is an analog of a helium atom; thus we name it ahelium-
like geonium atom.

In this work we will study the energy spectrum of th
heliumlike atom and we will propose possible ways to m
sure and to manipulate the quantum state of the system

It is well known@3# that the problem of finding the energ
spectrum of a single electron in a PT is analytically solvab
Its motion can be decomposed into three independent
monic oscillators: axial, cyclotron, and magnetron, each
them characterized by a well-defined frequency of osci
tion. However, this analytical simplicity is destroyed when
second electron enters in the PT. Actually, the motion of t
trapped electons is a three-body problem~the two electrons
plus the confinement fields! @8# and, in general, cannot b
solved exactly. Thus, in order to determine the energy sp
trum of the heliumlike atom we will use perturbative tec
1050-2947/2001/64~2!/023407~5!/$20.00 64 0234
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niques. To the second order of approximation, the motion
the heliumlike geonium atom can be decomposed into
noninteracting harmonic oscillators, each of them charac
ized by its own frequency.

We shall also show that the use of an additional fie
known as a ‘‘magnetic bottle’’@3#, allows one to get quantum
information about the heliumlike geonium atom. Namely, w
shall relate the axial frequency shifts induced by the ‘‘ma
netic bottle’’ field with the axial spin projection as well a
with the cyclotron quantum numbers. We also show how
use this measurement technique and a small driving osc
tory field to prepare our geonium atom in any desired s
state.

This paper is organized as follows: In Sec. II we pres
the model and we separate the Hamiltonian in the center
mass~c.m.! and the relative contributions. In Sec. III each
these two parts is studied and their characteristic frequen
are determined. Sec. IV presents a way of getting inform
tion from the system by using a ‘‘magnetic bottle’’ field
Finally, Sec. V concludes.

II. MODEL

We are considering a system of two electrons of massme
and chargee inside a Penning trap. The confinement in th
trap is realized by a uniform magnetic fieldB along the posi-
tive z axis and a static quadrupole potential

V5V0

x21y222z2

4d2
, ~1!

whered characterizes the dimension of the trap andV0 is the
potential applied to the trap electrodes@3#. By ignoring for
the moment the Coulomb repulsion between the two e
trons, we can write the Hamiltonianh( i ) for each trapped
electron (i 51,2) as the counterpart of the classical one, w
the addition of the spin term, that is

h( i )5
1

2me
F Ẁ ( i )2

e

c
AW ( i )G2

1eV( i )2
g

2

e

mec
SW ( i )

•BW , ~2!

whereg is the electron’sg factor, c the speed of light, and
AW ( i )5 1

2 BW `xW ( i ) the vector potential. The position and conj
gate momentum operators arexW ( i )[(x( i ),y( i ),z( i )) and Ẁ ( i )
©2001 The American Physical Society07-1
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[(`x
(i) ,wpy

(i) ,`z
(i)), respectively. The spin operatorSW ( i ) is re-

lated to the Pauli matrices throughSW ( i )[ 1
2 \(sx

( i ) ,sy
( i ) ,sz

( i )).
To obtain the total Hamiltonian for the two trapped ele

trons, we must sum the individual contributions~2! with the
repulsive Coulomb energy, that is,

H5(
i 51

2

h( i )1
e2

uxW (1)2xW (2)u
. ~3!

We can write this Hamiltonian in a more convenient form
introducing the c.m. coordinatesRW [(X,Y,Z)5 1

2 (xW (1)

1xW (2)), PW [(PX ,PY ,PZ)5( Ẁ (1)1 Ẁ (2)), and the total mass
M52me , as well as the relative coordinatesrW[(j,y,z)
5(xW (1)2xW (2)), pW [(pj ,py ,pz)5 1

2 ( Ẁ (1)2 Ẁ (2)) and the re-
duced massm5me/2. With these new variables Eq.~3! trans-
forms into

H5Hc.m.1Hr1HS , ~4!

where

Hc.m.5
PW 2

2M
1

M

8
~vc

222vz
2!GW 21

vz

2
eW z•~GW 3PW !1

M

2
vz

2Z2,

~5!

Hr5
pW 2

2m
1

m

8
~vc

222vz
2!rW 21

vz

2
eW z•~rW 3pW !1

m

2
vz

2z21
e2

urWu
.

~6!

Here we introduced the cyclotron and axial frequencies
fined by vc5ueBu/me and by vz5@eV0 /md2#1/2, respec-
tively:

HS5vsSz . ~7!

We have used the notationGW [(X,Y), rW [(j,y), and we
have indicated byeW z the unit vector along thez axis. The first
two terms in Eq.~4! commute with each other; the last give
the spin contribution and it is also called the Zeeman ene
The spin precession angular frequency is defined byvs
5gueBu/2me .

III. ORBITAL MOTION

Comparing the c.m. Hamiltonian~5! with that of a single
electron in the PT@3# we conclude immediately that the dy
namics is the same in both cases. That is, the c.m. motio
the result of three independent harmonic oscillators: two~cy-
clotron and magnetron! oscillating in thex-y plane with fre-
quenciesv6 and the third~axial! oscillating along thez-axis
with frequencyvz . The frequenciesv6 are defined by

v65
1

2
~vc6Avc

222vz
2!. ~8!

Let us stress that these frequencies coincide with those
tained for a single trapped electron and they are well se
rated in the energy scale, i.e.,v1@vz@v2 .
02340
-
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Let us now define the ladder operators

Az5AMvz

2\
Z1 iA 1

2\Mvz
PZ , ~9!

A65A M

2\~v12v2!H FPX

M
2S vc

2
2v7DYG

7 i FPY

M
1S vc

2
2v7DXG J , ~10!

obeying the commutation relations@Ai ,Aj
†#5d i j , with (i , j

51,2,z). Then, with the aid of these operators we m
reduce Eq.~5! to the form

Hc.m.5\vZS AZ
†AZ1

1

2D1\v1S A1
† A11

1

2D
2\v2S A2

† A21
1

2D , ~11!

where the three harmonic oscillators appears asZ axial, 1
cyclotron, and2 magnetron. The negative energy of the la
ter denotes its unstable motion which, however, takes p
on a long time scale, its frequency being the smallest.

If we neglect the Coulomb repulsion between electrons
the relative Hamiltonian~6!, we end up with a Hamiltonian
equivalent to Eq.~11!. It means that the motion of the re
duced particle of massm would be the result of three har
monic oscillators with frequencies equal to those of c.
oscillators. However, as we are going to show, the Coulo
interaction will remove this degeneracy in the energy leve

The presence of the Coulomb energy in the relat
Hamiltonian introduces a nonlinear coupling between
three harmonic oscillators. In order to overcome the ma
ematical difficulty associated with the Coulomb interactio
we develop the relative Hamiltonian in power series arou
its stationary points,

rW s50W , zs5F e2

mvz
2G 1/3

, pW s50W , ~12!

given by the ratio between the Coulomb and axial energ
The development of HamiltonianHr to the second orde

yields

Hr5H01
pW 2

2m
1

m

8
~vc

226vz
2!rW 21

vz

2
eW z•~rW 3pW !

1
3

2
mvz

2z2, ~13!

whererW , z, andpW are the deviations of the relative position
and momenta with respect to the stationary points~12!. The
zero-order approximation is given by the constant ene
H05 3

2 mvz
2zs

2 . The second-order approximation of the ser
7-2
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expansion will be a good one if the amplitude of the ax
motion, z, is much smaller than the equilibrium distancezs
between the electrons:

z'A\/mvz!zs . ~14!

For a typical valuevz56.64 MHz of the axial frequency in
a PT@3#, the condition~14! is widely obeyed.

A simple comparison of Eq.~13! with Eq. ~5! shows that
the relative motion exhibits new frequenciesv18 ,v28 ,vz8
given by

v18 5
1

2
~vc1Avc

226vz
2!,v1 , ~15!

v28 5
1

2
~vc2Avc

226vz
2!.v2 , ~16!

vz85A3vz.vz . ~17!

Thus, the effect of Coulomb repulsion to the second orde
approximation consists in removing the degeneracy in
energy levels of the six oscillators by introducing new fr
quencies. It should be noticed that this same correcting fa
of A3 of the relative axial frequency was already noticed
two ions in a Paul trap@9#. The anharmonic corrections to th
relative motion only appear at the third order of approxim
tion.

The ladder operators for the relative motion, denoted
a6 ,a6

† ,az ,az
† , are defined analogously to those of the c.

motion, i.e.,

az5Amvz8

2\
z1 iA 1

2\mvz8
pz . ~18!

a65A m

2\~v18 2v28 !
H Fpj

m
2S vc

2
2v78 D yG

7 i Fpy

m
1S vc

2
2v78 D j G J . ~19!

They lead to the following form for the relative Hamiltonia

Hr5\vz8S az
†az1

1

2D1\v18 S a1
† a11

1

2D
2\v28 S a2

† a21
1

2D , ~20!

which is an analog of Eq.~11!.
Summarizing, we can describe the motion of the two c

fined electrons as the result of six independent harmonic
cillators: three associated with the c.m. motion, with frequ
cies v1 ,v2 ,vz and the other three associated with t
relative motion, with frequenciesv18 ,v28 ,vz8 . The spin Zee-
man energiesES5M (\vs)/2 (M521,0,11) are the eigen-
02340
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values of the spin Hamiltonian~7!. For the same orbita
quantum numbers, the triplet states are equally spaced
their splitting energy is\vs .

Now, the electrons, being fermions, must satisfy the Pa
principle. It is straightforward to show that the c.m. eige
functions are always symmetric under permutation of t
electrons, while the symmetry of the relative motion is d
termined by means of (21)n1k1 l , wheren, k, andl are the
quantum numbers of the cyclotron, axial, and magnet
relative oscillators. Then, in order to satisfy the Pauli exc
sion principle we can conclude that a spin-singlet state m
have n1k1 l even, while a spin-triplet state must haven
1k1 l odd. Changing by 1 any of the quantum numbe
n,k,l makes the trapped electrons oscillate between the
glet and triplet states. The use of additional standing wa
in the trap configuration@5# may induce jumps in these quan
tum numbers.

IV. INFORMATION MEASUREMENTS

We recall that in the geonium system the measureme
are performed by using the axial motion as a meter to inv
tigate the other degrees of freedom, due to the nonexiste
of good detectors in the microwave range@3#. In fact, the
axial oscillating charge particle induces alternating ima
charges on the electrodes, which in turn cause an oscilla
current to flow through the external circuit where the me
surement is performed. The axial frequenciesvz andvz8 of
the heliumlike geonium atom are in the radio-frequen
range and can easily be measured through the externa
cuit. Small frequency shifts (Dv/v,1028) have been rou-
tinely observed@3#. Then, using Eq.~17! we obtainvz8/vz

'A3@1028, showing that the relative and c.m. axial m
tions can be well resolved through an axial measurement
therefore it will be also possible to manipulate the c.m. d
grees of freedom independently of the relative ones by
plying, for instance, driving fields as described in Ref.@5#.

We are going to show how to get some information ab
the quantum states by measuring the axial frequency s
induced by an additional ‘‘magnetic bottle’’ field@3#, given
by

DBW 5B2F S z22
x21y2

2 DeW z2zrW G . ~21!

The extra energyDH associated with this field is

DH52
e

mec
@ Ẁ (1)

•DAW (1)1 Ẁ (2)
•DAW (2)#

2
ge

2mec
B2@SW (1)

•DBW (1)1SW (2)
•DBW (2)#, ~22!

whereDAW ( i ) is the vector potential associated with the inh
mogeneous field of Eq.~21!:

DAW ( i )5
1

2
B2~z( i )22rW ( i )2/4!eW z3rW ( i ). ~23!
7-3
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ANA M. MARTINS PHYSICAL REVIEW A 64 023407
We evaluate the contribution ofDH to the energy levels by
computing the matrix elements

DE~N,K,L;n,k,l ;M !

5^m;n,k,l ;N,K,L;uDHuN,K,L;n,k,l ;M &,

~24!

wheren,k,l (N,K,L) are the quantum numbers of the cycl
tron, axial, and magnetron oscillators of the relative~c.m.!
motion, andM521,0,1 is the quantum number associat
with Sz . The shifts of the axial eigenfrequencies induced
the presence of the ‘‘magnetic bottle’’ are related to the
matrix elements. The c.m. axial frequency shift

DvZ5DVZW ~25!

can be obtained by taking the difference betweenDE(N,K
11,L;n,k,l ;M ) andDE(N,K,L;n,k,l ;M ). Instead, the rela-
tive axial frequency shift

Dvz85DVz8W ~26!

is obtained by taking the difference betwe
DE(N,K,L;n,k11,l ;M ) and DE(N,K,L;n,k,l ;M ). The
factor W appearing in Eqs.~25! and ~26! is given by

W5Fg

4
M1N1n111

v2

v1
S L1

1

2D1
v28

v18
S l 1

1

2D G ,

~27!

while

DVz5
\B2vz

2mv2B~v12v2!
~28!

and

DVz85
\B2vz

2mv28 B~v18 2v28 !
. ~29!

In Eq. ~27!, the ratiosv2 /v1 and v28 /v18 that multiply L
and l, respectively, are very small, and thus they can be
nored. Essentially, the relevant measurable quantity is

W'Fg

4
M1N1n11G . ~30!
02340
y
e
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Comparing Eqs.~25! and~26! we conclude that they con
tain the same information about the quantum numberM.
Thus a measurement of any of the two axial frequency sh
is equally good to determine the spin projection along thz
axis.

Theg factor of the electron equals 2 to within about 1 pa
in 103. This and the above-mentioned fine resolution of t
axial measurements guarantee the possiblity of distingu
ing the three values ofM appearing in the Eq.~28! or in Eq.
~29!.

After measuring the axial spin projectionM, the geonium
atom will be left in the spin stateu1,1& if M51 or in the state
u1,21& if M521. However, if the result of the measure
ment isM50, the state can be either the singletu0,0& or the
triplet u1,0&. In order to determine the symmetry of the sp
function we have to do further measurements.

Before explaining how to do these measurements, le
study the effect of a small oscillatory magnetic driving fie

bW ~ t !5b@cos~vt !eW x1sin~vt !eW y# ~31!

lying in the xy plane, on the spin state of the electrons. Th
total spin motion of the heliumlike atom is governed by t
Hamiltonian

HS52g
e\

2mc

1

2
sW •@BW 1bW ~ t !#, ~32!

where

SW 5
\

2
sW 5

\

2
~sW 11sW 2!

is the total spin of the heliumlike atom. It is straighforwa
to show that the result of switching on the driving fieldbW (t)
on the spin state is the following:~a! If the electrons are in
the initial singlet stateu0,0&, they will stay in it for any fur-
ther timet. ~b! If the initial state of the electrons is one of th
three triplet statesu1,21&,u1,0&, or u1,1&, then it will evolve
to a superposition of the three. The transition probabilit
between these three states are a function of time and de
on the Rabi frequencyVs5ueub/2mc as well as in the de-
tuningDv5v2vs . For instance, if the initial state isu1,0&,
the transition probabilitiesP01, P0,21 to the statesu1,1& and
u1,21& are given by
P015P0,215
Vs

2@2Dv21Vs
21Vs

2cos~ tAVs
21Dv2!#sin@ 1

2 tAVs
21Dv2#2

~Vs
21Dv2!2

~33!
7-4
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HELIUMLIKE GEONIUM ATOM PHYSICAL REVIEW A 64 023407
and the probability of keeping in the same stateu1,0& is

P005
@Dv21Vs

2cos~ tAVs
21Dv2!#2

~Vs
21Dv2!2

. ~34!

The maximum values for the transition probabilities are
tained in resonance (v5vs). When the interaction time is
t i5p/2Vs we get P0050 and P015P0,215 1

2 . Let us now
assume that the axial frequency shift measurement left
electrons with axial spin projectionM50. Then we apply
the driving field during a timet i5p/2Vs . If the system was
initially in the singlet stateu0,0&, it will keep in this state. If
the system was initially in the triplet stateu1,0&, then its state
after a timet i will be a superposition of the stateu1,1& with
the stateu1,21&. Finally, we make a second measurement
the axial frequency shift~using the ‘‘magnetic bottle’’ tech-
nique! and, if we obtain againM50, we know that the state
is singlet; otherwise, the spin state is a triplet.

The technique that we have been describing can also
used to prepare the heliumlike geonium atom in any of
three triplet states, as well as in any hoped for superposi
of them. Any final spin state can be reached by swithcing
the driving field during a convenient time intervalt after the
first measurement ofM.
in
t-
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V. CONCLUSIONS

In this work we have studied the dynamics of two ele
trons in a Penning trap which we have named aheliumlike
geonium atom.

We have shown that their motion can be reduced to
harmonic oscillators, each of them characterized by its o
frequency. We have seen that the symmetry of the spa
wave function depends on the sum of the three relative m
tion quantum numbers.

Furthermore, we have shown how to extract quantum
formation about the spin and the total cyclotron number
the heliumlike geonium atom by using the ‘‘magnetic bottl
field and a small oscillatory driving field. These measu
ment techniques can also be used to prepare the electro
any spin state.

The possibility of manipulating the quantum state of ele
trons can be used to store and process quantum informa
In fact the present work suggests the possibility to implem
quantum logic gates with the heliumlike geonium atom, u
ing an extension of the arguments sketched in Ref.@6#.

ACKNOWLEDGMENTS

The author would like to thank Dr. S. Mancini and Pr
fessor Paolo Tombesi for comments and suggestions on
manuscript.
d,

nd
@1# F.M. Penning, Physica~Amsterdam! 3, 873 ~1936!.
@2# R.S. Van Dyck, Jr., P.B. Schwinberg, and H. Dehemelt,

Atomic Physics 9, edited by R.S. Van Dyck, Jr. and E.N. For
son~World Scientific, Singapore, 1984!; R.S. Van Dyck, Jr., in
Quantum Electrodynamics, edited by T. Kinoshita~World Sci-
entific, Singapore, 1990!.

@3# L.S. Brown and G. Gabrielse, Rev. Mod. Phys.58, 233~1986!.
@4# I. Marzoli and P. Tombesi, Europhys. Lett.24, 515 ~1993!.
@5# A.M. Martins, S. Mancini, and P. Tombesi, Phys. Rev. A58,
3813 ~1998!.
@6# S. Mancini, A.M. Martins, and P. Tombesi, Phys. Rev. A61,

012303~2000!.
@7# D. Deutsch, Proc. R. Soc. London, Ser. A400, 97 ~1985!; 425,

73 ~1989!.
@8# E.A. Cornell, K.R. Boyce, D.L.K. Fygenson, and D. Pritchar

Phys. Rev. A45, 3049~1992!.
@9# D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger, a

C.H. Manney, Phys. Rev. Lett.59, 2935~1987!.
7-5


