
PHYSICAL REVIEW A, VOLUME 64, 023403
Series solution for the image charge fields in arbitrary cylindrically symmetric Penning traps

J. V. Porto*
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8421

~Received 9 January 2001; published 29 June 2001!

This paper presents a series solution to the image charge fields of a single ion in a Penning trap. The
calculation of these fields and resulting frequency shifts will be important for advances in a variety of high
precision Penning trap studies, particularly for work with highly charged ions. The simple technique is appli-
cable to cylindrically symmetric traps of otherwise arbitrary geometry and provides an efficient alternative to
finite grid relaxation techniques. The present calculation is in agreement with previous measurements in a
hyperbolic trap, and systematic frequency shifts for recent atomic mass measurements using multiply charged
ions are given.
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The most accurate atomic mass measurements are m
by measuring the cyclotron frequencies of individual ions
a Penning trap@1–3#. The accuracy of better than one part
1010 with which atomic masses can be compared require
detailed understanding of the trap electric and magn
fields and their stability. As pointed out more than ten ye
ago @4#, a possible systematic error in these measurem
arises from the small image fields that are induced by
trapped ions themselves. Such image charge frequency s
have been measured in a small trap with multiple ions@4#,
but they are quite small and scale as the inverse cube o
trap size. In addition, the image induced frequency shifts
independent of the ion mass to first order, depending only
the charge of the ion. When calculating the ratio of cyclotr
frequencies of two equally charged ions, therelative fre-
quency shift therefore depends linearly on the mass dif
ence. This relative frequency shift for mass doubl
(Dm/m.1023) nearly cancels, and consequently has be
safely ignored in larger single-ion mass spectrometer tr
@1#.

Recent measurements of alkali-metal masses at MIT@5#
were made by comparing multiply charged ions to sin
charged ions, for example Cs31 to CO2

1 . Estimates of the
image charge frequency shifts based on a spherical mod
the trap @4# indicate that for this trap the shifts ar
.100 mHz per charge, which is at most 30% of the to
combined uncertainty of the recent measurements. Ass
ment of this systematic error to 10% is currently sufficie
but as the precision of future measurements increases
ions of higher charge state are used@7–9#, it will be impor-
tant to know the size of the image charge shifts more ac
rately.

Traditionally, the calculation of electrostatic trap prope
ties in other than spherical or cylindrical traps has be
handled with numerical finite grid techniques@10#. I present
here a semianalytical solution for ion induced image fie
that is similar to the analytical solutions available for sphe
cal or cylindrical traps. The technique provides a series
pansion for the potential near the center of the trap, whic
the region of interest for trapped particle studies. It has
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1050-2947/2001/64~2!/023403~7!/$20.00 64 0234
de

a
ic
s
ts
e
ifts

he
re
n

n

r-
s
n
s

of

l
ss-
,
nd

u-

-
n

s
-
x-
is
e

advantage that it is straightforward to implement and is
computationally intensive. The technique can be applied
arbitrary cylindrically symmetric traps and a modified for
of the calculation could be useful for the study and design
new traps. I start by providing a short review of the fr
quency shifts resulting from image fields in Penning tra
and then present the calculation of the image fields the
selves.

Image charge shifts

The fields in a Penning trap and the resulting ion motio
have been described in detail elsewhere@11#, and I give here
only a brief description necessary to provide the backgro
for the present calculations. An ideal trap consists of a m
netic fieldBẑ and a cylindrically symmetric electrostatic po
tential

F~r !5
V0

2 S z2

d2
2

r2

2d2D 1F0 , ~1!

whereF0 is an arbitrary constant. In a hyperbolic trap th
potential ~with F05V0r0

2/4d2) is created to lowest orde
when voltagesV0 , V0/2, and 0 are applied to the endca
guard ring, and ring electrodes of the trap, respectively.~See
Fig. 1.! The guard ring electrodes are used to adjust high
order terms in the potential. In a hyperbolic trap, the trap s
d is defined by 2d25z0

21(r0
2/2), wherez0 and r0 are the

minimum distance from the endcap and ring electrode to
center of the trap. Motion of an ion of massm and chargeq
near the center of the trap separates into an axial mode
two radial modes. The frequencies of the three modes
given by

vz0
2 5

qV0

md2
,

2vc08 5vc1Avc
222vz0

2 ,

2vm05vc2Avc
222vz0

2 , ~2!
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J. V. PORTO PHYSICAL REVIEW A 64 023403
where vc5qB/mc is the free space cyclotron frequenc
The three frequencies are related tovc by the well-known
quadrature relation@11#

vc
25vc08

21vz0
2 1vm0

2 . ~3!

Using sensitive techniques@12,13#, the three frequencies of
single trapped ion can be accurately measured. The
space cyclotron frequency determined from the quadra
relation~3! is the basis for high accuracy mass compariso

An ion in the trap induces an image charge on the ins
surface of the trap, which in turn produces an electric fi
Eim at the position of the ion. The induced field can pertu
the ion motion and shift the trap frequencies. In general,
field will depend on the positionr 8 of the ion within the trap.
During a measurement, the ion orbits are much smaller t
the trap sized, and typicallyur 8u&0.05 d. In calculating the
image shifts, it is reasonable to take only terms of low
order in the ion position. In a cylindrically symmetric tra
with vertical symmetry through the midplane, the zero-ord
terms vanish. The first nonzero terms inEim are

Eim~r8,z8!.Er
im r8

d
r̂1Ez

im z8

d
ẑ, ~4!

wherer8 andz8 are the radial and axial positions of the io
The cylindrical symmetry of the trap implies thatEim has
components only in the vertical~z! and radial (r) directions.
The next nonzero terms are therefore third order inz8 and
r8 ~e.g.,r83, z83, r82 z8, or z82 r8) and given typical orbit
sizes these terms are likely to be only about 0.25% of
first-order term.

Taking only the linear terms, the shifted ion frequenc
can be determined by adding the linear image field to
usual trap fields. The derivation is almost identical to th
given by Van Dycket al. @4#, except that the nonspherica
nature of the trap is accounted for by consideringEz

im

FIG. 1. Cross section of the MIT trap geometry used in th
calculations. The hyperbolic electrode surfaces are determine
the equationsz25z0

21(r2/2) andz25(r22r0
2)/2. The characteris-

tic trap size was measured to bed50.55011(3) cm@6#. The guard
ring is placed a distancer g52d from the center of the trap.
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im . The result is that the measured trap frequencies

shifted from their image-free values, and are given by

vz
25vz0

2 2Dz ,

vm5vm01
Dr

vc8
,

vc85vc08 2
Dr

vc8
, ~5!

where

Dr,z5
qEr,z

im

md
~6!

andvz0 , vm0, andvc08 are the unperturbed axial, magnetro
and cyclotron frequencies. The quadrature relation@Eq. ~3!#
is also modified to give

vc
22~2Dr1Dz!5vc8

21vz
21vm

2 . ~7!

Equation~7! reduces to the same expressions given by V
Dyck et al. @4# for a spherical trap whenDr andDz are equal.
@In deriving these equations, the extremely small freque
shifts (vz /vc8)

2(Dr,z /vc8) have been ignored.# The free
space cyclotron frequency, inferred from the original quad
ture relation@11#, is shifted down from the true frequency b

d5
2Dr1Dz

vc1Avc
22~2Dr1Dz!

.
2Dr1Dz

2vc
5

S Er
im1

1

2
Ez

imD
Bd/c

.

~8!

The magnetic field and trap sized can be determined from
measurements of the ion frequencies. The calculation ofEr,z

im

is presented below.

Image-field calculations

The goal is to calculate the image field induced by an
for a given position of the ion in the trap. The linearity o
Maxwell’s equations implies that the image field can be c
culated assuming all trap electrodes are grounded.~The total
field can be obtained by merely adding the image field to
static trapping fields.! In addition, we may safely ignore re
tardation effects, since for ions the trap sized.5 mm is
much smaller than the wavelengths associated with any
the dynamical modes of the trapped ion (l5c/ f >5 m).
The orientation of the coordinates is chosen so that the
lies in thex-z plane, which in polar and spherical coordinat
corresponds to the azimuthal anglef850.

The electrostatic calculation is equivalent to finding t
Green’s function for Poisson’s equation, which satisfies
Dirichlet boundary conditionqG(r ,r 8)5V(V) when either
r or r 8 is on the surface of the electrodes. In this paper
vectorsr andr 8 represent the field and ion positions, respe
tively, andV represents any point on the electrode surfac

e
by
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For the specific calculation presented here the approp
boundary condition isV(V)50, but I will outline the calcu-
lation for arbitraryV(V) in order to demonstrate the gener
applicability of the solution. The Green’s function can
written as the sum of the source term and an image t
F(r ,r 8),

G~r ,r 8!5
1

ur2r 8u
1F~r ,r 8!. ~9!

The functionF(r ,r 8) is proportional to the image potentia
that we seek to calculate. It satisfies Laplace’s equation
is chosen such that the boundary condition onG is satisfied.
GivenF(r ,r 8), the image field at the ion position is given b

Eim~r 8!5q“ r F~r ,r 8!ur5r8 , ~10!

where the gradient is taken with respect to the field coo
nates before evaluating at the position of the ion.

The general approach taken here in calculatingF(r ,r 8) is
to expand the source and image functions of Eq.~9! in a
Laplace series, keeping terms of orderN. The boundary con-
dition qG(V,r 8)5V(V) is then imposed approximately o
the series solution by minimizing the integral
uqG(V,r 8)2V(V)u2 over the surface. The set of expansi
coefficients for F(r ,r 8) obtained from the minimization
comprise the approximate solution.

Using a modified form of the addition theorem for sphe
cal harmonics~appropriate forr 8,r ), the source term in Eq
~9! can be expanded about the origin as~settingf850)

1

ur2r 8u
5

1

d (
l 50

`
~r 8/d! l

~r /d! l 11 F Pl~cosu!Pl~cosu8!

12 (
m51

l
~ l 2m!!

~ l 1m!!
Pl

m~cosu!Pl
m~cosu8!cosmfG ,

~11!

where thePl
m(x) are associated Legendre functions and

factor of 1/d is included to make the terms in the sum un
less. SinceF obeys Laplace’s equation, it can also be e
panded in terms of Legendre functions@18#,

F~r ,r 8!5
1

d (
l 50

`

(
m50

l

Cl
m~r 8!S r

dD l

Pl
m~cosu!cosmf.

~12!

With our choice of axes, the sinmf terms vanish. The arbi
trary boundary conditionV can be expanded in a Fourie
series in the anglef

V~V!5 (
m50

`

Vc
m~r,z!cosmf1Vs

m~r,z!sinmf. ~13!

Due to the linear independence of sinx and cosx, theVc
m and

Vs
m terms can be handled separately. For simplicity in

following discussion, I will consider only the cosmf terms,
but the general approach is similar for the sinmf terms. The
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set of dimensionless coefficientsCl
m(r 8) is to be determined

from the conditionqG(V,r 8).V(V).
The entiref dependence of each term is contained

cosmf. Since cosmf and cosm8f are linearly independen
for mÞm8, each sum overl at fixedm must vanish indepen
dently. Regrouping the same-m terms in Eq.~11! and ~12!
and summing overl gives a separate boundary conditio
equation for eachm. Dropping the common factor cosmf
and truncating the sum atN gives the set of equations atr
5V

q

d (
l 50

N F ~r 8/d! l

~r /d! l 11
Pl~cosu8!1Cl

0~r 8!S r

dD l GPl~cosu!

5V0~r !, m50, ~14!

q

d (
l 5m

N F2
~ l 2m!!

~ l 1m!!

~r 8/d! l

~r /d! l 11
Pl

m~cosu8!1Cl
m~r 8!S r

dD l G
3Pl

m~cosu!5Vm~r !, mÞ0. ~15!

For a givenN, approximate solutionsNCl
m(r 8) can be

determined by minimizing the integral of the square of t
sums~14! and ~15!, which for m50 looks like

E
S
U(

l 50

N F ~r 8/d! l

~r /d! l 11
Pl~cosu8!1Cl

0~r 8!S r

dD l GPl~cosu!

2
d

q
Vm~r !U2

dV. ~16!

The integral is over the unprimed variables constrained to
electrode surfaces. Withm fixed, the integral is essentially
one-dimensional. The minimum of the integrals is det
mined in the standard way by setting the derivative w
respect to a particularCk

m(r 8) equal to zero. Interchanging
the order of the summation and integral results in the follo
ing set ofN2m linear equations for eachm ~I have tempo-
rarily dropped the indicesN andm for convenience!

BklCl~r 8!1DklAl~r 8!2Vk50, ~17!

where summation over repeated indices extends froml 5m
to N, and

Al~r 8!5S r 8

d D l

Pl
m~cosu8!, ~18!

Bkl5E
S
S r

dD l 1k

Pl
m~cosu!Pk

m~cosu!dV, ~19!

Vk5
d

qES
Vm~r !S r

dD k

Pk
m~cosu!dV, ~20!

and

m50: Dkl5E
S
S r

dD k2 l 21

Pl~cosu!Pk~cosu!dV,
3-3
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mÞ0: Dkl52
~ l 2m!!

~ l 1m!! ES
S r

dD k2 l 21

Pl
m~cosu!

3Pk
m~cosu!dV. ~21!

Inverting Bkl in Eq. ~17! gives the formal solution

Cl~r 8!5ClkAk~r 8!1Blk
21Vk , ~22!

with Clk52Bl j
21D jk . Given the symmetry of the Legendr

functions, the integrals forBkl andDkl vanish unlessl andk
are either both even or both odd. Since the even and
terms do not mix,B and D can be split and the parts wit
different symmetry solved separately. An approximate so
tion of mixed symmetry but fixedm therefore consists o
calculatingN21N integrals (N2/4 for each symmetry ofB
and D and N for Vk) and inverting two symmetricN/2
3N/2 matrices. In the absence of source terms, the co
cientsCl are independent ofr 8 and onlyN2/21N integrals
must be calculated.

The solution given by Eqs.~12! and~22! depends implic-
itly on the number of termsN included in the sum. It is only
meaningful if it converges fast enough with increasingN.
Since we are interested in the potential near the center o
trap, we only need to calculate the lowest-order terms
Ckl . Certainly, sinceur 8u is small, the first fewAk(r 8) should
be sufficient, which implies that only the first few columns
Dkl need be calculated. One may be concerned, howe
that in the integrals definingBkl and Dkl the field position
ur u5uVu is not small, indicating that an accurate soluti
may require a large number of terms. In addition, the inv
sion of Bkl requires it to be sufficiently well conditioned s
that inversion does not introduce significant errors. Fo
spherical trap, the size ofuVu and the inversion ofBkl are not
an issue because the differentPl

m are orthogonal andB andD
are therefore diagonal. In a nonspherical trap, however,
is not the case.

The condition number of a matrix,K, provides a measure
of how sensitive matrix inversion is to errors@14#. An ap-
proximate form of the condition number is given byK(A)
5n @Ai j #max@Ai j

21#max, wheren is the order of the matrix
and @Ai j #max is the maximum element ofA. For the hyper-
bolic trap geometries used here, direct calculation shows
the condition numberK(NB) grows exponentially withN,
indicating thatNB is increasingly ill-conditioned. As a resul
the requirements on the numerical precision of the integ
in Eqs. ~19! become very stringent asN increases. If the
series does not converge sufficiently quickly at a given p
cision, the problem may become numerically unstable be
a solution can be obtained. Fortunately, this can easily
checked and for all the calculations presented here the
cedure was found to be robust at standard double preci
up to N544 ~corresponding to 22 terms!. The solution was
typically within 0.1% of the limitingvalue byN516.

Before proceeding to the image charge shifts, I point
some useful properties of the solution given by Eq.~22!.
While the integralsBkl andDkl depend on the geometry o
the trap surface, they areindependentof the boundary con-
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dition V(V) on that surface. The boundary condition is d
termined entirely by theN integrals Vk . This means that
once all theBkl have been calculated for a fixed trap geo
etry, calculating the trap field for an arbitrary boundary co
dition requires onlyN additional integrals, which is signifi-
cantly faster than the full calculation. The relaxatio
technique requires a full separate calculation for each n
boundary condition, even at fixed geometry. This could
particularly convenient in designing traps and understand
the contribution of each part of the trap to the potential at
trap center. For example, takingV(r )5d(r2ro) ~wherero is
an arbitrary point on the electrode surface! gives the contri-
bution of the pointro to the trap fields and does not requi
any integration. This can be used to decide how best to
tion a given trap into electrodes or how trapped surfa
charges at different positions affect the trap fields.

Another useful property of this technique is that there
some freedom in choosing the approximate boundary co
tions. The boundary conditionuqG(V,r 8)2V(V)u250 can
be multiplied by a nonzero weighting functionw(r ). In the
limit N→` the solution forG(r ,r 8) should be independen
of w(r ). With some knowledge of the solution, the freedo
to choosew(r ) can be used to emphasize different parts
the trap and improve the convergence of the solution.
example, in the image charge calculations presented h
each point on the electrode surfaces does not contrib
equally to the total image field at the center. In fact, t
image field contribution of a surface point scales as the
verse cube of the distance to the center of the trap, 1/r 3 @4#.
Choosing a weighting functionw(r )}1/r 3 relaxes the
boundary condition on distant parts of the trap in such a w
that errors in the approximate solution ofG(r ,r 8) contribute
equally from all parts of the trap. It is important to note th
the choice ofw(r ) does not affect the value of the converg
solution ~assuming it converges!, only the number of terms
needed to reach convergence. This was confirmed by
forming calculations with and withoutw(r ).

The lowest-order coefficients ofF(r ,r 8) relevant for the
image shift (Vk50) are given by

F~r ,r 8!.
1

d3 FC11
0 zz81C11

1 rr81C20
0 S z22

r2

2 D G . ~23!

Taking the gradient@Eq. ~10!# and comparing with Eq.~4!,
the image fields are given by

Ez
im5

q

d2
~C11

0 12C20
0 !, Er

im5
q

d2
~C11

1 2C20
0 !. ~24!

The resulting frequency shift is given by

d5
qc

Bd3 S C11
1 1

1

2
C11

0 D , ~25!

which is independent of the ion mass and linear in the
charge.@The C20

0 term does not contribute to the total fre
quency shift, since it adds to the overall potential in exac
the same way that the trap electrodes do. It is equivalent
3-4
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SERIES SOLUTION FOR THE IMAGE CHARGE FIELDS . . . PHYSICAL REVIEW A 64 023403
slight shift in the trapping potentialV0, and is therefore ac
counted for by the quadrature relation~3!.#

The integrals~19! and ~21! were performed numerically
and theBkl were inverted using standard routines. For m
geometries at standard double precision, up to 22 termsN
544) were included without instability in the inversion o
Bkl . On the other hand, including only three terms in t
calculation givesC11

0 and C11
1 to within 8% of the limiting

value. Including only seven terms givesC11
0 and C11

1 to
within 0.5% of the limiting value. For higherN the relative
error continues to decrease, but more slowly, as show
Fig. 2. One property of the series solution is that it can
curately approximate the potential near the trap center w
out having to account for the exact fields everywhere in
trap. This can be seen in Fig. 3, which compares the e
source potential q/ur2r 8u to the induced potentia
2qFN(r ,r 8) at the trap surface. In the limitN→`, the ap-
proximate image potentialF(r ,r 8) should cancel the exac
source potential everywhere on the electrode surface. De
the relatively poor agreement at the surfaces when o
seven terms are included, the lowest-order term~which gov-
erns the potential at the center of the trap! is already quite
accurate. Extending the series solution to 22 terms sig
cantly improves the agreement at the surface, but o
changes the first-order terms by 0.5%.

As an additional check on the consistency of the calcu
tion, the expansion coefficients for a source-free cylindri
trap (Dkl50) were computed and compared to the kno
exact solution@15#. Unit potentials were applied to either th
ring ~even-z symmetry! or the upper endcap~odd-z symme-
try!, and the approximate solutions were determined a
function of the number of terms included. The results
plotted in Fig. 4 for the even-z symmetry. Similar convergen
behavior was found, and by including 7 terms the lowe
order coefficients were within 0.2% of the exact solutio
The accuracy of 531025 obtained forN544 is comparable
to the typical uncertainty arising from the measured trap s
d.

FIG. 2. The image field expansion coefficientsC11
m andC31

m as a
function of the number of terms included in the calculation. T
calculation was performed for the hyperbolic geometry shown
Fig. 1 with all electrodes grounded.
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In order to compare the calculation to experimental m
surements, it is convenient to determine the radius of
equivalent spherical trap. The frequency shift for a spher
trap of radiusa is @4#

d5
3

2

qc

Ba3
. ~26!

Comparing expressions~25! and ~26!, the radius of an
equivalent spherical trap is given by

n

FIG. 3. The exact source potentialq/ur2r 8u and the approxi-
mate image potential2qF(r ,r 8) evaluated at the the trap surfac
The calculation was performed withm50, which corresponds to a
source charge lying on thez-axis, r850. ~The scaled potentia
F/(qz8/d) is independent ofz8 in the limit of smallz8.!

FIG. 4. The source-free expansion coefficients for a cylindri
trap with the ring electrode held at 1 Volt and the upper end
grounded. The error is relative to the exact analytical resultCl :
(NCl2Cl)/Cl . The aspect ratio was taken to ber0 /z051.16.
3-5
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a5dF3

2

1

C11
1 1C11

0 /2
G 1/3

. ~27!

Van Dycket al. @4# measured the effective sphere radius
a small hyperbolic trap. The present technique was applie
the specific geometry of their trap, resulting in the coe
cientsC11

0 50.511, C11
1 50.298, andC20

0 50.137. The exact
details of the guard ring were not known, so an approxim
tion of its position was made, but the guard ring does
contribute significantly to the frequency shift. The spheri
approximationDr5Dz is inadequate for this trap, sinceDr

.0.2Dz . The calculated effective sphere radius isa
51.394d50.995r0, which is in very good agreement wit
the measured value ofa50.99(6)r0.

The calculation was applied to the MIT trap geomet
and the resulting coefficients are given by

C11
0 50.4174~3!,

C11
1 50.3603~4!, ~28!

C20
0 50.0629~5!.

The MIT trap geometry is slightly more spherical, sinceC20
0

is closer to zero and the difference betweenC11
0 andC11

1 is
smaller, butDr is still only about half ofDz . The errors are
estimates based solely on the scatter in the solution obta
for 16,N,44, assuming that the series is converging ac
rately. For the recent alkali measurements@5#, @d
50.55011(3) cm,B58.5293104 gauss# this gives a fre-
quency shift ofD f c5d/2p591.84(7)mHz per charge. Er-
rors in d arising from uncertainties in the trap size,Dd/d
53Dd/d, can be determined from the slope of the line
relationship between the applied voltage and the axial
quency,vz

25qV0 /md2, for ions of differentq/m. Measuring
the slope avoids problems caused by unknown offsets in
applied voltageV0. The accuracy is typically limited by the
uncertainty in the voltage measurement to a few parts in 15,
which is still much smaller than the theoretical contributi
to the overall uncertainty. Errors ind arising from uncertain-
ties in the radial positionr g of the guard ring were estimate
from calculations at differentr g . As expected, the coeffi
cientsCkl were found to depend exponentially onr g @17#,
d,

ys

H.

B.
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but the total contribution was less than 0.2% for the M
geometry. Atr g52d the differential dependence]Ckl /]r g
was about20.003, so that a 1% error inr g contributes 1.4
31024 to the overall error. The error in the frequency sh
is dominated by uncertainties in the present calculation,
is still of sufficient accuracy to be adequate in the foreseea
future.

In closing, I point out that it may be possible to exten
this technique beyond the long wavelength electrostatic li
to shorter wavelengths, which would be applicable to
cavity induced frequency shifts found in trapped electr
studies. In such a solution, the Green’s function for the Po
son equation would be replaced by the Green’s function
the Helmholtz equation, resulting in spherical Bessel fu
tion expansions@16# instead of the usual Legendre function
The vector nature of the time-dependent solution complica
the boundary conditions, but the problem appears to
readily tractable if the independent scalarsr•B and r•E are
used as solutions to the Helmholtz equation@16#. Each solu-
tion of this type could provide both the size and shape of
fields in a hyperbolic trap for a given frequencyv. There are,
of course, a number of significant problems that may prev
the time-dependent series solution from being useful. Un
the static case, where fields at the trap center are not
sensitive to some of the exact details of the trap electrod
the dynamic solution near resonances is quite sensitive to
electrode geometry and the boundary conditions on the
face. This will probably make the issues associated w
proper convergence worse for the time-dependent case
addition, it is not clear how difficult it will be to incorporate
the effects of damping~or skin depth! on the boundary con-
ditions in the trap. As has been pointed out@17#, this problem
is not just theoretical in nature, since uncertainties in t
construction lead to uncertainties in the mode structure of
trap. In general, the construction of accurate hyperbolic tr
is much more difficult than cylindrical traps. Nevertheles
an efficient method for short wavelength trap calculations
arbitrary cylindrically symmetric geometries would be us
ful, and it seems to be worth investigating.

I would like to thank D.E. Pritchard and J.D. Gillaspy fo
support for thinking about ion traps, and J. K. Thompson,
Rainville, and M. P. Bradley for helpful discussions.
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