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Series solution for the image charge fields in arbitrary cylindrically symmetric Penning traps
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This paper presents a series solution to the image charge fields of a single ion in a Penning trap. The
calculation of these fields and resulting frequency shifts will be important for advances in a variety of high
precision Penning trap studies, particularly for work with highly charged ions. The simple technique is appli-
cable to cylindrically symmetric traps of otherwise arbitrary geometry and provides an efficient alternative to
finite grid relaxation techniques. The present calculation is in agreement with previous measurements in a
hyperbolic trap, and systematic frequency shifts for recent atomic mass measurements using multiply charged
ions are given.
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The most accurate atomic mass measurements are maddvantage that it is straightforward to implement and is not
by measuring the cyclotron frequencies of individual ions incomputationally intensive. The technique can be applied to
a Penning trapl-3]. The accuracy of better than one part in arbitrary cylindrically symmetric traps and a modified form
10 with which atomic masses can be compared requires @f the calculation could be useful for the study and design of
detailed understanding of the trap electric and magneti®ew traps. | start by providing a short review of the fre-
fields and their stability. As pointed out more than ten yeargjuency shifts resulting from image fields in Penning traps,
ago[4], a possible systematic error in these measuremen@&nd then present the calculation of the image fields them-
arises from the small image fields that are induced by thé&elves.
trapped ions themselves. Such image charge frequency shifts
have been mea_lsured in a small trap with_ multiple ipfls Image charge shifts
but they are quite small and scale as the inverse cube of the _ ) ) o )
trap size. In addition, the image induced frequency shifts are The fields in a Penning trap and the resulting ion motions
independent of the ion mass to first order, depending only oRave been described in detail elsewhiér#}, and | give here
the charge of the ion. When calculating the ratio of cyclotronOnly & brief description necessary to provide the background
frequencies of two equally charged ions, treative fre- for the press:nt calculations. An ideal trap consists of a mag-
quency shift therefore depends linearly on the mass differnetic fieldBz and a cylindrically symmetric electrostatic po-
ence. This relative frequency shift for mass doubletstential
(Am/m=10"3) nearly cancels, and consequently has been
safely ignored in larger single-ion mass spectrometer traps Vo
[1]. =7

Recent measurements of alkali-metal masses at [G]|T
?ﬁgfggla%is?ﬁoioegzﬂgg g]%u:gpéyoi:b érgggn:g?ess tgf fg;glywhere.(bo is. an arbitrary2 cor;stgnt. In a hyperbolic trap this
image charge frequency shifts based on a spherical model Ptential (with ®o=Vopg/4d®) is created to lowest order
the trap [4] indicate that for this trap the shifts are When voltagesVo, Vo/2, and O are applied to the endcap,
=100 wHz per charge, which is at most 30% of the total ggard ring, and ring electrodes of the trap, respecti@ge

combined uncertainty of the recent measurements. Assess!d- 1) The guard ring electrodes are used to adjust higher-
ment of this systematic error to 10% is currently sufficient, Order terms in the potential. In a hyperbolic trap, the trap size

: : 2_ 2, (2
but as the precision of future measurements increases afdis defined by 2°=z5+ (pg/2), wherez, and p, are the

tant to know the size of the image charge shifts more accucenter of the trap. Motion of an ion of massand chargey
rately. near the center of the trap separates into an axial mode and

Traditionally, the calculation of electrostatic trap proper-tWo radial modes. The frequencies of the three modes are

ties in other than spherical or cylindrical traps has beer@iven by

handled with numerical finite grid techniqugkd]. | present

here a semianalytical solution for ion induced image fields aVo
that is similar to the analytical solutions available for spheri- w§o=—.
cal or cylindrical traps. The technique provides a series ex- md?
pansion for the potential near the center of the trap, which is

2 P2

@‘z—dz) o .

the region of interest for trapped particle studies. It has the 20l0= we+ i —2w2,
- [2_ 5 2
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nti,m. The result is that the measured trap frequencies are

\N-Wﬁ@rd shifted from their image-free values, and are given by
ing
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FIG. 1. Cross section of the MIT trap geometry used in these Pz
calculations. The hyperbolic electrode surfaces are determined by
the equationg?®=z2+ (p?/2) andz?=(p?>— p3)/2. The characteris-
tic trap size was measured to de-0.55011(3) cni6]. The guard
ring is placed a distancg,=2d from the center of the trap.

aEy
" md

(6)

andw,q, ®wme, andw/, are the unperturbed axial, magnetron,
and cyclotron frequencies. The quadrature relafieqg. (3)]
is also modified to give

where w.=gB/mc is the free space cyclotron frequency. wﬁ—(ZAer A) =0l + 0+ w?,. (7)
The three frequencies are relateddg by the well-known
quadrature relatiofl1] Equation(7) reduces to the same expressions given by Van
Dyck et al. [4] for a spherical trap whea , andA, are equal.
wi=wl2+ 0+ 0. (3)  [In deriving these equations, the extremely small frequency

shifts (wz/wé)Z(Ap’Z/wé) have been ignorefl.The free

Using sensitive techniqué$2,13, the three frequencies of a SPace cy_clotron f_requ_ency, inferred from the original quadra-
single trapped ion can be accurately measured. The fraire relation11], is shifted down from the true frequency by
space cyclotron frequency determined from the quadrature

relation(3) is the basis for high accuracy mass comparisons. gimy EEim)
An ion in the trap induces an image charge on the inside _ 2A,+A, C2A, A, NP 27

surface of the trap, which in turn produces an electric field ™, | \[,2Z—(2A +A)  20c Bd/c

E'™ at the position of the ion. The induced field can perturb ¢ ? )

the ion motion and shift the trap frequencies. In general, this

field will depend on the position’ of the ion within the trap.  The magnetic field and trap sizkcan be determined from
During a measurement, the ion orbits are much smaller thameasurements of the ion frequencies. The caIcuIaticEprgf
the trap sized, and typically|r'|<0.05 d. In calculating the s presented below.

image shifts, it is reasonable to take only terms of lowest
order in the ion position. In a cylindrically symmetric trap
with vertical symmetry through the midplane, the zero-order

terms vanish. The first nonzero termsgi" are The goal is to calculate the image field induced by an ion
for a given position of the ion in the trap. The linearity of

o’ S Maxwell’s equations implies that the image field can be cal-
EM(p’ ,z’):E'pm H;,Jr = EE’ (4) culated assuming all trap electrodes are groun¢iguk total
field can be obtained by merely adding the image field to the
static trapping field$.In addition, we may safely ignore re-
wherep’ andz’ are the radial and axial positions of the ion. tardation effects, since for ions the trap sde5 mm is
The cylindrical symmetry of the trap implies thEt™ has  much smaller than the wavelengths associated with any of
components only in the verticé) and radial p) directions. the dynamical modes of the trapped ion={c/f=5 m).
The next nonzero terms are therefore third order’irand  The orientation of the coordinates is chosen so that the ion
p' (€.9.p'3 2’3 p'? z1,0rz’? p') and given typical orbit lies in thex-z plane, which in polar and spherical coordinates
sizes these terms are likely to be only about 0.25% of theorresponds to the azimuthal anghé=0.
first-order term. The electrostatic calculation is equivalent to finding the
Taking only the linear terms, the shifted ion frequenciesGreen’s function for Poisson’s equation, which satisfies the
can be determined by adding the linear image field to théirichlet boundary conditiogG(r,r’)=V(Q) when either
usual trap fields. The derivation is almost identical to thatr or r’ is on the surface of the electrodes. In this paper the
given by Van Dycket al. [4], except that the nonspherical vectorsr andr’ represent the field and ion positions, respec-
nature of the trap is accounted for by consideriB’ tively, and€} represents any point on the electrode surfaces.

Image-field calculations
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For the specific calculation presented here the appropriatget of dimensionless coefficien®"(r') is to be determined
boundary condition i&/(Q2)=0, but | will outline the calcu-  from the conditiongG(Q,r')=V(Q).
lation for arbitraryV(£2) in order to demonstrate the general  The entire» dependence of each term is contained in
applicability of the solution. The Green’s function can be cosme. Since cosng and cosn’ ¢ are linearly independent
written as the sum of the source term and an image terfyr m+m’, each sum overat fixedm must vanish indepen-
F(r.r’), dently. Regrouping the samm-terms in Eq.(11) and (12
and summing ovel gives a separate boundary condition
FE(rL). 9) equation for eachm. Dropping the common factor cosp
lr—r'| ' and truncating the sum & gives the set of equations at

G(r,r')=

The functionF(r,r") is proportional to the image potential

that we seek to calculate. It satisfies Laplace’s equation and N (r'/d)’ ) o T !
is chosen such that the boundary condition®is satisfied. d |=Eo RE Pi(cosé’) +C/(r )(a) P,(cos6)
GivenF(r,r'), the image field at the ion position is given by
_ =VO(r), m=0, (14)
Elm(r’):qu F(I’,I")|r:r/, (10
NI od=—myt (r'rd)

where the gradient is taken with respect to the field coordi¥ 2
nates before evaluating at the position of the ion. di=m
The general approach taken here in calculakig,r’) is " "
to expand the source and image functions of B).in a X P(cosf)=V"(r), m#0. (15
Laplace series, keeping terms of oréerThe boundary con- . . . mr.
dition qG(Q,r')=V(Q) is then imposed approximately on For a given N’. a}pprgmmate.solutloné“cl (r') can be
the series solution by minimizing the integral of determined by minimizing the integral of_the square of the
|qG(Q,r')—V(Q)|? over the surface. The set of expansion sums(14) and (15), which form=0 looks like

m ! me. r I
()T (a1 o0 )(5) 1

coefficients for F(r,r’) obtained from the minimization N ') |
comprise the approximate solution. f upl(cosy)mg(m(i) P,(cos6)
Using a modified form of the addition theorem for spheri- s|=0 | (r/d)' 1 d
cal harmonicgappropriate for’<r), the source term in Eq. )
.. . ,: d
(9) can be expanded about the origin(astting¢’=0) -2 Vi) de. (16)
1 1. (r'/d) ,
1’ =4 ,20 (r/d) Pi(cosg)P(cosd’) The integral is over the unprimed variables constrained to the

electrode surfaces. Wit fixed, the integral is essentially
(1—m)! one-dimensional. The minimum of the integrals is deter-
+2> Trmr P"(cos#)P|"(cosf’')cosme |, mined in the standard way by setting the derivative with
m=1 ' respect to a particula€'(r') equal to zero. Interchanging
(11 the order of the summation and integral results in the follow-
" ) . ing set of N—m linear equations for eacm (I have tempo-
where theP,"(x) are associated Legendre functions and therarily dropped the indicedl andm for convenience
factor of 14 is included to make the terms in the sum unit-
less. SinceF obeys Laplace’s equation, it can also be ex- B Ci(r")+DAl(r')—V,=0, (17)

panded in terms of Legendre functiofis], ) o
where summation over repeated indices extends fremm

to N, and

e |

1
Frr)=5 2

|
C,m(r’)(£> P"(cos#)cosmd.
=0 m=0 d

r’ |
(12 A(r’):(a) P"(cos#’), (18
With our choice of axes, the sm¢ terms vanish. The arbi- ik
trary b_oundary conditiorV can be expanded in a Fourier BkI:f ([) P™(cos6) PM(cos6)dQ, (19)
series in the angle d

°° k
V((),)zmz:0 V{(p,z)cosmep+V(p,z)sinme. (13 szgfsvm(r)(é) Pr(cos6)dQ, (20)

Due to the linear independence of ziand cox, theV{'and  and
VI terms can be handled separately. For simplicity in the

k—=I1-1
following discussion, | will consider only the cosp terms, m=0: Dklzj (£> P,(cos#)P,(cosh)d()
but the general approach is similar for the igh terms. The s\d '
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(I=m)l [ [\ 1=t dition V() on that surface. The boundary condition is de-
. m
m#0: DkI:2(|+m)! JS q Pi(cos6) termined entirely by theN integralsV,. This means that
once all theB,, have been calculated for a fixed trap geom-
X P['(c0s0)d. 21) etry, calculating the trap field for an arbitrary boundary con-

dition requires onlyN additional integrals, which is signifi-
cantly faster than the full calculation. The relaxation
technique requires a full separate calculation for each new
boundary condition, even at fixed geometry. This could be
particularly convenient in designing traps and understanding
, 1 ) the contribution of each part of the trap to the potential at the
with Cy = —B; "Dy Given the symmetry of the Legendre a5 center. For example, taki(r) = 8(r —r,) (wherer, is
functions, the integrals fdB,, andD, vanish unles$ andk 41 arbitrary point on the electrode surfagives the contri-

are either both even or both odd. Since the even and odgytion of the pointr, to the trap fields and does not require
terms do not mixB andD can be split and the parts with gy integration. This can be used to decide how best to sec-
different symmetry solved separately. An approximate solujion g given trap into electrodes or how trapped surface
tion of mixetzj symmetry but ;ixedn therefore consists of charges at different positions affect the trap fields.
calculatingN“+ N integrals (\°/4 for each symmetry oB Another useful property of this technique is that there is
and D and N for V,) and inverting two symmetridN/2  some freedom in choosing the approximate boundary condi-
X'N/2 matrices. In the absence of source terms, the coeffijgons. The boundary conditiofyG(€,r’) —V(€)|2=0 can
cientsC, are independent af’ and onlyN?/2+ N integrals be multiplied by a nonzero weighting function(r). In the
must be calculated. ~limit N—o° the solution forG(r,r') should be independent

~ The solution given by Eq$12) and(22) depends implic- w(r). With some knowledge of the solution, the freedom
itly on the number of termal included in the sum. Itis only ¢4 choosew(r) can be used to emphasize different parts of
meaningful if it converges fast enough with increasNg  the trap and improve the convergence of the solution. For
Since we are interested in the potential near the center of t'”@xample, in the image charge calculations presented here,
trap, we only need to calculate the lowest-order terms ofach point on the electrode surfaces does not contribute
Cy . Certainly, sincér’| is small, the first fewA,(r") should equally to the total image field at the center. In fact, the
be sufficient, which implies that only the first few columns of image field contribution of a surface point scales as the in-
Dy need be calculated. One may be concerned, howeveyerse cube of the distance to the center of the trap, [4].

that in the integrals de_fm!nﬁ[(, and D, the field posmon. Choosing a weighting functionw(r)=1/® relaxes the
Ir|=1€| is not small, indicating that an accurate solution ho,ndary condition on distant parts of the trap in such a way
may require a large number of terms. In addition, the inveryhat errors in the approximate solution®{r,r’) contribute
sion of By, requires it to be sufficiently well conditioned so equally from all parts of the trap. It is important to note that
that inversion does_ not introduce _signifi_cant errors. For ane choice ofv(r) does not affect the value of the converged
spherical trap, the size ¢f2| and the inversion oBy are not  so|ytion (assuming it converggsonly the number of terms

an issue because the differ@t are orthogonal anBandD  needed to reach convergence. This was confirmed by per-
are therefore diagonal. In a nonspherical trap, however, thiﬁ)rming calculations with and withowt(r).

is not the case. The lowest-order coefficients &f(r,r’) relevant for the

The condition number of a matriX, provides a measure image shift {/,=0) are given by
of how sensitive matrix inversion is to errof$4]. An ap-
proximate form of the condition number is given BYA) 1
=N [AjImad A Imax. Wheren is the order of the matrix F(r,r’)= P C2zZ +Ciypp’ +Cy
and[AjjImax is the maximum element ok. For the hyper-
bolic trap geometries used here, direct calculation shows th
the condition numbeK(NB) grows exponentially with\,
indicating that"B is increasingly ill-conditioned. As a result,
the requirements on the numerical precision of the integrals ' q . q
in Egs. (19) become very stringent aX increases. If the E)"=—(Chit2C5), E"'=—(C1;—Ch). (24
series does not converge sufficiently quickly at a given pre- d d
cision, the problem may become numerically unstable befor
a solution can be obtained. Fortunately, this can easily b
checked and for all the calculations presented here the pro-
cedure was found to be robust at standard double precision 5= ﬂ( cl 4+ ECO ) (25)
up to N=44 (corresponding to 22 termsThe solution was B\ 27
typically within 0.1% of the limitingvalue byN=16.

Before proceeding to the image charge shifts, | point outvhich is independent of the ion mass and linear in the ion
some useful properties of the solution given by E2QR). charge.[The Cgo term does not contribute to the total fre-
While the integralB,, andD,, depend on the geometry of quency shift, since it adds to the overall potential in exactly
the trap surface, they aiadependenbdf the boundary con- the same way that the trap electrodes do. It is equivalent to a

Inverting By, in Eq. (17) gives the formal solution

Ci(r")=CuAu(r’) + By Vg, (22

2
zz—%) } 23)

G\Iaking the gradientEq. (10)] and comparing with Eq4),
the image fields are given by

i’he resulting frequency shift is given by
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FIG. 2. The image field expansion coefficie@$, andCY, as a FIG. 3. The exact source potentiad|r—r’| and the approxi-

function of the number of terms included in the calculation. Themate image potentiat- qF(r,r’) evaluated at the the trap surface.

calculation was performed for the hyperbolic geometry shown inThe calculation was performed with=0, which corresponds to a

Fig. 1 with all electrodes grounded. source charge lying on theaxis, p’=0. (The scaled potential
®/(qz'/d) is independent of’ in the limit of smallz’.)

slight shift in the trapping potential,, and is therefore ac-

counted for by the quadrature relati¢®).] . .

The integrals(19) and (21) were performed numerically In order tq compare the calculation tp experlmental mea-
and theBy, were inverted using standard routines. For mostSUrements, it is convenient to determine the radius of an
geometries at standard double precision, up to 22 teins (equwalent_sphe_:ncal trap. The frequency shift for a spherical
— 44) were included without instability in the inversion of trap of radiusa is [4]

By . On the other hand, including only three terms in the

calculation givesCY; and C1; to within 8% of the limiting

value. Including only seven terms give®;, and C}; to _3.qc

within 0.5% of the limiting value. For higheX the relative 6= 2Bad (26)
error continues to decrease, but more slowly, as shown in

Fig. 2. One property of the series solution is that it can ac-

curately approximate the potential near the trap center with- . . .
out having to account for the exact fields everywhere in theCon_wparmg expr_e55|on$2_5) z_and (26), the radius of an
trap. This can be seen in Fig. 3, which compares the exa&duivalent spherical trap is given by

source potential g/[r—r’| to the induced potential

—qFy(r,r’) at the trap surface. In the limi—«, the ap-

proximate image potentidf(r,r’) should cancel the exact 0.6 f\__/._L

source potential everywhere on the electrode surface. Despite

the relatively poor agreement at the surfaces when only 04 s
seven terms are included, the lowest-order ténhich gov- S} - 02
erns the potential at the center of the jrap already quite oz - C:

accurate. Extending the series solution to 22 terms signifi-
cantly improves the agreement at the surface, but only
changes the first-order terms by 0.5%.

As an additional check on the consistency of the calcula-
tion, the expansion coefficients for a source-free cylindrical

trap (O, ;=0) were computed and compared to the known 5 02
exact solutiof 15]. Unit potentials were applied to either the 5 o1l
ring (evenz symmetry or the upper endcafpddz symme- E‘ 001

try), and the approximate solutions were determined as a
function of the number of terms included. The results are = L L ! .

plotted in Fig. 4 for the evem-symmetry. Similar convergent 3 10 b 2

behavior was found, and by including 7 terms the lowest- Number of terms included

order coefficients were within 0.2% of the exact solution.  FIG. 4. The source-free expansion coefficients for a cylindrical
The accuracy of %10 ° obtained forN=44 is comparable trap with the ring electrode held at 1 Volt and the upper endcap
to the typical uncertainty arising from the measured trap sizgrounded. The error is relative to the exact analytical reSult

d. (Nc,—C))/C,. The aspect ratio was taken to pg/z,=1.16.
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13 but the total contribution was less than 0.2% for the MIT
(27)  geometry. Atry=2d the differential dependencéC,,/dr 4
was about—0.003, so that a 1% error in, contributes 1.4
x 10~ to the overall error. The error in the frequency shift
is dominated by uncertainties in the present calculation, but
still of sufficient accuracy to be adequate in the foreseeable

3 1
2 c1+Chy2

Van Dycket al. [4] measured the effective sphere radius for
a small hyperbolic trap. The present technique was applied t
the specific geometry of their trap, resulting in the coeffi-future

H 0 _ 1 _ 0 _
cients C1;=0.511, C1;=0.298, andC3=0.137. The exact | ¢josing, | point out that it may be possible to extend

details of the guard ring were not known, so an approximagis technique beyond the long wavelength electrostatic limit
tion of its position was made, but the guard ring does not, ghorter wavelengths, which would be applicable to the
contribute significantly to the frequency shift. The sphericalcayity induced frequency shifts found in trapped electron
approximationd ,=A, is inadequate for this trap, SiNE, gy gies. In such a solution, the Green’s function for the Pois-
=0.2A,. The calculated effective sphere radius &  gon equation would be replaced by the Green’s function for
=1.3941=0.99%, which is in very good agreement with {he Helmholtz equation, resulting in spherical Bessel func-

the measured value @=0.99(6)o,. tion expansion§16] instead of the usual Legendre functions.
The calculation was applied to the MIT trap geometry, The vector nature of the time-dependent solution complicates
and the resulting coefficients are given by the boundary conditions, but the problem appears to be

readily tractable if the independent scalar8 andr -E are

used as solutions to the Helmholtz equafi@6]. Each solu-

tion of this type could provide both the size and shape of the
(28 . . X ;

fields in a hyperbolic trap for a given frequeney There are,
of course, a number of significant problems that may prevent
the time-dependent series solution from being useful. Unlike
the static case, where fields at the trap center are not very
is closer to zero and the difference betw@,ﬁ and Cil js  Sensitive to some of the exact details .Of th? trap e_k—;-ctrodes,

the dynamic solution near resonances is quite sensitive to the

smaller, bu, is still only about half ofA,. The errors are edectrode geometry and the boundary conditions on the sur-

estimates based solely on the scatter in the solution obtaim-'T-aCe This will brobably make the issues associated with
for 16<N<44, assuming that the series is converging accu-_~~° b y

rately. For the recent alkali measuremenfs], [d proper convergence worse for the time-dependent case. In
—0 g$011(3) cm.B=8.529¢< 10" gausd this gives ’a fre- addition, it is not clear how difficult it will be to incorporate
c;ue.ncy Shift OfA f ’__5/2'77_91 84(97),qu pergcharge Er the effects of dampingor skin depth on the boundary con-

= =01. CEr- . . .
rors in 6 arising from uncertainties in the trap siz&p/ 6 ditions in the trap. As has been pointed pLi], this problem

X ) is not | heoretical in nature, sin ncertainties in tr
=3Ad/d, can be determined from the slope of the ImearS ot just theoretica ature, since uncertainties in trap

lationshio bet h lied volt d th ial f construction lead to uncertainties in the mode structure of the
relations 2|p N Weeg € applied voltage an € axia re'Era|o. In general, the construction of accurate hyperbolic traps
quency,w;=qVy/md, for ions of differentgy/m. Measuring

is much more difficult than cylindrical traps. Nevertheless,

the slope avoids problems caused by unknown offsets in thg,, efficient method for short wavelength trap calculations for

applied voltageV,. The accuracy is typically limited by the ,ihitrary cylindrically symmetric geometries would be use-
uncertainty in the voltage measurement to a few parts ¥ 10 ful, and it seems to be worth investigating.

which is still much smaller than the theoretical contribution

to the overall uncertainty. Errors ifarising from uncertain-

ties in the radial positiong of the guard ring were estimated I would like to thank D.E. Pritchard and J.D. Gillaspy for
from calculations at differenty. As expected, the coeffi- support for thinking about ion traps, and J. K. Thompson, S.
cients Cy; were found to depend exponentially og [17], Rainville, and M. P. Bradley for helpful discussions.

C9,=0.41743),
C1,=0.36034),
C9=0.06295).

The MIT trap geometry is slightly more spherical, sir@%b
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