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Second-order dielectric stopping of ions in a free-electron gas
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The energy lost by a heavy projectile, with chargeZP , moving in a free-electron gas is studied within the
framework of the dielectric formalism. In this model, the potential induced by the projectile is expanded in a
perturbative series, and terms up to second order inZP are conserved. The obtained quadratic potential is
expressed as a function of the first-order dielectric response or Lindhard dielectric function. We apply the
formalism to the calculation of stopping for different fixed charges~protons, neutral hydrogen, and antiprotons!
moving in aluminum. Energy-loss distributions are investigated, and in the case of antiprotons, the second-
order term is modified to avoid negative probabilities. The total stopping power, calculated taking into account
the inner-shell contribution and different charge states in equilibrium, is compared with experimental data. The
induced electronic density is also studied, and results agree with those derived from the density-functional
theory.
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I. PRELIMINARY

In a previous work@1#, we calculated the first-order stop
ping power for a fast ion with chargeZP moving through a
free-electron gas~FEG!. We worked within the framework o
two different formulations, namely the binary collisional fo
malism~BCF!, also called kinetic theory@2#, and the dielec-
tric formulation~DF! @3#. While the first formalism only de-
scribes the energy loss by binary collisions, the second
provides the energy lost in both single-particle and collect
processes, without separating its contributions. In both m
els, the first perturbative order of the stopping power
pends onZP

2 , being therefore insensitive to the sign of pr
jectile charge; i.e., protons and antiprotons yield the sa
results. To study the experimentally observed dependenc
the energy loss on the sign ofZP , in Ref. @4# we calculated
the second-order stopping power within the BCF. It w
evaluated by means of the second-order Born approxima
to describe the electronic transitions, but still using the fir
order induced potential. As derived within the BCF, this a
proximation only takes into account the binary mechanism
energy loss, therefore the use of the DF is necessary to
sider the second-order collective effects.

The aim of the present work is to investigate the seco
order stopping power within the DF, which includes bo
binary excitations and collective oscillations. In the DF, t
ZP

3 correction of the stopping is obtained by expanding
potential induced by the projectile up to second order inZP .
This quadratic potential, which was developed by Pita
et al. and Esbenson and Sigmund in Ref.@5# within a many-
body theoretical scheme, is expressed in terms of the fi
order dielectric response function, which is evaluated w
the full random-phase approximation~Lindhard dielectric
function!. Exchange effects, which were approximately
cluded in Ref.@6# for low impact velocities, are not take
into account in the theory. We apply the model to the cal
lation of the energy lost by protons, antiprotons, and neu
hydrogen moving in aluminum. By examining differenti
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energy-loss distributions, some inconsistencies—such
negative probabilities at high transferred energies
antiprotons—are found in the theory. In consequence,
have modified the second-order term to get rid of such
proper contributions.

In order to compare the theoretical values with expe
mental data, we add to the second-order stopping power
to collisions with the FEG the contribution coming from th
interaction with electrons bound to target atoms. The ene
loss originated by inner-shell ionization is evaluated with t
continuum-distorted-wave–eikonal-initial-state~CDW-EIS!
approximation@7,8#, which includes all orders inZP , at least
approximately. In the case of hydrogen, the existence of
ferent exiting products is taken into account by weighing
stopping with the equilibrium charge-state fractions@9#. We
also inspect the effect of theZP

3 term on the electronic den
sity, comparing the results with those derived from t
density-functional theory~DFT! @11#.

The work is organized as follows. In Sec. II, we outlin
the model used, deriving the quadratic induced poten
from a collisional point of view. Results are displayed a
discussed in Sec. III, and in Sec. IV the conclusions
summarized. Atomic units are used except where indicat

II. THEORY

Let us consider a heavy projectile~P! of chargeZP mov-
ing with velocity v inside a solid, and colliding with the
electrons of the FEG. Due to the large mass of the projec
the description of its motion in terms of a classical trajecto
is a reasonable approximation, with the projectile position
the timet given byR(t)5vt. We employ the time-dependen
Hartree-Fock method to describe the electronic state of
FEG in the presence of the projectile. Within this formalis
the Schro¨dinger equation associated with the many-bo
problem can be described using the Hartree equations fo
one-electron wave functionsw j (r ,t) in the usual way:
©2001 The American Physical Society02-1



r
s

ee
e

-

s

th
p

te

s

-
sio
e

te

th
r

in-

just
gi-

.

ion

be
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@ k̂2/21V~r ,t !#w j~r ,t !5 i
]

]t
w j~r ,t !, ~1!

wherek̂52 i“ r is the electron momentum operator,

V~r ,t !5u@r2R~ t !#1(
i 51

n E dr 8w~r ,r 8!uw i~r 8,t !u2 ~2!

is the self-consistent potential acting upon thej th electron
(e), and j varies from 1 ton, with n the total number of
electrons of the FEG~for more insight, see@12–14#!. In the
summation, the termi 5 j should not be included, but fo
practical purposes, i.e., a large number of electrons, it ha
relevance. In Eq.~2!, the potentialu(r )52ZP /r ~where r
5ur u) is the CoulombP-e potential,w(r ,r 8)5ur2r 8u21 de-
scribes thee-e interaction, and the exchange terms have b
neglected. As t→2`, the electronic states satisfy th
asymptotic condition wk(r ,t)→fk(r )exp(2iEkt), where
fk(r )5(2p)23/2exp(ik•r ) is the unperturbed state, with en
ergy Ek5k2/2, of the j th electron, and the discrete indexj
has been replaced by the initial momentumk.

Assuming an instantaneous response of the electron
the projectile perturbation, the potentialV(r ,t) depends only
on r2R(t). Then, a formal solution of Eq.~1! is obtained by
performing the Galilei transformation to the frame where
projectile is at rest, which is associated with the unitary o
eratorU(r ,t)5exp@2i(v•r2tv• k̂)#. The transformed state

Ck~r ,t !5U~r ,t !wk~r ,t !

obeys the time-dependent Schro¨dinger equation for the
HamiltonianHe5 k̂2/21V(r ), whereV(r )5V(r ,t50) is the
perturbation located at the time origin. SinceHe does not
depend ont, the solutionCk(r ,t) can be expressed as

Ck~r ,t !5ck8~r !exp~2 iEk8t !,

wherek85k2v andck8(r ) is the stationary scattering sta
corresponding to the HamiltonianHe , which satisfies the
boundary conditionck8→fk8 as the perturbation vanishe
~outgoing asymptotic condition!.

As usual in atomic collisions, from the Lippmann
Schwinger equation we can derive a perturbative expan
of the stationary stateck8 . By conserving terms up to th
second order, we obtain

ck85fk81G0
1V~r !fk81G0

1V~r !G0
1V~r !fk8 , ~3!

where G0
15(Ek82 k̂2/21 ih)21 ~with h→01) is the re-

tarded Green function. As mentioned above, Eq.~3! is only a
formal solution of the problem because the self-consis
potential V(r ) depends on the electronic statesck8 , and
therefore an iterative resolution is necessary. Employing
expansion given by Eq.~3!, and introducing the Fourie
transform Ṽ(q)5*dr exp(2iq•r …V(r ), we obtain, after
much algebra, an equation for the potential given by
02290
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Ṽ~q!eL~q!52ZPṽ~q!1 ṽ~q!reE dkQ~kF2k!

3E dp f 2~k8;q,p!Ṽ~k81q2p!Ṽ~p2k8!,

~4!

where ṽ(q)54pq22, Q(kF2k) is the unitary Heaviside
function that restricts the initial states to those contained
side the Fermi sphere~with kF the Fermi velocity!, re52
takes into account the spin states, andk85k2v. The func-
tion eL(q)512 ṽ(q)re*dkQ(kF2k) f 1(k8;q) is the well-
known Lindhard dielectric function, with

f 1~k8;q!5~2p!23@g0
1~k81q!1g0

2~k82q!#, ~5!

f 2~k8;q,p!5~2p!26@g0
1~k81q!g0

1~p!

1g0
2~k82q!g0

2~p2q!1g0
1~p!g0

2~p2q!#,

~6!

andg0
6(q)5(Ek82Eq6 ih)21. In the derivation of Eq.~4!,

it is assumed that the total electric charge of the FEG is
neutralized by a uniform positive-charge background ori
nating from the atomic cores.

The first-order potentialṼ(1)(q) is derived by conserving
only the first term on the right-hand side of Eq.~4!, that is,

Ṽ(1)~q!52ZPṽ~q!/eL~q!. ~7!

As any iterative solution, the second-order potentialṼ(2)(q)
is obtained by replacing Eq.~7! on the right-hand side of Eq
~4!. After changing integration variables, it reads

Ṽ(2)~q!52ZPṽ~q!/e2~q!, ~8!

where

e2
21~q!5eL

21~q!

3F12ZPreE dq8
ṽ~q2q8!

eL~q2q8!
g~q,q8!

ṽ~q8!

eL~q8!
G
~9!

is the inverse of the quadratic dielectric response funct
e2(q), and g(q,q8)5*dkQ(kF2k) f 2(k8;q,k81q8) is the
propagator. The potentialṼ(2)(q) coincides with that derived
by Pitarkeet al. @5#, and the functiong(q,q8) can be calcu-
lated analytically from Ref.@15#. Note that the linear-
response functioneL(q) is independent of the projectile
charge; on the contrary, the response functione2(q) depends
on ZP .

A. Second-order stopping power

Within the DF, the second-order stopping power can
derived from the potentialṼ(2)(q) as @16#
2-2
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S2
DF52

2ZP
2

pv2E0

1`

dv vE
v/v

1`dq

q
ImF 1

e2~q!G , ~10!

where v5q•v is the energy lost by the projectile. In th
derivation of Eq.~10!, we have explicitly used thate2(q)
only depends onq5uqu and qz with the z direction chosen
parallel tov. By using Eq.~9!, S2

DF reads

S2
DF5S1

DF1
4ZP

3

pv2E0

1`

dv vE
v/v

1`dq

q

3ImF 1

eL~q!
E dq8

ṽ~q2q8!

eL~q2q8!
g~q,q8!

ṽ~q8!

eL~q8!
G ,

~11!

where S1
DF is the first-order stopping power, which

straightforwardly obtained from Eq.~10! by replacinge2 by
eL . Note that the propagatorg(q,q8) depends explicitly on
v, while in the case of the first-order dielectric function,eL ,
the dependency on the projectile velocity is just contained
the variablev.

The second term on the right-hand side of Eq.~11! repre-
sents theZP

3 term of the stopping power, which is sensitive
the sign ofZP , while S1

DF is proportional toZP
2 . Thus, a

good way of investigating second-order effects is to cons
projectiles with opposite charge, i.e., protons and antip
tons; the difference between their stoppings is twice theZP

3

term.

B. Induced electron density

The induced electronic density can be derived from
quadratic potentialṼ(2)(q) by employing the Poisson equa
tion, and it reads

n2~r 8!5
2ZP

2p2 E0

`

dq q2E
0

1

dv8J0@qrA12~v8!2#

3$cos~qzv8!R2sin~qzv8!I %, ~12!

where r 85(r,z) is the position vector measured from th
projectile place, withr andz the cylindric coordinates with
respect tov, J0 is the Bessel function of zero order, an
v85qz /q, with qz the component ofq along the velocity
direction. The functionsR and I are defined in terms of the
quadratic dielectric responsee2(q) as

R5ReF 1

e2~q!G21, I 5ImF 1

e2~q!G . ~13!

As a consequence of the presence of the positive co
which neutralize the total electronic charge, the total indu
electronic charge inside the solid is null, i.e.,*dr 8n2(r 8)
50. The first-order induced electronic densityn1(r 8) can be
calculated from Eq.~12! by replacinge2 by eL in Eq. ~13!.
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C. Stopping of dressed projectiles

For ions carrying electrons, at high velocities it is possib
to consider that the electrons bound to the projectile rem
unperturbed during the collision. In this frozen approxim
tion, the first-order potential is

ṼD
(1)~q!52ZP

1

eL
D~q!

ṽ~q!,

whereeL
D is the dressed Lindhard dielectric function, defin

as eL
D(q)5eL(q)/ f (q), with f (q)512F(q)/ZP . The func-

tion F(q) is the well-known atomic form factor, and fo
projectiles containing electrons only in theK shell, it reads

F~q!5 (
n51

np ~2zn!4

~4zn
21q2!2

, ~14!

wherenp is the number of electrons in the 1s state (np51 or
2), andzn is the effective charge seen by the bound elect
@17#. The second-order dressed potential reads

ṼD
(2)~q!52Zp

1

e2
D~q!

ṽ~q!, ~15!

where the dressed second-order dielectric functione2
D(q) is

derived from Eq.~9! by replacingeL by eL
D , and it is

@e2
D~q!#215@eL

D~q!#21H12ZP
21re

3E dq8ṼD
(1)~q2q8!g~q,q8!ṼD

(1)~q8!J .

~16!

For H0 projectiles, considered in the present work, in E
~14! np51 andzn51.

III. RESULTS

We have confined our study to a system composed
singly charged or neutral projectiles (H1,p̄,H0) moving in
aluminum solid, which can be considered as the prototype
the metal target. The parameters used to describe the al
num are the following: the electron density isNe50.0268~or
equivalently the plasmon frequencyvp50.58 and the Fermi
velocity kF50.927), the atomic densityNat58.9231023,
and the inverse of the plasmon lifetimeg2150.037@18#.

In Fig. 1, we plot the energy-loss distributionS(v)
[dS/dv as a function of the lost energyv for H1, p̄, and H0

moving inside an aluminum solid target with velocityv
51 a.u. Second-order resultsS2

DF(v) are displayed with a
solid line in Figs. 1~a! and 1~c!, and with a dashed line in
Fig. 1~b!. The calculation ofS2

DF(v) from Eq. ~11! involves
a three-dimensional integration on the momentumq8 and a
further integration onq, which were numerically done within
an error of 1%. Values corresponding to the first-order
ergy lossS1

DF(v) are also plotted in Fig. 1 as a referenc
2-3
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Because the impact velocity is lower than the threshold
plasmon excitation (v,v thr.1.2 a.u.), the collective oscil
lations do not contribute to the energy loss. Therefore,
impact energy considered in Fig. 1 allows us to study
detail the behavior of the stopping produced by binary co
sions with the FEG. For protons and neutral hydrogen,
maximum of the second-order distribution is higher than t
corresponding to the first-order distribution, indicating an
crement of the energy deposited in the solid by project
with positive charge with respect to predictions of the fi
order. For antiprotons, in contrast, theZP

3 term of the stop-
ping power@second term of Eq.~11!# gives a negative con
tribution, and the energy-loss distributionS2

DF(v) exhibits
valueslower than zerofor v.1.4 a.u., as observed in Fig
1~b!. Such values, corresponding to negative probabilit
are clearly unphysical. To solve the serious problem t
arises forZP521, in Eq. ~11! we drop the negative prob
abilities by replacing the negative values ofdS2

DF(v)/dq by
dS2

DF(v)/dq50. This prescription is equivalent to defining
second-order stopping (S28)

DF by introducing Q„Im
@21/e2(q)#… in the integrand of Eq.~10!, that is,

FIG. 1. Energy-loss distributions for 25 keV (v51 a.u.) ~a!
protons, ~b! antiprotons, and~c! neutral hydrogen on aluminum
solid targets considering fixed-charge projectiles. Dotted line,
first-order contributionsdS1

DF/dv. Thin solid line, the second orde
dS2

DF/dv. Thick solid line corresponds to ‘‘truncated’’~non-
negative! second-order stopping (dS28)

DF/dv. We compare with
dS2

BC/dv of Ref. @1#, dot-dashed line.
02290
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~S28!DF52
2ZP

2

pv2E0

1`

dv vE
v/v

1`dq

q

3ImF 1

e2~q!GQS ImF 21

e2~q!G D . ~17!

Note that this new definition only affects the second-ord
energy loss for negative values ofZP , leaving unchanged the
results for neutral and positive projectiles. Values
(S28)

DF(v) are plotted in Fig. 1~b! by a solid line, and they
are lower thanS1

DF(v) in the range of high lost energies. Th
modification introduced in Eq.~17! breaks the symmetry o
proton and antiproton results with respect to first-order st
ping power. Since such symmetry is characteristic of theZP

3

term, it is expected that the elimination of negative probab
ties incorporates, in some approximate way, terms of hig
order inZP in the energy loss.

With the purpose of testing the validity of the Eq.~17!, we
compare the results of (S28)

DF(v) with the second-order val
uesS2

BC(v), calculated within the BCF@4#, which are also
plotted in Fig. 1~dot-dash line!. As for v51 a.u., the plas-
mon mechanism is not present in the energy-loss process
DF and BCF first-order distributions are equal, as was sho
in @1#. Some differences might, however, appear in t
second-order contributions because the DF can involve
cited plasmon states as intermediate states, while these
tual collective states are not contained in the BCF. And t
should be the reason why the distribution (S28)

DF(v) extends
beyond v52v(v1kF), which is the maximum allowed
value of lost energy in a single-particle collision. A goo
agreement between the second-order energy-loss dist
tions (S28)

DF(v) and S2
BC(v) is observed in Fig. 1, which

supports the effectiveness of the modification included in
~17!. On the other hand, several kinds of Pade´ approximants
were tried with no success in getting rid of the negat
values of the second-order probability in the DF.

In Fig. 2, we show the energy-loss distributionSDF(v)
[dSDF/dv for H1, p̄, and H0 moving with v52 a.u. in
aluminum. At this impact velocity, the plasmon excitatio
mechanism can contribute to the energy loss. For protons
antiprotons, a sharp peak atv;vp is displayed in the first-
and second-order distributions, and such a peak corresp
to the energy lost by plasmon excitation processes. In
case of neutral hydrogen, in contrast, the incident atom c
not excite collective modes due to the short range of
projectile potential@1#, and the energy-loss distribution i
broader, with no visible footprints of the plasmon mech
nism. By comparing Figs. 2~a! and 2~b! for v>vp , it is
found that antiprotons cancel a significant portion of the
ergy distribution, while protons reinforce it. In other word
antiprotons avoid head-on collisions involving high-ener
transfer, but these collisions are strengthened for proton
pact. In Fig. 2~b!, the curves corresponding toS2

DF(v) and
the modified versionS28DF(v) seem to be similar; however
remarkable differences are observed in the amplified vis
displayed in Fig. 3. For antiprotons atv52 a.u., negative
values ofS2

DF(v) for high lost energies are also observe

e

2-4
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SECOND-ORDER DIELECTRIC STOPPING OF IONS IN . . . PHYSICAL REVIEW A64 022902
Although at this impact velocity the negative contribution
the stopping power is not meaningful, the presence of ne
tive probabilities affects the calculation of the total ener
loss. Notice that the unphysical behavior ofS2

DF(v) for high
values ofv is not an exclusive characteristic of small veloc
ties, but it persists for high impact energies.

Figure 4 displays stopping power per unit length, as
function of the projectile velocity, for protons@Fig. 4~a!#,
antiprotons @Fig. 4~b!#, and neutral hydrogen@Fig. 4~c!#
moving through aluminum. The results for H1 projectiles
coincide with those calculated by Pitarkeet al. @5#, although
a different value ofg is considered. From the figure it i
observed that theZP

3 term increases the first-order predictio

for H1 and H0, while for p̄ the second-order term lowers i
At small velocities, all results tend linearly to zero.

So as to compare the theoretical results with experime
data, we calculate the total stopping powerS2 as

S25~S28!DF1SCDW-EIS
IS , ~18!

where SCDW-EIS
IS represents the stopping due to inner-sh

ionization of the solid atoms. TheSCDW-EIS
IS contribution is

FIG. 2. Energy-loss distributions for 100 keV (v52 a.u.) ~a!
protons, ~b! antiprotons, and~c! neutral hydrogen on aluminum
solid targets considering fixed-charge projectiles. Dotted line,
first-order contributionsdS1

DF/dv. Thin solid line, second orde
dS2

DF/dv. Thick solid line corresponds to ‘‘truncated’’~non-
negative! second order stopping (dS28)

DF/dv.
02290
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calculated using the CDW-EIS approximation, which i
cludes all orders onZP , at least approximately@8#. The ini-
tial bound states are described with Hartree-Fock doublZ
functions@19# corresponding to the ion Al31, while a Cou-
lomb wave function with a charge satisfying the binding e
ergy is used to describe the final continuum state. In Fig
we showS2 as a function ofv for hydrogen and antiprotons
As in previous figures, we also plot the first-order total sto
ping power, calculated asS15S1

DF1SCDW-EIS
IS . In the case of

hydrogen, the different charge states of the projectile
taken into account by weighing their partial contributio
with the equilibrium fractions. In the results of total stoppin
power, we neglected the contributions of H2. The energy
loss due to projectile charge-exchange processes has
been neglected in our calculation. The contributions com
from capture from the FEG and atomic inner shells ha
been estimated to be lower than 10%@9# and 1% @10#, re-
spectively, for the velocities considered here. For H proj
tiles at high impact velocities, the agreement with expe
ments is good, but discrepancies have been observed b
v51.7 a.u. At these intermediate velocities, the seco
order stoppingS2 overestimates the experimental value
whereasS1 underestimates them. For antiprotons, in contra
S2 results agree with the experiments at intermediate e
gies, except a small depression atv51.2 a.u., and they
quickly tend to the first-order values asv increases, running
above experimental data in the high-energy range. The
locity v51.2 a.u., where the dip in the antiproton resu

e

FIG. 3. Magnification for transferred high energy of energy-lo

distributions~Fig. 2! for H1 and p̄.
2-5
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appears, corresponds to the threshold of collective contr
tions, and the depression in theS2 curve for antiprotons can
be associated with the second-order hump present in H1 cal-
culations @5#. Of course, these structures of the stopp
power do not seem to have physical meaning.

Finally, by using the second-order model, we have inv
tigated the electronic density induced by the projectile in
FEG @20#. For H1 and p̄ moving with v50.8 a.u. in an
aluminum FEG, the electronic densityn2(r 85zẑ) calculated
from Eq. ~12! and normalized with the unperturbed ele
tronic densityNe has been plotted in Fig. 6 as a function
the distancez to the projectile position. We also display pro
ton and antiproton results calculated by Salin using the D
@11#. In that calculation, the exchange correlation contrib
tion was neglected according to our model, but the values
not differ considerably from the ones accounting for e
change. The induced electronic densityn1(r 85zẑ) derived
from Ṽ(1)(q) is also shown in Fig. 6. As the first-order po
tential depends linearly onZP , then1 values for protons and
antiprotons coincide in modulus, only differing in sign. Th
first-order model fails drastically in reproducing the dens

FIG. 4. Stopping power, for~a! protons,~b! antiprotons, and~c!
neutral hydrogen on aluminum solid targets as a function of
impact velocity, considering the projectile charge as fixed. Dot
line, the first-order contributionsdS1

DF/dv. In ~a! and~c!, the solid
line denotes the second-order stopping powerdS2

DF/dv. In ~b!, the
solid line corresponds to ‘‘truncated’’~non-negative! second-order
stopping (S28)

DF.
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provided from the DFT, especially for antiprotons whe
n1(r 85zẑ)/Ne,21 near the origin. The second-order va
ues correct, in some way, the failure of the first ordern1. For
H1, the results ofn2 agree qualitatively with the DFT data
although forp̄ the second-ordern2 incorporates an undesir
able positive enhancement, precisely in the antiproton p
tion. By inspecting the behavior of the electronic densityn2
in the r 8 space, it is possible to map the region (q,v) in the
momentum space wheree2 fails. From Eq.~12!, at the pro-
jectile position (r 850) the electronic densityn2 only de-
pends on the functionR, being independent of the functionI.
Therefore, forZP521, values ofR.0 are associated with
positive values of the density at the positionr 850, as ob-
served in Fig. 6. Then, we introduce a similar criterion to t
one used in Eq.~17! to avoid the improper positive electroni
density for antiprotons. We include the Heaviside functi
Q„12Re@1/e2(q)#… in the definition of the functionR given
by Eq. ~13!, and the modified functionR8 reads

R85S ReF 1

e2~q!G21DQS 12ReF 1

e2~q!G D . ~19!

e
d

FIG. 5. Total stopping power for~a! hydrogen and~b! antipro-
tons on an aluminum solid target as a function of the impact ve

ity. Dotted line, total first-order stoppingS1(H) and S1( p̄); and
dot-dashed line, stopping due to ionization of inner shell 2s and 2p
calculated with the CDW-EIS approximation.~a! Solid lines, total
second-order stoppingS(H); ~b! solid line accounts for corrected
~non-negative! second-order stoppingS(H). Symbols represent the
experiments for hydrogen~Refs. @21–23#! and antiprotons~Ref.
@24#!.
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Results ofn2 calculated by usingR8 are shown with a solid
line in Fig. 6 for p̄ projectiles. Again note that the modifica
tion introduced in Eq.~19! does not change the results f
protons, while for antiprotons the new values ofn2 now
approach very close to the DFT predictions@11#. The differ-
ence betweenn2 and DFT results atz50 can be easily ex-
plained as a consequence of our using a finite lifetimeg21,
while in the DFT an infinite lifetime is considered.

Summing up, in the energy-loss distribution and the
duced electronic density, two different problems were in
vidualized in the second-order theory given by Eq.~8!. These
problems are corrected here through Eqs.~17! and ~19!, re-
spectively.

FIG. 6. Induced relative densityn(z)/Ne of electrons forv
50.8 a.u. protons and antiprotons in the direction of the projec
as given by Eq.~12!. Dotted line, first Born approximation; secon
Born approximation for antiprotons denoted by the dashed-line
for protons by the solid line; second Born approximation for an
protons with additional conditions~see body of text! denoted by the
solid line dot-dashed line denotes calculations of Salin@11# using
DFT.
y

. B
e,
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IV. CONCLUSIONS

We study stopping of heavy projectiles moving in a FE
within the DF, conserving terms up to second order inZP .
The obtained quadratic wake potential, which was previou
calculated by Pitarkeet al.and Esbensen and Sigmund@5#, is
expressed in terms of the full random-phase approxima
or Lindhard dielectric function. The model is applied to th
calculation of the energy-loss distribution for protons, neut
hydrogen, and antiprotons moving through aluminum. In
case of antiprotons, negative probabilities for high tra
ferred energy are found in the theory, and these unphys
probabilities are present for all impact velocities. We propo
a modification of the second-order stopping power to av
negative probabilities. The new expression (S28)

DF, given by
Eq. ~17!, incorporates in some undetermined way high
order terms inZP , and therefore it breaks the proton
antiproton symmetry of second-order results with respec
first-order values. Results obtained with the propos
second-order DF describe properly the difference betw
proton and antiproton stopping; protons deposit more ene
in the high-energy tail, while, on their part, antiprotons d
minish their contribution.

For hydrogen and antiproton projectiles, the total stopp
power is calculated by adding to FEG results the contribut
coming from the inner-shell ionization, which is evaluat
with the CDW-EIS approximation. For incident H, theore
cal results involving the different equilibrium charge stat
of the projectile agree with experimental data at high velo

ties. Instead, forp̄ the second-order values overestimate
experiments asv increases.

By employing the second-order model, we also inves
gate the induced electronic density. Some inconsisten
were again found for antiprotons, and they were solved
using a modified version of the electronic density. For bo
protons and antiprotons, the obtained electronic density i
very good agreement with the values derived from the D
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