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Second-order dielectric stopping of ions in a free-electron gas
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The energy lost by a heavy projectile, with chaiye, moving in a free-electron gas is studied within the
framework of the dielectric formalism. In this model, the potential induced by the projectile is expanded in a
perturbative series, and terms up to second ordefgrare conserved. The obtained quadratic potential is
expressed as a function of the first-order dielectric response or Lindhard dielectric function. We apply the
formalism to the calculation of stopping for different fixed charg@stons, neutral hydrogen, and antiprotons
moving in aluminum. Energy-loss distributions are investigated, and in the case of antiprotons, the second-
order term is modified to avoid negative probabilities. The total stopping power, calculated taking into account
the inner-shell contribution and different charge states in equilibrium, is compared with experimental data. The
induced electronic density is also studied, and results agree with those derived from the density-functional
theory.
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|. PRELIMINARY energy-loss distributions, some inconsistencies—such as
negative probabilities at high transferred energies for
In a previous work 1], we calculated the first-order stop- antiprotons—are found in the theory. In consequence, we
ping power for a fast ion with chargés moving through a have modified the second-order term to get rid of such im-
free-electron gafFEG). We worked within the framework of  proper contributions.
two different formulations, namely the binary collisional for-  |n order to compare the theoretical values with experi-
malism(BCP), also called kinetic theor}2], and the dielec- mental data, we add to the second-order stopping power due
tric formulation (DF) [3]. While the first formalism only de- g collisions with the FEG the contribution coming from the
scribes the energy loss by binary collisions, the second ongteraction with electrons bound to target atoms. The energy
provides the energy lost in both single-particle and collectivaoss originated by inner-shell ionization is evaluated with the
processes, without separating its contributions. In both mOdcontinuum-distorted—wave—eikonal-initial-statéCDW—EIS)
els, the first perturbative order of the stopping power degpproximatior{7,8], which includes all orders i@p, at least
pends orZ3, being therefore insensitive to the sign of pro- approximately. In the case of hydrogen, the existence of dif-
jectile charge; i.e., protons and antiprotons yield the samgerent exiting products is taken into account by weighing the
results. To study the experimentally observed dependency &kopping with the equilibrium charge-state fractigog We
the energy loss on the sign &f, in Ref.[4] we calculated  also inspect the effect of tha? term on the electronic den-

the second-order stopping power within the BCF. It wassjty, comparing the results with those derived from the
evaluated by means of the second-order Born approximatiogensity-functional theoryDFT) [11].

to describe the electronic tl’anSitiOHS, but still USing the first- The work is Organized as follows. In Sec. ||, we outline

order induced potential. As derived within the BCF, this ap-the model used, deriving the quadratic induced potential
proximation only takes into account the binary mechanism ofrom a collisional point of view. Results are displayed and
energy loss, therefore the use of the DF is necessary to cogiscussed in Sec. I, and in Sec. IV the conclusions are

sider the second-order collective effects. summarized. Atomic units are used except where indicated.
The aim of the present work is to investigate the second-

order stopping power within the DF, which includes both

binary excitations and collective oscillations. In the DF, the Il THEORY
Zﬁ, correction of the stopping is obtained by expanding the
potential induced by the projectile up to second ordeZ in Let us consider a heavy projectil®) of chargeZp mov-

This quadratic potential, which was developed by Pitarkeng with velocity v inside a solid, and colliding with the

et al. and Esbenson and Sigmund in Ré&] within a many-  electrons of the FEG. Due to the large mass of the projectile,
body theoretical scheme, is expressed in terms of the firsthe description of its motion in terms of a classical trajectory
order dielectric response function, which is evaluated withis a reasonable approximation, with the projectile position at
the full random-phase approximatioiindhard dielectric the timet given byR(t) =vt. We employ the time-dependent
function). Exchange effects, which were approximately in- Hartree-Fock method to describe the electronic state of the
cluded in Ref.[6] for low impact velocities, are not taken FEG in the presence of the projectile. Within this formalism,
into account in the theory. We apply the model to the calcuthe Schrdinger equation associated with the many-body
lation of the energy lost by protons, antiprotons, and neutraproblem can be described using the Hartree equations for the
hydrogen moving in aluminum. By examining differential one-electron wave functions;(r,t) in the usual way:
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~ d ~ ~ ~
[k2/2+V(r,t)]<Pj(f,t)=iﬁ@j(f.t), () V(CI)GL(Q)=—va(CI)+v(Q)PeJ dk® (kg —k)

wherek=—iV, is the electron momentum operator, X f dp fo(k";0,p)V(k'+q—p)V(p—k'),

n (4)
V(r,H=u[r—R()]+ >, fdr’W(r,r’)lwi(r’,t)l2 2 -

i=1 where v(q)=4mq 2, O(ke—Kk) is the unitary Heaviside
. . ) ) ] function that restricts the initial states to those contained in-
is the se_lf—cor_15|stent potential acting upon fitle electron  side the Fermi spheréwith ke the Fermi velocity, p.=2
(TJ), and ] VfarrI]eS ffocgfn 1 ton, with rr: theétotal r:‘]l;mberh of takes into account the spin states, &idk—v. The func-
electrons of the FEGfor more insight, se¢12—14). In the - .= remy i

; L P OTE t =1- dkO (kg—k)fo(k'; th II-

summation, the ternmi=j should not be included, but for I!ggv;r#(lﬂzdharé)g?()elpeecftric fu(ngtion) vt?th @) is the we
practical purposes, i.e., a large number of electrons, it has no '
relevance. In Eq(2), the potentialu(r)=—Zp/r (wherer £k a) =27 3at (k' +a)+a- (k' — 5
=|r|) is the CoulomkP-e potential,w(r,r')=|r—r’| " de- ki@ =(2m) g (K @+ g (K=l ()
scribes thee-e interaction, and the exchange terms have been ¢ /. — (27 5Tat (k' +aa
neglected. Ast— —o, the electronic states satisfy the 2(K':0,p)=(2m) 9o (K" +A)go (P)
asymptotic condition ¢y (r,t)— ¢ (r)exp(—iE), where +0o (K'—0)go (P—q)+9g (P)go (P—a) ],
d(r)=(2m) 32exp(k-r) is the unperturbed state, with en-
ergy E,=k?/2, of thejth electron, and the discrete indgx 6)
has been replaced by the initial momentium ndgﬁ(q):(Ek/—Eqii 7)1 In the derivation of Eq(4),

ASS“.m”.‘g an |nstaqtaneous response of the electrons ﬁ)is assumed that the total electric charge of the FEG is just
the projectile perturbation, the potentid(r,t) depends only

onr—R(t). Then, a formal solution of Eq1) is obtained by neutralized by a uniform positive-charge background origi-

performing the Galilei transformation to the frame where thenatmg from the atomic cores.

. . 1 . . .
projectile is at rest, which is associated with the unitary op- IThtﬁ fwf:_;t-E[);der potetr;]naw_ ( ;(tqrz |sdde_révedfby co?r;setr\_/mg
eratorU(r,t)=exd —i(v-r—tv: R)]. The transformed state 0"~ '€ first term on the night-hand side o Hep, that is,

N CIYPRN
W () =U(r, 1) e(r,t) V()= —Zpv(a)/e(). ™
As any iterative solution, the second-order poterM&d(q)

is obtained by replacing E@7) on the right-hand side of Eq.
(4). After changing integration variables, it reads

obeys the time-dependent Sclimger equation for the
HamiltonianH .= k?/2+V(r), whereV(r) = W(r,t=0) is the

perturbation located at the time origin. Sinek, does not
depend ort, the solutionW,(r,t) can be expressed as V()= —Zpo(q) ex(q), @)

W (r,t)=yy(r)exp —iEgt), where

wherek’=k—v and . (r) is the stationary scattering state ¢, *(q)=¢, (q)
corresponding to the HamiltoniaH., which satisfies the
boundary conditionyy,— ¢, as the perturbation vanishes , ,
(outgoing asymptotic condition 1—pref dq mg(q.q )6 )
As usual in atomic collisions, from the Lippmann- - -
Schwinger equation we can derive a perturbative expansion 9
of the stationary statey, . By conserving terms up to the
second order, we obtain

" v(g—q") v(q")

is the inverse of the quadratic dielectric response function
€2(0), and g(q,q") = SdkO (ke —k)fa(k";q,k"+q') is the

L= b+ GIV(r) b+ GIV(NGEV(T) i, 3 propagator. The potenti®®)(q) coincides with that derived
Y= St Go VIn) dict Go VI Go VIN) o ® by Pitarkeet al. [5], and the functiorg(qg,q’) can be calcu-
~ o . . lated analytically from Ref.[15]. Note that the linear-
+_ _Rk2 1 +
where G =(Ew —k%/2+i5) "~ (with #—07) is the re- g 0nse functione, (q) is independent of the projectile

tarded Gree_n function. As mentioned above, jjis only @ charge: on the contrary, the response functigfy) depends
formal solution of the problem because the self-consistent | Ze.

potential V(r) depends on the electronic statgg, and
therefore an iterative resolution is necessary. Employing the
expansion given by Eq(3), and introducing the Fourier
transform V(q)=/dr exp(—ig-r)V(r), we obtain, after Within the DF, the second-order stopping power can be
much algebra, an equation for the potential given by derived from the potentidd?)(q) as[16]

A. Second-order stopping power
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C. Stopping of dressed projectiles

273 [+ +ed
SzDF———P dw wJ Fqlm

_ez(q)}’ (10 For ions carrying electrons, at high velocities it is possible
to consider that the electrons bound to the projectile remain

. o unperturbed during the collision. In this frozen approxima-
where w=q-v is the energy lost by the projectile. In the 51 the first-order potential is

derivation of Eq.(10), we have explicitly used tha¢,(q)
only depends om=|q| andq, with the z direction chosen

7T1)2 0 wlv

parallel tov. By using Eq.(9), S5" reads V(a)=-2p D(q)U(Q),
€L
DF_ oDF | 4_Z|%f+”d f“"% WhereeE is the dressed Lindhard dielectric function, defined
R ) P WA as e (q) = e (q)/(q), with f(q)=1-F(q)/Zp. The func-
5 5 tion F(q) is the well-known atomic form factor, and for
| 1 f q v(q—q") ( )v(q’) 1 projectiles containing electrons only in tikeshell, it reads
x1m q/ ) N~ ,
EL(q) EL(q_q,) EL(q’) Np (zzn)4
(11) F(a)=2, (14)

=1 (4z3+9?)?’

where S is the first-order stopping power, which is wheren, is the number of electrons in the Btate (1,= 1 or
straightforwardly obtained from E§10) by replacinge, by  2), andz, is the effective charge seen by the bound electron

€. . Note that the propagat@(q,q’) depends explicitly on  [17]. The second-order dressed potential reads
v, while in the case of the first-order dielectric functien,,

the dependency on the projectile velocity is just contained in _ 1 .
the variablew. V@(a)=-2,—5—v(a), (15
The second term on the right-hand side of Ei) repre- €2(q)

sents theZﬁ term of the stopping power, which is sensitive to
the sign ofZp, while SPF is proportional toZ3. Thus, a
good way of investigating second-order effects is to conside
projectiles with opposite charge, i.e., protons and antipro-

tons; the difference between their stoppings is twiceZBe [eZD(q)]1=[e_=E(q)]l[1—ZPlpe
term.

where the dressed second-order dielectric funcﬁgitq) is
gerived from Eq(9) by replacinge, by e_, and it is

><fdq’V/(D”(q—q’)g(q,q’)%”(q’) :

The induced electronic density can be derived from the (16)

quadratic potential/(?)(q) by employing the Poisson equa-
tion, and it reads

B. Induced electron density

For H? projectiles, considered in the present work, in Eq.
(14) n,=1 andz,=1.

_Z © 1
ny(r')= szpfo dq quo do’Jg[gpV1—(w')?] lll. RESULTS
) We have confined our study to a system composed of
X{cogqzw')R-sin(qze’)l}, (12

singly charged or neutral projectiles (kp,H®) moving in

. N aluminum solid, which can be considered as the prototype of
wherer’=(p,z) is the position vector measured from the the metal target. The parameters used to describe the alumi-
projectile place, withp andz the cylindric coordinates with  num are the following: the electron densityNg=0.0268(or
respect tov, Jo is the Bessel function of zero order, and equivalently the plasmon frequenay,=0.58 and the Fermi

»'=q,/q, with g, the component ofj along the velocity  velocity kp=0.927), the atomic densit{,=8.92< 1073,
direction. The function® and| are defined in terms of the gnd the inverse of the plasmon lifetime 1=0.037[18].
quadratic dielectric responsg(q) as In Fig. 1, we plot the energy-loss distributioB(w)
=dSdw as a function of the lost energy for H*, p, and H
R= Re{ 1 1 I:Im[ } (13) moving inside an aluminum solid target with velocity
e(q)| ()] =1 a.u. Second-order resulg&(w) are displayed with a
solid line in Figs. 1a) and Xc), and with a dashed line in
As a consequence of the presence of the positive core§jg. 1(b). The calculation OSZDF(w) from Eq. (11) involves
which neutralize the total electronic charge, the total inducea three-dimensional integration on the momentyhand a
electronic charge inside the solid is null, i.gdr'n,(r") further integration omg, which were numerically done within
=0. The first-order induced electronic dengity(r') can be an error of 1%. Values corresponding to the first-order en-
calculated from Eq(12) by replacinge, by €, in Eq. (13). ergy IossSlDF(w) are also plotted in Fig. 1 as a reference.
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Note that this new definition only affects the second-order
energy loss for negative valuesof , leaving unchanged the
results for neutral and positive projectiles. Values of
(S5)PF(w) are plotted in Fig. (b) by a solid line, and they
are lower thar8?"( ) in the range of high lost energies. The
modification introduced in Eq17) breaks the symmetry of
proton and antiproton results with respect to first-order stop-
ping power. Since such symmetry is characteristic onEe
term, it is expected that the elimination of negative probabili-

ties incorporates, in some approximate way, terms of higher
order inZp in the energy loss.

With the purpose of testing the validity of the E7), we
compare the results 0B})°F(w) with the second-order val-
] ues S5%(w), calculated within the BCF4], which are also
; N plotted in Fig. 1(dot-dash ling As forv=1 a.u., the plas-
002 f N T mon mechanism is not present in the energy-loss process; the
RN | DF and BCF first-order distributions are equal, as was shown
NS in [1]. Some differences might, however, appear in the
second-order contributions because the DF can involve ex-
cited plasmon states as intermediate states, while these vir-
tual collective states are not contained in the BCF. And this
should be the reason why the distributidsh)° (w) extends

FIG. 1. Energy-loss distributions for 25 ke\b€1 au) (@  Peyond w=2v(v+kg), which is the maximum allowed
protons, (b) antiprotons, andc) neutral hydrogen on aluminum Value of lost energy in a single-particle collision. A good
solid targets considering fixed-charge projectiles. Dotted line, thegreement between the second-order energy-loss distribu-
first-order contributionsl S>7/dw. Thin solid line, the second order tions (S5)°F(w) and S5C(w) is observed in Fig. 1, which
dS*/dw. Thick solid line corresponds to “truncatedtnon-  supports the effectiveness of the modification included in Eq.
negativeé second-order stoppingdG})°/dw. We compare with  (17). On the other hand, several kinds of Pagigroximants
dSi%dw of Ref.[1], dot-dashed line. were tried with no success in getting rid of the negative

values of the second-order probability in the DF.
Because the impact velocity is lower than the threshold of In Fig. 2, we show the energy-loss distributi®™(w)
plasmon excitationy<vup~1.2 a.u.), the collective oscil- =dPF/dw for H*, p, and H moving withv=2 a.u. in
lations do not contribute to the energy loss. Therefore, theyuminum. At this impact velocity, the plasmon excitation
impact energy considered in Fig. 1 allows us to study inmechanism can contribute to the energy loss. For protons and
detail the behavior of the stopping produced by binary colli-antiprotons, a sharp peak at- o, is displayed in the first-
sions with the FEG. For protons and neutral hydrogen, thend second-order distributions, and such a peak corresponds
maximum of the second-order distribution is higher than thatp the energy lost by plasmon excitation processes. In the
Corresponding to the first-order distribution, indicating an in'case of neutral hydrogen, in Contrast, the incident atom can-
crement of the energy deposited in the solid by projectilegyot excite collective modes due to the short range of the
with positive charge with respect to predictions of the firstprojectile potential[1], and the energy-loss distribution is
order. For antiprotons, in contrast, @ term of the stop- proader, with no visible footprints of the plasmon mecha-
ping power[second term of Eq(11)] gives a negative con- nism. By comparing Figs. (8 and 2b) for o=w,, it is
tribution, and the energy-loss distributic®(w) exhibits  found that antiprotons cancel a significant portion of the en-
valueslower than zerdor w>1.4 a.u., as observed in Fig. ergy distribution, while protons reinforce it. In other words,
1(b). Such values, corresponding to negative probabilitiesantiprotons avoid head-on collisions involving high-energy
are clearly unphysical. To solve the serious problem thatransfer, but these collisions are strengthened for proton im-
arises forZp=—1, in Eq.(11) we drop the negative prob- pact. In Fig. 2b), the curves corresponding & (w) and
abilities by replacing the negative valuesd;,"(w)/dq by  the modified versiors,DF(w) seem to be similar; however,
dS>F(w)/dg=0. This prescription is equivalent to defining a remarkable differences are observed in the amplified vision
second-order stopping S§)°F by introducing ©(Im displayed in Fig. 3. For antiprotons at=2 a.u., negative
[ —1/e5(q)]) in the integrand of Eq(10), that is, values of SS7(w) for high lost energies are also observed.

0.0 .

0.04 | 7N\ (c) i

0.00 N 1 N 1

o (a.u.)
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0.0

0.015
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0.000 A | N i
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FIG. 2. Energy-loss distributions for 100 ke¥ €2 a.u.) (&)
protons, (b) antiprotons, andc) neutral hydrogen on aluminum

solid targets considering fixed-charge projectiles. Dotted line, th

first-order contributionsd S*"/dw. Thin solid line, second order
dS*/dw. Thick solid line corresponds to “truncatedtnon-
negativé second order stoppinglS,)°™/dw.

Although at this impact velocity the negative contribution to

the stopping power is not meaningful, the presence of neg

loss. Notice that the unphysical behaviorS@F(w) for high
values ofw is not an exclusive characteristic of small veloci-
ties, but it persists for high impact energies.

Figure 4 displays stopping power per unit length, as
function of the projectile velocity, for protong=ig. 4(a)],
antiprotons[Fig. 4(b)], and neutral hydrogeiFig. 4(c)]
moving through aluminum. The results for*Hprojectiles
coincide with those calculated by Pitarkeal. [5], although
a different value ofy is considered. From the figure it is
observed that th&3 term increases the first-order prediction

for H" and H, while forathe second-order term lowers it.
At small velocities, all results tend linearly to zero.

a

PHYSICAL REVIEW&4 022902

0.03 T T

H" and p
v=2a.u.

0.02

dsS”/de (a.u.)

0.00

o (a.u.)

FIG. 3. Magnification for transferred high energy of energy-loss
distributions(Fig. 2) for H" andp.

calculated using the CDW-EIS approximation, which in-

Tludes all orders oZp, at least approximatelyg]. The ini-

tial bound states are described with Hartree-Fock double-
functions[19] corresponding to the ion Af, while a Cou-
lomb wave function with a charge satisfying the binding en-
ergy is used to describe the final continuum state. In Fig. 5,
we showsS, as a function ob for hydrogen and antiprotons.

tive probabilities affects the calculation of the total energ;AS In previous figures, we also plot the first-order total stop-

ping power, calculated &, = S>F+ S5, £is. In the case of
hydrogen, the different charge states of the projectile are
taken into account by weighing their partial contributions
with the equilibrium fractions. In the results of total stopping
power, we neglected the contributions of HThe energy
loss due to projectile charge-exchange processes has also
been neglected in our calculation. The contributions coming
from capture from the FEG and atomic inner shells have
been estimated to be lower than 1% and 1%][10], re-
spectively, for the velocities considered here. For H projec-
tiles at high impact velocities, the agreement with experi-
ments is good, but discrepancies have been observed below
v=1.7 a.u. At these intermediate velocities, the second-

data, we calculate the total stopping povsras

S,=(S)F+ SSwes: (18

whereasS; underestimates them. For antiprotons, in contrast,
S, results agree with the experiments at intermediate ener-
gies, except a small depression @t1.2 a.u., and they
quickly tend to the first-order values asincreases, running

where SSow.eis represents the stopping due to inner-shellabove experimental data in the high-energy range. The ve-

ionization of the solid atoms. Th&,y,.gs contribution is

locity v=1.2 a.u., where the dip in the antiproton results
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03

(a)

e e

0.00 L L L
0 1 2 3 v (a.u.)
v (a.u.) , i
FIG. 5. Total stopping power fof@ hydrogen andb) antipro-
FIG. 4. Stopping power, fofa) protons,(b) antiprotons, andc) tons on an aluminum solid target as a function of the impact veloc-
neutral hydrogen on aluminum solid targets as a function of thety. Dotted line, total first-order stoppin;(H) and S;(p); and
impact velocity, considering the projectile charge as fixed. Dotteddot-dashed line, stopping due to ionization of inner shela@d 2o
line, the first-order contributiondS’"/dw. In (a) and(c), the solid  calculated with the CDW-EIS approximatioa Solid lines, total
line denotes the second-order stopping pod8f7/dw. In (b), the  second-order stopping(H); (b) solid line accounts for corrected
solid line corresponds to “truncated’hon-negative second-order  (non-negative second-order stopping§(H). Symbols represent the
stopping 65)°F. experiments for hydrogefiRefs. [21-23) and antiprotongRef.

[24]).

appears, corresponds to the threshold of collective ComribLbrovided from the DFT, especially for antiprotons where

tions, and the depression in tig curve for antiprotons can , o .

be associated with the second-order hump present ica ny(r’=2z)/Ne<—1 near the origin. The second-order val-
. . __ues correct, in some way, the failure of the first omderFor

culations [5]. Of course, these structures of the stopplngH+ the results o, agree qualitatively with the DFT data

power do not seem to have physical meaning. - i }
Finally, by using the second-order model, we have inves@lthough forp the second-orden, incorporates an undesir-

tigated the electronic density induced by the projectile in the2ble positive enhancement, precisely in the antiproton posi-
FEG [20]. For H" anda moving with v=0.8 a.u. in an pon. By mspectmg the b(_ehawor of the eIectromc d'enﬂiy

_ i _ N in ther’ space, it is possible to map the regian ) in the
aluminum FEG, the electronic density(r' =zz) calculated | ,omentum space whege fails. From Eq.(12), at the pro-
from Eg. (12) and normalized with the unperturbed elec- jectile position ¢'=0) the electronic densityr, only de-
tronic densityN, has been plotted in Fig. 6 as a function of pends on the functioR, being independent of the function
the distance to the projectile position. We also display pro- Therefore, forZp=—1, values ofR>0 are associated with
ton and antiproton results calculated by Salin using the DF-E)ositive values of the density at the positioh=0, as ob-
[.11]' In that calculation, the exchange correlation Ccmtribu'served in Fig. 6. Then, we introduce a similar crit'erion to the
tion was neglected according to our model, but the values dgpq \seq in Eq(17) to avoid the improper positive electronic
not differ considerably from the ones accounting for ex-qengity for antiprotons. We include the Heaviside function
change. The induced electronic density(r’ =zz) derived @ (1—Rq 1/e,(q)]) in the definition of the functiorR given
from V(1)(q) is also shown in Fig. 6. As the first-order po- by Eq.(13), and the modified functioR’ reads
tential depends linearly ofp, then, values for protons and
antiprotons coincide in modulus, only differing in sign. The R’—( % _1)®( 1—Re{ 1
first-order model fails drastically in reproducing the density €,(Q)

(@) ) 19
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I e T IV. CONCLUSIONS

We study stopping of heavy projectiles moving in a FEG
within the DF, conserving terms up to second ordeZ
The obtained quadratic wake potential, which was previously
i calculated by Pitarket al.and Esbensen and Sigmurid, is
. expressed in terms of the full random-phase approximation
or Lindhard dielectric function. The model is applied to the
- calculation of the energy-loss distribution for protons, neutral
1 hydrogen, and antiprotons moving through aluminum. In the
case of antiprotons, negative probabilities for high trans-
ferred energy are found in the theory, and these unphysical
| probabilities are present for all impact velocities. We propose
. a modification of the second-order stopping power to avoid
negative probabilities. The new expressi@})CF, given by
Eqg. (17), incorporates in some undetermined way higher-
order terms inZp, and therefore it breaks the proton-
| antiproton symmetry of second-order results with respect to
. first-order values. Results obtained with the proposed
second-order DF describe properly the difference between
proton and antiproton stopping; protons deposit more energy
in the high-energy tail, while, on their part, antiprotons di-
z(a.u.) minish their contribution.

FIG. 6. Induced relative densitp(z)/N, of electrons forv For hydrogen and antlpr_oton projectiles, the total St(_)ppl_ng
=0.8 a.u. protons and antiprotons in the direction of the projectilepovw_ar IS calculate_d by addlng_ to .FE(.B result_s th? contribution
as given by Eq(12). Dotted line, first Born approximation; second CO_m'”g from the 'nner'Shf:"" anlzatlon,. W_h'Ch 1S evaluatgd
Born approximation for antiprotons denoted by the dashed-line and/ith the CDW-EIS approximation. For incident H, theoreti-
for protons by the solid line; second Born approximation for anti-cal results involving the different equilibrium charge states
protons with additional conditionsee body of teytdenoted by the ~ of the projectile agree with experimental data at high veloci-
solid line dot-dashed line denotes calculations of SHIilj using  tjes. Instead, fop the second-order values overestimate the
DFT. experiments as increases.

By employing the second-order model, we also investi-
Results ofn, calculated by usin@R” are shown with a solid  gate the induced electronic density. Some inconsistencies
line in Fig. 6 forp projectiles. Again note that the modifica- were again found for antiprotons, and they were solved by
tion introduced in Eq(19) does not change the results for using a modified version of the electronic density. For both
protons, while for antiprotons the new values @f now  protons and antiprotons, the obtained electronic density is in

approach very close to the DFT predictidid]. The differ-  very good agreement with the values derived from the DFT.
ence betweem, and DFT results at=0 can be easily ex-

plained as a consequence of our using a finite lifetiyné,
while in the DFT an infinite lifetime is .consid_ered. _ ACKNOWLEDGMENTS
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