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Low-energy atomic collision with dipole interactions

B. Deb* and L. You
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

~Received 20 March 2001; published 17 July 2001!

We apply quantum-defect theory to study low-energy ground-state atomic collisions, including aligned
dipole interactions such as those induced by an electric field. Our results show that coupled even-l relative
orbital angular momentum partial-wave channels exhibit shape resonance structures while odd-l channels do
not. We analyze and interpret these resonances within the framework of multichannel quantum defect theory.
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I. INTRODUCTION

Due to the tremendous progress made in laser cooling
trapping@1#, cold atomic collision has become a frontier ar
of research in recent years. Atomic Bose-Einstein conde
tion demonstrations@2# have furthered this new trend of re
search in atomic physics. Recently, a topic of particular
terest is the manipulation of Bose-Einstein condensates
matter-wave properties by controlling atom-atom inter
tions. Several groups discussed mechanisms for changin
scattering length of atomic collision using near-resonant
sers@3#, radio-frequency fields@4#, Feschbach resonance du
to a magnetic field@5#, and shape resonance from dc elect
field ~dc-E)-induced dipole interactions@6#.

In this paper we present a detailed multichannel scatte
investigation of low-energy atomic collisions with anis
tropic dipole collisions. Earlier studies of this problem@6,7#
revealed several interesting features at low collision energ
Of particular interest to this study is its potential applicatio
to modify ~bosonic! atom-atom interaction strength wit
scattering resonances and the generation ofp-wave BCS
states for a single-component Fermi gas@7#. In this paper, we
develop a multichannel quantum defect theory~MQDT!, us-
ing exact asymptotic solutions for the long-range interatom
potential to analyze scattering resonance features. Our m
aim is to explain the physical origin of dc-E dipole
interaction-induced resonances in the low-energy limit.
also want to understand why such resonances only occu
even-l partial wave channels, but not among odd-l channels
as numerically discovered earlier@6#. In a model study with
two coupled channel (l 50 and 2), we attempt to clarify the
results of complicated multichannel scattering, and illustr
the simple origin of these resonances. We find these
shape resonancecaused by the coupling between differe
spatial spherical harmonic scattering channels due to an
tropic dipole interaction.

This paper is organized as follows; First we briefly d
cuss how an external dc-E modifies the effective interaction
potential between two neutral atoms. We then present a
tailed mathematical scattering formulation in Sec. II. In S
III, we describe numerical techniques for the multichan
scattering calculation developed earlier by Marinescu
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You @6#, and present additional illustrative results~for 85Rb
in the singlet molecular potential state!. The MQDT includ-
ing dipole interaction is described in Sec. IV. In Sec. V, w
analyze the structure of the observed shape resonance w
simple model using only two~lowest angular momentuml )
coupled channels. The dc-E field-dependent zero-energ
bound states are discussed for the two-channel model sy
in Sec. VI. Finally we summarize and conclude in Sec. V

II. FORMULATION

The long-range interaction between two spherically sy
metric atoms in the ground state, is usually given@in the
London–van der Waals~LvW! formalism# by

V0~R!52
C6

R6
2

C8

R8
2

C10

R10
•••, ~1!

whereC6 , C8, andC10 are the dispersion coefficients, andR
is the internuclear distance. With this asymptotic potent
zero-energy scattering is described essentially only by
parameter: thes-wave scattering lengthasc @8#. In the ab-
sence of a dc-E, the Hamiltonian of a model system of tw
spherically symmetric neutral alkali atomsA and B can be
written

H5HA1HB1Vc ~2!

whereHi 5A,B is the unperturbed Hamiltonian of atomi, and
Vc is the Coulomb potential between charge distributions
the two atoms, and is given by the multipole expansion fr
@9#

Vc5 (
l ,L51

VlL~rWA,rWB!

Rl 1L11
, ~3!

wherer i
W is the position vector of valence electron of thei th

atom, andR is the separation between the centers of mas
the two atoms. Take the spatial quantization axis to be al
the interatomic directionR̂, the coefficientVlL(rWA,rWB) is then
given by

VlL5~21!L4p~ l̂ L̂ !21/2(
m

K lL
mr A

l r B
LYlm~ r̂ A!YL2m~ r̂ B!,

~4!

with l̂ [2l 11, L̂[2L11, and

K lL
m 5@Cl 1L

l 1mCl 1L
L1m#1/2, ~5!

ad
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where CL
m5L!/ @m!(L2m)! #. Equation ~1! for the long-

range dispersion is obtained from a perturbation calcula
of Vc in the limit of largeR when exchange effects betwee
different atoms are negligible.

The presence of a dc-E distorts the spherical symmetry o
an atom; consequently, the long-range form of the in
atomic potential@Eq. ~1!# is modified. In theR→` limit, the
ground-state wave functionuS&[ung , l 50, m50& (ng , l,
andm are the principal, angular, and magnetic quantum nu
bers, respectively! of an atom acquires a smallP angular
momentum component due to the electric dipole coupl
with excited states. Within first-order perturbation theory,
perturbed ground-state wave function can be written asuf&
5uS&1EuP&, whereuP& is the sum of allP excited states,

uP&5
1

A3
(
n,m

un,l ,m&
~n,1ur ung,0!~ ŝ•êm* !

En,12Eng,0
. ~6!

ŝ denotes the unit vector along the dc-E direction, andr is
the valance electron coordinate~dipole operator! expanded in
the tensor operator basisêm of rW i . The first-order energy
perturbation, i.e., the interatomic interaction potential c
then be written as

E(1)5^ffuVcuff& ~7!

5~^SSu1E^SPu1E 2^PPu!Vc~ uSS&1EuSP&1E 2uPP&!.
~8!

To leading order in the dc-E amplitudeE, Eq. ~8! generates
an additional term,

VE~R!52
CE

R3
P2~cosu!, ~9!

to the LvW formalism of Eq.~1!. CE52E 2a1
A(0)a1

B(0) is
the induced electric dipole interaction coefficient, wi
a1

A(B)(0) the static atomic dipole polarizabilities of ato
A(B). P2(•) is the Legendre polynomial of order 2, andu is
the angle between the directions of the electric field (ŝ) and
the internuclear axis (R̂). As discovered earlier by Marinesc
and You@6#, this electric-field induced dipole interaction@Eq.
~9!#, has a ‘‘quasi-long-range’’ character in the sense tha
generates a ‘‘short-range’’ contribution to the effective pote
tial of the partial wave channell 50, while it generates a
‘‘long-range’’ contribution ~proportional to21/R3) for all
other partial-wave channels (lÞ0).

Assuming a weak dc-E, the value of the induced dipol
term @Eq. ~9!# is small in comparison to typical atomi
energy scale ~e.g., 100 kV/cm is equivalent to
1.9440131025 a.u.). Nevertheless, the qualitatively diffe
ent asymptotic behavior for the interaction potential~i.e.,
21/R3) provides significant implications for threshold b
haviors of low-energy collision. We recall that for a sphe
cally symmetric short-range potential~which vanishes expo
nentially with increasingR), the partial-wave scattering
phase shift obeys the Wigner threshold lawd l(k);k2l 11 at
low energies. For a long-range potential, vanishing a
02271
n
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21/Rn, d l instead behaves in the limit of zero energy
k2l 11 if l ,(n23)/2, and askn22 otherwise@10#. For our
problem, the complete long-range interatomic potential
given by V0(R)1VE(R), where V0(R) is the usual long-
range dispersion form Eq.~1! free of dc-E. Different partial-
wave channels are now coupled because of the anisotr
Y20(R̂);P2(R̂) in VE . Applying the rule for low-energy
collision phase shifts to all diagonal terms of the potent
we discover the interesting situation where all partial-wa
phase shifts are proportional tok due to the presence of in
duced dipole interactionVE @6#.

The anisotropic equation~9! couples different angula
momentum channels. The matrix elements for the scatte
potential are simply

V~R!d l l 8dmm82
CE

R3
^ lmuP2~cosu!u l 8m8&, ~10!

whereu lm&5Ylm(R̂) andV(R) is the usual dc-E free isotro-
pic interatomic potential, which reduces toV0(R) in the
large-R limit. Due to the symmetry of thez component of the
angular momentum, the matrix element^ lmuP2u l 8m8& van-
ishes if l 1 l 8 is an odd number; A nonzero coupling exis
only if l 2 l 8562 and m5m8. Therefore, even- and odd
parity channels as well as differentm blocks are decoupled

Because of the coupling among different partial-wa
channels, the usual procedure for a partial-wave scatte
calculation needs to be modified to accommodate the dip
interactionVE . We assume the scattering wave function f
R→` to be of the form

RC~RW !;R exp~ ikW•RW !1 f ~kW ,R̂!exp~ ikR!, ~11!

wherekW is the incident momentum. The on-shell elastic sc
tering is then described byf (kW ,R̂), with the scattered mo-
mentumkW85kR̂. We expand the scattering amplitudef (kW ,R̂)
onto the complete basis

f ~kW ,R̂!5
4p

k (
lm

Tlm~kW !Ylm~R̂!, ~12!

and apply the partial-wave expansion

exp~ ikW•RW !54p(
l ,m

i l j l~kR!Ylm* ~ k̂!Ylm~R̂!. ~13!

We then obtain, forR→`,

Rck~RW !5fk~RW !5
4p

k (
lm

i l@Ylm* ~ k̂!sin~kR2 lp/2!

1Tlm~kW !exp~ ikR2 i l p/2!#Ylm~R̂!, ~14!

where we have used the asymptotic formj l(kr);sin(kR
2lp/2)/(kR). Therefore, the scattering equations take
multichannel form
7-2
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hlf lm~RW !5 (
l 8m8

i l 82 l^ lmuV~RW !u l 8m8&f l 8m8 , ~15!

with

hl52
\2

2m

d2

dR2
1

\2

2m

l ~ l 11!

R2
2E, ~16!

and f lm5^ lmuRC(RW )&. E5\2k2/(2m) is the collision en-
ergy. The boundary conditions are then given by

f lm;Ylm* ~k!sin~kR2 lp/2!1Tlm~kW !exp~ ikR2 i l p/2!.
~17!

The above coupled multichannel scattering equation
relative angular momentum (l ) channels can also be conv
niently written in a matrix form,

F S 2
\2

2m

d2

dR2
1VD I1

\2

2mR2
L21VEGF5EF, ~18!

whereI is the identity matrix,L is the momentum operato
and L2 takes the form of a diagonal matrix:L25Diag@ l ( l
11),(l 12)(l 13), . . .# with l even or odd channels decou
pled; m5M /2 is the reduced mass for two identical atom
The wave functionF is a column vector containing couple
channel function f lm @i.e., different outgoing channel
Ylm(R̂)#. Since we need a complete set of linear independ
scattering solutions to determineTlm from its expansion,

1

k
Tlm~kW !5 (

l 8m8
t lm
l 8m8~k!Yl 8m8~ k̂!, ~19!

F is made to be a matrix with different columns charact
izing scattering solutions for different incident channe

Ylm( k̂). The T-matrix elements,Tlm
l 8m8, can be extracted by

imposing the boundary condition@Eq. ~17!# on the partial
waves in the asymptotic region. The total elastic cross s
tion is given by

sE(O)58p (
l ,l 85even(odd)

(
m,m8

ut lm
l 8m8u2 ~20!

for E ~even! and O ~odd!, respectively. We recall thatt lm
l 8m8

52ascd l0d l 80dm0dm80 for spherically symmetric collisions
described by Eq.~1!, without the dipole interaction.

As a technical note for caution, we emphasize that
dipole interaction@Eq. ~9!# is only valid forR@a0 (a0 is the
Bohr radius!. In constructing the complete potential, the m
therefore required be smoothly added to the isotropic po
tial, whose short-range partVsh also needs to be smoothl
connected with its asymptotic formV0. We used different
cutoff radiusRc with the same matching function for thi
purpose:

f c~R!5u~R2Rc!1u~Rc2R!exp@2~Rc /R21!2#,
~21!
02271
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whereu(•) is the step function. We also note, as elucida
by Jackson@11#, an additional contact term is needed for t
point dipole interaction to comply with the Gauss’s law. F
our case of Eq.~9!, this amounts to a contact term
28pa (A)a (B)E 2d(RW )/3. Such an addition is absent in ou
formulation, since its effect is already implicitly included i
the short-range potential ofV(R).

III. RESULTS AND DISCUSSION

The standard Numerov technique was adopted in num
cally propagating Eq.~18! to obtain asymptotic scatterin
solutions. At lower energies, details of the potential functio
V(R) becomes important. Accurate potentials were obtain
from other groups@12#. Most often, we adopted a parametr
zation approach to adjust a reasonableVsh potential such that
a correctasc was obtained. To be able to solve the proble
efficiently, we adopted a variable step sizeh along R. With
the numerov technique we propagate fromR50 to an
asymptotic regionR` , and we specify the initial conditions
as F(0)50 and F(h)5Farb, where Farb is an arbitrary
symmetric matrix whose columns are chosen to be linea
independent vectors. In the absence of analytical solutio
there seems to be no clear-cut criteria for choosing
asymptotic region. With our numerical code, in the sub-mK
energy region, typically convergent results were only o
tained forR>107a0. In order to maintain orthogonality an
linear independence of different solution vectors duri
propagation, the subspace rotation technique is perform
regularly. In the asymptotic region, we determine~by match-
ing to potential free motion states!

f lm5c1 sin~kR2 lp/2!1c2cos~kR2 lp/2!, ~22!

and construct theS matrix with its element given by (c1
2 ic2)21(c11 ic2) and theT matrix (S21)/(2i ).

In the illustrative study to be reported below, unless sta
otherwise, we always use85Rb atoms in its singlet potentia
curve. We have employed a maximum angular quantum m
mentum l 58 ~9! for even ~odd! channels, respectively. A
reasonably good asymptotic radiusR` is chosen to satisfy
uV2C3 /R3u,10263u\2l ( l 11)R2/(2m)2Eu, with l 52
~1!, for even-~odd-! partial-wave channels.

First we discuss the choice of cutoff radiusRc and the
asymptotic radiusR` for our numerical calculations. Figure
1, 2, and 3 illustrate effects of different values for the elect
dipole cutoff radiusRc . In general, we find that the reso
nance peak shifts toward higherE values asRc increases.
Because of the perturbative nature of the effective long-ra
dipole interaction,Rc is always taken to be much larger tha
a0. Unless otherwise stated, we will useRc527(a0) to
present our results. The small-Rc dependence can be oper
tionally fixed by a normalization against any dc-E field-
dependent experimental data.

Figure 2 shows that, among all partial-wave channe
scattering in thes-wave (l 50) channel is the most sensitiv
with the choice of cutoff radius, while higherl channel re-
sults remain almost unaffected. Physically thisRc depen-
dence can be explained in terms of the centrifugal poten
7-3
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term } l ( l 11)/R2 which is absent for thes-wave channel.
Comparing with Fig. 1, we see that the resonance aE
5456 kV/cm is mostly due to the contribution fromt00

00 ~the
s-wave channels! despite the anisotropic nature of dc-E in-
duced dipole interaction. The coupling ofs- to d-wave chan-
nels is the main reason for such a resonance, as other
there seems no direct dipole interaction contributions to
s-wave channel. Our extensive calculations show that typ
values oft00

20 are many orders of magnitude smaller thant00
00

~for E,1 MV/cm!. This is explicitly shown in Fig. 3, where
the ratios for different partial-wave cross sections are co
pared with thes-wave ratio. We see that, at low energie
scattering cross sections forl .2 channels are smaller tha
that for thes wave (l 50) by at least two orders of magn
tude forE,1 MV/cm. At and near resonance, scattering
lÞ0 is absolutely negligible (,1025 of s00

00) in this case.
For E,200 kV/cm, we find theRc dependence to be

marginal, as shown in Fig. 4. But, at increased field stren
the overall effect is not always negligible (.1%).

FIG. 1. The total scattering cross section as a function of dE
field E for different cutoff radii Rc510a0 ~dashed line! and Rc

527a0 ~solid line!. Typically, an increase ofRc results in a shift to
a higherE value of the resonance peak atEr . The collision energy
is E50.01 ~nk!.

FIG. 2. Selected reducedT-matrix elements under the same co
ditions as in Fig. 1. In~c!, the two curves are indistinguishable.
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Next we consider the low-energy threshold dependenc
the scattering cross section. As discussed earlier, we ex

an asymptotic behaviorTlm
l 8m8;k at sufficiently low energies.

We have performed extensive calculations to assure tha
reported results are asymptotically converging such that
indeed have reached this limit. In Fig. 5 we display the var
tion of total scattering cross sectionsE as a function of en-
ergy ranging from nK to mK regimes. We see that forE
5100 kV/cm, sE becomes almost independent of ener
below 1 mK, while at E5456 kV/cm sE varies almost lin-
early with inverse of energy in the range of 20 nK to 10mK.
It is worth pointing out here that atE5456 kV/cm, a reso-
nance occurs at low energy, as discussed below, resultin
a divergent low-energy cross section}1/k2.

Figure 6 is a selected result from odd-l partial-wave chan-
nels for 82Rb ~fermion!. No resonance structure was ev
detected in such cases.

In Fig. 7, we plot the scattering cross section of85Rb for
large fieldsE.1 MV/cm. As the field strength increases, th
resonance become more closely spaced. Again, the m
contribution to the scattering comes from thes-wave chan-
nel, although increased coupling betweens and higherl par-

FIG. 3. The high-l channel partial-wave scattering cross se
tions are compared to thes-wave cross section in terms of the ratio
s20

20/s00
00 ~solid line!, s30

30/s00
00 ~dashed line!, ands40

40/s00
00 ~dotted line!

at E50.01 nk.

FIG. 4. The dependence of the resonance valueEr ~a! and the
percentage change of the total scattering cross section~b! on Rc at
selected dc-E values ofE5200 kV/cm ~solid line!, E5500 kV/cm
~dashed line!, andE51000 kV/cm~dotted line!. E50.01 ~nk!.
7-4
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tial waves with field strength is responsible for the multip
peak resonance structure.

The results presented so far are obtained by radial i
grations of coupled Schro¨dinger equations. There are certa
practical disadvantages of using such a exclusively num
cal method. First, it takes a considerable amount of time
obtain the results, since the propagation of solutions conti
until the asymptotic radius, which can be of the order
107a0 or higher, is reached. The lower the energy, the lon
the CPU time is needed because of increasedR` . Second,
the increase of either collision energy or dc-E field strength,
or both, calls for a reduced propagation step size wh
again prolongs numerical computations. Third, as discus
earlier, the asymptotic boundary is not well defined. The
fore, no direct physical insight is gained about the resona
In order to overcome these shortcomings of the numer
method, we have developed a MQDT for scattering w
anisotropic dipole interactions. Quantum defect the
~QDT! relies on matching numerically integrated scatter
solutions to analytical solutions~not asymptotic plane
waves!. The integration can be restricted to much shor
radiusR if appropriate analytical solutions are known. Th
not only makes the computation faster, the use of analyt
solutions to the long-range potential also helps to gain d
insight into resonance phenomena and low-energy thres
behavior.

FIG. 5. The dependence of the zero-energy scattering cross
tion (sE) on collision energy for selected dc-E values ofE5100
and 456 kV/cm. At any zero-energy resonance, the scattering c
sections scale inversely proportional to the collision energy.

FIG. 6. An example of the total scattering cross sectionsO for
82Rb ~fermion! is also found to be dominated byt10

10. No resonance
occurs in this case, andE50.01 nk.
02271
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IV. QUANTUM DEFECT THEORY FOR ANISOTROPIC
DIPOLE INTERACTION

Quantum defect theory@13# was originally formulated to
explain the spectrum of hydrogenic Rydberg atoms. In R
berg’s formula,En52R/(n2m)2, whereR is the Rydberg
constant; the quantum defectm accounts for effects of the
ionic core on a highly excited electron. The idea of QDT w
successfully applied in atomic collisions and spectrosco
over the years@13#. The multichannel version of QDT
known as MQDT, provides a good theoretical framework
the analysis of diverse phenomena in atomic and molec
physics. In collision theory, MQDT requires analytical sol
tions in all asymptotic channel potentials. In the pres
problem, including anisotropic dipole interaction, the diag
nal elements of potential matrix goes asymptotically a
21/Rn with n56 for l 50, andn53 for all other channels
( lÞ0). The exact solutions of these power-law potenti
only recently became available through application of
secular perturbation method@14,15#.

We first considern channels, as noted earlier, of evenl
angular momentum scattering states. In the asymptotic
gion, the diagonal potential term for ans-wave channell
50 goes as21/R6, while the diagonal terms forl .0 chan-
nels varies as21/R3. Applying MQDT, we first numerically
integrate the multichannel scattering equation~18!
from R50 to a certain R5R0, such that C6 /R0

6

!u^20uVE(R0)u20&u. How to make a judicious choice ofR0
will be discussed later. Next, as a first approximation,
neglect off-diagonal potential terms forR.R0. We note that
a more complicated procedure exists, that can incorpo
off-diagonal effects in the long-range regime (R.R0) @16#.
This will be discussed later. The exact solutions of21/R6

and21/R3 potentials are then matched to numerically in
grated multi-channel wave functions atR0 in the spirit of
MQDT,

F5IF1JG, ~23!

where

F5Diag@ f l 50
(6) , f l 52

(3) ,••• f l 52(n21)
(3) #,

~24!
G5Diag@gl 50

(6) gl 52
(3)

•••gl 52(n21)
(3) #,

ec-

ss

FIG. 7. The dc-E field E-dependent total scattering cross secti
of 85Rb at a collision energyE50.01 nK. Multiple-resonance
structures appear in this case forE.1 MV/cm.
7-5
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B. DEB AND L. YOU PHYSICAL REVIEW A 64 022717
are two diagonal matrices, withf l
(n) and gl

(n) two suitably
chosen linear independent base functions for2Cn /Rn type
potential. One can define a characteristic length scale
such a power law potentialbn5(2mCn /\2)1/(n22). Explicit
expressions forf l

n and gl
n are reproduced in Appendix A

Their asymptotic forms are given in Appendix B, which f
E.0 are grouped as

S f l
(n)~R→`!

gl
(n)~R→`!

D 5S Zf b
(nl) Zf c

(nl)

Zgb
(nl) Zgc

(nl)D S sinS kR2
lp

2 D
cosS kR2

lp

2 D D .

~25!

The coefficient matricesI andJ are determined by use o
the WronskiansI5W(F,G)p/2 and J52W(F,F)p/2 at
R5R0. As a convention, we set the constant Wronsk
W( f l

(n) ,gl
(n)) for the linear independent base pairsf l

(n) and
gl

(n) to 2/p. Substituting for the asymptotic form Eq.~25!,
we arrive at

F~R→`!5ZFBB1ZFCC,
~26!

G~R→`!5ZGBB1ZGCC,

where ZFB(C) are n3n diagonal matrices of the form
Diag@Zf b(c)

(60) ,Zf b(c)
(32) , . . . # and similarly expressions fo

ZGB(C) , with the subscriptF ( f ) replaced byG (g). B
5Diag@sin(kR), . . . ,sin(kR2lp/2), . . .# and C
5Diag@cos(kR), . . . ,cos(kR2lp/2),•••# are also diagona
matrices. Substituting these expressions into Eq.~23!, we
obtain

F~R→`!5~ IZ FB1JZGB!B1~ IZ FC1JZGC!C. ~27!

From which we find the scatteringK matrix as

K5~ZFB1K0ZGB!21~ZFC1K0ZGC!, ~28!

whereK05I21J is a matrix that will hopefully depend only
on shorter-range interactions (R<R0). In general,K0 will
have someR dependence. For the case of a single channe
becomes a slowly varying function ofR, and approaches
constant atR0 where the potential attains its power-la
asymptotic form (21/Rn). The matching pointR0 is there-
fore appropriately chosen such thatK0 becomes independen
of R. This is always possible as all analytical dependence
the potential and collision energies is taken care of by
various Z functions. For multichannel anisotropic intera
tions as in the present context, the situation become m
complicated, and will be discussed in Sec. V.

The S matrix is obtained from theK matrix according to
S5(12 iK )21(11 iK ). The eigenphase shifts can be direc
calculated from the diagonalizedS matrix L21SL
5Diag@exp(2id0),exp(2id2), . . . #, where L is the unitary
transformation matrix. Thus the phase shifts for different
coming and outgoing channels become available.

For odd-l coupled partial-wave channels, essentially t
same mathematical structure as the above formalism
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mains, except now all diagonal potential terms are}21/R3

at largeR. Therefore, we only need analytical channel so
tions for the21/R3 type potential. This makes the odd a
gular momentum channel problem qualitatively differe
~simpler!.

Before developing a model two-channel problem, w
briefly summarize a technique that would allow for inclusi
of off-diagonal potential terms forR.R0 within our ap-
proach @16#. In the presence of off-diagonal couplings
large interatomic separation (R.R0), the wave function for
each channell can be expressed as

f l5ul~R! f l~R!2v l~R!gl~R!, ~29!

where f l andgl are the two linearly independent base fun
tions as defined earlier satisfying the Schro¨dinger equation
for a 21/Rn type potential. We will suppress them quantum
number index, since even the anistropic dipole potentialVE
remains diagonal inm. ul and v l are two slowly varying
functions ofR defined by equations

df l

dR
5ul~R!

d fl~R!

dR
2v l~R!

dgl~R!

dR
~30!

and

dul

dR
5j l~R!gl~R!,

~31!
dv l

dR
5j l~R! f l~R!.

By substituting the above expressions into Schro¨dinger equa-
tion ~16!, we obtain

2W~ f l ,gl !j l~R!5
2m

\2 (
l 8Þ l

~ i ! l 82 l~VE! l l 8f l 8~R!,

~32!

whereW( f l ,gl) is the Wronskian of the base pairf l andgl .
The solutions of Eq.~31! can then be written as

ul~R!5ul~R0!1
mp

\2 ER0

R

dR8gl~R8!

3 (
l 8Þ l

~ i ! l 82 l~VE! l l 8f l 8~R8!,

v l~R!5v l~R0!1
mp

\2 ER0

R

dR8 f l~R8!

3 (
l 8Þ l

~ i ! l 82 l~VE! l l 8f l 8~R8!, ~33!

forms that allow for ia direct perturbation analysis@13#. The
scattering matrix can be determined by evaluating value
ul andv l at large-R values, since the asymptotic expressio
for f l andgl as given by Eq.~25! are known. The values o
ul(R0) and v l(R0) are given by the condition that atR
7-6
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5R0 the l-channel wave functionf l given by Eq.~29! should
coincide with the corresponding wave function given by E
~23!. Thusul(R0) and v l(R0) are then elements of the ma
trices I and 2J, respectively. We will, however, not pursu
such a complicated calculation, as it turns out that mos
the interesting physics in low energy dipole collision can
obtained through a simpler model calculation involving on
two channels.

V. TWO COUPLED CHANNELS

To illustrate the physics of dc-E induced shape resonanc
we apply the MQDT method as outlined above, to a clos
system of two coupled channels (l 50 and 2). Given the fac
that scattering forl .2 channels are almost negligible at lo
energies, as illustrated in Fig. 3 forE field range of interests
to us, this 232 coupled-channel system represents a w
justified model. From Eq.~18!, we have

F S 2
\2

2m

d2

dR2
1V2ED S 1 0

0 1D 1
\2

2mR2 S 0 0

0 6D
2

CE

R3 S 0 C20

C20 C22
D G S f00

f20
D 50, ~34!

whereCll 85^ l0uP2(•)u l 80&. As R→`, the diagonal poten-
tial terms in the channelsl 50 and 2 becomeV052C6 /R6

and V2.6\2/(2mR2)2CEC22/R3, respectively. Therefore
we employ exact solutions of21/R6 and21/R3 potentials,
as obtained by Gao@14#, to match numerically compute
ones at a radiusR0. We first chooseR0 to satisfy condition
C6 /R0

6!CEC22/R0
3, i.e., R0@@C6 /(CEC22)#1/3. Therefore,

as discussed in Sec. IV, we expect the diagonal elemen
K0 in the l 52 channel, i.e.,K22

0 should approach a consta
asR→R0, provided the strength of the long range anisotro
is negligible for R.R0. A good measure of the relativ
strength of the anisotropy can be defined according to

h~R!5U V12

V22V0
U. ~35!

We neglect anisotropic effects forR.R0 if h(R.R0) drops
well below unity~typically at 531023). In Fig. 8 we ploth

FIG. 8. The strength of anisotropy vsR for dc-E values ofE
5100 kV/cm ~solid line!, E51000 kV/cm ~dashed line!, and E
51500 kV/cm~dotted line!.
02271
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as a function ofR for several different values of theE field.
In Fig. 9, we display variations ofK22

0 as a function ofR0,
for two different electric-field strengths at 1 nK collisio
energy. We note thatK22

0 approaches a constant forR
>4000a0. The same behavior is true at even higherE fields,
albeit at still larger values ofR0. Therefore, forE<1000
kV/cm, we expect little loss of accuracy by neglecting o
diagonal terms whenR>4000a0. Based on the MQDT for-
mulation discussed in Sec. IV, we have computed the s
tering wave function as well as the correspondingT matrix
for our model of two coupled channels. In Fig. 10, we sho
the scattering cross section as a function of dc-E field
strengthE at three different collision energies. We note th
the resonance becomes more prominent as collision ener
lowered belowmK, indicating the presence of a bound sta
or a virtual bound state~quasibound state! near the zero-
energy threshold. This calculation illustrates that our mo
indeed captures the resonance atE5456 kV/cm as previ-
ously discussed in Fig. 5. This results are almost indis
guishable from a complete numerical calculations done e

FIG. 9. The variation of the short-rangeK-matrix elementK22
0 as

a function of R for dc-E values of E5500 kV/cm ~a! and E
51000 kV/cm~b!, at a collision energyE51 nK.

FIG. 10. The dc-E field-dependent scattering cross sectionsE at
three different collision energiesE51 nK ~solid line!, E5100 nK
~dashed line!, andE51 mK ~dotted line!. These results are obtaine
by the MQDT method for two coupled channels.
7-7
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lier. We will discuss such zero-energy resonances in m
detail in Sec. VI.

As a check of consistency, we note that results obtai
from the MQDT two-channel model calculation agree qu
well with those obtained by the complete numerical calcu
tions as long as the two channel approximation remains v
for E,1 MV/cm. For E.1 MV/cm, off-diagonal terms of
the dipole potential are not negligible for the same value
MQDT matching radiusR0 used. A simple way of including
more effects of off-diagonal terms would be to increaseR0.
We therefore conclude that the MQDT does provide sign
cant computational advantage over the direct numerical i
gration technique. It is especially efficient at lower energ
whenE,10 mK.

We now analyze the long-range behavior of our tw
channel model. For thel 50 channel, the diagonal potentia
behaves asymptotically as21/R6. This singlet potential, in
fact, can support many bound states, including those clos
the zero-energy threshold@17#. For lÞ0 channels, on the
other hand, quasibound states~virtual bound states in the
quasicontinuum! may also occur due to the presence of t
centrifugal potential barrier. In the zero-energy limit, scatt
ing is mostly due to thes wave (l 50) in the regime of
parameters of interest to us. Any alteration of the long-ra
s-wave potential (21/R6) due to electric-field-induced cou
pling with a d wave leads to a modification of its boun
~quasibound! spectrum near the zero-energy threshold. T
effective potentialV2 ~diagonal term plus centrifugal barrie!
has a maximum~barrier! at R5Rm , given by the condition
dV2 /dR50, i.e., Rm5mCEC22/(2\2), and the barrier
height is given bydV5\2/(mRm

2 ). Since coefficientCE is
proportional to field intensityE 2, Rm is linearly proportional
to E 2. Consequently, the barrier height becomes invers
proportional toE 4. The coupling betweens- and d-wave
channels may lead to combined new bound or quasibo
states, or both, at near-zero energies. The existence of t
states is manifested in the form of scattering resonance.
instance, when an incident low-energy atom froms-wave
channel hits a quasibound state supported by ad-wave cen-
trifugal barrier, we may have a situation that resembles w

FIG. 11. The reducedT-matrix elementt00
00 obtained by MQDT

for two coupled channels (l 50,2) atE51 nK. This result is in fact
indistinguishable from a numerical~two-channel! calculation, al-
though it differs slightly from a multichannel~five-channel! calcu-
lation.
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is commonly known as a Feshach resonance@5#. If there
exists a bound state at or near zero energy, scattering c
sections will consequently be enhanced manyfold. This
indeed the case found in our earlier extensive numerical
culations. As will be proven in Sec. VI, such resonance str
tures can be fully explained based on zero energy bo
states using the MQDT~see Figs. 11–13!.

VI. BOUND STATES

As discussed in Sec. V, low-energy scattering resonanc
a signature of a bound or quasibound state near zero en
At some critical dc-E field strength, a new bound state
formed at micro- or submicro-K energy, leading to the o
served zero-energy shape resonance. In order to eluc
this point explicitly, we again rely on the two-channel mod
and find its last bound or quasibound state just below z
energy by the MQDT formulation. The asymptotic form
linearly independent base pairsf l

(n) and gl
(n) , satisfying the

FIG. 12. Comparison of numerical~dashed line! and MQDT
~solid line! scattering cross sections within the two-channel a
proximation for large dc-E fields (E.1 MV/cm at E50.01 nK!.
With such large electric fields, the short-rangeK matrix only be-
come independent ofR0 at rather large values, taken here to
10 000a0.

FIG. 13. The diagonal potential termsV0 ~dashed line! for l
50 andV2 ~solid line! for l 52 at two different dc-E field strengths
E5456 kV/cm ~a! andE51500 kV/cm~b!. The larger theE field,
the further fromR the two potential curves cross. The height of t
V2 potential barrier decreases with increasingE.
7-8
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Schrödinger equation with a potential21/Rn for E,0, can
be expressed as

S f l
(n)~R→`!

gl
(n)~R→`!

D 5S Wf 2
(nl) Wf 1

(nl)

Wg2
(nl) Wg1

(nl)D S exp~kR!

exp~2kR!
D , ~36!

where W’s are chosen to be real functions. For the tw
coupled channels discussed in Sec. V, we have

Wf 2
(60)5~4pk!21/2@~X0

21Y0
2!sin~pn!#21@$b sin~pn!

1a cos~pn!%G~2n!2aG~n!#,
~37!

Wg2
(60)5~4pk!21/2@~X0

21Y0
2!sin~pn!#21@$a sin~pn!

2b cos~pn!%G~2n!1bG~n!#,

and

Wf 2
(32)52~2pk!21/2FC1~2n!

G~2n!
Dn2

C1~n!

G~n!
D2nG ,

~38!

Wg2
(32)52~2pk!21/2F2

C2~2n!

G~2n!
Dn1

C2~n!

G~n!
D2nG .

Except for\2k2/(2m)52E, all notations used here follow
from earlier definitions as in Appendix A. After some tedio
algebra, the condition for bound states of our two-chan
model becomes

Det@Q1K0#50, ~39!

whereQ is a diagonal matrix given by

Q5Diag@Wf 2
(60) ,Wf 2

(32)#~Diag@Wg2
(60) ,Wg2

(32)# !21. ~40!

The bound-state wave function at discrete energyEi can then
be expressed as

C i~R!5~F1K0G!M , ~41!

whereF, G, andK0 are similar to matrices defined in Se
IV, and M is a column vector. Using the asymptotic form
base pairs functions, Eq.~41! can be rewritten as

C i~R→`!5exp~2kR!Q1M1exp~kR!Q2M , ~42!

where

Q65Diag@Wf 6
(nl) ,Wf 6

(n8 l 8) , . . . #

1K0 Diag@Wg6
(nl) ,Wg6

(n8 l 8) , . . . #, ~43!

The bound-state energy is therefore given by the requirem
that the exponentially rising part of Eq.~43! vanishes, i.e.,

Det@Q2#50. ~44!
02271
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The matching radiusR0 in this case is chosen to be i
classically allowed region of diagonal channel potentia
The condition for the existence of a new bound state, i.e.,
~39!, is then given by

~Q111K11
0 !~Q221K22

0 !2K12
0 K21

0 50, ~45!

where the subscript indices denote respective elementsQ
andK0 matrices, and (1/Q11) andQ22 are thex functions for
a pure21/R6 or 21/R3 potential as defined in Ref.@14#.
Since the value ofK12 is typically much smaller thanK11
near resonance, as an approximation, we can drop the
off-diagonal elements fromK0. We then obtain two un-
coupled bound spectrum series, given by

Q111K11
0 50, ~46!

and

Q221K22
0 50, ~47!

respectively. The first condition@Eq. ~46!# gives bound states
predominantly supported by thes-wave channel. The effec
of channel coupling due to an external electric field ent
only through the parameterK11

0 . In this first approximation,
the off-diagonal potential terms are neglected forR.R0. As
commented upon earlier, the short-rangeK matrix K0 is a
slowly varying function of collision energies near the zer
energy threshold. We can then extrapolate their values f
E.0 ~for scattering! to the bound state caseEi<0. In the
present case of zero-energy bound states satisfyingEi;0,
we basically used the same short-rangeK matrix as obtained
from a converged low energy scattering calculation. W
compute bound states near the zero-energy threshold tha
isfy

uEi u!C6 /R0
6,C3 /R0

3 . ~48!

For an asymptotic21/R3 potential as inl 52, the matching
radiusR0 is taken to be smaller than the characteristic len
scaleb352mCEC22/\2 of the potential.

In Fig. 14, we show the energy dependence ofQ11
21 . The

last bound state of the isolateds-wave l 50 channel~with
asymptotic potential21/R6) is then given by crossing point

FIG. 14. The inverse ofQ11 as a function of bound-state energ
in mK for 85Rb.
7-9
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B. DEB AND L. YOU PHYSICAL REVIEW A 64 022717
of Q11 and2K11
0 . In the absence of an external electric fie

the energy of the last bound state supported by an asymp
2/R6 potential of 85Rb is about 2 mK, which is in fact fa
beyond the zero-energy limit appropriate for the present
cussion. In the zero energy limit (l 50), R0 can be taken
arbitrarily large for the condition given by the single-chann
bound state@Eq. ~46!#.

From Fig. 14, we see that a new zero energy bound s
appears only whenK11

0 becomes infinite. In Fig. 15, we dis
play variations of the subsequent four zero-energy bou
state energies as a function ofE. We usedK11

0 as determined
at a positive energy near the zero-energy threshold,
matched analytical solutions with the numerical ones a
relatively large R (R54000a0 for E,1 MV/cm and R
510 000a0 for E.1 MV/cm!. It is interesting to note tha
these resonances agree quite well with results obtained
a complete numerical multichannel scattering calculat
presented above in Figs. 1 and 7.

The second condition@Eq. ~47!# corresponds to bound
state series of thel 52 channel. In addition to dc-E effects
accumulated inQ22, the asymptotic wave function is now
chosen to include the field-induced diagonal term}21/R3.

FIG. 15. Bound-state energies (Eb1) in the l 50 channel as a
function of electric fieldE in the zero-energy limit.

FIG. 16. Q22 as a function of scaled energyEs

52mCEC22E/\2 for 85Rb. For an asymptotic21/R3 potential, as
in the l 52 channel, use of this scaled energy helps to illustrate
long-range interaction. The last bound state is given by cros
points ofQ22 with 2K0, just as in thel 50 s-wave case.
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In Fig. 16 we plot the energy and dc-E field-dependentQ22.
It resemblesQ11

21 rather thanQ11, because of a differen
choice betweeng and f functions. At field values of interes
to us, we find the short-rangeK0 matrix actually changes
rapidly in this case with the~relative small!, matching radius
R0. Therefore, in the classically allowed region, we were n
able to perform a correct MQDT with an energy an
R0-independentK22

0 . Nevertheless, to explore the physi
qualitatively, we instead choose a radiusR05105a0 ~in the
classically allowed region of thel 52 diagonal potential!
such that it reproduces the first bound state as in the s-w
channel betweenE5500 and 600 kV/cm. As we can se
from Fig. 15, the third bound state then also seems to
reproduced correctly.

We now proceed to estimate the combined bound-s
sequence by solving for Eq.~45!. In this case, for bound stat
energies larger than a fewmK, the classically forbidden re-
gion limits the choice of a matching radius to be with
~100–150! a0, which is much smaller than the typical valu
of 4000a0 used for the scattering calculations. We aga
choose the same matching radius at 105a0 as for the single
l 52 channel@Eq. ~47!# discussed above. Obviously, there
no reason to trust the obtained results seriously as the
glected anisotropic effects become significant at such a s
R0. Nevertheless, it is interesting to compare the obtain
results as in Fig. 17 for these three separate approximati
Note the comparison of bound-state locations with the
merical calculated zero-energy scattering cross section f
the same two channel model. We find that thel 50 s-wave
bound state locations match quite well with the numerica
calculated resonance structures. This gives us the confid
to assign these resonances as due to dc-E field-induced zero-
energy bound states; thus they are indeedshape resonance.
As the strength of electric field is increased to a certain cr
cal value, a new bound or quasibound state appears a
zero-energy threshold. Since we neglect the off-diagonal

e
g

FIG. 17. The comparison between zero-energy bound state
obtained from the MQDT for a single channelsl 50 (3) and l
52 (1), and two coupled channels (n) in ~a!, and their compari-
son with numerical results from the two channel model~b!. We note
that thes-wave single-channel results, matched in the classic
forbidden region atR0>4000a0 exactly reproduces all numericall
calculated scattering resonance. Note that the numerical t
channel results here~b! differ somewhat from the complete multi
channel results given in Fig. 7.
7-10
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LOW-ENERGY ATOMIC COLLISION WITH DIPOLE . . . PHYSICAL REVIEW A 64 022717
tential terms forR.R0, the bound-state energies calculat
here only provide approximate estimates, they differ fro
results reported in Fig. 8, obtained from a complete mu
channel calculation. The fact that a singles-wave (l 50)
channel completely captures the resonance structure is
haps also not surprising, as it is indeed the dominant cha
found numerically before. By choosing the matching rad
R0 to be sufficiently large, the anisotropic dipole induc
coupling with other higher-l channels are included throug
the short rangeK0 matrix. Finally we note that MQDT
bound states technique used here may also be improved
a perturbative method as discussed earlier to include a
tional asymptotic ansiotropic effects@16#.

VII. CONCLUSION

We have presented a detailed analysis of low-ene
atomic collisions, including electric-field-induced anisotrop
dipole interaction. We have discussed both multichannel
merical and MQDT methods for the scattering calculatio
In particular, we have highlighted the zero-energy resona
phenomena due to formation of long-range bound or qu
bound states near the zero-energy threshold. At low ener
(E; nK) and with a reasonable dipole interaction streng
the scattering cross section is predominantly due to
s-wave channel for coupled even-l angular momentum chan
nels. We also note that the zero-energy resonance du
formation of new bound states only occurs in the coup
evenl channels, but not in the oddl channels. This is mainly
due to the presence of thes-wave potential well~without
centrifugal potential! in the coupled even-l blocks. At posi-
tive energies, thes-wave channel is open throughout the e
tire range (0,R,`) of its diagonal potential, while othe
channels (l .0) have locally closed regions near zero e
ergy. When thes-wave channel is present, atoms can pe
etrate into a shorter-R range via scattering and multichann
coupling, and therefore zero-energy resonance is more li
to occur. By manipulating such scattering resonance with
E induced dipole interaction, it is possible to change lo
energy scattering properties such as the scattering length
total or partial-wave scattering cross sections. In contras
the magnetic-field-induced Feshbach resonance, where
pling between different hyperfine levels~different internal
states! are involved, electric-field-induced resonance is d
to coupling among different rotational~external! states of the
two colliding atoms, and only one threshold~or internal
state! is present in the system. In the present paper, usin
model two-channel MQDT calculation, we have provided
clear physical picture of these resonances, and provided
lytical means for estimating their locations. The availabil
of approximate analytical forms for these near-zero-ene
bound states allows for a detailed examination of bound-
and free-free motional Franck-Condon factors.
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APPENDIX A: ANALYTICAL SOLUTIONS
FOR À1ÕRnÄ3,6-TYPE POTENTIAL

The base pair for the21/R6 potential is given by

f l
65

1

A2
~a21b2!21@a f̃ l~r !2bg̃l~r !#,

~A1!

gl
65

1

A2
~a21b2!21@b f̃ l~r !1ag̃l~r !#,

where

f̃ l~r !5 (
m52`

`

bmr 1/2Jn1mS 1

2
~r /b6!22D ,

~A2!

g̃l~r !5 (
m52`

`

bmr 1/2Jn1mS 1

2
~r /b6!22D ,

with

a5cos@p~n2n0!/2#Xl2sin@p~n2n0!/2#Yl ,
~A3!

b5sin@p~n2n0!/2#Xl1cos@p~n2n0!/2#Yl ,

and

Xl5 (
m52`

`

~21!mb2m ,

~A4!

Yl5 (
m52`

`

~21!mb2m11 ,

and @14#

bj5~2D! j
G~n!G~n2n011!G~n1n011!

G~n1 j !G~n2n01 j 11!G~n1n01 j 11!
cj~n!,

~A5!

b2 j5~2D! j
G~n2 j 11!G~n2n02 j !G~n1n02 j !

G~n11!G~n2n0!G~n1n0!

3c2 j~2n!,

where j is a positive integer;D is a scaled energy;D
5k2b6

2/16, with k52mE/\2; n0 is related to the angula
momentum l, n05(2l 11)/4, and cj (n)5b0Q(n)Q(n
11)•••Q(n1 j 21), with b0 being a normalization con
stant; andQ(n) is given by a continued fraction:
7-11
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Q~n!5
1

12D2
1

~n11!~n12!@~n11!22n0
2#@~n12!22n0

2#
Q~n11!

. ~A6!
c-

of
tia
f

Heren is a root of a characteristic function

L l~n,D!5~n22n0
2!2~D2/n!@Q̃~n!2Q̃~2n!#, ~A7!

whereQ̃(n)5@(n11)$(n11)22n0
2%21Q(n).

Next we present the solutions of2C3 /R3 potential@14#.
The base pair can be expressed as

f l
3~r !5

2

D~n! F 1

G~2n!
C1~n!j~r !2

1

G~n!
C1~2n!h~r !G ,

gl
3~r !5

2

D~2n! F 1

G~2n!
C2~n!j~r !

2
1

G~n!
C2~2n!h~r !G , ~A8!

where

C6~n!5cos@p~n0/22n!#6sin@p~n0/22n!#,

D~n!5C1~n!C2~2n!2C1~2n!C2~n!, ~A9!

G~n!5uD̃u2n
G~11n01n!G~12n01n!

G~12n!
C~n!,

with D̃5kb3/2 andn05 l 11/2. Herej(r ) andh(r ) are two
linearly independent functions:

j~r !5(
2`

`

bmr 1/2Jn1m~kr !,

~A10!

h~r !5(
2`

`

~21!mbmr 1/2J2n2m~kr !.

Herebj is given by an expression similar to Eq.~A5!, with D

replaced byD̃, andn is a root of the corresponding chara
teristic equation andC(n)5 lim j→` cj .

APPENDIX B: ASYMPTOTIC EXPANSION
FOR ANALYTICAL SOLUTIONS

In this appendix, we write the asymptotic form of a pair
linearly independent base functions for a power-law poten
(21/Rn). For a2/R6 potential, the asymptotic behaviors o
the base pair for positive energy are given by
02271
l

f l
(6)~R→`!;~1/pk!1/2@Zf b

(6l ) sin~kR2 lp/2!

1Zf c
(6l ) cos~kR2 lp/2!#,

~B1!

gl
(6)~R→`!;~1/pk!1/2@Zgb

(6l ) sin~kR2 lp/2!

1Zgc
(6l ) cos~kR2 lp/2!#,

where

Zf b
(6l )5@~Xl

21Yl
2!sin~pn!#21@2~21! l$b sin~pn!

1a cos~pn!%G~2n!sin~pn2 lp/22p/4!

2aG~n!sin~pn2 lp/22p/4!#,

Zf c
(6l )52@~Xl

21Yl
2!sin~pn!#21@2~21! l$b sin~pn!

1a cos~pn!%G~2n!cos~pn2 lp/22p/4!

2aG~n!sin~pn2 lp/22p/4!#, ~B2!

Zgb
(6l )5@~Xl

21Yl
2!sin~pn!#21@2~21! l$a sin~pn!

2b cos~pn!%G~2n!sin~pn2 lp/22p/4!

1bG~n!cos~pn2 lp/22p/4!#,

Zgc
(6l )52@~Xl

21Yl
2!sin~pn!#21@2~21! l$a sin~pn!

2b cos~pn!%G~2n!cos~pn2 lp/22p/4!

1bG~n!sin~pn2 lp/22p/4!#.

Next, for a 21/R3 potential, the correspondingZ func-
tions are given by

Zf b
(3l )5

2

D~n! F 1

G~2n!
C1~n!$cos@p~n2n0!/2#Xl

2sin@p~n2n0!/2#Yl%2
1

G~n!
C1~2n!B̃G ,

Zf c
(3l )52

2

D~n! F 1

G~2n!
C1~n!$sin@p~n2n0!/2#Xl

2cos@p~n2n0!/2#Yl%2
1

G~n!
C1~2n!C̃G ,

~B3!
7-12
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Zgb
(3l )5

2

D~n! F 1

G~2n!
C2~n!$cos@p~n2n0!/2#Xl

2sin@p~n2n0!/2#Yl%2
1

G~n!
C2~2n!B̃G ,

Zgc
(3l )52

2

D~n! F 1

G~2n!
C2~n!$sin@p~n2n0!/2#Xl

2cos@p~n2n0!/2#Yl%2
1

G~n!
C1~2n!C̃G ,
n

t,

.

M.

ev

of
d

d D

02271
where

B̃5$cos@p~n2n0!/2#Xl2sin@p~n2n0!/2#Yl%cos~pn!

1$sin@p~n2n0!/2#Xl2cos@p~n2n0!/2#Yl%sin~pn!,

C̃52$cos@p~n2n0!/2#Xl2sin@p~n2n0!/2#Yl%sin~pn!

1$sin@p~n2n0!/2#Xl2cos@p~n2n0!/2#Yl%cos~pn!.
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