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Low-energy atomic collision with dipole interactions
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We apply quantum-defect theory to study low-energy ground-state atomic collisions, including aligned
dipole interactions such as those induced by an electric field. Our results show that couplédelatne
orbital angular momentum partial-wave channels exhibit shape resonance structures whilhaddels do
not. We analyze and interpret these resonances within the framework of multichannel quantum defect theory.
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|. INTRODUCTION You [6], and present additional illustrative resulfer %°Rb
in the singlet molecular potential statdhe MQDT includ-

Due to the tremendous progress made in laser cooling anidg dipole interaction is described in Sec. IV. In Sec. V, we
trapping[ 1], cold atomic collision has become a frontier areaanalyze the structure of the observed shape resonance with a
of research in recent years. Atomic Bose-Einstein condens&imple model using only twdowest angular momenturh)
tion demonstrationf2] have furthered this new trend of re- coupled channels. The de-field-dependent zero-energy
search in atomic physics. Recently, a topic of particular inbound states are discussed for the two-channel model system
terest is the manipulation of Bose-Einstein condensates arlfl Sec. VI. Finally we summarize and conclude in Sec. VII.
matter-wave properties by controlling atom-atom interac-
tions. Several groups discussed mechanisms for changing the Il. FORMULATION
scattering length of atomic collision using near-resonant la- The long-range interaction between two spherically sym-
serg[3], radio-frequency fieldg4], Feschbach resonance due metric atoms in the ground state, is usually giém the
to a magnetic field5], and shape resonance from dc electricLondon—van der Waald.vW) formalism| by
field (dcE)-induced dipole interactions].

In this paper we present a detailed multichannel scattering Vo(R) = — % _ % — %’. .. )
investigation of low-energy atomic collisions with aniso-
tropic dipole collisions. Earlier studies of this problé67] ) ) o
revealed several interesting features at low collision energiedvhereCg, Cg, andC,q are the dispersion coefficients, aRd
Of particular interest to this study is its potential applications'S the internuclear distance. With this asymptotic potential,
to modify (bosoni¢ atom-atom interaction strength with Z2€70-€nergy scattering is described essentially only by one
scattering resonances and the generatiop-afave BCS Parameter: theswave scattering lengt [8]. In the ab-
states for a single-component Fermi §&b In this paper, we sence of a d&, the Hamiltonian of a model system of two

develop a multichannel quantum defect the@QDT), us- spherically symmetric neutral alkali atordsand B can be
ing exact asymptotic solutions for the long-range interatomicwmten
potential to analyze scattering resonance features. Our main H=Hx+Hg+V, (2

aim is to explain the physical origin of d€- dipole ) o )
interaction-induced resonances in the low-energy limit. WaVhereH;—, g is the unperturbed Hamiltonian of atamand
also want to understand why such resonances only occur itjc IS the Coulomb potential between charge distributions of
event partial wave channels, but not among ddchannels the two atoms, and is given by the multipole expansion from

as numerically discovered earligg]. In a model study with 9]

two coupled channell &0 and 2), we attempt to clarify the S

. . ! . ViL(rare)
results of complicated multichannel scattering, and illustrate V.= E — T 3
the simple origin of these resonances. We find these are Iit=1 R

shape resonanceaused by the coupling between different

spatial spherical harmonic scattering channels due to anis . i
tropic dipole interaction. atom, andR is the separation between the centers of mass of

This paper is organized as follows; First we briefly dis- the two atoms. Take the spatial quantization axis to be along

cuss how an external de-modifies the effective interaction the interatomic directiork, the coefficient, (r a,rg) is then
potential between two neutral atoms. We then present a dél'Ven by

tailed mathematical scattering formulation in Sec. Il. In Sec. L ~ .
Ill, we describe numerical techniques for the multichannel Vi =(—1) 4a(10) "2 K ryrEYim(Ta)Yi—m(Ts),
scattering calculation developed earlier by Marinescu and m

(gyhereﬁ is the position vector of valence electron of itk

(4)
with T=21+1, L=2L+1, and

*Present address: Physical Research Laboratory, Ahmedabad " 4L + 12
380009, India. Kie=[Ci+Crel 175 (5

1050-2947/2001/62)/02271713)/$20.00 64 022717-1 ©2001 The American Physical Society



B. DEB AND L. YOU PHYSICAL REVIEW A 64 022717

where C"=L!/[m!(L—m)!]. Equation (1) for the long- —1/R", & instead behaves in the limit of zero energy as

range dispersion is obtained from a perturbation calculatiok® *1 if 1<(n—3)/2, and ak" 2 otherwise[10]. For our

of V. in the limit of largeR when exchange effects between problem, the complete long-range interatomic potential is

different atoms are negligible. given by Vy(R) +Ve(R), whereVy(R) is the usual long-
The presence of a dg-distorts the spherical symmetry of range dispersion form Eql) free of dcE. Different partial-

an atom; consequently, the long-range form of the interwave channels are now coupled because of the anisotropic

atomic potentialEq. (1)] i; modified. In theR— o limit, the Y, (R)~P,(R) in Vg. Applying the rule for low-energy

ground-state wave functiofS)=|ny, |=0, m=0) (nq, |,  collision phase shifts to all diagonal terms of the potential,

andm are the principal, angular, and magnetic quantum numwe discover the interesting situation where all partial-wave

bers, respectivelyof an atom acquires a smal angular  phase shifts are proportional kodue to the presence of in-
momentum component due to the electric dipole couplingjuced dipole interactioNg [6].

with excited states. Within first-order perturbation theory, the The anisotropic equatiori9) couples different angular

perturbed ground-state wave function can be writteh¢8s  momentum channels. The matrix elements for the scattering
=|S)+£|P), where|P) is the sum of allP excited states,  potential are simply

1 (n,Yr|ng,0)(s-€y) C
|P>:ﬁ§n|n,l,m> EviEno (6) v(R)gll,amm,—R—§<Im|P2(cose)|I’m’>, (10)

s denotes the unit vector along the Hcdirection, andr is _ - . :

the valance electron coordindtdipole operatorexpanded in wherellm)—Y,m(R) aanV(R) IS the usual d free _|sotro-
A b ) pic interatomic potential, which reduces ¥, (R) in the

the tensor operator base, of r;. The first-order energy |grgeR limit. Due to the symmetry of the component of the

pherturbat|on, i.e., the interatomic interaction potential Cahngular momentum, the matrix elemeihin|P|l’m’) van-
then be written as ishes ifl+1’ is an odd number; A nonzero coupling exists

E()= v 7 only if |=1"==2 and mzm_’. Therefore, even- and odd-
(¢IVel ) @ parity channels as well as differemt blocks are decoupled.
=((SS+ &SP+ £2(PP)V.(ISS + £/ SP) + £2|PP)). Because of the coupling among different partial-wave
(S§+&(s (PPOV.(ISS+£[SP) | >()8 channels, the usual procedure for a partial-wave scattering
calculation needs to be modified to accommodate the dipole
To leading order in the d& amplitude&, Eq. (8) generates interactionVg. We assume the scattering wave function for
an additional term, R—o to be of the form
Ce R¥(R)~Rexpik-R) + f(k,R)exp(ikR), 11
Ve(R)= - P(cosh) © (R)~Rexp(ik-R)+f(k,R)exp(ikR),  (11)

_ ) A 5 _ wherek is the incident momentum. The on-shell elastic scat-
to the LvW formalism of Eq(1). Ce=2&%a7(0)a1(0) IS tering is then described bi(k,R), with the scattered mo-

thE(B)lnduced electric dipole interaction coefficient, With o mgr — kiR We expand the scattering amplitutték, R)
a7 ’(0) the static atomic dipole polarizabilities of atom onto the complete basis

A(B). P,(-) is the Legendre polynomial of order 2, afids
the angle between the directions of the electric fiéi)je(nd

. 4w . .

the internuclear axisR). As discovered earlier by Marinescu f(k,R)= K % Tim(K)Yim(R), (12
and You[6], this electric-field induced dipole interactifig.
(9)], has a “quasi-long-range” character in the sense that it, | apply the partial-wave expansion
generates a “short-range” contribution to the effective poten-
tial of the partial wave channdl=0, while it generates a
“long-range” contribution (proportional to— 1/R3) for all exp(ik-R)=47>, i'[(KRY; (K Ym(R). (13
other partial-wave channel$+#0). ,m

Assuming a weak d&, the value of the induced dipole _
term [Eq. (9)] is small in comparison to typical atomic Ve then obtain, foR—,
energy scale (e.g., 100 kV/icm is equivalent to
1.94401x 10 ° a.u.). Nevertheless, the qualitatively differ-
ent asymptotic behavior for the interaction potentiaé.,
—1/R®%) provides significant implications for threshold be- . ~
haviors of low-energy collision. We recall that for a spheri- +Tim(K)exp(ikR—il 7/2) ]Y|n(R), (14)
cally symmetric short-range potenti@lhich vanishes expo-
nentially with increasingR), the partial-wave scattering where we have used the asymptotic foinikr)~sinkR
phase shift obeys the Wigner threshold lawk)~k? 1 at  —17/2)/(kR). Therefore, the scattering equations take the
low energies. For a long-range potential, vanishing as multichannel form

- . 4= ] .
Ryw(R)= dy(R)= <~ % i'TYE (K)sinkR—1/2)
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hdm(R)= > i ImV(R)I'M' Yy, (15)
I"'m’
with
. 12 d? +h2I(I+1) . 19
" 2udrR? 20 R? '

and ¢m=(Im|R¥(R)). E=%2k?/(2u) is the collision en-
ergy. The boundary conditions are then given by

B~ Y (K)SINKR— 1 7/2) + Tjm(K) exp(ikR— il 7/2).
(17
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where 6(-) is the step function. We also note, as elucidated
by Jacksor11], an additional contact term is needed for the
point dipole interaction to comply with the Gauss’s law. For
our case of Eq.(9), this amounts to a contact term
—8ma™aBE25(R)/3. Such an addition is absent in our
formulation, since its effect is already implicitly included in
the short-range potential &f(R).

III. RESULTS AND DISCUSSION

The standard Numerov technique was adopted in numeri-
cally propagating Eq(18) to obtain asymptotic scattering
solutions. At lower energies, details of the potential functions
V(R) becomes important. Accurate potentials were obtained
from other group$12]. Most often, we adopted a parametri-

The above coupled multichannel scattering equation ir}ation approach to adjust a reasonalepotential such that

relative angular momentum)( channels can also be conve-
niently written in a matrix form,

h? d? v h?
———

2p dR2 "

L2+ Vg |P=E®, (18

R2

2

wherel is the identity matrixL is the momentum operator,
and L? takes the form of a diagonal matrix:>=Diag | (l
+1),(1+2)(1+3), ...] with | even or odd channels decou-

a correctag; was obtained. To be able to solve the problem
efficiently, we adopted a variable step sizalongR. With

the numerov technique we propagate frdR=0 to an
asymptotic regiorR,,, and we specify the initial conditions
as ®(0)=0 and ®(h)=®,,,, where®,,, is an arbitrary
symmetric matrix whose columns are chosen to be linearly
independent vectors. In the absence of analytical solutions,
there seems to be no clear-cut criteria for choosing the
asymptotic region. With our numerical code, in the guik-

pled; u=M/2 is the reduced mass for two identical atoms.energy region, typically convergent results were only ob-

The wave function® is a column vector containing coupled
channel function ¢, [i.e., different outgoing channels

tained forR=10"a,. In order to maintain orthogonality and
linear independence of different solution vectors during

Y,(R)]. Since we need a complete set of linear independeri?mpagation- the subspace rotation technique is performed

scattering solutions to determifig,, from its expansion,

l - ’ ’ ~
< Tim(K) = 25 tia™ (k) Yy (), (19
I"'m’

regularly. In the asymptotic region, we determiiby match-
ing to potential free motion states
¢im=Cq1 SI(kR—17/2) +c,cogkR—7/2), (22

and construct theSs matrix with its element given by

& is made to be a matrix with different columns CharaCter'—icz)‘l(cl+icz) and theT matrix (S—1)/(2i).

izing scattering solutions for different incident channels

Y m(K). The T-matrix elementsT|,™, can be extracted by

imposing the boundary conditiofEq. (17)] on the partial

In the illustrative study to be reported below, unless stated
otherwise, we always us€Rb atoms in its singlet potential
curve. We have employed a maximum angular guantum mo-

waves in the asymptotic region. The total elastic cross segnentum|=8 (9) for even (odd channels, respectively. A

tion is given by

> X P

I,1" =even(odd)m,m’

(20

O-E(O): 8w

for E (even and O (odd), respectively. We recall that,™
=—as: 000 00moSm’o for spherically symmetric collisions
described by Eq(1), without the dipole interaction.

reasonably good asymptotic radi&s. is chosen to satisfy
|[V—C3/R3 <10 8x|A2I(I1+1)R¥(2u)—E|, with =2
(1), for even-(odd- partial-wave channels.

First we discuss the choice of cutoff radiis and the
asymptotic radiu®k,, for our numerical calculations. Figures
1, 2, and 3 illustrate effects of different values for the electric
dipole cutoff radiusR;. In general, we find that the reso-
nance peak shifts toward highérvalues asR. increases.

As a technical note for caution, we emphasize that thd3ecause of the perturbative nature of the effective long-range

dipole interactiorfEq. (9)] is only valid forR>a, (a, is the

dipole interactionR, is always taken to be much larger than

Bohr radius. In constructing the complete potential, the mist&o. Unless otherwise stated, we will use.=27(a;) to
therefore required be smoothly added to the isotropic poterpresent our results. The sm&j- dependence can be opera-

tial, whose short-range paxtg, also needs to be smoothly
connected with its asymptotic foridy. We used different
cutoff radiusR, with the same matching function for this
purpose:

fe(R)=6(R—Ro)+ 8(R.— R)exd — (R./R—1)7],
(21)

tionally fixed by a normalization against any Hcfield-
dependent experimental data.

Figure 2 shows that, among all partial-wave channels,
scattering in theswave (=0) channel is the most sensitive
with the choice of cutoff radius, while highérchannel re-
sults remain almost unaffected. Physically tiis depen-
dence can be explained in terms of the centrifugal potential
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300 400 500 600 200 400 600 800
€ (kV/em) € (kV/em)

FIG. 1. The total scattering cross section as a function dEdc-  FIG. 3. The hight channel partial-wave scattering cross sec-

field & for different cutoff radii R.=10a, (dashed ling and R, tions are compared to ttewave cross section in terms of the ratios
=27a, (solid line). Typically, an increase dR. results in a shift to 2% 53 (solid line), 03Y 059 (dashed ling anday o3 (dotted ling

a higher€ value of the resonance peak&t The collision energy  at E=0.01 nk.

is E=0.01(nk).

term oI (1 +1)/R? which is absent for ths-wave channel. Next we consider the low-energy threshold dependence of
Comparing with Fig. 1, we see that the resonance€at the scattering cross section. As discussed earlier, we expect

— 456 kV/cm is mostly due to the contribution frotf) (the ~ an asymptotic behavidh,," ~k at sufficiently low energies.

swave channelsdespite the anisotropic nature of Hcin-  We have performed extensive calculations to assure that all

duced dipole interaction. The coupling ®fto d-wave chan- ~ reported results are asymptotically converging such that we

nels is the main reason for such a resonance, as otherwigegdeed have reached this limit. In Fig. 5 we display the varia-

there seems no direct dipole interaction contributions to théion of total scattering cross sectiert as a function of en-

s-wave channel. Our extensive calculations show that typicagrdy ranging from nK to mK regimes. We see that tor

values oft3) are many orders of magnitude smaller thgh =100 kv/cm, o becomes almost independent of energy

(for £<1 MV/cm). This is explicitly shown in Fig. 3, where below 1 4K, while at £=456 kV/cm o varies almost lin-

the ratios for different partial-wave cross sections are comearly with inverse of energy in the range of 20 nK to AK.

pared with theswave ratio. We see that, at low energies, It is worth pointing out here that af=456 kV/cm, a reso-

scattering cross sections for-2 channels are smaller than nance occurs at low energy, as discussed below, resulting in

that for thes wave (=0) by at least two orders of magni- @ divergent low-energy cross sectiar/k’.

tude foré<1 MV/cm. At and near resonance, scattering for ~ Figure 6 is a selected result from otigartial-wave chan-

| #0 is absolutely negligible<10~° of ¢39) in this case. nels for 8.2Rb (fermion). No resonance structure was ever
For £<200 kV/cm, we find theR, dependence to be detected in such cases. _ -

marginal, as shown in Fig. 4. But, at increased field strength, 'N Fig. 7, we plot the scattering cross section aRb for

the overall effect is not always negligible-(L%). large fields€>1 MV/cm. As the field strength increases, the
resonance become more closely spaced. Again, the major
x 10° contribution to the scattering comes from th&ave chan-
2l (@ nel, although increased coupling betweseand highed par-
El
(0]
=0 460
Su= ++_}_
-2 = (@) Lot
2 +*
0 ; = 455 St
(b) \ o s+
S -5 ' © +++++
8 A 450+++*
& 8-10 90 -
L () -7
-15 ;@‘ 60 T -
T ¢ T
c -
= < opE—
3¢ 0000 _— 1 e preees
[~} =] =30 .
&8 10 15 20 25 30 35
4 R (2
400 450 500
e (kV/em) FIG. 4. The dependence of the resonance vajué) and the

percentage change of the total scattering cross se@tjoon R, at
FIG. 2. Selected reducéd@matrix elements under the same con- selected dd& values of€=200 kV/cm (solid ling), £=500 kV/cm
ditions as in Fig. 1. Ir(c), the two curves are indistinguishable. (dashed ling and£=1000 kV/cm(dotted ling. E=0.01(nk).
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10" 10
Zero energy resonance
10 456 kV/em ] 10'°
- ] 100 kV/em -
3 3
810° 810
o k—0 o
10 10°
2 - - 10! : -
10 107 o e 10 1000 1400 1800 2200
E (uK) € (kV/cm)

. FIG. 7. The dckE field &-dependent total scattering cross section
_ FIG. 5. The d_ependence of the zero-energy scattering cross segf Rp at a collision enerpyE=0 01 nK. Mult Ige-resonance
tion (og) on collision energy for selected de-values of =100 ¢ in thi 9 ECD>1.MV/ : P
and 456 kV/cm. At any zero-energy resonance, the scattering croféruc ures appear in this case cm.

sections scale inversely proportional to the collision energy. IV. QUANTUM DEFECT THEORY FOR ANISOTROPIC

tial waves with field strength is responsible for the multiple- DIPOLE INTERACTION
peak resonance structure. .
The results presented so far are obtained by radial inte- Quantum defect theorf 3] was originally formulated to

grations of coupled Schdinger equations. There are certain explain the spectrum of hydrogenic Rydberg atoms. In Ryd-

. . : . berg’s formula,E,=— R/(n—u)?, whereR is the Rydberg
practical disadvantages of using such a exclusively numeri onstant: the quantum defeat accounts for effects of the

cal method. First, it takes a considerable amount of time t(f nic core on a highly excited electron. The idea of QDT was
obtain the results, since the propagation of solutions continug gniy ¢ ) -
until the asymptotic radius, which can be of the order Ofsuccessfully applied in atomic collisions and spectroscopy

. . the yearg[13]. The multichannel version of QDT,
107a, or higher, is reached. The lower the energy, the longe ver . )
the CPU time is needed because of increa@ed Second, ﬁnown as MQDT, provides a good theoretical framework for

the increase of either collision energy or Hdield strength, the analysis of diverse phenomena in atomic and molecular

or both, calls for a reduced propagation step size WhiChphysics. In collision theory, MQDT requires analytical solu-

again prolongs numerical computations. Third, as discusset(ljonS in all asymptotic channel potentials. In the present

earlier, the asymptotic boundary is not well defined. There—prOblem’ including anisotropic dipole interaction, the diago-

fore, no direct physical insight is gained about the resonance. al elements of potential matrix goes asymptotically as
' pny 9 9 : .= 1/R" with n=6 for | =0, andn=3 for all other channels

In order to overcome these shortcomings of the numeric 10). The exact solutions of these power-law potentials

method, we have developed a MQDT for scattering with ) P P

anisotropic dipole interactions. Quantum defect theoryOnly recently became available through application of the

(QDT) relies on matching numerically integrated Scatteringsecular_perturba_ﬂon methgd4,19. :

solutions to analytical solutiongnot asymptotic plane We first considem chann_els, as noted earlier, of evlgn-
waves. The integration can be restricted to much shortera!qgular mqmentum scattgnng states. In the asymptotic re-
radiusR if appropriate analytical solutions are known. This gion, the d'agongl po_tent|al term for awave channel

not only makes the computation faster, the use of analyticaﬂ_’0 goes as- b ,3wh|le the diagonal terms fdr-0 chan-
solutions to the long-range potential also helps to gain dee els varies as-1/R". Applying MQDT, we first numerically

insight into resonance phenomena and low-energy thresho gtegrate the multlchaqnel scattering equat|o(18()5
behavior. f R=0 to a certain R=R,, such that C4/R;

<[(20Ve(Rp)|20)|. How to make a judicious choice &,
x 10 . . will be discussed later. Next, as a first approximation, we

15 neglect off-diagonal potential terms f&>R,. We note that
a more complicated procedure exists, that can incorporate
off-diagonal effects in the long-range regime@>R,) [16].
’;10 This will be discussed later. The exact solutions-o1/R®
8 and — 1/R® potentials are then matched to numerically inte-
o grated multi-channel wave functions B in the spirit of
5 MQDT,
d=IF+JG, (23
200 400 600 800
¢ (kV/cm) where
—Di (6) () . .3
FIG. 6. An example of the total scattering cross sectignfor F=Diag fiZo.fi=2, fl:Z(n—l)]’
82Rb (fermion) is also found to be dominated h)%. No resonance . 6) ~(3) 3) (24)
occurs in this case, arf=0.01 nk. G=Diag 9;209i=2" - - 9iZ2(n-1)]
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are two diagonal matrices, with"™ and g™ two suitably
chosen linear independent base functions+dt,,/R" type

PHYSICAL REVIEW A 64 022717

mains, except now all diagonal potential terms are 1/R®
at largeR. Therefore, we only need analytical channel solu-

potential. One can define a characteristic Iength scale fations for the—1/R® type potential. This makes the odd an-

such a power law potentig@,=(2uxC,/%2)Y("~2). Explicit
expressions forf|' and g' are reproduced in Appendix A.
Their asymptotic forms are given in Appendix B, which for
E>0 are grouped as
) (kR |77
SIN| ?

( ffn)

(n) |

g T
cos(kR 5 )

The coefficient matrices andJ are determined by use of
the Wronskiansl =W(®,G)#/2 and J=—-W(®,F)#/2 at

Z(n|)
Z(m)

(R—)
(R—)

|
Zq

|
z{y

(29)

gular momentum channel problem qualitatively different
(simplep.

Before developing a model two-channel problem, we
briefly summarize a technique that would allow for inclusion
of off-diagonal potential terms foR>R, within our ap-
proach[16]. In the presence of off-diagonal couplings at
large interatomic separatiolRER;), the wave function for
each channdl can be expressed as

d=u(R)f(R)—v(R)g|(R),

wheref, andg, are the two linearly independent base func-
tions as defined earlier satisfying the Salinger equation
for a — 1/R" type potential. We will suppress ttm quantum

(29

R=R,. As a convention, we set the constant Wronskiannumber index, since even the anistropic dipole poteinal

W(f{" ,g() for the linear independent base paff& and
o{" to 2/m. Substituting for the asymptotic form E¢R5),
we arrive at

F( R*)OO) :ZFBB+ lecc,

(26)
G(R*)OC):ZGBBJFZGCc,

where ZFB(C) are nxn diagonal matrices of the form
Diagf Z{5%)) . Z{3h . - ..1 and similarly expressions for
Zgg(c), With the subscriptF (f) replaced byG (g). B
=Diag sinkR), . . . sinkR—I1#/2), .. .] and C
=Diag coskR), . . . ,coskR—I7/2),---] are also diagonal
matrices. Substituting these expressions into &3), we
obtain

Q(Rﬁw):(lzFB+‘]ZGB)B+(|ZFC+‘]ZGC)C (27)
From which we find the scattering matrix as
K=(Zrg+KZgp) " HZrc+KZg0), (28

whereK®=1"1J is a matrix that will hopefully depend only
on shorter-range interactionR€R,). In general,K® will

have somdr dependence. For the case of a single channel,
becomes a slowly varying function &, and approaches a

constant atR, where the potential attains its power-law

asymptotic form ¢ 1/R"). The matching poinR, is there-
fore appropriately chosen such thét becomes independent

remains diagonal irm. u;, and v, are two slowly varying
functions ofR defined by equations

dgy _ dfi(R) dgi(R)
ar - UR g (R =g (30
and
dU| _
ﬁ—&(R)QKR),
(31

GR = 8RR,

By substituting the above expressions into Sdinger equa-
tion (16), we obtain

—E " '(Ve é1(R),

I #1

—W(f,9)&(R)=
(32

whereW(f,,q,) is the Wronskian of the base pdirandg; .

The solutions of Eq(31) can then be written as

: PR e

u(R)=ui(Ro) + _Zf dR'g;(R")
he JRy

x> ()" (Ve ¢ (R,

I7#1

of R. This is always possible as all analytical dependence on
the potential and collision energies is taken care of by the
various Z functions. For multichannel anisotropic interac-
tions as in the present context, the situation become more
complicated, and will be discussed in Sec. V.

The S matrix is obtained from th& matrix according to
S=(1-iK) Y(1+iK). The eigenphase shifts can be directly
calculated from the diagonalizedS matrix A~ 1SA
=Diadg exp(4&),exp(28,), .. .], where A is the unitary forms that allow for ia direct perturbation analy§is3]. The
transformation matrix. Thus the phase shifts for different in-scattering matrix can be determined by evaluating values of
coming and outgoing channels become available. u; ando, at largeR values, since the asymptotic expressions

For odd} coupled partial-wave channels, essentially thefor f; andg, as given by Eq(25) are known. The values of
same mathematical structure as the above formalism ra4(Ry) and v,(Ry) are given by the condition that &

R
v|(R)=v|(Ro)+/;L—:JROdR’ﬁ(R’)

X2 () (Ve éi (R, (33)

171
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0.1 X 10_8
\
0.08 \‘ (a)
4
3{8
3
2
o X 107°
oo 4000 7000 10000 (b)
Fi(ao)
o 0
FIG. 8. The strength of anisotropy & for dcE values of€& X
=100 kV/cm (solid ling), £=1000 kV/cm (dashed ling and £ -2
=1500 kV/cm(dotted ling.
-4
=R, thel-channel wave functiow, given by Eq.(29) should 2300 3500 R,(a,) 4500 5500

coincide with the corresponding wave function given by Eq.
(23). Thusu(Ry) andv(R,) are then elements of the ma-  FIG. 9. The variation of the short-ranglematrix elemenk?, as
trices| and —J, respectively. We will, however, not pursue a function of R for dc-E values of =500 kV/cm (a) and &
such a complicated calculation, as it turns out that most of= 1000 kV/cm(b), at a collision energfg=1 nK.

the interesting physics in low energy dipole collision can be

obtained through a simpler model calculation involving only as a function oRR for several different values of the field.

two channels.

V. TWO COUPLED CHANNELS

To illustrate the physics of dE-induced shape resonance,
we apply the MQDT method as outlined above, to a close
system of two coupled channels<0 and 2). Given the fact
that scattering fot>2 channels are almost negligible at low
energies, as illustrated in Fig. 3 férfield range of interests
to us, this 2X2 coupled-channel system represents a well
justified model. From Eq(18), we have

h2 d? 1 0 #2 (0 O
-— —+V-E +—
2n dR? 0 1) 2uR?\0 6
Ce/ 0 C ¢
_ _E ( zo) ( oo): 0, (34)
R3\Cy Cof |\ 20

whereC,;»=(l0|P,(-)|I’0). As R—, the diagonal poten-
tial terms in the channels=0 and 2 becom&/ = — Cg4/R®
and V,=6%2/(2uR?) — CcC,,/R3, respectively. Therefore,
we employ exact solutions of 1/R® and — 1/R® potentials,
as obtained by Gag@14], to match numerically computed
ones at a radiuR,. We first chooser, to satisfy condition
Ce/R$<CgCy,/R}, i.e., Ry>[Cq/(CcCyy) ] Therefore,

as discussed in Sec. IV, we expect the diagonal element of

K% in thel=2 channel, i.e.K$, should approach a constant

asR— R, provided the strength of the long range anisotropy

is negligible for R>R,. A good measure of the relative
strength of the anisotropy can be defined according to

V12
V2—Vo

. (35

n(R)=‘

We neglect anisotropic effects f&>R, if n(R>R,) drops
well below unity(typically at 5< 10" %). In Fig. 8 we plotz

In Fig. 9, we display variations d€3, as a function oR,,

for two different electric-field strengths at 1 nK collision
energy. We note thaKg2 approaches a constant fd®
=400(,. The same behavior is true at even highdields,

Ibeit at still larger values oR,. Therefore, for€<1000

V/cm, we expect little loss of accuracy by neglecting off-
diagonal terms wheR=400(,. Based on the MQDT for-
mulation discussed in Sec. IV, we have computed the scat-
tering wave function as well as the correspondingiatrix

for our model of two coupled channels. In Fig. 10, we show
the scattering cross section as a function ofEddield
strength& at three different collision energies. We note that
the resonance becomes more prominent as collision energy is
lowered belowuK, indicating the presence of a bound state
or a virtual bound statéquasibound stajenear the zero-
energy threshold. This calculation illustrates that our model
indeed captures the resonancefat456 kV/cm as previ-
ously discussed in Fig. 5. This results are almost indistin-
guishable from a complete numerical calculations done ear-

460 560
€ (kV/em)

600

FIG. 10. The dcE field-dependent scattering cross sectignat
three different collision energies=1 nK (solid line), E=100 nK
(dashed ling andE=1 uK (dotted ling. These results are obtained
by the MQDT method for two coupled channels.
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lier. We will discuss such zero-energy resonances in more
detall in Sec. VI.

As a check of consistency, we note that results obtained
from the MQDT two-channel model calculation agree quite
well with those obtained by the complete numerical calcula-
tions as long as the two channel approximation remains valid
for £<1 MV/cm. For £>1 MV/cm, off-diagonal terms of
the dipole potential are not negligible for the same value of
MQDT matching radiusk, used. A simple way of including . . .
more effects of off-diagonal terms would be to incre&ge 300 700 1100 1500 1900 2300
We therefore conclude that the MQDT does provide signifi- & (kV/em)

Cam. computqtional agivantagg over th? direct numerical ".“e' FIG. 12. Comparison of numericgtlashed ling and MQDT
gration technique. It is especially efficient at lower er"ergles(solid line) scattering cross sections within the two-channel ap-

whenE<10 uK. . proximation for large d& fields (€>1 MV/cm at E=0.01 nK).
We now analyze the long-range behgwor of our t‘,’\’O'With such large electric fields, the short-rangematrix only be-
channel model. For the=0 channel, the diagonal potential come independent aR, at rather large values, taken here to be

behaves asymptotically as1/R®. This singlet potential, in  1q 00G,.

fact, can support many bound states, including those close to

the zero-energy threshold.7]. For |#0 channels, on the is commonly known as a Feshach resonaffsg If there
other hand, quasibound statesrtual bound states in the exists a bound state at or near zero energy, scattering cross
quasicontinuummay also occur due to the presence of thesections will consequently be enhanced manyfold. This is
centrifugal potential barrier. In the zero-energy limit, scatter-indeed the case found in our earlier extensive numerical cal-
ing is mostly due to thes wave (=0) in the regime of cylations. As will be proven in Sec. VI, such resonance struc-
parameters of interest to us. Any alteration of the long-rangeures can be fully explained based on zero energy bound
swave potential £ 1/R®) due to electric-field-induced cou- states using the MQDTsee Figs. 11-13

pling with a d wave leads to a modification of its bound
(quasibound spectrum near the zero-energy threshold. The
effective potentiaV, (diagonal term plus centrifugal barrjer
has a maximuntbarriep at R=R,,, given by the condition As discussed in Sec. V, low-energy scattering resonance is
dV,/dR=0, i.e., R,=uCgC,,/(24%), and the barrier a signature of a bound or quasibound state near zero energy.
height is given bysV=7%2/(uR?%). Since coefficienCg is At some critical dck field strength, a new bound state is
proportional to field intensitf?, R, is linearly proportional ~ formed at micro- or submicro-K energy, leading to the ob-
to £2. Consequently, the barrier height becomes inverselygerved zero-energy shape resonance. In order to elucidate
proportional to£*. The coupling betweers- and d-wave this point explicitly, we again rely on the two-channel model,
channels may lead to combined new bound or quasibounand find its last bound or quasibound state just below zero
states, or both, at near-zero energies. The existence of theggergy by the MQDT formulation. The asymptotic form of
states is manifested in the form of scattering resonance. Fdinearly independent base pa'rfS‘) and gl(“), satisfying the
instance, when an incident low-energy atom freawave

VI. BOUND STATES

channel hits a quasibound state supported liyaave cen- 400
trifugal barrier, we may have a situation that resembles what 200
é 0
o
5 X 10* i
> _200
2
-400
1 200
3
8o -~ 0
88 é
=, & —200
T
2 > _400
3 : : -60
00 400 500 600 00 200 300
e (kV/em) R(ao)
FIG. 11. The reduced-matrix elememtgg obtained by MQDT FIG. 13. The diagonal potential term4, (dashed ling for |

for two coupled channeld £0,2) atE=1 nK. This resultis in fact =0 andV, (solid line) for | =2 at two different dd= field strengths
indistinguishable from a numericétwo-channel calculation, al- £=456 kV/cm(a) and £=1500 kV/cm(b). The larger thet field,
though it differs slightly from a multichannéfive-channel calcu-  the further fromR the two potential curves cross. The height of the
lation. V, potential barrier decreases with increasthg
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Schralinger equation with a potentiat 1/R" for E<0, can
be expressed as

|

where W’'s are chosen to be real functions. For the two
coupled channels discussed in Sec. V, we have

f((R—o)
gi"(R—=)

| |
winh - winh
(nl) (nl)
wimwin!

exp kR)

exp(— KR)) (39

W= (477 k) ~ YA (X3+ Y3)sin(7v)] ™ {[{B sin(mv)

+acogmv)}G(—v)—aG(v)],
(37
W= (47) =Y (X3 + Y3)sin(mv)]~ [ {a sin(mv)

—Beodmv)}G(—v)+BG(v)],

and
Ci(—v) C.(v)
(32) _ - + v+ -v
WED=2(27k) 1’2[ &= G0 A }
(38)
C_(—v) C_(v)
32)_ — _ v —v
WP=2(27k) 1/2{ &= AV+ 0 A7,

Except fors?x?/(2,) = —E, all notations used here follow
from earlier definitions as in Appendix A. After some tedious

algebra, the condition for bound states of our two-channe

model becomes
Def Q+K°]=0, (39
whereQ is a diagonal matrix given by
Q= Diag W{*? W{*?](Diagd W W*21) 1. (40)

The bound-state wave function at discrete enéiggan then

be expressed as
Vi(R)=(F+K°G)M, (42)

whereF, G, andK? are similar to matrices defined in Sec.

IV, and M is a column vector. Using the asymptotic form of
base pairs functions, E¢41) can be rewritten as

W, (R—)=exp — kR)Q, M+expg kR)Q_M, (42
where
Q.. =Diag W™ W'D
+KODiag W Wit L, (43)
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20
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-3000 -2000 -1000
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FIG. 14. The inverse of,; as a function of bound-state energy
in uK for ®Rb.

The matching radiu®k in this case is chosen to be in
classically allowed region of diagonal channel potentials.
The condition for the existence of a new bound state, i.e., EqQ.
(39), is then given by

(Qu+KID(Qut+ K3 —KIK3=0,

where the subscript indices denote respective elemer@s of
andK° matrices, and (@) andQ,, are they functions for

a pure—1/R® or —1/R® potential as defined in Ref14].
Since the value oK, is typically much smaller thai,;

near resonance, as an approximation, we can drop the two
off-diagonal elements fronkK®. We then obtain two un-
?oupled bound spectrum series, given by

(49)

Qi +K?%=0, (46)

and

Qo+ K3,=0, (47)
respectively. The first conditiofEq. (46)] gives bound states
predominantly supported by treewave channel. The effect

of channel coupling due to an external electric field enters
only through the parametd&ﬁ’l. In this first approximation,
the off-diagonal potential terms are neglectedRor R,. As
commented upon earlier, the short-rarigematrix K° is a
slowly varying function of collision energies near the zero-
energy threshold. We can then extrapolate their values from
E>0 (for scattering to the bound state cade<0. In the
present case of zero-energy bound states satisfyjrgO,

we basically used the same short-rakgmatrix as obtained
from a converged low energy scattering calculation. We
compute bound states near the zero-energy threshold that sat-

isfy
|Ei|<Cg/R<C3/R3. (48)

For an asymptotic- 1/R® potential as il =2, the matching
radiusR is taken to be smaller than the characteristic length

The bound-state energy is therefore given by the requiremericale;=2uCC,,/%? of the potential.

that the exponentially rising part of E43) vanishes, i.e.,

DefQ_]=0. (44)

In Fig. 14, we show the energy dependenc@@f. The
last bound state of the isolategwave | =0 channel(with
asymptotic potentiat- 1/R®) is then given by crossing points

022717-9
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0 ” 0 — + A 4
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uk x » * 300 700 1100 1500 1900 2300
10 10 € (kV/cm)

FIG. 17. The comparison between zero-energy bound states as
obtained from the MQDT for a single channdis0 (X) and|
=2 (+), and two coupled channelg\() in (a), and their compatri-
son with numerical results from the two channel magi! We note
that thes-wave single-channel results, matched in the classically
0 L forbidden region aR,=4000, exactly reproduces all numerically
of Qy; and—Ky;. In the absence of an external electric field, cajculated scattering resonance. Note that the numerical two-
the energy of the last bound state supported by an asymptotihannel results heré) differ somewhat from the complete multi-
—/R® potential of ®Rb is about 2 mK, which is in fact far channel results given in Fig. 7.
beyond the zero-energy limit appropriate for the present dis-
cussion. In the zero energy limit€0), R, can be taken |n Fig. 16 we plot the energy and defield-dependen®,, .
arbitrarily large for the condition given by the single-channelit resemblesQ;;* rather thanQ,;, because of a different
bound stat¢Eq. (46)]. choice betweemy andf functions. At field values of interest

From Fig. 14, we see that a new zero energy bound sta®) ys, we find the short-rangé® matrix actually changes
appears only wheK?,; becomes infinite. In Fig. 15, we dis- rapidly in this case with thérelative smali, matching radius
play variations of the subsequent four zero-energy boundr,. Therefore, in the classically allowed region, we were not
state energies as a function &fWe used<21 as determined able to perform a correct MQDT with an energy and
at a positive energy near the zero-energy threshold, ang-independent9,. Nevertheless, to explore the physics
matched analytical solutions with the numerical ones at gualitatively, we instead choose a radiRg= 105, (in the
relatively large R (R=4000, for £<1 MV/em and R classically allowed region of thé=2 diagonal potential
=1000@&, for £>1 MV/cm). It is interesting to note that such that it reproduces the first bound state as in the s-wave
these resonances agree quite well with results obtained froghannel betweerf=500 and 600 kV/cm. As we can see
a complete numerical multichannel scattering calculatiorfrom Fig. 15, the third bound state then also seems to be
presented above in FIgS 1land?7. reproduced Correcﬂy_

The second conditiofiEq. (47)] corresponds to bound-  We now proceed to estimate the combined bound-state
state series of the=2 channel. In addition to dE- effects sequence by solving for E¢¢5). In this case, for bound state
accumulated iMQ,,, the asymptotic wave function is now energies larger than a fewK, the classically forbidden re-
chosen to include the field-induced diagonal term 1/R®.  gion limits the choice of a matching radius to be within
(100-150 ag, which is much smaller than the typical value

1723.5 1724 17245 17252100 2105 2110 2115
€ (kV/cm) € (kV/cm)

FIG. 15. Bound-state energieg&y;) in the|=0 channel as a
function of electric field€ in the zero-energy limit.

20 of 400, used for the scattering calculations. We again
choose the same matching radius atdg&s for the single
10 1 =2 channelEq. (47)] discussed above. Obviously, there is

no reason to trust the obtained results seriously as the ne-
glected anisotropic effects become significant at such a small
Ry. Nevertheless, it is interesting to compare the obtained
results as in Fig. 17 for these three separate approximations.
-10 ] Note the comparison of bound-state locations with the nu-
merical calculated zero-energy scattering cross section from
—2200 300 500 100 0 the same two chgnnel model. We find th_at te0 swave
E bound state locations match quite well with the numerically
s calculated resonance structures. This gives us the confidence
FIG. 16. Q, as a function of scaled energyE; !0 assign these resonances as due t& dield-induced zero-
=2uCeCE/A2 for 8Rb. For an asymptotie- 1/R3 potential, as  €nergy bound states; thus they are indeképe resonance
in thel =2 channel, use of this scaled energy helps to illustrate théds the strength of electric field is increased to a certain criti-
long-range interaction. The last bound state is given by crossingal value, a new bound or quasibound state appears at the
points of Q,, with —K?©, just as in thd =0 s-wave case. zero-energy threshold. Since we neglect the off-diagonal po-
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tential terms forR>R,, the bound-state energies calculatedbicheaux for several helpful communications. This work was
here only provide approximate estimates, they differ fromsupported by the NSF Grant No. PHY-9722410.

results reported in Fig. 8, obtained from a complete multi-
channel calculation. The fact that a singlavave (=0)
channel completely captures the resonance structure is per-
haps also not surprising, as it is indeed the dominant channel
found numerically before. By choosing the matching radius The base pair for the- 1/R® potential is given by
Ry to be sufficiently large, the anisotropic dipole induced

coupling with other highel-channels are included through

APPENDIX A: ANALYTICAL SOLUTIONS
FOR —1/R"=3ETYPE POTENTIAL

the short rangeK® matrix. Finally we note that MQDT ff:i(a2+32)—1[a?|(r)_ﬁal(r)],
bound states technique used here may also be improved with V2
a perturbative method as discussed earlier to include addi- (A1)

tional asymptotic ansiotropic effecf6]. 1
g?=ﬁ<a2+ﬂ2)*lmf|<r>+ag|<r>],
VII. CONCLUSION

We have presented a detailed analysis of low-energj’nere

atomic collisions, including electric-field-induced anisotropic
dipole interaction. We have discussed both multichannel nu- ~ - 2 1 L,
merical and MQDT methods for the scattering calculations. f'(r):mzx Bror *dym| 5 (1/Be) 7,
In particular, we have highlighted the zero-energy resonance -
phenomena due to formation of long-range bound or quasi- .
bound states near the zero-energy threshold. At low energies ~ 2 1 5
(E~ nK) and with a reasonable dipole interaction strength, gl(r):m;_oc B ™y m| 5 (11Be) 7
the scattering cross section is predominantly due to the
s-wave channel for coupled evérangular momentum chan- .
nels. We also note that the zero-energy resonance due Y&'th
formation of new bound states only occurs in the coupled
evenl channels, but not in the odcchannels. This is mainly a=cog m(v—vo)/2]X;—sinw(v—vo)/2]Y,,
due to the presence of thewave potential well(without (A3)
centrifugal potentialin the coupled eveh-blocks. At posi- B=sin m(v—vg)/2]X,+ cog m(v—1y)/2]Y],
tive energies, the-wave channel is open throughout the en-
tire range (B<R<) of its diagonal potential, while other

; and
channels >0) have locally closed regions near zero en-
ergy. When theswave channel is present, atoms can pen-
etrate into a shortdR range via scattering and multichannel
coupling, and therefore zero-energy resonance is more likely m== e
to occur. By manipulating such scattering resonance with dc- (Ad)
E induced dipole interaction, it is possible to change low- o
energy scattering properties such as the scattering length and Y, = 2 (—1)™
total or partial-wave scattering cross sections. In contrast to e am+ds
the magnetic-field-induced Feshbach resonance, where cou-
pling between different hyperfine levelglifferent internal and[14]
state$ are involved, electric-field-induced resonance is due
to coupling among different rotationéxterna) states of the
two colliding atoms, and only one thresholdr internal — p —(_ A)] F_(V)F(V_Vofl)r(w V°+1)_ ci(v)
state is present in the system. In the present paper, using a C(v+ )l (v—rotj+ Dl (v+ve+j+1) 7
model two-channel MQDT calculation, we have provided a (A5)
clear physical picture of these resonances, and provided ana- T(v—j+ DT (v—ro— T (v+vo—j)
lytical means for estimating their locations. The availability b_j=(—4) T v+ DT (7= v (vt vg)
of approximate analytical forms for these near-zero-energy (v VT ro)t P Yo
bound states allows for a detailed examination of bound-free Xc_j(—v),
and free-free motional Franck-Condon factors.

(A2)

where j is a positive integer;A is a scaled energyA
=k?B2/16, with k=2uE/h?;, v, is related to the angular
momentum |, vo=(21+1)/4, and c;(v)=byQ(»)Q(¥

We thank Mircea Marinescu for his contributions at the +1)---Q(v+j—1), with by being a normalization con-
earlier stages of this work. We thank Bo Gao and F. Ro-stant; andQ(v) is given by a continued fraction:
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1

Q(v)= 1 (AB)
- 2(u+ 1)(v+2)[(v+1)2—v2][(v+2)2- ]Q( b
|
Here v is a root of a characteristic function f(G)(R_>oo) (1/77k)1/2[Z(6|) sin(kR—177/2)
A1, 8)=(7=13) ~ (A )[R ~Q(~»)], (AT) +2ic) codkR-lm/2)) -
whereQ(v)=[(v+1){(v+1)2— 13} 1Q(v). 9l (R—0)~ (Lmk) ¥ Q) sin(kR— I /2)

Next we present the solutions efC5/R? potential[14].
The base pair can be expressed as

2 l 1
__ 2 { c
97(1)= 5733 | 5= C-(MED)
1
&0 C- (-], (A8)
where
C.(v)=cog m(vol2—v)]£sin m(vel2—v)],
D(»)=C,(»)C_(—v)=C.(=»)C_(v), (A9)

I'l+vog+tv)I'(1—vy+v)

G(v)= T(1-)

A7

C(w),

with A=kpB5/2 andvo=1+1/2. Here&(r) and (r) are two
linearly independent functions:

Er)=2 bpr "2, . m(kr),
(A10)

(=2 (-

1)Mbr Y23, _n(kr).

Hereb; is given by an expression similar to Hé5), with A

replaced byA, and v is a root of the corresponding charac-
teristic equation an€(v)=Iim;_,.. c;.

APPENDIX B: ASYMPTOTIC EXPANSION
FOR ANALYTICAL SOLUTIONS

In this appendix, we write the asymptotic form of a pair of

linearly independent base functions for a power-law potential

(—1/R"). For a—/R® potential, the asymptotic behaviors of
the base pair for positive energy are given by

+2{% cogkR—17/2)],

where

ZD =[(X{+YD)sin(my)] = (= 1)'{Bsin(mv)
+acogmv)}G(—v)sin(mv—| 72— w/4)
—aG(v)sin(mv—Im/2— ml4)],

Z{ = —[(XP+YD)sin(7v)] "~ (— 1){Bsin(7v)
+acogmv)}G(—v)cog mv—|m/2— w/4)

—aG(v)sin(mv—Im/2— ml4)], (B2)

Z(GI) [(X2+Y2)S|n(77v)] T—(=1D){asin(mv)
—Bcogmv)}G(—v)siNmv—| 72— m/4)
+ BG(v)cog mv—I|m/2— wl4)],

ZE = —[(XE+YD)sin(mv) ]~ — (- 1){asin(7v)
— B cogmv)}G(—v)cog mv—|w/2— 7l4)
+ BG(v)sin(mv—Im/2— ml4)].

Next, for a —1/R® potential, the corresponding func-
tions are given by

Z=2 | 1 ){cog m(v—1,)/2]X
fb D( ) G( ) v TV~ Vo |
1 5
—sinm(v—wvo)/2]Y,}— 03] C.(-v)B|,
(h=— 507 |Gy C+ (WIS m(v=v0)/2]%

—co§ m(v—wg)/2]Y,} — C.(—v)C|,

1
G(v)
(B3)
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S _ 1 c B where
' "D |G- —(v){cog m(v—o)/2]X
_ 1 B B={cog m(v—vo)/2]X,— sin w(v—1,)/2]Y,}cog 7v)
~sia(v=vo)l2Vi} gy C- (- 18|, +{SiM m(v— vg)/2]X, — cod 7(v— w)/2]Y }sin ),
G&=- W[mc—m{s"ﬁ(v— vo)/2]X, C=—{cod m(v—)/2]X,—sir 7(v—vg)/2]Y,}sin( wv)
1 5 +{sin w(v—vq)/2]X,—cog m(v—vp)/2]Y }cog 7v).
—Coiw(v—vo)/Z]Yﬁ—mCJ,(—V)C , (B4)
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