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Threshold laws for four-particle fragmentation
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Breakup of an atomic particle into several charged fragments can be achieved by multiple photoionization or
by collision processes. The threshold behavior of fragmentation cross sections is generally described by power
laws, o~ E*, whereE is the excess energy above the breakup threshold. We evaluate threshold inétices
four-fragment breakup of a large number of systems not considered before. All the fragments have different
charges andfinite) masses with only one restriction imposed to limit the choice of systems considered: it is
presumed that two of the fragments represent identical particles. Some previously suggested threshold laws are
revised.
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[. INTRODUCTION coordinate could or should be introduced in a natural way.

The scaling configuration is unstable, and its unstable modes

Processes with sever@hree or morgcharged particles in - produce partial threshold indices that sum up to the total
the final state exhibit a particular threshold behavior withindex entering the threshold la),
regard to the cross section, as inferred by the famous Wan-
nier law for the (2+ charged core) system M:; . @)

O~ E’u, (1)

Since the summation runs over all unstable modes, there are
whereE is the energy excess above the fragmentation thresimo unaccounted modes to justify the appearance of second-
old. The primary task of the theory is an evaluation of theary threshold laws. The theory of near-threshold breakup is
threshold indexw. designed in a purely dynamic way and does not appeal to

Multiple fragmentation, distinct from the Wanni¢fi]  statistical arguments. From a more technical standpoint, the
three-particle case, was considered in the pioneering work blgyperspherical coordinates, which are useful in various few-
Klar and Schlechf2]. These authors analyzed the escape obody problems, do not provide noticable advantages when
three electrons from the charged cgsee also the paper by the threshold laws are concerned. Even more, use of these
Grujic [3]). Instead of a linear configuration of receding par- coordinates complicates the calculations unnecessarily.
ticles treated by Wannier, Klar and Schlecht suggested that These particular features of the approach developed by
the electrons fly apart being in the apexes of an equilaterafuchiev and Ostrovsky as compared with the schemes sug-
triangle with the core sitting in the center. The high symme-gested by other authors were already discussed in[REf.
try of this particular system was employed to simplify the Here we add only some remarks related to the most recent
treatment, as also in the case of four-electron escape consigublications. The secondary threshold law for three-electron
ered later by Grujid4]. The use of specific constructions escape is ruled out by experimefi&. The problem of the
somewhat veiled the general issues of the theory, which werdiscrepancy between the results of Rdf5] and [6] for
not explored fully. double ionization of an ion by positron impact was resolved

The necessity of formulating a general approach emergeth a careful theoretical analysis by Bluhnet al. [9], who
when the positron-containing systems became accessible fshowed that treatment in R¢6] omits one of two unstable
detailed experimental study. In order to provide a theoreticainodes. It is now finally confirmef7,10,1] that no logarith-
basis, Poelstrat al. [5] considered the escape of two elec- mic factors emerge to modify the form of the threshold law
trons and one positron from the charged core. However, thél).
result obtained by these authors proved to be inconsistent From an experimental standpoint, we refer to recent stud-
with the universal approach developed later by Kuchiev andes of three-electron photoionizati¢t3,8] and double ion-
Ostrovsky[6] (see also the brief exposure in RET]). The ization by positron impadil2]. Although the near-threshold
main features of this general theory could be formulated aslomain is notoriously difficult for experimental observation,
follows. The threshold law is governed bysealing configu- clear interest in the threshold behavior of multiparticle
ration of receding particles in classical mechanics. In such dreakup persists. This, along with a theoretical appeal, in-
configuration, by definition, the time evolution of all particle spired the more detailed study of four-particle fragmentation
coordinates in the center-of-mass frame is confined to a scalendertaken below. Compared to previous research, the pres-
transformation with the common time-dependent scaling facence of infinitely massive particles in the system is not as-
tor (see Sec. Il for more detailNo particular fragmentation sumed. We presume that masses of all fragments are finite

and thus fully account for the recoil effects. We include for
consideration some particles exotic to atomic physics, such
*Email address: Valentin.Ostrovsky@pobox.spbu.ru as mesons or antiprotons. In order to limit various possible
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combinations and retain the feasibility of experimental ob-
servation, we consider systems with two identical particles (a)
(that are usually electrons or protong-or the fragment
charges, we consider both available possibilit{@stwo par-

ticles with positive charge and two particles with negative _3_
charge, andii) one particle with positivédnegative charge

and three particles with negatiypositive) charges. Ty

2

II. SCALING CONFIGURATIONS

The general condition defining scaling configurations was, IFlG\;vitlt; icah?ig ?Onf'i%ijrat'?]n rfor fourr Chsr%fnd gartu;:les.d /Par-n
thoroughly discussed by Kuchiev and Ostrov$ky, where cles €gative/positive charges are sho y closediope
) D ) circles. Two identical particles are designated as 1 and 2.(Blot
the reader can find proofs and details. L) be the posi-  ghows also the center-of-mass position)(and forces acting on the
tion of the jth particle in the center-of-mass frame. In the particles 1 and 0.
scaling configuration, by definition, acceleration of each par-

ticle is proportional to its vectuﬂ-, other particles. The scaling configuration is fixed by two
_ anglesa and 8 as shown in Fig. 1, where negativelyosi-
d?r i - tively) charged particles are depicted by opéciosed
W: —ary, (3 circles. The cased;<0 andZ;>0 correspond to Figs.(4)

and Figs. 1), respectively, which are described by the same
with a commonj- and t-independent factor. Then time €quations derived below. R
evolution of the system is reduced to a uniform expansion of According to Eq.(4), the forceF; acting on each particle

the configuration in space, which does not change its shapg directed along its vectop; relative center of mass. For
It is easy to show that relatio(8) holds provided it is en- nonidentical particles 0 and 3, this condition follows auto-

sured at some initial moment of tinte=ty: matically from symmetry. For the identical particles 1 and 2,
1 it leads to a single equation, see Figb)l
m; I J F
] Y —tan . (7)
le

wherep;=r(to). The Coulomb interaction between the par-
ticles is presupposed, which allows one to evaluate the forc®ne more condition manifests the requirem@htthat for all

ﬁj acting att=t, on thejth particle as the particlesJ the acceleration should be proportional to their
o coordinatesp; within a common scaling factor,
= Pj™ Pn
F; —sz qJ'Qnm, 5) Fi _ pim ®
n - .
: Fi pim,

whereq; is the jth particle charge. Substitution of this ex- i ) )
pression into Eq(4) gives a set of equations, The azimuthal angle of the particle 1 in the center-of-mass

frame is readily expressed vig 8, and particle masses; .

q. 5. _5n . After substituting formulagb) for Coulomb forces and some
- _ nﬂ—w= —apj, (6) algebra, we obtain finally the set of two equations for the
Mj n%] |P1_Pn| anglesa and g fixing the scaling configuration,

that serves to define the essentitaling invariantparam- (7 si? g cos+ Z,sirfe cosa)sina sin 8
eters of the configuration. Now we consider the specific form

of these general equations in the case of a four-particle sys- ) —
[sina cosB—Eo(a,B)],

=( —ZSirtB+Zssirta+ %

tem.
Let two identical particles 1 and 2 have the same nmass
and negative charge=—1. The patrticle 0 is the “atomic ©

nucleus” with masan, and chargeZ>0. The particle 3 has )

massm; and charge- Z; (it could be negatively charged, for m| z si3

instance an electro@;>0, or positively charged, for in- 3% sirf(a+ B)

stance a positrod3<<0). It is worthwhile to remember that

simultaneous scaling of all charges or all masses does not sirB cospB

influence the threshold index. =—Mmg3 SIT
In the case of four fragments, all the particles lie in the

same plan¢14] and the shape of the scaling configuration is +Eo(a,B)], (10)

defined by four angles. If two particles are identical, then the

scaling configuration has a symmetry axis that joins twowhere

-2 COSa) [sina cosB—Eq(a,B)]

+ Z3COSa) [sin(a+B)

022715-2



THRESHOLD LAWS FOR FOUR-PARTICLE FRAGMENTATION PHYSICAL REVIEW &4 022715

TABLE I. Threshold indices for four-particle systems with three IIl. THRESHOLD INDICES

identical particles. . . . . .
A. Three identical particles and one particle of opposite

Fragments o © [15] charge
In this case, the scaling configuration is an equilateral

H++397 2.8274 trian | — o p_ o__ H H

N _ gle—e=30°,8=120°—considered originally by Klar
D™ +3e - 2.8268 and Schlechi2]; see the discussion in Sec. |. The threshold
“He*" +3e 2.2706 2.2706 index is defined by the doubly degenerate unstable mode.
28U +3e” 2.2704 2.2704 The new element in our treatment of this old problem is
LisT+3e” 2.1621 2.1621 taking into account the recoil effect, i.e., for finite mass of
BY3* +3e” 2.1620 2.1620 the central particle. Our results in Table | show that the
9Bett + 30 2.1157 2.1157 threshold indexu increases as the mass of the cenfpalsi-
wt+3e” 28367 tively charged particle decreases. As anticipated, the isoto-
e +3e- 42218 pic effects are small in the case of an atomlike system, when
e +3p* 113.86 the central particle is much more massive than three other

particles. However, for 8 +e* fragmentation, when all
masses are equal, the value of the threshold index becomes
much larger than in the atomlike situation. The “mass-

2m;sina cosB— mgsin(a + B)

Eo(a,B)= . (11 inverted”case p+e-, with a light particle in the center of
2my+mg+my the triangle, exhibits a huge threshold index. Our results co-
incide with those published recently by Pattard and RDSk
The quantity— =, /sin 8 corresponds te,,, i.e., thex co-  in cases in which the latter ones are available.

ordinate of the particle O with respect to the center of mass. It is worthwhile to emphasize that the threshold index
Equation(9) follows from Eq.(7); Eq. (10) represents the depends only on the system final state and not on its initial
specific form of Eq.(8) for k=3, j=1. state. Therefore, generally we do not discuss the way in
A special situation emerges for two pairs of identical par-Which the fragmentation is ach|gveq; In some cases, more
ticles. Due to symmetry reasons, the scaling configuratioﬁhan one ingoing channel is possible; see Sec. Il C. It should

represents a rhombus fixed by a single angle. An equation fdi€ Noted that the ingoing channels look quite natural for
this parameter was deduced in Ri]. atomic physics in all cases considered; for instance, 3

T B . .
For calculation of the threshold indices, one has to con-, & @nd 3+e" could be produced, respectively, by colli-

struct the matrixV of the potential second derivatives evalu- sionse+Ps” and H'+H, ™.
ated at the scaling configuration. The partial indiggsare
directly expressed via eigenvalues of the maki, where
K is the matrix of particle inverse masses. All details can be In variance with the previous case, here only two nega-
found in Ref.[6]. tively charged particles are identical. The effect of the third

B. One positive and three negative charges

TABLE Il. Parameters of scaling configuratié8C) and threshold indices for four-particle systems with
a pair of identical particles. Between two other particles, one has a positive and the other a negative charge.

Fragments SC parameters M1 Mo o © [15]
o B

HY +u~ +2e” 43.69° 120.93° 2.5706 1.6680 4.2385

D +u +2e” 43.90° 120.79° 2.5923 1.6748 4.2671

H +7 +2e” 44.19° 120.80° 2.7271 1.7323 4.4595
Hf+p~+2e” 46.45° 120.09° 4.1272 2.3609 6.4881

D +p +2e” 46.82° 119.83° 4.5628 2.5632 7.1260

H +3" +2e” 46.45° 120.09° 4.3014 2.4435 6.7449

HET + u+2e” 52.77° 117.20° 1.1748 1.0550 2.2299

‘HE + 7 +2e” 54.08° 116.53° 1.1735 1.0513 2.2248

‘HET +p+2e” 61.55° 112.49° 1.1640 1.0320 2.1960 1.965
22t +p~+2e” 65.06° 109.22° 1.1527 1.0245 2.1773 2.002
‘HET+3 7 +2e” 62.17° 112.18° 1.1634 1.0307 2.1940

it +u +2e 54.52° 116.25° 1.0841 1.0253 2.1095

Litt+ a7 +2e” 55.90° 115.50° 1.0825 1.0231 2.1056
SLisT+p~+2e” 63.50° 111.31° 1.0738 1.0128 2.0866 2.033
it +3 +2e 64.05° 111.08° 1.0733 1.0122 2.0856
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TABLE IIl. Parameters of scaling configurati@8C) and threshold indices for four-particle systems with
a pair of identical particles. Two other particles have charges with the sign opposite to the charges of idential
particles. The number in parentheses indicates the degree of unstable mode degeneracy.

Fragments SC parameters M1 Mo o u [15]

@ B
H +e"+2e” 27.61° 38.37° 1.8836 1.5613 3.4449
Df+e+2e” 27.60° 38.37° 1.8843 1.5618 3.4461
Hf +ut+2e” 29.99° 30.06° 22.533 16.759 39.291
Hf+ 7" +2e” 29.99° 30.04° 25.510 18.975 44.485
HT+H"+2e” 29.998° 29.998° 50.330 37.462 87.492
DT+H"+2e” 30.001° 30.006° 58.147 43.288 101.44
D"+D"+2e” 29.9988° 29.9988° 71.251 53.052 124.30
Hf+3"+2e” 30.003° 30.005° 53.231 39.624 92.855
2et+2e” 45° 45° 1.2937 0.90542) 3.1053
‘Ht +et+2e 30.692° 27.587° 2.0447 1.7928 3.8375 3.764
232t 4ot +2e” 30.69° 27.587° 2.0450 1.7931 3.8381 3.765
HET + ut+2e” 32.51° 21.24° 25.697 19.427 45.123
‘HE  + 7 +2e” 32.52° 21.23° 29.430 22.249 51.678
‘HE T +H +2e” 32.53° 21.20° 69.787 52.781 122.57 96.4
‘H T+ DT +2e” 32.53° 21.20° 90.066 68.129 158.19
22T 4+ Ht +2e 32.53° 21.20° 77.956 58.965 136.92 107.4
‘HE T +35 7 +2e” 32.53° 21.20° 76.519 57.876 134.40
Li*t+et+2e” 32.09° 22.71° 2.2063 1.9719 4.1783 4.115
233t 4ot +2e” 30.69° 27.59° 2.0450 1.7931 3.8381 3.765
LitT+ut+2e” 33.63° 17.42° 27.729 21.002 48.731
SLitt + ot +2e 33.63° 17.41° 31.814 24.094 55.908
¥t +HT +2e 33.64° 17.39° 78.296 59.313 137.61 107.9
ittt +3t+2e 33.64° 17.38° 86.680 65.667 152.35

particle masan; on the threshold index is not simple, as via parameters of the scaling configuration are known. Any
Table Il showg16]. When the positive chargé is equal to  calculation error does not allow one to reproduce thase
unity, the threshold index increases withms. For largerZ,  priori known eigenvalues.
the opposite trend is observed. As discussed in F&f.in
the absence of particle correlation, the threshold index for the C. Two positive and two negative charges
systems with one positive charge tenfdsm aboveto the . .
value N—2), i.e., 2 in the systems under consideration. N the case of two positively charged particles, the thresh-
Physically this limit is approached as the chafgecreases, old indices are generally larger than for a single positive
in agreement with Table IIl. Moderately large values ofcharge; see Table Ill. The indices increase withas dis-
threshold indices predicted f@= 1 probably could be even- cussed in Refl6]. Large isotopic effects are exemplified by
tually observed in experiments on fragmentation in collisionscomparison of systems 2H-2e,H"+D" +2e, and 2D
of p~ (or x~) with H™ or other negative ions. + 2e; note that the shape of the scaling configuration exhib-
There is an appreciable difference between our thresholids very small variations. For fixeghy, the threshold index
indices and those reported by Pattard and R®St. Their  increases withms.
prediction of the threshold index below 2 in the case of The number of unstable modétking into account de-
4He?t +p~ +2e” fragmentation products looks particularly generacyalmost always equaldN—2), i.e., 2 for four-body
challenging in view of the preceding discussion. A similarfragmentation. The rare exception is given by the*2
discrepancy occurs for the systems considered in Sec. lll G+ 2e~ system when one more unstable mode appears: this
It is hardly possible to trace its origin since the method ofsystem has one nondegenerate and one doubly degenerate
calculations used in Refl5] is not specified. Our results mode. Experiments for this unconventional situation would
gain support, in particular, from the useful and sensitivebe very interesting, in part because there is some theoretical
check provided by our schenji6]. Namely, as mentioned in discussion on the subject; see Rd®,11]. Note that these
Sec. II, the partial threshold indicgs; are expressed via fragments could be produced by positron-*ion” collision
eigenvalues of the matriV. This matrix has also other e™+Ps, or by “atom”-“atom” collision Ps+Ps, or by
eigenvalues, and for some of them the explicit expressionphotofragmentation of the PSmolecule.”
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V. CONCLUSION range is conventionally considered as a separate problem.
The situations in which the threshold index is large are par-
. . . o ticularly difficult, implying detection of very weak signals in
The scaling configurations and threshold indices represerixperiment. From this point of view, huge threshold indices
basic properties of few-body Coulomb systems. They charare mostly of academic interest. Note, however, that Rost
acterize correlations in particle motion that are particularlyand Pattard17] used with some success even very large
strong in the near-threshold domain, where all the particleghreshold indices in constructing interpolation formulas for

are slow and for a long time feel long-range Coulomb inter-t€ cross sections useful in a broad energy range. _
h In molecular systems, the so-called adiabatic threshold is

action. These fundamental characteristics are simple enougl . ; SR
i luate by th thout biquity. with sually simply attainable. It corresponds to the ionization of
0 evaluate by theory without any ambiguity, with any pré- ygjecyles for space-fixed nuclei. The adiabatic threshold

scribed accuracy. usually appreciably exceeds the energetic threshold to which
In the present paper, threshold indices are calculated for ghe present discussion of threshold behavior applies. Below
number of four-particle fragmentation processes; the casabe adiabatic thresholds, the fragmentation cross sections are
that are interesting from a theoretical point of view and fea-very small, which hinders experimental study. However, re-
sible for experimental study are discussed. Experimental opcently Bologneset al.[18] were able to observe fragmenta-

: . e )
servation of threshold behavior is generally a difficult task,ion of an G molecule into O +0O™ ions below the adia-
batic threshold.

because near the threshold the cross section is low. The en- Note added in proofRecently we became aware that the
ergy range where the threshold law is operative usually is NOjrst approach to the threshold iaw for double ionization of an
specified by standard threshold theories. Establishing thigtom by positron impact was done by P. Gryji®].
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