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Global, nonlinear algorithm for inverting quantum-mechanical observations
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Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 12 March 2001; published 9 July 2001!

Inverting laboratory measurements of quantum-mechanical observables to recover the underlying molecular
potential typically produces nonunique solutions. Without quantifying the full family of potentials consistent
with the measurements, it is impossible to fully determine how experimental error and limited data affect the
inversion, or to assess the quality of the recovered potential. Here, we present a global, nonlinear algorithm for
extracting molecular potentials from measurements of quantum-mechanical observables. The method utilizes a
mapping technique to learn the relationship between a broad domain of potentials and their resulting observ-
ables to facilitate the inversion. Once constructed, the maps reduce the arduous task of repeatedly solving the
Schrödinger equation for each trial potential tested during the inversion and permit the use of normally
expensive, global optimization procedures to thoroughly explore the distribution of potentials consistent with
the data. As a demonstration, the new algorithm is applied to quantum collision cross sections to illustrate the
effect of experimental error and finite resolution of the scattering observables on the recovered potential. A
series of simulated inversions were performed to examine these issues along with the inversion of laboratory
differential cross-section data for He1Ne scattering. These illustrations show that laboratory errors can have a
nonlinear effect on the family of extracted potentials. Furthermore, the examples provide a benchmark for the
capabilities of the proposed algorithm to stably reveal the full distribution of potentials consistent with the data.
The algorithm may be applied to other observables and molecular systems with more spatial coordinates.

DOI: 10.1103/PhysRevA.64.022710 PACS number~s!: 34.20.2b, 32.90.1a, 34.90.1q
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I. INTRODUCTION

Quantitative knowledge of molecular potential-ener
surfaces is essential for understanding many chemical
physical processes@1# as well as for accurately calculatin
their outcome. Obtaining quantitatively reliable potentia
has typically been accomplished using either of two gen
approaches:~1! throughab initio calculations, or~2! by ex-
traction from laboratory measurements of quantu
mechanical observables. In both cases, flexible surface
resentation techniques can maximize the outcome of th
efforts. Althoughab initio potentials are sometimes unable
account for the full level of experimental detail obtained w
modern high-resolution spectroscopy and scattering te
niques, quantum-chemistry calculations have reached a
phisticated level of development. The practice of inverti
laboratory data, however, has not yet attained that degre
maturity.

Quantum-mechanical measurements typically dep
upon the potential via subtle, nonlinear functional relatio
ships that are system and observable dependent. As a r
of these complications, and because different observable
quire specific machinery for both measuring and calculat
them, no truly nonlinear, practical inversion procedure h
been available. Instead, observable specific algorithms
often incorporate dynamical approximations or restrict
functional form of the potential have adapted. These al
rithms can unwittingly be misguided by incorrecta priori
information. Available inversion techniques include t
Rydberg-Klein-Rees~RKR! method@2–4# for diatomic spec-
tral problems, semiclassical@5,6# and quantum@6–9# meth-
ods for certain scattering processes, the exponential disto
wave @10# and sudden@11# approximations for rotationally
inelastic atom-diatom scattering problems, etc. Functio
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sensitivity analysis@12,13# based algorithms@9#, while appli-
cable to arbitrary observables, are local in scope wh
searching for the potential. Linearization methods requir
good initial guess, lest they become attracted to subopti
extrema, or possibly diverge.

The inversion of laboratory measurements must cons
various experimental factors, including noise and incompl
data, as well as the generally nonlinear impact of these
tors upon the extracted potential. The route back to the
tential from the data is not unique, producing an ill-pos
problem@14#, and there is typically afamily of potentials that
adequately reproduce the data to within its error. A furth
consequence of nonlinearity is that a normal distribution
the data does not invert to a normal, or even uniform, dis
bution of recovered potentials. Local, linear methods ty
cally recover only one surface with, at best, an idealiz
treatment of error propagation. Aglobal inversion should
strive to identify the full family of solutions consistent wit
the data without restricting functional flexibility.

A general approach towards global inversion involves
peatedly solving the forward problem by calculating the o
servableF produced by trial potentialsV until identifying
one ~or more! that reproduce the experimental dataF ( lab).
The objective is often expressed as an optimization proc
that minimizes the difference between the observedF ( lab)

and the calculatedF@V# data sets,

min
V

iF ( lab)2F@V#i2 ~1!

over potential energy space. Every trial potential require
new evaluation of Eq.~1!, which nominally entails solving
the Schro¨dinger equation.
©2001 The American Physical Society10-1
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The latter brute-force approach of repeatedly solving
forward problem works in principle— the family of poten
tials that satisfy the data will minimize Eq.~1!, assuming that
there are no significant systematic experimental errors. H
ever, repeatedly solving the forward problem is often n
practical; calculating the observable is frequently expens
and the net cost of performing global searches over la
domains of potential energy space can be extremely proh
tive. Previously, the only practical fallback approaches
quired either restricting the functional form of the potent
or linearizing Eq.~1! and searching it locally using gradien
methods.

Overcoming the drawbacks of linearization necessita
nonlocal optimization of Eq.~1!, but employing global
search algorithms is too expensive if the observable mus
explicitly computed for each trial potential. A high-speed b
pass is needed to circumvent the arduous task of perform
the repeated forward computations, while sacrificing neit
accuracy nor nonlinearity in the potential-observable re
tionship. These goals can be accomplished using functio
mapping methods recently developed for represen
potential-observable relationships@15#. Maps, learned off
line from a relatively small sample of intelligently chose
representative potentials, can be used to quantitatively re
a candidate potential, as well as any other variables ne
sary to describe the system~e.g., mass, energy, scatterin
angle, etc.!, to the observables of interest. The maps, gen
ated by explicitly calculating the observables from the re
resentative potentials, can encompass a broad domain~i.e.,
arbitrary potential shapes without resort to constrain
forms! and retain the full nonlinearity of the underlying re
lationship.

Once constructed, high-quality forward maps of the u
derlying relationship can be rapidly interpolated to acc
rately provide the observable for any system in its doma
Map evaluation requires no further solutions of the Sch¨-
dinger equation and can be extremely fast compared to
plicitly calculating the observable. For the examples in S
III, map evaluation is approximately 104 times faster than
explicity solving the Schro¨dinger equation. Even more favo
able scaling is anticipated for larger molecular systems. G
bal, nonlinear optimization algorithms can then be applied
Eq. ~1! to provide a special capability for identifying the fu
family of potentials that reproduce the laboratory data. T
combined nonlinearity of the mapping procedure and the
of global optimization methods all but eliminate the sho
comings of local inversions and provide the best family
inverted potentials consistent with the quantity and quality
the provided laboratory data.

Section II introduces the map-facilitated inversion alg
rithm by describing the map construction, the map inversi
and the machinery that connects them. Section III empl
the algorithm to recover scattering potentials from simula
collision cross-section data. The study investigates solu
multiplicity and the quality of the potential that can be r
covered from incomplete data using model atomic scatte
systems. As a second example, we invert actual labora
measurements of elastic He1Ne differential scattering cros
sections. These examples provide a perspective on scatt
02271
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inversion and convenient test cases for assessing the pe
mance of the nonlinear algorithm. Extension of the conc
to more complex systems and spectral data is conceptu
straightforward and will be presented in following works.

II. ALGORITHM

The nonlinear inversion algorithm can be broken do
into two stages:~1! learning the potential-observable rel
tionship by map construction, and~2! recovering the set of
potentials that reproduce the data by map exploration.
first step requires calculating observables for a representa
set of potentials that are then employed in a special inter
lator to produce the full map. The second step require
global optimization algorithm to find the full family of sur
faces consistent with the observed data. The interplay
tween the two stages can be intricate and requires a com
nication architecture to interconnect the components. If
map domain does not contain any potentials that reprod
the laboratory data, the optimization component will fa
The algorithm must then expand the map domain to trea
broader, or different, region of potential energy space
exploration. Similarly, the inversion algorithm must veri
that the map is accurate over its domain by occasion
testing it against thetruth ~i.e., an explicit computation of the
observable! for quality control.

A. Learning the forward map

Learning the potential→observable map to quantitativ
accuracy is equivalent to deducing the underlying phys
relationship. While an explicit connection between the o
servableF and potential,V(r ), is generally not known, it is
an implicit composition of the Schro¨dinger equation and the
observable’s expectation value,

i\
]c

]t
5@H01V~r !#c, ~2a!

F5^cuOuc&, ~2b!

whereH0 is the portion of the Hamiltonian that is assum
known and not subject to identification, andO is the
quantum-mechanical operator associated with the obse
data to be inverted.

Although both Eqs.~2a! and ~2b! are well understood,
their composition to form a map,

F5F~@V#,e! ~3!

is rarely known.F(@V#,e) is the potential-observable rela
tionship expressed as a functional of the potential and a fu
tion of the extra variables,e[$e1 , . . . ,eNe

%, also needed to
specify the Hamiltonian or other necessary conditions.
example,e might include the mass of the system, the ener
the transition dipole matrix elements, or any other quantit
that affect the observable besides the potential. The d
variables (V,e) completely describe the quantum syste
andF(@V#,e) provides a unique map to the observable.
0-2
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Constructing the map requires samplingF(@V#,e) over
@V# ande with sufficient resolution to permit accurate inte
polation. However, in its raw form,F(@V#,e) is not ame-
nable to easy map construction since it contains a functio
argument,@V#. In practice, the potential-observable relatio
ship must be learned using numerical techniques that ne
sitates approximatingF(@V#,e), with an ordinary functionf,

~@V#,e!°
f

F ~4!

that can be learned by discrete sampling. The transforma
from F(@V#,e) to f (v,e) is accomplished by replacing th
functional argument@V# with a collection of variablesv
[$v1 , . . . ,vNv

% that distinguish between the different mem
bers of the map’s potential space domain. The precise d
nition of v is problem dependent, however, ensuring su
cient functional flexibility inV(r ) generally requires many
potential space variables,Nv@1, makingf high dimensional.
The number of extra variablesNe is typically small com-
pared toNv .

While there are physical arguments for maintaining
distinct identity of the potential and extra variablesv ande,
respectively, there is no mathematical distinction betwe
their role in the map function,f (v,e). Defining a single input
vectorx, that contains all the variables that affect the obse
able,

f ~x![ f ~v,e!, x[vøe, ~5!

enables a more notationally compact formulation.f (x) has
the overall dimensionN5Nv1Ne and is defined over a
specified domainvPV andePE, whereX5VøE.

In principle, the map can be learned by samplingf (x)
over its N variables and then interpolating between t
sample points. However, in practice, full numerical reso
tion is impractical in light of the map function’s high dimen
sionality. A regular mesh withS discrete points in eachxi
would call for SN sample points. For smallS and N, expo-
nential scaling is tolerable; however, representing molec
potential spaces can easily requireN;102,103, . . . , andS
;10 or more. Solving the Schro¨dinger equation.10100

times is not a practical approach to map construction. I
generally recognized that the exponential sampling comp
ity in N, referred to as thecurse of dimensionality, renders
the direct interpolation ofN-dimensional functions impos
sible for systems of even modest dimension.

Exponential scaling in the dimension is traditiona
handled by foregoing global coverage and resorting to lo
linearization; however, the map domains of interest here
tend well beyond the local, perturbative regime, and it
critical to retain all the nonlinearities ofF(@V#,e). Recently,
it was demonstrated that nonlinear map construction is p
sible provided that bothV(r ) and f (x) are properly reformu-
lated@15#. For expressing the potential, it is first beneficial
subdivideV(r ) into a large numberNv of component func-
tions,
02271
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V~r !5(
i 51

Nv

Vi~r !, ~6!

where eachVi(r ) is a nonzero constant,v i , only in a small
D-neighborhood centered around its corresponding spa
point r i ,

Vi~r !5H v i5V~r i !: ur2r i u<D

0: ur2r i u.D
. ~7!

Nv can be made as large as necessary for the problem
hand, and in that fashion,f (x) can well approximate the
underlying functional sinceD}Nv

21 . The only approxima-
tion results from assuming thatVi(r ) is constant, with the
value v i , over its nonzeroD neighborhood. Defining the
potential in this manner can also be extended to treating
v i as interpolation points. Then, the potential is given
fitting a smooth surface through thev i .

It is further beneficial to exactly reformulatef (v,e) ac-
cording to the following finite expansion ranging in dime
sion from 0 toN,

f ~x!5 f 01(
i 51

N

f i~xi !1(
i , j

f i j ~xi ,xj !1•••

1 f 1•••N~x1 , . . . ,xN!, ~8!

wheref 0 is the nominal value off over its domain, thef i(xi)
terms are single-variable functions that describe the in
vidual effect of their respective variablexi on the observable
the f i j (xi ,xj ) terms are bivariate functions that describe t
cooperativeeffect of their variables (xi ,xj ) on the observ-
able, etc. The final term,f 1 . . .N , captures any residual de
pendence of the observable on all of the variables acting
nonseparable cooperation with one another. Expansion
the form in Eq.~8! are referred to as high-dimensional mod
representation~HDMR!, forming a family of multivariate
representations used to capture the input→output relation-
ships of high-dimensional physical systems@16–18#.

The hierarchy of terms in Eq.~8! is assigned an ordering
index L, that groups the functions according to dimension
ity. L50 corresponds to the constant term,f 0 , L51 corre-
sponds to the single-variable functions,$ f i%, L52 corre-
sponds to$ f i j %, etc. If Eq. ~8! must be taken toNth order,
then HDMR provides no relief from exponential scaling.
has been shown that Eq.~8! is expected to converge to low
order, L!N for quantum potential-observable relationshi
involving spatial potentials that have been reformulated
cording to Eq.~7! @15#. There is also extensive evidence th
Eq. ~8! converges to low order, for many other well-pos
input→output relationships, particularly those derived fro
physical systems such as solar radiation driven atmosph
heating due to trace gas absorbers@19#, chemical kinetics
concentrations mapped over large time steps@20#, semicon-
ductor materials properties@17,21–23#, and laboratory quan-
tum control outcomes@24#.
0-3
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A low-order, converged map expansion can be trunca
after its last significant order terms without sacrificing acc
racy and can dramatically reduce the computational labo
map construction. The complexity of constructing
Lth-order map is given by that of attaining theLth-order
terms. Therefore, the total number of sample points scale
O(SN),O(S2N2), . . . , for L51,2, . . . ,respectively, result-
ing in only polynomic sampling complexity inN. The low
order terms, although subdimensional, are not confined t
low-degree polynomials or have any particular form. Equ
tion ~8! is not analogous to a Taylor series in that regard, a
can display all the relevant nonlinearity dictated by the p
ticular problem.

The expansion functions are not unique and there are m
tiple, equivalent formulations of HDMR@16–18#. The
method that is employed for the system of interest should
selected on the grounds of sampling convenience, and fo
illustrations in Sec. III, the cut-center formulation of HDM
is utilized. In cut-center HDMR the expansion functions a
constructed according to,

f 05 f ~ x̄1 , . . .̄ ,x̄N!, ~9a!

f i~xi !5 f ~ x̄1 , . . .̄ ,xi , . . .̄ ,x̄N!2 f 0 , ~9b!

f i j ~xi ,xj !5 f ~ x̄1 , . . .̄ ,xi , . . .̄ ,xj , . . .̄ ,x̄N!2 f i2 f j2 f 0,
~9c!

A,

around anN-dimensional reference pointx̄ referred to as the
cut-center.f (x) is invariant to the choice ofx̄ provided that
the expansion is taken to convergence. The notation, .̄,
indicates that the corresponding arguments are taken as
reference value. Cut-center HDMR is often algorithmica
efficient for problems of moderate dimension,N&102. In
very high dimensions it may be prudent to use an alterna
formulation for determining the functions in Eq.~8! such as
random sample~RS! HDMR that is based on Monte Carl
methods. In RS-HDMR, the evaluation count for sampli
F(@V#,e) during map construction is independent of dime
sion @17#.

Cooperativity betweenv ande is expected to remain; oth
erwise, the observable would display the same energy, m
etc., behavior regardless of the underlying potential. Fo
nately, the number of extra variablesNe is typically small
and the sampling complexity is effectively determined
Nv . Even if second- or third-order terms arise between
extra variablese and their interaction withv, map generation
is computationally practical because it has been recast
collection of lower-dimensional problems. The example
the next section provides an illustration where second-o
terms betweenv and e remain significant whenNv@1. In
practice, it is sometimes advantageous to truncate Eq.~8! just
prior to full convergence because the reduction in samp
effort far outweighs the introduction of tolerable map err
02271
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and a practical algorithm operating with a set of maps c
overcome the error in any single map.

B. Inverting the functional relationship

Identifying the family of potentials that reproduce th
laboratory data using maps is accomplished by replacing
plicit solutions of the forward problem in Eq.~1! with the
map. This process nominally involves minimizingiF ( lab)

2 f (x)i2 over the potential space variables,vPV,X. Dur-
ing inversion, the extra variablese are not generally opti-
mized; instead,e may describe other Hamiltonian variable
external experimental conditions, or how the data was c
lected~e.g., the reduced mass, energy, scattering angle, p
sure, etc.!. These conditions accompany the laboratory da
as will be discussed in Sec. II C, and it is useful to think
the laboratory data as being dependent on the extra varia
i.e., F ( lab)[F ( lab)(e).

Minimizing iF ( lab)(e)2 f (v,e)i2 overv provides the core
of the inversion procedure, however, it does not prope
treat experimental error or properly normalize the individu
data membersF i

( lab) that can span orders of magnitude. A
dressing the former issue, the quantity,iF ( lab)(e)
2 f (v,e)i2 is zero only when the observable for the tri
potentialf (v,e) exactly matches the laboratory data. Inste
any trial potential that reproducesF ( lab) to within its experi-
mental error is equally valid. The best means of treat
experimental error depends on the level of detail availa
about the data. Ideally, an error distribution functio
p@F ( lab)#, would be available and the inversion fami
would be the collection of potentials whose associated
servable distribution matched that of the laboratory meas
ments. The result is a distribution of potentials with the m
probable members around that confidence limits can
drawn.

In many cases, only sparing information about the nat
of the error distribution is available as estimated error ba
« ( lab), without any qualification of how the error is distrib
uted ~i.e., normally distributed, or otherwise!. When this
is the case, it is often appropriate to assume a uniform e
distribution between the hard limits,6« ( lab). The resulting
inversion family is the hard bounded collection of potentia
with associated observables that lie withinF ( lab)6« ( lab).
In this case, it is still possible to identify the most probab
member of the inversion family, even when detailed info
mation about the laboratory error distribution is unavailab
However, due to the uniformity of the data error distributio
the other members of the potential family will all reprodu
the data, as well as the most probable potential.

For the illustrations here, the laboratory uncertainty w
be addressed by adopting a comparison function that ra
the trial potential by treating6« ( lab) as hard bounds with a
uniform distribution between the limits,F ( lab)6« ( lab). An
example of an inversion where a Gaussian error distribu
is utilized is presented in a separate work@25#.

A suitable cost function that accounts for data error a
the possibly large differences in magnitude between
members of the data set, is given by,
0-4
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( lab)
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where« i
( lab) is the uncertainty in thei th member in the data

set F i
( lab)PF ( lab) of size M. f i(v,ei) is the map predicted

value for thei th data member@not to be confused with the
first-order expansion function,f i(xi)]. Hidden in the notation
is the fact that there can also be laboratory error in the m
surement conditionsei , such as whenei represents a colli-
sion energy, laser intensity, sample pressure, etc. In prac
F i

( lab) is often an average or convolution over replicate m
surements, and to reflect this, the quantities in Eq.~10! can
be replaced bŷF i

( lab)&e and^ f i(v,ei)&e. The latter quantity
is calculated by appropriately averaging or convolving o
the extra map variablese. In this fashion, any errors ine are
folded into the inversion process.

Equation ~10! may accept potential functions that, a
though correctly reproducing the laboratory measureme
are not physically realistic. It is generally rarely possible
distinguish between real potentials~i.e., continuous, smooth
displaying proper asymptotic behavior, etc.! and other func-
tions that coincidentally reproduceF ( lab) based on the data
alone, and the inversion algorithm must explicitly deal w
the possibility of unrealistic minima in Eq.~10!. Naturally,
the choice of characteristics that distinguish real potentia
a matter of physical judgment.

Physically unrealistic members of the solution family c
be identified and removed using regularization meth
@14,26# to incorporate properties, such as smoothness,
the recovered potentials without further restricting the fu
tional flexibility of the inversion. Realistic potentials can b
found by minimizing a cost function similar to

J~v!5C~v!1biK̂vi2 ~11!

over v. K̂ is a regularizing operator used to reward prop
ties, such as smoothness, of the inverse solution and can
on many forms. Typically,K̂ is a differential operator, par
ticularly the second derivative of the potential with respec
its coordinates as this emphasizes smoothness~c.f., Sec. III!.
b is a constant that weights the importance of regulariza
relative to that of reproducing the data. Generally, it is bes
makeb extremely small so that the optimization of Eq.~11!
first finds solutions that reproduce the data,C(v)→0. After
the first term has vanished, the regularization component
comes significant forcing unrealistic functions that coin
dentally reproduce the data to be abandoned.

Finally, it is of paramount importance that Eq.~11! be
globally minimized. Local optimizers converge to a sing
local potential and fail to take full advantage of the hig
speed, nonlinear nature off (x). Here, genetic algorithms
~GA’s! @27# are employed to identify the full family of pos
sibly very different, inverse solutions. GA’s simultaneous
02271
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identify multiple minima and are insensitive to starting va
ues when operated under practical conditions. Unlike lo
searching methods, which are prone to divergence unless
initial guess is fortunate, GA’s are stable with excellent co
vergence behavior because of elitism and population ove
making them ideal for complex landscapes such as those
arise when inverting quantum-mechanical data.

C. Full nonlinear inversion algorithm

Combining the concepts in Secs. II A and II B produc
the full map-facilitated inversion algorithm, which is give
in Fig. 1, and the labels~a!–~i! described below refer to this
figure. As input, the algorithm requires~a! the dataF ( lab), its
laboratory error« ( lab), and its experimental conditions de
scribed bye, ~b! a computational means~software treated as
a black box by the algorithm! for evaluatingF(@V#,e), and
~c! the map construction details including the expected
mainX, the number of samples per variableSi , and the map
orderL. The latter starting parameters affect the efficiency
the inversion in two competing ways and must be cho

FIG. 1. A schematic of the nonlinear inversion algorithm c
pable of identifying the full family of potentials that reproduce th
observed data to within its uncertainty. A complete description
the algorithm’s components and operation is given in Sec. II. T
procedure makes use of high-speed, nonlinear maps to replac
explicit potential-observable relationship in the inversion optimiz
tion. The efficiency of the maps permit the use of global search
methods such as genetic algorithms.
0-5
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appropriately. If the domainX is too small, it is possible tha
potentials that satisfy the data will remain undetected
cause they lie outside the map. The inversion might fail
reproduce the data and would have to be repeated over a
region of potential space. In the alternate extreme, retain
accuracy over too large a domain might require increas
the orderL, dramatically adding to the cost of learning th
map. A balance that uses the largest possible domain fo
lowest acceptable map order generally provides the best
erating conditions.

After the map~d! is constructed by samplingF(@V#,e)
over its domain~in some cases, a previously generated m
might be reused!, the inversion optimizer~e! minimizes Eq.
~11! using f (x) to rapidly compute the observable for ea
trial potential it considers. The GA population sizeNp ~an
algorithmic parameter! is normally on the order of 103 and
must be large to ensure that the full family of consiste
potentials is identified. Other GA parameters such as the
tation and cross-over rates must be set to provide good
ploration of Eq.~11!, and are nominally given by the range
r m5@5%,20%# and r c5@60%,80%#, respectively.

The GA minimization produces a collection ofNp opti-
mized potential-energy functions; however, optimizati
alone does not guarantee potentials that reproduce the
Two post-optimization tests must be performed to determ
whether the inversion was successful. First,Nt ~an algorith-
mic parameter! of the optimized potentials$vi* % are chosen
and their associated observables,f (vi* ,ei), are tested~f! for
map error by comparing them to thetruth by explicitly
evaluating F(@V#,e). Any optimized potential for which
f (vi* ,ei) deviates fromF(@V#,e) by more than« ( lab) is
abandoned because it represents a false minimum. If
number of individuals that fail the testing process is grea
thanNf ~an algorithmic parameter!, the map is deemed fault
~g! and is regenerated over a fractionNr ~an algorithmic
parameter, typically a half! of its initial domain. This voting
process~g! provides quality control and allows the algorith
to adaptively refine its map to ensure an accurate repre
tation of F(@V#,e). The approach is based on the argum
that f (v,e) is generally more accurate for smaller doma
@15#. A large GA population sizeNp helps minimize the ef-
fect of finding isolated poor individuals if the map displa
high overall accuracy.

If the GA output passes map testing, the observables
the corresponding potentials are compared to the labora
data ~b! in a second test~h!. Those that matchF ( lab) to
within the experimental error are retained in the solution
$vi* % and those that do not are discarded. Although an o
mized potential that violates any single member of the d
set should be rejected~as is the case in Sec. III!, this require-
ment can be relaxed, as desired. If none of the optimi
potentials reproduce the data, the inversion failed and
entire map construction/optimization process is repeated
recentering the domain around the closest failed GA re
~h!. Additionally, if too few of the optimal potentials fail to
match the data, the potential family might be poorly r
solved. The domain recentering process should also be
peated if less than some fractionN* ~an algorithmic param-
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eter, typically one half! of the optimized potentials are
consistent withF ( lab). Inversion is completed once a sati
factory fraction of the optimized potentials$vi* % successfully
reproduce the data.

D. The inverse solution family

The output of the inversion algorithm, Fig. 1~i!, is a set
containing theNs potentials$v1* , . . . ,vNs

* % that accurately

reproduceF ( lab) to within its error,« ( lab). This optimal set is
a discrete estimate of the full inverse familyV* or the sub-
domain of the map that is consistent with the laboratory da
V* can be defined using the upper and lower bounds of e
inverted variable,

,v* 5min
m

$vm,i* %, ~12a!

.v* 5max
m

$vm,i* %, ~12b!

wherevm,i* is the i th potential space variable from themth
member ofV* . Provided that enough optimized potentia
were found to completely resolve the inverse domain~which
can be reasonably assured withNp@1), the true molecular
potential should lie between the bounds,v* and .v* . Con-
sidering the comments above Eq.~10! regarding data error
propagation, the full interpretation of the bounds,v* and
.v* depends on the information available about the d
error distribution function,p@F ( lab)#. Here,« ( lab) is consid-
ered a hard bound implying that,v* and .v* are the asso-
ciated bounds within which the true potential will lie.

The potential-observable relationship is likely to rema
nonlinear over the inverse region, andV* will rarely display
a normal~or a priori predictable! distribution of potentials
consistent with the data even when the laboratory error
tribution is simple, such as Gaussian or uniform@c.f., Figs.
8~C! and 8~D!#. The combined effect of nonlinearity betwee
the potential and the observables and the fact that the in
sion must simultaneously satisfy all of the members of
data set will typically produce a nontrivial distribution o
potentials in the inversion family that might be irregular ov
its range. Normal, linear statistics will rarely be useful f
analyzing the solution region over the distribution of reco
ered potentials, possibly even in the special case where
inversion family is small enough for the relationship betwe
the potential and observables to remain linear.

The inversion quality, measured as the uncertainty in e
potential space variablev i* can be assessed by consideri
its distribution pi(v i* ) over the inversion familyV* . The
uncertainty in the recovered potential can be assessed
measuring the tightness of the solution domain as a func
of the spatial coordinater and the inversion is of overal
better quality when the solution spread is small. When tre
ing 6« ( lab) as hard bounds, the most rigorous and conser
tive measure is given by,

Dv i* 5.v* 2,v* , ~13!
0-6
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where eachDv i* is associated with its corresponding rad
point r i and the only firm conclusion is that the true potent
lies between,v* and .v* . The illustrations in Sec. III use
Eq. ~13! to assess the quality of the inverted potential; ho
ever, for experimental data where there is better knowle
of its error distribution, it might prove beneficial to utilize a
alternative definition ofDv i* .

Finally, having a single metric to measure the quality
the inversion is convenient for comparing different solutio
It is useful to define an inversion quality figure of merit,

Fm5A(
i 51

Nv S 2Dv i*
.v i* 1,v i*

D 2

, ~14!

whereFm is small for a good inversion and large for a po
one.

III. ILLUSTRATION: QUANTUM-MECHANICAL
ELASTIC SCATTERING

As a demonstration of the nonlinear inversion algorith
we considered elastic quantum-mechanical atom-atom s
tering @28,29#. Elastic scattering provides a convenie
benchmark and proof of concept for map-facilitated alg
rithms since even for atomic collisions, the potent
→observable map is highly nonlinear and the map is h
dimensional@15#. The questions of solution multiplicity an
the effect of data noise and incompleteness on atomic s
tering inversions have never been substantially addresse

Section III B considers simulated scattering data o
which we vary the amount of data error, the extent and re
lution of the data, and errors ine are neglected. The objectiv
is to investigate the family of acceptable potentials in re
tion to errors in the data and the amount of data used in
inversion. To address these questions, three groups of in
sions are performed with:~1! integral cross sections whil
varying the data errors and the scattering energy range~2!
differential cross sections while varying the data errors a
the scattering angle range, and~3! three integrated~integral,
differential, and viscosity! cross sections simultaneously.
Sec. III C we demonstrate an inversion using actual labo
tory differential elastic cross-section data for He1Ne and
identify the full range of potentials consistent with the da
and show that a high-precision potential can be extracte

A. Nonlinear scattering maps

We have recently demonstrated that global, nonlin
maps can be constructed for differentials(u), integralsT ,
diffusion sd , and viscositysv elastic scattering cross se
tions over a wide range of scattering energies and angle
these maps, the cross sections are written as functions o
reduced potential and reduced scattering energy,

v i5U~r i !5
2m

\2
V~r i !, i 51, . . . ,Nv ~15!
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\2
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where the firstN21 map variables are used to specify t
reduced potential,xi5v i5V(r i) for the fixed interatomic ra-
dial points,$r 1 , . . . ,r Nv

%. The final variable,xN5e1, is the

reduced energyk2.
Specifics on how quantum scattering can be formulate

terms of Eqs.~15! and~16!, a detailed analysis of map accu
racy, and a physical argument for the fast convergence of
map expansion, Eq.~8!, are provided in a preceding paper o
the forward mapping process@15#. As a brief overview, dif-
ferential s(u), integralsT , diffusion sd , and viscositysv
elastic scattering cross sections were mapped to high a
racy for all possible potential curves that can be dra
through the shaded region shown in Fig. 2. The bars, labe
dUi(r ) and dU j (r ) depict the extent of the potential spac
domain produced by varying eachv i andv j over its respec-
tive window centered atr i and r j . The full domain is com-
posed ofNv such bars and includes potentials with we
depths ranging from those describing chemical bonding
teractions, to Van der Waals interactions, and out to pur
repulsive encounters. Scattering systems with (2.43101

<k2<2.83105) Å 22 and potential wells as deep as 8
3105 Å 22 are described by a single global map. Based
currently known diatomic potentials, this domain likely co
ers all pairwise potentials involving main block elements
the Periodic Table.@30# However, if a potential outside the
domain in Fig. 2 is needed, the maps can be expande
include it with little extra effort.

For each observable, a global scattering map was c
structed using 501 variables.Nv5500 nodes provides exce
lent spatial resolution ofU(r ), with Dr 50.024 Å . In con-
structing the map, eachxi was sampled at 20 discrete point
and the differential cross section was resolved at 1° inc
ments over 10°<u<120°; a separate map was construct

FIG. 2. The shaded region corresponds to the potential sp
domain for which elastic, integral, differential, effective diffusio
and effective viscosity cross sections were learned using glo
functional maps. Each map can accurately provide its correspo
ing cross section forany potential ~smooth or irregular! in the
shaded domain. The bars labeleddUi(r i) and dU j (r j ) denote the
dynamic range of the map variables,v i andv j at locations,r i and

r j . The curve,v̄ denotes the reference potential utilized in the m
generation process, as described in Sec. II.
0-7
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at each specified angle. The reference potential for the
@c.f., Eqs.~9a!–~9c!# was chosen as the geometric center
the domain, i.e., eachx̄i was selected as the center of
range, and the set of pointsv̄ defines the cut-center potenti
V̄(r ) depicted in Fig. 2.

The maps were demonstrated accurate with prediction
ror &0.3% for integral, effective diffusion, and effective vis
cosity cross sections~averaged over reduced energy! and to
&1% for differential cross sections~averaged over reduce
energy and solid angle!. The errors in these cross sections a
smaller than the experimental uncertainty generally att
uted to their laboratory determination@31#.

B. Simulated nonlinear inversions

As a first illustration, consider a model Leonard-Jon
~13!,~16! interatomic potential of the form

VLJ~r !54eLJF S r

r 0
D 212

2S r

r 0
D 26G , ~17!

whereeLJ is the well depth andr 0 designates the distance
which the potential changes from repulsive to attractive. T
location of the well minimum is given by,r m521/6r 0. For
the purpose of this example,eLJ was taken as 100.0 meV
and r 0 as 2.80 Å . The reduced massm was chosen to be
4.00 amu. The model potential, with its well minimum at 3
Å , is considerably different from the reference potentialv̄ in
Fig. 2.

Experimental data for the simulated inversions was g
erated by calculating the various cross sections produce
the potential in Eq.~17!. These error-free differential, inte
gral, viscosity, and diffusion cross-section data sets are
picted in Fig. 3 and were calculated from the model poten
using standard methods@28,29,32#. Simulated noise was
added to the error-free cross sections according to

F ( lab)5sLJ~11res!, ~18!

FIG. 3. Simulated cross-section data for the scattering sys
described in Sec. III B used to perform the inversion illustration
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where sLJ is the cross section of interes
$s(u),sT ,sd ,sv%, es is the desired relative error, andr i is
a uniform random variable over@21,1#.

1. Integral cross-section inversion

The first set of inversions are performed using integ
cross sections as a function of energysT(E). Generating
f (x), produced a map accurate to&0.3% error over the en-
ergy range, 20<E<2000 meV for the 4.00 amu scatterin
system as described above. The optimization step was
formed by minimizing the cost functional in Eq.~11! with
the regularization term

K̂v5 (
j 52

Nv21 I v j 1122v j1v j 21

Dr 2 I 2

~19!

chosen to minimize the three-point discrete second deriva
for smoothness. In case, the amount of dataM was chosen so
that the cross-sectionsT was sampled every 18 meV (M
5110 for the full energy range, 20<E<2000 meV!. The
regularization constantb Å 4/meV2, was set to 1310215

and optimization was performed via an adaptive steady-s
genetic algorithm@27# with a population sizeNp5500 over
2000 generations. The map quality algorithmic paramet
~c.f., Sec. II C!, were set to:Nt5100 andNf55, although
map testing was not critical given the expanse and accu
of the initial map. An acceptable inverse potential family w
set atN* 51/2, or 250 members of the GA population. In a
of the present inversions, including that of He1Ne, the ini-
tial map was of sufficient quality and breadth that it w
global. No additional maps were required.

The results from eleven inversions involving the integ
cross section are depicted in Fig. 4. The shaded regions
respond to the subspaces of the map domain that adequ
reproduce the cross-section data. They depict the limits,v i*
and .v i* defined in Eqs.~12a! and ~12b! for each radial
point, r i . In Fig. 4, and in the analogous Figs. 5–7, the tr
potential in Eq.~17! lies within the family of identified po-
tentials.

Plots A1–A5 depict the inverse families consistent w
data sets containing 0.1%, 1%, 2%, 3%, and 4% rela
error, respectively. In each of the plots, A1–A5, the full e
ergy range, 20–2000 meV~with M5110) was used for the
inversion and the data error was simulated by settingesT

to
0.001, 0.01, 0.02, 0.3, and 0.04 in Eq.~18!, respectively. A
different random numberr was used in simulating each da
member.

Inversion quality naturally drops with increasing data e
ror as it becomes easier to satisfy the less demanding
set; however, the error does not rise linearly with the d
uncertainty. The figure of merit Eq.~14!, metric,Fm , for the
plots A1–A5 areFm5 3.131022, 1.431021, 6.931021,
1.03101, and 9.73101, respectively, showing a steep d
crease in inversion quality as the data uncertainty rises. T
behavior provides an example of where the fully nonline
algorithm in Fig. 1 is needed to properly perform the inve

m
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FIG. 4. The family of potentials recovere
from finite, error contaminated integral cros
section data. For each case, any curve dra
through the shaded region reproduces all of t
corresponding data to within its error. Panel A
the family of potentials recovered from data co
taining various degrees of relative error. Panel
the family of potentials recovered from differen
amounts of data with60.1% error over different
scattering energy ranges. Each potential is plot
in a 2500 to 500 meV window.
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FIG. 5. Magnified view of the well region of the potential re
covered from integral cross sections over the energy range, 20,E
,1000 meV with 4% relative error in the data@Fig. 4~A5!#. Both
panels,~A! and ~B!, show potential curves that reproduce the sc
tering data to within its uncertainty. In~A! smoothness of the po
tential was required by employing regularization, while in~B!
smoothness was not required.
02271
sion and assess its quality. The quality of actual laborat
measurements of integral cross sections generally corres
to those in plots A2–A3@31#.

Plots B1–B6 depict the inverse families consistent w
data sets measured over@20,400#, @20,600#, @20,1000#,
@20,1400#, @20,1600#, and @20,2000# meV, respectively. In
each case, the inversion was performed using cross sec
sampled every 18 meV, settingM accordingly. The data was
simulated using the small error of 0.1% to focus on the i
pact of the energy range. Again, the solution regions w
found by superimposing the inverse sets,$vi* %, and finding
the maximum and minimum value at eachr i .

The inversion quality rises sharply with an increase in
amount of data and the figures of merit corresponding
plots B1–B6 areFm5 2.13104, 2.53103, 3.03102, 9.9
31021, 2.731021, and 3.331022, respectively (Fm is not
exactly identical for A1 and B6 because of the nondeterm
istic nature of GA’s, although the difference is entirely ne
ligible!. Of particular interest is the fact that the inversio
quality increases suddenly as the energy range, 1<E<2 eV
is covered in the inversion. Comparison with Fig. 3 sho
that this energy range contains the majority of the struct
in the sT plot. This observation supports the generally a
cepted qualitative notion that information content increa
with the amount of structure in the data.

Finally, the role of regularization in Eq.~19! deserves
some attention. Even though physically acceptable poten
are known to be smooth functions that display ubiquito
qualitative behavior, e.g.V(r )→0 asr→` andV(r )→` as
r→0, etc., it is illustrative to see whether other function
not necessarily resembling typical potentials, can also sat

-
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FIG. 6. The family of potentials recovere
from finite, error-contaminated differential cross
section data. For each case, any curve dra
through the shaded region reproduces all of t
corresponding data to within its error. Panel~A!:
the family of potentials recovered from data co
taining various degrees of relative error. Pan
~B!: the family of potentials recovered from dif
ferent amounts of data containing61% error.
Each potential is plotted in a2500 to 500 meV
window.
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the observed data. Such a search can be accomplishe
turning off regularization in the optimization cost function,J
by settingb50 in Eq. ~11!.

Figure 5~A! shows a magnified view of the inverse fami
V* 5$vi* % from the well portion of the solution region foun
in Fig. 4~A5! where regularization was performed. Althoug
the sample of potentials plotted inside the region appea
differ at this level of detail, they are all smooth function
that, overall, behave as expected and produce cross sec
consistent with the data. In contrast, Fig. 5~B!, which depicts
the same region of the potential, shows the inversion res
when regularization was not performed. These curves, wh
are highly nonsmooth and quite unusual as potentials,
reproduce the data to within its precision. Of course, wh
the functions in Fig. 5~B! are unrealistic, the exercise in Fig
5~A! and Fig. 5~B! emphasizes an important reminder tha
is dangerous to assume too mucha priori information when
dealing with potentials; pseudoa priori guidance could lead
to what appears to be a unique surface, but in fact is on
many possible acceptable potentials.

2. Differential cross-section inversion

A set of eleven inversions, analogous to those in S
III B 1 were performed using differential cross sections a
function of angle,s(u), at a fixed energy,E5500 meV. The
differential cross-section maps~one for each sampled angle!
were shown to be accurate to&1% error over the angle
10°<u<120° sampled at 1° increments, orM5110 cross-
section samples over the full range@15#. The cost functional
in Eq. ~11! also employed the regularization in Eq.~5!. All
algorithmic conditions were identical to those in Sec. III B

The results from eleven sample inversions involving
differential cross section are depicted in Fig. 6. Plots A1–
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depict the inverse families consistent with data sets cont
ing 1%, 5%, 10%, 15%, and 20% relative error, resp
tively. In each of A1–A5, the full angle range, 10°<u
<120° ~with M5110) was used for the inversion and th
data error was simulated by settingesT

accordingly in Eq.

~18! and using a differentr for each data member.
As with the integral cross section data, the inversion qu

ity drops as the data error increases. Again, it does not s
linearly in the data uncertainty. The corresponding figure
merit, Eq. ~14!, Fm , for the plots A1–A5 areFm5 8.3
31022, 3.031021, 1.03100, 5.53100, and 2.83101, re-
spectively, showing a steep drop in inversion quality as
data uncertainty rises. Actual laboratory measurements
differential cross sections generally correspond to data er
of ;10220 % ~c.f., plots A3–A5! and often higher error
@31#.

Plots B1–B6 depict the families of potentials recover
from data sets with61% error measured over scatterin
angles of @10°,20°#, @10°,40°#, @10°,60°#, @10°,80°#,
@10°,100°#, and@10°,120°#, respectively. The inversion wa
performed using cross sections sampled every 1°, settinM
accordingly inJ(v). The figures of merit corresponding t
plots B1–B6 areFm58.13104, 2.73102, 1.93100, 5.7
3100, 9.931022, and 8.131022, respectively.

Compared to the integral cross section in Sec. III B 1,
information content ofs(u) appears more uniform over it
independent variable,u. There is no sudden increase in in
version quality over the data window, and this observation
consistent with the differential cross section plot in Fig.
where the structure is well distributed. Inversions usings(u)
also appear more tolerant to experimental uncertainty t
their integral counterpart@compare Fig. 4~A5! to Fig. 6~A5!#.
This tolerance may be attributable to the complex struct
0-10
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found in the differential cross-section data as a function
angle and is consistent with the observation thats(u) is
more sensitive to the potential@15#.

3. Combined observable inversion

In the final illustration, the objective was to invert a da
set containing multiple simultaneous cross sections,F ( lab)

5$sT ,sd ,sv%, over their full range. A cost functional iden
tical to that in Eq.~19! was adopted. All algorithmic condi
tions were the same as in Secs. III B 1 and III B 2. Plots
B, and C in Fig. 7 demonstrate the inverse families obtai
using the integralsT , diffusion sd , and viscositysv , cross
sections individually. In each case, the data sets conta
110 cross sections accurate to 2% relative error over
energy range, 20<E<2000 meV producing a full data se
with M5330 measurements. The figures of merit for t
individual inversions performed in A, B, and C areFm5 6.9
31021, 1.83100, and 4.231021, respectively. Figure 7~D!
depicts the result of the combined data inversion where

FIG. 7. Family of potentials recovered using different combin
tions of scattering cross section data, all accurate to62% relative
error: ~A! integral cross section only,~B! diffusion cross section
only, ~C! viscosity cross section only,~D! all three cross section
simultaneously. In each case, any curve drawn through the sh
regions reproduces the data to within its error. Using the combi
data produces a higher quality inversion result.
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figure of merit was found to beFm5 1.631021. Here, com-
bining data sets containing 2% relative error enabled an
version of comparable quality to the 1% integral cross s
tion data set in Fig. 4~A2!, supporting the notion that divers
data, even of limited quality, generally enables a better
version.

C. He-Ne inversion

The nonlinear algorithm in Fig. 1 is specifically design
to address the issues that arise when dealing with actual l
ratory experiments. As an example of an inversion using r
data, we considered the low-energy elastic differential sc
tering of He1Ne in a crossed-beam experiment by Kielet al.
@33#. The scattering cross sectionF i

( lab)5s(u i ;E) is avail-
able for a finite set ofM588 angles$u i% at a relative colli-
sion energy ofE529.2 meV. The standard deviations~i.e.,
treated as bounds here!, used to define« i

( lab) , are also avail-
able from the measurements. As was the case with prev
inversions using this data set@9#, errors introduced by the
experiment’s angular apparatus function were conside
negligible.

The inversion was performed using the same global s
tering map employed in the previous section without ad
tional solutions of the Schro¨dinger equation, except for qua
ity testing, c.f., Fig. 1~f!. The large expanse of the map
potential space domain enabled a truly global inversion
cost functional identical to Eqs.~10! and ~5! was used, with
M588 data members at angles corresponding to the po
in Fig. 8~B!. All algorithmic parameters and the value of th
regularization constant were the same as those used ab
The full He1Ne inversion, using the already learned glob
map, required 8.1s on an 800 MHz 23 i686 PIII machine.

The results of the He1Ne inversion are depicted in Figs
8~A!–~D!. Any potential drawn through the shaded region
Fig. 8~A! reproduces every member of the measured data
to within its precision. The inset plot in Fig. 8~A! provides a
detailed view of the well, including 10 member
$v1* , . . . ,v10* % selected from the full inverse family contain
ing 480 members as the output from the algorithm in Fig.
As suggested by the ten sample potentials, the inversion f
ily distribution is not uniform. Plots of the full distribution
overV* for two of the potential space variables,v10 andv15
corresponding to the radial points,r 1052.72 Å and r 15
53.12 Å are shown in Figs. 8~C! and 8~D!. The distribu-
tions, p10(v10* ) and p15(v15* ), reflect the nonlinearity of the
potential-observable relationship over the members of
inversion family, and demonstrate that linear statistics can
very misleading.

Figure 8~B! depicts the differential cross sections pr
duced by the family of recovered potentials~shaded region!
and the error bars correspond to those of the actual lab
tory data points@33#. The algorithm in Fig. 1 guided the
inversion such that the width of the calculated observa
distribution did not violate any of these error bars. In th
regard, the data errors around the oscillation extrema and
small angle data provide the primary information to co
strain on the inversion family. The inset plot provides
closer look at the differential cross section over 25°<u

-

ed
d
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FIG. 8. Results for a global inversion usin
the laboratory He1Ne elastic scattering data o
Keil et al. @33#. Any potential drawn through the
inversion family ~shaded region! in ~A! repro-
duces the experimental data to within its unce
tainty, and the expanded view of the well regio
depicts 10 members from the full family.~B! il-
lustrates the range of cross sections produced
the inversion family in~A! as well as the 88 labo-
ratory data points, with their reported uncertai
ties.~C! and~D! depict the distribution of values
p10(v10* ) and p15(v15* ), for the extracted poten-
tials, v10* andv15* at the radial points,r 1052.72 Å
andr 1553.12 Å @c.f., the inset in~A!#, over the

inversion family.
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<35° where the cross sections produced by the invers
family completely fill the experimental error bars. This b
havior should be contrasted with the large angle scatter
where the distribution is narrower than the experimental
certainty. Requiring that all the data members must be sa
fied constrains the inversion family more than the error
any individual measurement might imply.

IV. CONCLUSION

This paper presented a general, nonlinear map-facilita
procedure for inverting laboratory measurements of quan
observables to recover the family of potentials consist
with the data. Handling the nonlinear nature of mo
potential-observable relationships, finite amounts of d
and the presence of experimental error requires an algor
capable of incorporating nonuniqueness in the inversion.
procedure presented above is capable of identifying a la
~if not the full! solution space of potentials consistent w
the data.

The illustrations demonstrated that a linear treatment
be incomplete, and the newly presented algorithm overca
the shortcomings of local techniques by adopting a glo
search. Both simulated quantum elastic scattering cr
section data and actual He1Ne elastic differential cross sec
tions were successfully inverted. For the simulations,
quality of the inverted potential was investigated in terms
the amount of data~i.e., energy range for the integral, diffu
sion, and viscosity cross sections and angular range for
differential cross section! and the reliability of the data~i.e.,
its experimental error!. It was also shown that some region
,

02271
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m
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n
e
l
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e
f
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of the data~i.e., specific energy ranges, in particular! can
contain significantly more detailed information about the p
tential than others. The simultaneous inversion of multi
data sets corresponding to different observables~i.e., for in-
tegral, diffusion and viscosity cross sections! was shown to
be beneficial. Finally, a global inversion was performed
the He1Ne data.

The nonlinear procedure introduced here has a gen
structure and may be applied to other inversion and opti
zation processes. Future applications include extracting
tentials from spectral data and the inversion of more comp
scattering systems. Extending the mapping procedure to t
poral potentials for applications in quantum control is a
being investigated@24#. Although global optimization has
previously been too expensive to perform on general pr
lems, these works demonstrate how to replace the ardu
task of repeatedly solving the associated forward prob
with an accurate and efficient forward map. In the examp
of Sec. III, the repeated use of the same map for invert
different sets of data points out that suitably developed m
may serve an archival role making them available for m
tiple applications with little extra expense associated w
solving the Schro¨dinger equation. This overall map facili
tated inversion concept is anticipated to have broad appl
bility to many problems.
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