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Inverting laboratory measurements of quantum-mechanical observables to recover the underlying molecular
potential typically produces nonunique solutions. Without quantifying the full family of potentials consistent
with the measurements, it is impossible to fully determine how experimental error and limited data affect the
inversion, or to assess the quality of the recovered potential. Here, we present a global, nonlinear algorithm for
extracting molecular potentials from measurements of quantum-mechanical observables. The method utilizes a
mapping technique to learn the relationship between a broad domain of potentials and their resulting observ-
ables to facilitate the inversion. Once constructed, the maps reduce the arduous task of repeatedly solving the
Schralinger equation for each trial potential tested during the inversion and permit the use of normally
expensive, global optimization procedures to thoroughly explore the distribution of potentials consistent with
the data. As a demonstration, the new algorithm is applied to quantum collision cross sections to illustrate the
effect of experimental error and finite resolution of the scattering observables on the recovered potential. A
series of simulated inversions were performed to examine these issues along with the inversion of laboratory
differential cross-section data for H&le scattering. These illustrations show that laboratory errors can have a
nonlinear effect on the family of extracted potentials. Furthermore, the examples provide a benchmark for the
capabilities of the proposed algorithm to stably reveal the full distribution of potentials consistent with the data.
The algorithm may be applied to other observables and molecular systems with more spatial coordinates.
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[. INTRODUCTION sensitivity analysi$12,13 based algorithmg9], while appli-
cable to arbitrary observables, are local in scope when
Quantitative knowledge of molecular potential-energysearching for the potential. Linearization methods require a
surfaces is essential for understanding many chemical ar@ood initial guess, lest they become attracted to suboptimal
physical processeld] as well as for accurately calculating €xtrema, or possibly diverge. _
their outcome. Obtaining quantitatively reliable potentials The inversion of laboratory measurements must consider
has typically been accomplished using either of two genera\yarious experimental factors, including noise and incomplete
approaches{1) throughab initio calculations, or2) by ex- data, as well as the generally nonlinear impact of these fac-
traction from |aboratory measurements Of quantum_tors Upon the extracted pOtential. The route back to the pO'
mechanical observables. In both cases, flexible surface refential from the data is not unique, producing an ill-posed
resentation techniques can maximize the outcome of thed@¥oblem[14], and there is typically &amily of potentials that
efforts. Althoughab initio potentials are sometimes unable to @dequately reproduce the data to within its error. A further
account for the full level of experimental detail obtained with consequence of nonlinearity is that a normal distribution in
modern high-resolution spectroscopy and scattering tecihe data does not invert to a normal, or even uniform, distri-
niques, quantum-chemistry calculations have reached a s8ution of recovered potentials. Local, linear methods typi-
phisticated level of development. The practice of invertingcally recover only one surface with, at best, an idealized
laboratory data, however, has not yet attained that degree éfeatment of error propagation. flobal inversion should
maturity. strive to identify the full family of solutions consistent with
Quantum_mechanical measurements typ|Ca||y depenH']e data without restricting functional f|8XIbI|Ity
upon the potential via subtle, nonlinear functional relation- A general approach towards global inversion involves re-
ships that are system and observable dependent. As a res@ftatedly solving the forward problem by calculating the ob-
of these complications, and because different observables réervabled produced by trial potentialy’ until identifying
quire specific machinery for both measuring and calculatingne (or more that reproduce the experimental dab&'®".
them, no truly nonlinear, practical inversion procedure hasfhe objective is often expressed as an optimization process
been available. Instead, observable specific algorithms th&hat minimizes the difference between the obserdgl®)
often incorporate dynamical approximations or restrict theand the calculate@[V] data sets,
functional form of the potential have adapted. These algo-
rithms can unwittingly be misguided by incorreatpriori
information. Available inversion techniques include the
Rydberg-Klein-ReesRKR) method[2—4] for diatomic spec-
tral problems, semiclassic@h,6] and quantunj6—9] meth-
ods for certain scattering processes, the exponential distortexver potential energy space. Every trial potential requires a
wave [10] and sudderj11] approximations for rotationally new evaluation of Eq(1), which nominally entails solving
inelastic atom-diatom scattering problems, etc. Functionathe Schrdinger equation.
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The latter brute-force approach of repeatedly solving theénversion and convenient test cases for assessing the perfor-
forward problem works in principle— the family of poten- mance of the nonlinear algorithm. Extension of the concept
tials that satisfy the data will minimize E¢l), assuming that to more complex systems and spectral data is conceptually
there are no significant systematic experimental errors. Howstraightforward and will be presented in following works.
ever, repeatedly solving the forward problem is often not
practical; calculating the observable is frequently expensive II. ALGORITHM
and the net cost of performing global searches over large ) ) ) )
domains of potential energy space can be extremely prohibi- The nonlinear inversion algorithm can be broken down

tive. Previously, the only practical fallback approaches re/Nto two stagesil) learning the potential-observable rela-

quired either restricting the functional form of the potential ionship by map construction, an@) recovering the set of

or linearizing Eq.(1) and searching it locally using gradient POtentials that reproduce the data by map exploration. The

methods. first step requires calculating observables for a representative
Overcoming the drawbacks of linearization necessitateSE! Of potentials that are then employed in a special interpo-

nonlocal optimization of Eq.(1), but employing global ator to produce the full map. The second step requires a

search algorithms is too expensive if the observable must b@oPal optimization algorithm to find the full family of sur-
explicitly computed for each trial potential. A high-speed by_faces consistent with the ob_ser\_/ed data. The_ interplay be-
pass is heeded to circumvent the arduous task of performin%ivee!1 the two stages can be intricate and requires a commu-
the repeated forward computations, while sacrificing neithePication architecture to interconnect the components. If the
accuracy nor nonlinearity in the potential-observable relalM@P domain does not contain any potentials that reproduce

tionship. These goals can be accomplished using functiond'® laboratory data, the optimization component will fail.
mapping methods recently developed for representin he algorithm must then expand the map domain to treat a

potential-observable relationshifid5]. Maps, learned off Proader, or different, region of potential energy space for
line from a relatively small sample of intelligently chosen, &xPloration. Similarly, the inversion algorithm must verify
representative potentials, can be used to quantitatively relaff@t the map is accurate over its domain by occasionally
a candidate potential, as well as any other variables necel€Sting it against theuth (i.e., an explicit computation of the
sary to describe the systefe.g., mass, energy, scattering OPServablefor quality control.

angle, eto, to the observables of interest. The maps, gener-

ated by explicitly calculating the observables from the rep- A. Learning the forward map

resentative potentials, can encompass a broad dofhein Learning the potentiabobservable map to quantitative

arbitrary potential shapes without resort to constrained,.c racy is equivalent to deducing the underlying physical
forms) and retain the full nonlinearity of the underlying re- rg|ationship. While an explicit connection between the ob-

lationship. hiah-auality f ‘i servabled and potentialV(r), is generally not known, it is
Once constructed, high-quality forward maps of the un-q impjicit composition of the Scheinger equation and the
derlying relationship can be rapidly interpolated to accu-

. o ~“observable’s expectation value,
rately provide the observable for any system in its domain.

Map evaluation requires no further solutions of the Sehro Iy

dinger equation and can be extremely fast compared to ex- ih—-=[Ho+V(N]¥, (29

plicitly calculating the observable. For the examples in Sec.

lll, map evaluation is approximately 4Gimes faster than .

explicity solving the Schidinger equation. Even more favor- D =(y[Oly), (2b)

able scaling is anticipated for larger molecular systems. Glo-

bal, nonlinear optimization algorithms can then be applied t

Eq. (1) to provide a special capability for identifying the full

family of potentials that reproduce the laboratory data. Th ;

combined nonlinearity of the mapping procedure and the us82ta to be inverted.

of global optimization methods all but eliminate the short- Although k.’(.)th Egs.(29 and (2b) are well understood,

comings of local inversions and provide the best family oftN€ir composition to form a map,

inverted potentials consistent with the quantity and quality of

the provided laboratory data. P=a([V]e ©)
Section 1l introduces the map-facilitated inversion algo-. ] )

rithm by describing the map construction, the map inversioniS rarely known.®([V],e) is the potential-observable rela-

and the machinery that connects them. Section |1l employ§onship expressed as a functional of the potential and a func-

the algorithm to recover scattering potentials from simulatedion of the extra variables={e;, . .. ey}, also needed to

collision cross-section data. The study investigates solutiospecify the Hamiltonian or other necessary conditions. For

multiplicity and the quality of the potential that can be re- examplege might include the mass of the system, the energy,

covered from incomplete data using model atomic scatteringhe transition dipole matrix elements, or any other quantities

systems. As a second example, we invert actual laboratorthat affect the observable besides the potential. The dual

measurements of elastic Hé&le differential scattering cross variables {/,e) completely describe the quantum system,

sections. These examples provide a perspective on scatteriagd ® ([ V],e) provides a uniqgue map to the observable.

hereH, is the portion of the Hamiltonian that is assumed
nown and not subject to identification, amd is the
equantum—mechanical operator associated with the observed
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Constructing the map requires samplidg[V],e) over N,
[V] and e with sufficient resolution to permit accurate inter- V(r)zE V;i(r), (6)
polation. However, in its raw form@([V],€) is not ame- =1
nable to easy map construction since it contains a functional
argument[V]. In practice, the potential-observable relation- where eactV,(r) is a nonzero constant,; , only in a small
ship must be learned using numerical techniques that neceA-neighborhood centered around its corresponding spatial
sitates approximatind ([ V],e), with an ordinary functiorf,  pointr;,

f vi=V(r): |r—ri=A
(V1,9 @ Vi(r)= 0: [r—r|>A’ @

that can be learned by discrete sampling. The transformationu can be made as large as necessary for the problem at
from ®([V],e) to f(v,e) is accomplished by replacing the hand, and in that fashiorf(x) can well approximate the
functional argumenl[\_/] with a collection of variables/  ynderlying functional since\cN; 1. The only approxima-
={v1, ... vy} that distinguish between the different mem- (o results from assuming thak (r) is constant, with the
bers of the map’s potential space domain. The precise defiralue v;, over its nonzeroA neighborhood. Defining the
nition of v is problem dependent, however, ensuring suffi-potential in this manner can also be extended to treating the
cient functional flexibility inV(r) generally requires many y; as interpolation points. Then, the potential is given by
potential space variablelsl, > 1, makingf high dimensional.  fitting a smooth surface through the.
The number of extra variable, is typically small com- It is further beneficial to exactly reformulativ,e) ac-
pared toN, . cording to the following finite expansion ranging in dimen-
While there are physical arguments for maintaining thesion from 0 toN,
distinct identity of the potential and extra variabkeande,

respectively, there is no mathematical distinction between N
their role in the map functiorf,(v,€). Defining a single input fx)=fot+ > fi(x)+ > Fi (X5 X))+ -
vectorx, that contains all the variables that affect the observ- i=1 i<
able,
+f1N(Xl| ---1XN)5 (8)
f(x)=f(v,e), x=vUe, (5)

wheref is the nominal value of over its domain, thé;(x;)
terms are single-variable functions that describe the indi-
enables a more notationally compact formulatib(x) has  vidual effect of their respective varialbkg on the observable,
the overall dimensiolN=N,+N, and is defined over a the f;;(x;,x;) terms are bivariate functions that describe the
specified domaive V andee E, whereX=VUE. cooperativeeffect of their variablesx,x;) on the observ-

In principle, the map can be learned by samplifi{g) able, etc. The final termf; , captures any residual de-
over its N variables and then interpolating between thependence of the observable on all of the variables acting in
sample points. However, in practice, full numerical resolu-nonseparable cooperation with one another. Expansions of
tion is impractical in light of the map function’s high dimen- the form in Eq.(8) are referred to as high-dimensional model
sionality. A regular mesh witts discrete points in eack; representationHDMR), forming a family of multivariate
would call for SN sample points. For smas and N, expo-  representations used to capture the inpattput relation-
nential scaling is tolerable; however, representing moleculaships of high-dimensional physical systefd$—18.
potential spaces can easily requie-10,1C°, ..., andS The hierarchy of terms in Ed8) is assigned an ordering
~10 or more. Solving the Schidinger equation>10'"  indexL, that groups the functions according to dimensional-
times is not a practical approach to map construction. It isty. L=0 corresponds to the constant terfg, L=1 corre-
generally recognized that the exponential sampling complexsponds to the single-variable functiond;}, L=2 corre-
ity in N, referred to as theurse of dimensionalityrenders  sponds to{fj;}, etc. If Eq.(8) must be taken tdNth order,
the direct interpolation ofN-dimensional functions impos- then HDMR provides no relief from exponential scaling. It
sible for systems of even modest dimension. has been shown that E() is expected to converge to low

Exponential scaling in the dimension is traditionally order,L<N for quantum potential-observable relationships
handled by foregoing global coverage and resorting to locainvolving spatial potentials that have been reformulated ac-
linearization; however, the map domains of interest here exeording to Eq(7) [15]. There is also extensive evidence that
tend well beyond the local, perturbative regime, and it iSEq. (8) converges to low order, for many other well-posed
critical to retain all the nonlinearities @b ([V],€). Recently, input— output relationships, particularly those derived from
it was demonstrated that nonlinear map construction is poghysical systems such as solar radiation driven atmospheric
sible provided that botW(r) andf(x) are properly reformu- heating due to trace gas absorbgt8], chemical kinetics
lated[15]. For expressing the potential, it is first beneficial to concentrations mapped over large time stglf], semicon-
subdivideV(r) into a large numbeN, of component func- ductor materials propertig¢d7,21-23, and laboratory quan-
tions, tum control outcomef24].
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A low-order, converged map expansion can be truncatednd a practical algorithm operating with a set of maps can
after its last significant order terms without sacrificing accu-overcome the error in any single map.
racy and can dramatically reduce the computational labor of
map construction. The complexity of constructing an

Lth-order map is given by that of attaining theh-order B. Inverting the functional relationship
terms. Therefore, the total number of sample points scales as o . :
O(SN),O(S2N?). ..., forL=1,2, ... respectively, result- Identifying the family of potentials that reproduce the

laboratory data using maps is accomplished by replacing ex-

ing in only polynomic sampling complexity itN. The low e . . .
order terms, although subdimensional, are not confined to b%“c't SO“.J“O”S of the foryvard problem n .qu? ‘.’V'th(,fﬂ,)e
map. This process nominally involves minimizifig

low-degree polynomials or have any particular form. Equa- ) ) i
tion (8) is not analogous to a Taylor series in that regard, ang™ T (X)I° over the potential space variablesz VCX. Dur-

can display all the relevant nonlinearity dictated by the par/Ng inversion, the extra variables are not generally opti-
ticular problem. mized; insteade may describe other Hamiltonian variables,
The expansion functions are not unique and there are muﬁxternal experimental conditions, or how the data was col-
tiple, equivalent formulations of HDMR[16-18. The lected(e.g., the reduced mass, energy, scattering angle, pres-
method that is employed for the system of interest should b&ure, etg. These conditions accompany the laboratory data,
selected on the grounds of sampling convenience, and for th&s will be discussed in Sec. Il C, and it is useful to think of
illustrations in Sec. lll, the cut-center formulation of HDMR the laboratory data as being dependent on the extra variables,
is utilized. In cut-center HDMR the expansion functions arei.e., ®(20)=(2b)(g),
constructed according to, Minimizing || ® (2P (e) — f(v,€)||?> overv provides the core
of the inversion procedure, however, it does not properly
treat experimental error or properly normalize the individual
fo=F(X1, - Xn), (9a)  data membere{?®) that can span orders of magnitude. Ad-
dressing the former issue, the quantityd {3 (e)
—f(v,6)||? is zero only when the observable for the trial
potentialf (v,e) exactly matches the laboratory data. Instead,
B any trial potential that reproducds2® to within its experi-
fi (X)) =F(Xq, .. Xy X, X)) — Fi— =1, mental error is equally valid. The best means of treating
(90 experimental error depends on the level of detail available
about the data. Ideally, an error distribution function,
p[®(29)], would be available and the inversion family
would be the collection of potentials whose associated ob-
. . — servable distribution matched that of the laboratory measure-
around arN-dimensional reference pointreferred to as the 015 The result is a distribution of potentials with the most
cut-centerf(x) is invariant to the choice ot provided that  probable members around that confidence limits can be
the expansion is taken to convergence. The notation,, .. .drawn.
indicates that the corresponding arguments are taken as their In many cases, only sparing information about the nature
reference value. Cut-center HDMR is often algorithmically of the error distribution is available as estimated error bars,
efficient for problems of moderate dimensioN=1C?. In (3P without any qualification of how the error is distrib-
very high dimensions it may be prudent to use an alternativeted (i.e., normally distributed, or otherwiseWhen this
formulation for determining the functions in E(B) such as is the case, it is often appropriate to assume a uniform error
random sampléRS) HDMR that is based on Monte Carlo distribution between the hard limits; £(2®). The resulting
methods. In RS-HDMR, the evaluation count for samplinginversion family is the hard bounded collection of potentials
®([V],e) during map construction is independent of dimen-with associated observables that lie withir(aP) = g(1ab),
sion[17]. In this case, it is still possible to identify the most probable
Cooperativity betweem ande is expected to remain; oth- member of the inversion family, even when detailed infor-
erwise, the observable would display the same energy, massiation about the laboratory error distribution is unavailable.
etc., behavior regardless of the underlying potential. FortuHowever, due to the uniformity of the data error distribution,
nately, the number of extra variabl, is typically small  the other members of the potential family will all reproduce
and the sampling complexity is effectively determined bythe data, as well as the most probable potential.
N, . Even if second- or third-order terms arise between the For the illustrations here, the laboratory uncertainty will
extra variableg and their interaction witlv, map generation be addressed by adopting a comparison function that ranks
is computationally practical because it has been recast asthe trial potential by treating-&(2? as hard bounds with a
collection of lower-dimensional problems. The example inuniform distribution between the limitsp(2®) +¢(1ab) - An
the next section provides an illustration where second-ordeexample of an inversion where a Gaussian error distribution
terms betweerv and e remain significant wheiN,>1. In s utilized is presented in a separate w2s)].
practice, it is sometimes advantageous to truncaté@gust A suitable cost function that accounts for data error and
prior to full convergence because the reduction in samplinghe possibly large differences in magnitude between the
effort far outweighs the introduction of tolerable map errormembers of the data set, is given by,

fi(x)=F(Xg, .. . X1 ... X) — o, (9b)
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0: | (e) — fi(v,e)| <&

o))~ fi(v,8)] ",
q)i(lab)(a) ‘

| D2 (e)—f(v,g)|> &P, 10

wheres{'?) is the uncertainty in theth member in the data identify multiple minima and are insensitive to starting val-
set ®{13P) ¢ p(2b) of size M. fi(v,e) is the map predicted ues when operated under practical conditions. Unlike local
value for theith data membefnot to be confused with the Searching methods, which are prone to divergence unless the
first-order expansion functiom.’(xi)]_ Hidden in the notation initial guess is fortunate, GA's are stable with excellent con-
is the fact that there can also be laboratory error in the meacergence behavior because of elitism and population overlap
surement Conditiona , such as Whem represents a colli- making them ideal for Comp|ex |andscapes such as those that
sion energy, laser intensity, sample pressure, etc. In practic@lise when inverting quantum-mechanical data.

(12" s often an average or convolution over replicate mea-

surements, and to reflect this, the quantities in @€) can C. Full nonlinear inversion algorithm

be replaced by®{??), and(f;(v,&))e. The latter quantity

is calculated by appropriately averaging or convolving overth Cfor|r|1b|n|ngf th_?tc;)r:jcv_apts n Secls. ”.tﬁ‘ and rl]l Bh prod_uces
the extra map variables In this fashion, any errors ia are € ull map-faciiilated Inversion algorithm, which 15 given

folded into the inversion process. :,.n Fig. i qnd E[hfhlab?@).;é') descrlbedtrkl)elgviar‘gﬁgrb)to.tth|s
Equation (10) may accept potential functions that, al- gure. A Input, (Igb;’:lgon m requmtéa) € datab’ 7, IS

though correctly reproducing the laboratory measurementéiabpratory errore , and !ts experimental conditions de-
are not physically realistic. It is generally rarely possible toSC”bed bye, (b) a compu@atlonal mear(s_oftware treated as
distinguish between real potentidise., continuous, smooth, a black box by the algorlth)n‘o.r eyaluatllngd)([V],e), and
displaying proper asymptotic behavior, etand other func- (c) _the map construction details |nclud_|ng the expected do-
tions that coincidentally reprodusk(2 based on the data MaiNX, the number of samples per varialdle and the map
alone, and the inversion algorithm must explicitly deal with ordgrL. Th_e Ia;ter starting parameters affect the efficiency of
the possibility of unrealistic minima in Eq10). Naturally, the inversion in two competing ways and must be chosen

the choice of characteristics that distinguish real potentials is

a matter of physical judgment. o
Physically unrealistic members of the solution family can @ e 0 ) (V] e) h,
C

be identified and removed using regularization methods 2 ®

[14,26 to incorporate properties, such as smoothness, into ‘g g Map é’é

the recovered potentials without further restricting the func- § . fanstruction &8
tional flexibility of the inversion. Realistic potentials can be ) = C)
found by minimizing a cost function similar to INVERSION Tralx—(ve) | OBSERVABLE

- min J [v] MAP EVALUATION fx)

J(v)=C(v)+ B[Kv| (1) OPTIMIZATION [ Coresponding 0 MAP

Best N, of {v* 7(x*)} T Tt

®

overv. K is a regularizing operator used to reward proper-
ties, such as smoothness, of the inverse solution and can take

on many forms. TypicallyK is a differential operator, par-
ticularly the second derivative of the potential with respect to
its coordinates as this emphasizes smoothtegs Sec. Il). N , ,
B is a constant that weights the importance of regularization ——e Mo Relull Mep with Befler Coverage
relative to that of reproducing the data. Generally, it is best to L ")

make 8 extremely small so that the optimization of Ed1)
first finds solutions that reproduce the datdy) — 0. After V={v*} Y
the first term has vanished, the regularization component be- U
comes significant forcing unrealistic functions that coinci- £ 1. A schematic of the nonlinear inversion algorithm ca-

dentally reproduce the data to be abandoned. pable of identifying the full family of potentials that reproduce the

Finally, it is of paramount importance that E€L1) be  ophserved data to within its uncertainty. A complete description of
globally minimized. Local optimizers converge to a single, the algorithm’s components and operation is given in Sec. II. The
local potential and fail to take full advantage of the high- procedure makes use of high-speed, nonlinear maps to replace the
speed, nonlinear nature df(x). Here, genetic algorithms explicit potential-observable relationship in the inversion optimiza-
(GAs) [27] are employed to identify the full family of pos- tion. The efficiency of the maps permit the use of global searching
sibly very different, inverse solutions. GA's simultaneously methods such as genetic algorithms.

—
<
=
b
&
=

Rebuild Map with Better Accuracy

Accuarate I
Map?

()
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appropriately. If the domaiiX is too small, it is possible that eter, typically one haJf of the optimized potentials are
potentials that satisfy the data will remain undetected beconsistent withd (2% Inversion is completed once a satis-
cause they lie outside the map. The inversion might fail tofactory fraction of the optimized potentia]s;"} successfully
reproduce the data and would have to be repeated over a né@produce the data.

region of potential space. In the alternate extreme, retaining

accuracy over too large a domain might require increasing D. The inverse solution family

the orderL, dramatically adding to the cost of learning the  The output of the inversion algorithm, Fig(i), is a set

map. A balance that uses the largest possible domain for thgyntaining theN, potentials{v¥ , . .. 'Vﬁs} that accurately

lowest acceptable map order generally provides the best OReproduced (2P to within its error,s 12), This optimal set is
erating conditions.

. . a discrete estimate of the full inverse fam\f or the sub-
Aft.er the map(d) is constructed by 'sampl|ng>([V],e) domain of the map that is consistent with the laboratory data.
over its domain(in some cases, a previously generated ma

. i i
might be reusex the inversion aptimizete) minimizes Eq. R/* can be defined using the upper and lower bounds of each

(11) using f(x) to rapidly compute the observable for each inverted variable,

trial potential it considers. The GA population sikg (an “v*=min{v¥ .}, (123
algorithmic parametéris normally on the order of foand m '

must be large to ensure that the full family of consistent

poFentiaIs is identified. Other GA parameters suc_h as the mu- >v: =max{v’ 1, (12b)
tation and cross-over rates must be set to provide good ex- m ’

ploration of Eq.(11), and are nominally given by the ranges,

= 0, 0, = 0, 0, 1
"m=[5%,20% andr.=[60%,80%, respectively. wherev,; is theith potential space variable from thmath

The GA minimizati d llection bF, opti- . o .
© minimization procuces a cotection &, opt member ofV*. Provided that enough optimized potentials

mized potential-energy functions; however, optimization found t letel ve the i d ihich
alone does not guarantee potentials that reproduce the datere found to completely resolve the inverse ontaihic

Two post-optimization tests must be performed to determin&@" be reasonably assured whh>1), the true molecular

H H * >\
whether the inversion was successful. Fit,(an algorith- p_c()jter_maltihould lie bettwegn the boounﬂs ?jr)d \é .tCon—
mic parameterof the optimized potential§v;} are chosen sidering the comments above HQ.) regarding data error

: . * propagation, the full interpretation of the bounds* and
;n;ptr:fr'r:)?f;%iﬁ%;?;:ntﬁ:ﬁé) ’?tt)éj?r:ebtfséicgi)crt?; “v* depends on the information available about the data

. - : . error distribution functionp[ ®(2?)]. Here,e(?®) is consid-
evaluating ®([V],e). Any optimized potential for which h implving that* > ok h )
f(v* @) deviates fromd([V],e) by more thans(2d) i ered a hard bound implying thatv* and ~v* are the asso

bandoned b . fal - it hciated bounds within which the true potential will lie.
abandoned because it represents a false minimum. It the g potential-observable relationship is likely to remain
number of individuals that fail the testing process is greatep, niinear over the inverse region, avid will rarely display

thanN; (an algorithmic parametgrthe map is deemed faulty 5 6rmaj(or a priori predictablé distribution of potentials

(g) and is regenerated over a fractidf} (an algorithmic o sistent with the data even when the laboratory error dis-
parameter, typically a haliof its initial domain. This voting iy, tion is simple, such as Gaussian or unifdied., Figs.
procesgg) provides quality control and allows the algorithm 8(C) and 8D)]. The combined effect of nonlinearity between

to adaptively refine its map to ensure an accurate represefiie notential and the observables and the fact that the inver-
tation of &([V],€). The approach is based on the argumentjon myst simultaneously satisfy all of the members of the

that f(v,e) is generally more accurate for smaller domainsyata set will typically produce a nontrivial distribution of

[15]. A large GA population siz&l, helps minimize the ef- yentials in the inversion family that might be iregular over
fect of finding isolated poor individuals if the map displays jis range. Normal, linear statistics will rarely be useful for

high overall accuracy. analyzing the solution region over the distribution of recov-

If the GA output passes map testing, the observables fogred potentials, possibly even in the special case where the
the corresponding potentials are compared to th(elaLf)iboratorinversion family is small enough for the relationship between
data (b) in a second testh). Those that matchb 0 the potential and observables to remain linear.
within the experimental error are retained in the solution set  The inversion quality, measured as the uncertainty in each
{vi'} and those that do not are discarded. Although an optipstential space variable* can be assessed by considering
mized potential that violates any single member of the datg¢ qistribution p.(v¥) over the inversion familyv*. The

. . . . . | | )
set should be rejecte@s is the case in Sec. )Jithis require- —\,corainty in the recovered potential can be assessed by

ment can be relaxed, as desired. If none of the optimizeq, o, ring the tightness of the solution domain as a function

potentials reproduce the data, the inversion failed and tth the spatial coordinate and the inversion is of overall

entire map constructiqn/ optimization process i_S repeated bMetter quality when the solution spread is small. When treat-
recentering the domain around the closest failed GA resul-tn

+¢(3P) g5 h h i -
(h). Additionally, if too few of the optimal potentials fail to ![ivge mgeasu?esisarq bounds, the most rigorous and conserva
. ; . given by,
match the data, the potential family might be poorly re-
solved. The domain recentering process should also be re- . - _
peated if less than some fractidif (an algorithmic param- Avf="v" ="V, (13
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where eachAv} is associated with its corresponding radial
pointr; and the only firm conclusion is that the true potential 48.0f
lies between=v* and ~v*. The illustrations in Sec. Ill use
Eq. (13) to assess the quality of the inverted potential; how-
ever, for experimental data where there is better knowledge
of its error distribution, it might prove beneficial to utilize an
alternative definition ofAv;" .

Finally, having a single metric to measure the quality of
the inversion is convenient for comparing different solutions. 8o}
It is useful to define an inversion quality figure of merit,

Scattering Map Domain

\5\/i(r)
/5"1(’)

)
N
=)

(o
(=)

u(r) 1x10° A%

F——-2A

3.0 6.0 9.0 12.0
r(A)
N, * 2
_ \/E & (14) FIG. 2. The shaded region corresponds to the potential space
m =1 >Ui* +<Ui* ' domain for which elastic, integral, differential, effective diffusion,

and effective viscosity cross sections were learned using global
functional maps. Each map can accurately provide its correspond-
whereF,, is small for a good inversion and large for a pooring cross section fomany potential (smooth or irregularin the
one. shaded domain. The bars labeléd;(r;) and sU;(r;) denote the
dynamic range of the map variables,andv; at locationsr; and
ri. The curvey denotes the reference potential utilized in the map
. ILLUSTRATION: QUANTUM-MECHANICAL generation process, as described in Sec. II.
ELASTIC SCATTERING

2u

As a demonstration of the nonlinear inversion algorithm, e1=k2=ﬁE (16)

we considered elastic quantum-mechanical atom-atom scat-
tering [28,29. Elastic scattering provides a convenient
benchmark and proof of concept for map-facilitated algo-where the firstN—1 map variables are used to specify the
rithms since even for atomic collisions, the potentialreduced potentiak;=uv;=V(r;) for the fixed interatomic ra-
—observable map is highly nonlinear and the map is highiial points,{r, ... ry }. The final variablexy=e, is the
dimensional15]. The questions of solution multiplicity and o ,ced energy. ’

the effect of data noise and incompleteness on atomic scat- Specifics on how quantum scattering can be formulated in

tering inversions have never been substantially addressed. ;o ms of Eqs(15) and(16), a detailed analysis of map accu-

Section Il B considers simulated scattering data OVelacy, and a physical argument for the fast convergence of the

which we vary the amount of data error, the extent and réSOmap expansion, Eq8), are provided in a preceding paper on
lution of the data, and errors aare neglected. The objective ha torward mapping proce§s5]. As a brief overview, dif-
i_s to investigqte the family of acceptable potentials in _rela'ferential o(6), integral oy, diffusion oy, and viscosityo,
tion to errors in the data and the amount of data used in thg|,qtic scattering cross sections were mapped to high accu-
inversion. To address these questions, three groups of invefzcy for all possible potential curves that can be drawn
sions are performed with(1) integral cross sections while 5,1 the shaded region shown in Fig. 2. The bars, labeled
varying the data errors and the scattering energy rafJe, sy (r) and sU,(r) depict the extent of the potential space
differential cross sections while varying the data errors an omain produced by varying each andu; over its respec-

. . - :
the scattering angle range, a(8 three integratedintegral, tive window centered at; andr;. The fuli domain is com-

posed ofN, such bars and includes potentials with well
adepths ranging from those describing chemical bonding in-
teractions, to Van der Waals interactions, and out to purely
repulsive encounters. Scattering systems with X&'
<k?<2.8x10°) A ~2 and potential wells as deep as 8.7
x10° A ~2 are described by a single global map. Based on
A. Nonlinear scattering maps currently known diatomic potentials, this domain likely cov-
. ers all pairwise potentials involving main block elements of
We have recently demonstrated that global, nonlineaf,e periodic Table[30] However, if a potential outside the
maps can be constructed for differentia(6), integralor,  gomain in Fig. 2 is needed, the maps can be expanded to
diffusion oy, and viscosityo, elastic scattering cross sec- jnclude it with little extra effort.
tions over a wide range of scattering energies and angles. In g, each observable, a global scattering map was con-
these maps, the cross sections are written as functions of the ;cted using 501 variableN, = 500 nodes provides excel-

tory differential elastic cross-section data for Hde and
identify the full range of potentials consistent with the data
and show that a high-precision potential can be extracted.

reduced potential and reduced scattering energy, lent spatial resolution of)(r), with Ar=0.024 A . In con-
2 structing the map, each was sampled at 20 discrete points,
M . . . . o _
v =U(r,) = —ZV(ri), i=1,... N, (15) and the differential cros;s. section was resolved at 1° incre
h ments over 10% §<120°; a separate map was constructed
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0 (deg) where o is the ~cross section of interest,
20 40 60 80 100 {0(0),01,04,0,}, €, s the desired relative error, anpl is
a uniform random variable ovér-1,1].

g
=}

(.Pels y) (9)o°Bo

1. Integral cross-section inversion

The first set of inversions are performed using integral
cross sections as a function of energy(E). Generating
f(x), produced a map accurate #00.3% error over the en-
ergy range, 2&E=<2000 meV for the 4.00 amu scattering
system as described above. The optimization step was per-
formed by minimizing the cost functional in E¢L1) with
the regularization term

22
Gt, Og, Oy (A )

-y
[=]

15

oo E eV
e N,—1 2
. < Viy1—2v0itvi_q
. . . Ky= 2 MRS B bt (19)
FIG. 3. Simulated cross-section data for the scattering system - =) Ar2
described in Sec. 1l B used to perform the inversion illustrations.

at each specified angle. The reference potential for the maghosen to minimize the three-point discrete second derivative
[c.f., Egs.(9a—(9¢)] was chosen as the geometric center offor smoothness. In case, the amount of ddtevas chosen so
the domain, i.e., eack; was selected as the center of its thitléh? Crt(;SS-fS(ﬁCtIOD'T was Samgg;t?g%g 18 \;161\_,:\]«

= ) L= or the full energy range, < meV. The
range, ar?d the'set.of pointsdefines the cut-center potential regularization constang A ¥me\2, was set to X105
V(r) depicted in Fig. 2.

) o and optimization was performed via an adaptive steady-state
The maps were demonstrated accurate with prediction Henetic algorithn{27] with a population sizeN, =500 over

ror _SO.S% for intggral, effective diffusion, and effective vis- 500 generations. The map quality algorithmic parameters,
cosity cross section@veraged over reduced energnd to (c.f., Sec. I Q, were set toN,=100 andN;=5, although

=1% for differ.ential Cross sectior{averaged over re_duced map testing was not critical given the expanse and accuracy
energy and solid angleThe errors in these cross sections areof the initial map. An acceptable inverse potential family was
smaller tha}n the experlmentall uncertainty generally attribgat 5iv* =1/2, or 250 members of the GA population. In all
uted to their laboratory determinati¢81]. of the present inversions, including that of Hile, the ini-
tial map was of sufficient quality and breadth that it was
B. Simulated nonlinear inversions global. No additional maps were required.
The results from eleven inversions involving the integral
As a first illustration, consider a model Leonard-Jonescross section are depicted in Fig. 4. The shaded regions cor-
(13),(16) interatomic potential of the form respond to the subspaces of the map domain that adequately
N PRI reproduce the cross-section data. They depict the limits
(_) _(_) } (170 and “v{ defined in Egs(12a and (12b) for each radial
To Fo point, r;. In Fig. 4, and in the analogous Figs. 5-7, the true
potential in Eq.(17) lies within the family of identified po-
wheree_, is the well depth and, designates the distance at €ntials. _ _ . , ,
which the potential changes from repulsive to attractive. The, P10ts A1-AS depict the inverse families consistent with
location of the well minimum is given by,= 2. For data sets containing 0.1%, 1%, 2%, 3%, and 4% relative
the purpose of this example, ; was taken as 100.0 meV, error, respectively. In each pf the plots, A1-A5, the full en-
andr, as 2.80 A . The reduced magswas chosen to be ©rdy range, 20-2000 metwith M=110) was used for the
4.00 amu. The model potential, with its well minimum at 3.1 iNversion and the data error was 'S|mulated by se'ttl,ggto
A , is considerably different from the reference potentian ~ 0:001, 0.01, 0.02, 0.3, and 0.04 in H38), respectively. A
Fig. 2. different random numbes was used in simulating each data
Experimental data for the simulated inversions was genMember. , o _
erated by calculating the various cross sections produced by nversion quality naturally drops with increasing data er-
the potential in Eq(17). These error-free differential, inte- 'O" @S it becomes easier to satisfy the less demanding data
gral, viscosity, and diffusion cross-section data sets are de&€t however, the error does not rise linearly with the data
picted in Fig. 3 and were calculated from the model potentiaHncertainty. The figure of mer|t_|25q14), met_rllc,Fm, for Ehle
using standard methodk28,29,33. Simulated noise was PIOtS AL-AS areFn,= 3.1x10 % 1.4<10 *, 6.9<10 "7,
added to the error-free cross sections according to 1.0x10%, and 9.7 10", respectively, showing a steep de-
crease in inversion quality as the data uncertainty rises. This
behavior provides an example of where the fully nonlinear
®a) =51+ pe,), (18)  algorithm in Fig. 1 is needed to properly perform the inver-

Via(r)=4eg;
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A11‘I 1 1 1 I 1 T T T B1I T T [] [ 1
|

o(E) Measurement Error | Scattering Energy Range
(laboratory error) (data window)
20 - 400 meV

B2
+0.1%

20 - 600 meV

B3
+ 1%

FIG. 4. The family of potentials recovered

20 - 1000 meV from finite, error contaminated integral cross-

Vr

section data. For each case, any curve drawn
through the shaded region reproduces all of the

\\ = B5
\ £3%

the family of potentials recovered from data con-
taining various degrees of relative error. Panel B:
the family of potentials recovered from different

20 - 1600 meV amounts of data with-0.1% error over different

A5
B6
4%

B4
2% corresponding data to within its error. Panel A:
MIN__—— \ 20 - 1400 meV pond ecover ' '

scattering energy ranges. Each potential is plotted
in a —500 to 500 meV window.

20 -2000 meV

3.0 6.0 9.0 120 3.0 6.0 9.0
r(A) r(A)
100.0 \ Inverted Potentials |
’ From o,(E) £ 4%
=
£
~ 0.0
=
e
-100.0
1.5 3.0 4.5
_‘\ { Functions that also
1000 Reproduce o,(E) + 4%
=
£
~ 0.0
=
>
-100.0
B

sion and assess its quality. The quality of actual laboratory
measurements of integral cross sections generally correspond
to those in plots A2—A331].

Plots B1-B6 depict the inverse families consistent with
data sets measured ov¢R0,404, [20,600, [20,1000,
[20,140Q, [20,1600, and [20,2000 meV, respectively. In
each case, the inversion was performed using cross sections
sampled every 18 meV, settig accordingly. The data was
simulated using the small error of 0.1% to focus on the im-
pact of the energy range. Again, the solution regions were
found by superimposing the inverse sdtg; }, and finding
the maximum and minimum value at each

The inversion quality rises sharply with an increase in the
amount of data and the figures of merit corresponding to
plots B1-B6 areF,,= 2.1x10% 2.5x10°%, 3.0x10?, 9.9
X107, 2.7x1071, and 3.3< 1072, respectively F, is not
exactly identical for A1 and B6 because of the nondetermin-
istic nature of GA's, although the difference is entirely neg-
ligible). Of particular interest is the fact that the inversion
quality increases suddenly as the energy rangel-%£2 eV
is covered in the inversion. Comparison with Fig. 3 shows
that this energy range contains the majority of the structure
in the o1 plot. This observation supports the generally ac-
cepted qualitative notion that information content increases

FIG. 5. Magnified view of the well region of the potential re- With the amount of structure in the data.
covered from integral cross sections over the energy rangeF20 Finally, the role of regularization in Eq19) deserves

<1000 meV with 4% relative error in the daftBiig. 4(A5)]. Both

some attention. Even though physically acceptable potentials

panels,(A) and (B), show potential curves that reproduce the scat-8r¢ known to be smooth functions that display ubiquitous
tering data to within its uncertainty. I6A) smoothness of the po- qualitative behavior, e.g/(r)—0 asr—o andV(r)— as

tential was required by employing regularization, while (i)
smoothness was not required.

r—0, etc., it is illustrative to see whether other functions,
not necessarily resembling typical potentials, can also satisfy
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A1 w\l T 1 T 1 1 T 1 1 B1 T T T [] [] ] I [ []
| o(8) Measurement Error Scattering Angle Range
[ (laboratory error) (finite data volume)
|
10°- 20°
\ B2\
\ + 1% \ b
A2]
\ - \ 10°- 40°
|
\ . B3 FIG. 6. The family of potentials recovered
+5% from finite, error-contaminated differential cross-
A3 — 10°- 60° section data. For each case, any curve drawn
B4 through the shaded region reproduces all of the
= £ 10% corresponding data to within its error. Paral:
; v 2 — the family of potentials recovered from data con-
= 10°- 80 . . .
o taining various degrees of relative error. Panel
(B): the family of potentials recovered from dif-
+15% ferent amounts of data containingg1% error.
e 10°- 100° Each potential is plotted in & 500 to 500 meV
\ BG‘\ - window.
\
+20% \ 10°- 120°
3.0 6.0 9.0 120 3.0 6.0 9.0 120
r(A) r(A)

the observed data. Such a search can be accomplished bgpict the inverse families consistent with data sets contain-
turning off regularization in the optimization cost functiQi, ing 1%, 5%, 10%, 15%, and 20% relative error, respec-
by setting8=0 in Eq. (11). tively. In each of A1-A5, the full angle range, 18%
Figure 5A) shows a magnified view of the inverse family <120° (with M=110) was used for the inversion and the
V*={v{"} from the well portion of the solution region found data error was simulated by settirg_ accordingly in Eq.
in Fig. 4(A5) where regularization was performed. Although (18) and using a differenp for each data member.
the sample of potentials plotted inside the region appear to As with the integral cross section data, the inversion qual-
differ at this level of detail, they are all smooth functions ity drops as the data error increases. Again, it does not scale
that, overall, behave as expected and produce cross sectiofiifearly in the data uncertainty. The corresponding figure of
consistent with the data. In contrast, FigB} which depicts  merit, Eq. (14), F,,, for the plots A1—A5 areF,,= 8.3
the same region of the potential, shows the inversion results 1072, 3.0x107 %, 1.0x 10°, 5.5x10°, and 2.8<10%, re-
when regularization was not performed. These curves, whicBpectively, showing a steep drop in inversion quality as the
are highly nonsmooth and quite unusual as potentials, dgata uncertainty rises. Actual laboratory measurements of
reproduce the data to within its precision. Of course, whilegitferential cross sections generally correspond to data errors
the functions in Fig. B) are unrealistic, the exercise in Fig. of ~10-20% (c.f., plots A3—A5 and often higher error
5(A) and Fig. 8B) emphasizes an important reminder that it [31].
is dangerous to assume too mueipriori information when Plots B1-B6 depict the families of potentials recovered
dealing with potentials; pseudopriori guidance could lead from data sets with+1% error measured over scattering
to what appears to be a unique s_urface, but in fact is one Qingles of [10°,209, [10°,409, [10°,609, [10°,807,
many possible acceptable potentials. [10°,1009, and[10°,1207, respectively. The inversion was
performed using cross sections sampled every 1°, setling
accordingly in7(v). The figures of merit corresponding to
A set of eleven inversions, analogous to those in Secplots B1-B6 areF,=8.1x10% 2.7x10%, 1.9x10°% 5.7
Il B 1 were performed using differential cross sections as ax10°, 9.9x10 2, and 8.1x 10~ 2, respectively.
function of angleo(6), at a fixed energyi-=500 meV. The Compared to the integral cross section in Sec. 1l B 1, the
differential cross-section magene for each sampled angle information content ofr(6) appears more uniform over its
were shown to be accurate t61% error over the angles independent variable. There is no sudden increase in in-
10°< §<120° sampled at 1° increments, lgr=110 cross- version quality over the data window, and this observation is
section samples over the full ranfEs]. The cost functional consistent with the differential cross section plot in Fig. 3
in Eq. (11) also employed the regularization in E&). All where the structure is well distributed. Inversions usig)
algorithmic conditions were identical to those in Sec. Ill B 1. also appear more tolerant to experimental uncertainty than
The results from eleven sample inversions involving thetheir integral counterpaftompare Fig. 4A5) to Fig. 6A5)].
differential cross section are depicted in Fig. 6. Plots A1-A5This tolerance may be attributable to the complex structure

2. Differential cross-section inversion
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—Tr T 1T 1T T T 1 figure of merit was found to bE,,= 1.6x 10~ 1. Here, com-
Observable used bining data sets containing 2% relative error enabled an in-
for Inversion version of comparable quality to the 1% integral cross sec-
tion data set in Fig. @\2), supporting the notion that diverse
data, even of limited quality, generally enables a better in-

o,(E) £ 2% version.

B \M’ C. He-Ne inversion

A

The nonlinear algorithm in Fig. 1 is specifically designed
to address the issues that arise when dealing with actual labo-
o ratory experiments. As an example of an inversion using real
oE) + 2% data, we considered the low-energy elastic differential scat-

C \\\/ tering of He+Ne in a crossed-beam experiment by Keelal.

[33]. The scattering cross sectidh{'®” = (¢, ;E) is avail-
able for a finite set oM =88 angleq 4,} at a relative colli-
sion energy ofE=29.2 meV. The standard deviatiofise.,
o (E) £ 2% treated as bounds héreised to define ) | are also avail-

able from the measurements. As was the case with previous
D v inversions using this data sg2], errors introduced by the
[o+(E) o4(E), ol (E)] + 2%
\

V(r)

experiment's angular apparatus function were considered
negligible.

The inversion was performed using the same global scat-
tering map employed in the previous section without addi-
tional solutions of the Schdinger equation, except for qual-
ity testing, c.f., Fig. «f). The large expanse of the map’s
potential space domain enabled a truly global inversion. A
cost functional identical to Eq$10) and (5) was used, with
R SR TR TN M N NN N M =88 data members at angles corresponding to the points

3.0 6.0 9.0 12.0 in Fig. 8B). All algorithmic parameters and the value of the

r (A regularization constant were the same as those used above.
_ _ _ _ ~ The full He+Ne inversion, using the already learned global

FIG. 7. Family of potentials recovered using different comblna-map, required 8.1s on an 800 MH2<2686 PIIl machine.
tions of sgattering Cross secti.on data, all gccqrata i) relatiye The results of the HeNe inversion are depicted in Figs.
error: (A) integral cross section onlyB) diffusion cross section 8(A)—(D). Any potential drawn through the shaded region of

only, (C) viscosity cross section onlyp) all three cross sections F(Jg' 8(A) reproduces every member of the measured data set

S'm.UItaneousw' In each case, any curve drawn through the Sh.ad(éo within its precision. The inset plot in Fig(®&) provides a
regions reproduces the data to within its error. Using the combine . . . .
detailed view of the well, including 10 members

data produces a higher quality inversion result. . N . . ;
{vI, ... Vig selected from the full inverse family contain-

found in the differential cross-section data as a function ofng 480 members as the output from the algorithm in Fig. 1.

angle and is consistent with the observation th@b) is AS s_uggest_ed by the ten sample potentials, the Inversion fam-
- . ily distribution is not uniform. Plots of the full distribution
more sensitive to the potentifl5].

overV* for two of the potential space variables, andv 5
corresponding to the radial points;p=2.72 A andrs
=3.12 A are shown in Figs.(8€) and 8D). The distribu-

In the final illustration, the objective was to invert a datations, p;o(vy,) andpis(vis), reflect the nonlinearity of the
set containing multiple simultaneous cross sectish$?”  potential-observable relationship over the members of the
={o1,04,0,}, over their full range. A cost functional iden- inversion family, and demonstrate that linear statistics can be
tical to that in Eq.(19) was adopted. All algorithmic condi- very misleading.
tions were the same as in Secs. IlIB 1 and Ill B 2. Plots A, Figure §B) depicts the differential cross sections pro-
B, and C in Fig. 7 demonstrate the inverse families obtainediuced by the family of recovered potentidthaded region
using the integrab, diffusion oy, and viscosityo, , cross  and the error bars correspond to those of the actual labora-
sections individually. In each case, the data sets containetdry data pointg33]. The algorithm in Fig. 1 guided the
110 cross sections accurate to 2% relative error over thiversion such that the width of the calculated observable
energy range, 20E<2000 meV producing a full data set distribution did not violate any of these error bars. In this
with M =330 measurements. The figures of merit for theregard, the data errors around the oscillation extrema and the
individual inversions performed in A, B, and C &fg= 6.9  small angle data provide the primary information to con-
X107, 1.8x10° and 4.4 101, respectively. Figure (D) strain on the inversion family. The inset plot provides a
depicts the result of the combined data inversion where theloser look at the differential cross section over 2%

3. Combined observable inversion
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A

IS

FIG. 8. Results for a global inversion using
the laboratory He-Ne elastic scattering data of
Keil et al.[33]. Any potential drawn through the
inversion family (shaded regionin (A) repro-
duces the experimental data to within its uncer-
tainty, and the expanded view of the well region
depicts 10 members from the full familgB) il-
lustrates the range of cross sections produced by
the inversion family ifA) as well as the 88 labo-
D ratory data points, with their reported uncertain-
ties. (C) and(D) depict the distribution of values,
P1o(vi and pis(vis), for the extracted poten-
tials, v, andv ¥5 at the radial points;o=2.72 A

andr;z=3.12 A [c.f., the inset inA)], over the
inversion family.

10

N
<

15

V(r) (meV)

o

logso o(6) (@.u)

[
-

r (A

1)
9]

Distribution p,, (v;
Distribution p,; (v7;)

0.72 07 -0.68 18 175 17
v;, (meV) ;5 (meV)

<35° where the cross sections produced by the inversionf the data(i.e., specific energy ranges, in particulaan
family completely fill the experimental error bars. This be- contain significantly more detailed information about the po-
havior should be contrasted with the large angle scatteringential than others. The simultaneous inversion of multiple
where the distribution is narrower than the experimental undata sets corresponding to different observalfiles, for in-
certainty. Requiring that all the data members must be satigegral, diffusion and viscosity cross sectipngas shown to
fied constrains the inversion family more than the error inbe beneficial. Finally, a global inversion was performed on

any individual measurement might imply. the Het+Ne data.
The nonlinear procedure introduced here has a general
IV. CONCLUSION structure and may be applied to other inversion and optimi-

) ) ~ zation processes. Future applications include extracting po-
This paper presented a general, nonlinear map-facilitateghntials from spectral data and the inversion of more complex
procedure for inverting laboratory measurements of quanturgcattering systems. Extending the mapping procedure to tem-
observables to recover the family of potentials consistenporal potentials for applications in quantum control is also
with the data. Handling the nonlinear nature of mostpeing investigated24]. Although global optimization has
potential-observable relationships, finite amounts of datapreviously been too expensive to perform on general prob-
and the presence of experimental error requires an algorithr[@ms, these works demonstrate how to replace the arduous
capable of incorporating nonuniqueness in the inversion. Thgysk of repeatedly solving the associated forward problem
procedure presented above is capable of identifying a larg@ith an accurate and efficient forward map. In the examples
(if not the full) solution space of potentials consistent with of Sec. |11, the repeated use of the same map for inverting
the data. different sets of data points out that suitably developed maps
The illustrations demonstrated that a linear treatment Cafhay serve an archival role making them available for mul-
be incomplete, and the newly presented algorithm overcamgple applications with little extra expense associated with
the shortcomings of local techniques by adopting a globako|ying the Schidinger equation. This overall map facili-

search. Both simulated quantum elastic scattering crosgated inversion concept is anticipated to have broad applica-
section data and actual Hde elastic differential cross sec- pjjity to many problems.

tions were successfully inverted. For the simulations, the
guality of the inverted potential was investigated in terms of

the amount of da_ltaéi.e., energy range for the integral, diffu- ACKNOWLEDGMENTS
sion, and viscosity cross sections and angular range for the
differential cross sectiorand the reliability of the daté.e., The authors acknowledge support from the NSF and the

its experimental errgr It was also shown that some regions DoD.
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