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Accurate amplitudes for electron-impact ionization
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We show that the ‘‘two-potential’’ formalism of conventional distorted-wave rearrangement theory, which is
formally valid only for short-range interactions, can be used to evaluate amplitudes for the ionization of atomic
hydrogen by electron impact. The triply differential cross sections calculated using this method validate earlier
results obtained by extrapolating the quantum mechanical flux. Although it uses the same time-independent
wave functions, this method offers significant advantages over flux extrapolation. It is more accurate, can be
applied in practical calculations over a broader range of collision energies, and unlike the flux-extrapolation
method, can be applied for arbitrary values of energy sharing between the ejected electrons. Since this rear-
rangement formalism provides the complete scattering amplitude for ionization, it can be used to calculate any
differential cross section.
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I. INTRODUCTION

Ionization of atomic hydrogen by electron impact is o
of the simplest examples of a three-body Coulomb proble
It is one which has continued to attract the attention of th
rists since the 1960s when the quantum mechanical form
tion was first outlined by Peterkop@1# and by Rudge and
Seaton@2,3#. Most of the computational studies carried o
have been based on perturbation theory, which become
creasingly unreliable as the collision energy decreases. W
various nonperturbative approaches have been devel
and shown capable of producing accurate total ioniza
cross sections, only recently has a complete and accu
quantum mechanical solution appeared feasible. The de
opment of accurateab initio methods that can be applie
with reliability at energies of a few electron volts or le
above the ionization energy will be crucial in probing t
dynamics of threshold ionization, since most of our pres
understanding of that difficult region is based on class
and semiclassical theory@4#.

In a series of papers@5–9# we developed a procedure fo
solving the time-independent Schro¨dinger equation for the
wave function describing electron-hydrogen scattering ab
the ionization threshold and from that produced various
ferential cross sections describing the dynamics of the
outgoing electrons following ionization. Our basic approa
to the electron-impact ionization problem consists of t
distinct steps. First, we calculate the outgoing wave port
of the full scattering wave function on a finite volume. B
using an exterior complex scaling transformation of the el
tronic coordinates, this can be accomplished without
course to any explicit asymptotic form for the scatter
wave.
1050-2947/2001/64~2!/022709~11!/$20.00 64 0227
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The second step consists of using the calculated scatt
waves to extract detailed dynamical information about io
ization. In the work referenced above, the extraction pro
dure we used was also designed to avoid relying
asymptotic boundary conditions. This was accomplished
directly evaluating the quantum mechanical flux through
finite ~hyper! surface that bounds the region where we kn
the wave function followed by a numerical extrapolation
infinite volume, where the flux can be related to the diffe
ential cross sections for ionization. In two-dimension
model problems the cross sections computed this way co
be made arbitrarily accurate@10#. When applied to the full
problem of electron-hydrogen scattering@7,8# this approach
produced triply differential cross sections~TDCS! at equal
energy sharing that agree remarkably well with experim
@11,12# and singly differential cross sections~SDCS! that
exhibited the low-energy behavior predicted by earlier se
classical work@13#.

Despite its successes, the flux-extrapolation method
its limitations. Even for collisions with only short-range in
teractions, evaluating the asymptotic flux can require cal
lations well beyond the range of the potentials, since it is t
to the asymptotic behavior of the scattering wave functi
For example, the asymptotic form of the full wave functio
for simple potential scattering,

C1~r ! ——→
r→`

eik•r1eikr@ f ~u!/r 1O~1/r 2!#, ~1.1!

has corrections of order 1/r 2, even for finite-range potentials
This fact is rarely emphasized in textbook introductions
scattering theory, since it is irrelevant to the common integ
expressions for the scattering amplitude,f (u), but it is quite
©2001 The American Physical Society09-1
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relevant in determining the asymptotic flux. There are ad
tional complications with the flux-extrapolation method
the case of Coulomb interactions. The method requires
use of grids large enough to allow the physical region inh
ited only by the ionization portion of the scattered wave to
distinguishable from the parts that describe discrete t
body channels. The requirement that the ionization wave
‘‘uncovered’’ before the asymptotic flux is calculated can
quire grids that extend well beyond the range where the
teraction potentials are appreciable and sets practical lo
limits on the collision energies that can be considered. T
flux-extrapolation procedure is inherently limited in its ab
ity to describe ionization when a single electron carries m
of the available energy. This is due to its inability to disti
guish between excitation channels and ionization where
ergy is shared asymmetrically. Consequently, in our previ
work we were able to calculateab initio SDCS’s only when
one electron carried no more than about 75% of the t
energy @14#. Similarly, triply and doubly differential cross
sections@9# were calculated most reliably at or near equ
energy sharing. Even in the regime where the calculation
deemed reliable, comparison to the assumed asymptotic
implies error on the order of 10%@14#. In principle, these
limitations could be made arbitrarily small by increasing t
size of the calculation, but in practice the method falls sh
of being truly complete.

In this paper we report on a procedure for extracting io
ization cross sections from the computed scattered w
function that offers significant improvements over the flu
extrapolation method. We show results for singly and trip
differential cross sections obtained from ionizationampli-
tudesthat are calculated using a ‘‘two-potential’’ formalism
derived from conventional distorted-wave rearrangem
theory. The technique was initially developed in the cont
of short-range interactions and applied to several tw
dimensional model problems@15#. The formalism was then
extended to include the case of Coulomb interactions@16#
and we have recently demonstrated that we could use
method to calculate theS-wave component of the SDCS fo
the full e-H scattering problem@17#. Since the SDCS is an
incoherent sum of partial-wave contributions, its evaluat
does not require phase coherence between various pa
wave components of the ionization amplitude. Previou
we expressed concern that a method which is formally v
only for short-range interactions might lead to phase inc
sistencies when applied to a partial-wave expansion of
scattered wave@16# in the case of Coulomb interactions. Th
would have made calculating the doubly and triply differe
tial ionization cross sections with this formalism impossib
In this paper we report that no such difficulty exists and
will show that the rearrangement formalism can be used
accurately calculate differential ionization cross sections f
from the limitations inherent in the flux-extrapolatio
method.

II. THEORY

The cross sections presented here were extracted
wave functions calculated in exactly the same manner a
02270
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our previous work. The first step in our approach is to so
the time-independent Schro¨dinger equation for electron
hydrogen scattering using the method of exterior comp
scaling to simplify the scattering boundary conditions. W
partition the total wave functionC1 into an appropriately
symmetrized unperturbed stateCki

0 , describing a free elec

tron with momentumk i incident on a ground-state hydroge
atom:

Cki

0 5
1

&
@F1s~r1!eiki•r 21~21!sF1s~r2!eiki•r1#,

~2.1!

and a scattered wave termCsc
1 . The wave functions are ei

ther symmetric~for total spin S50! or antisymmetric (S
51) with respect to interchange of the two electronic co
dinates. The scattered wave functionCsc

1 is defined as the
outgoing solution of the inhomogeneous differential equat

~E2H !Csc
1~r1 ,r2!5~H2E!Cki

0 ~r1 ,r2!, ~2.2!

which comes from rearrangement of the Schro¨dinger equa-
tion. Details of how we solve Eq.~2.2! can be found else-
where@8# and will be described only briefly here.

The scattered wave functionCsc
1 is expanded in terms o

coupled spherical harmonicsY l 1 ,l 2
L0 ( r̂ 1 , r̂ 2):

Csc
1~r1 ,r2!5 (

L,l 1 ,l 2

i L

r 1r 2
c l 1 ,l 2

L ~r 1 ,r 2!Y l 1 ,l 2
L0 ~ r̂ 1 , r̂ 2!.

~2.3!

Each of the radial functionsc l 1l 2
L (r 1 ,r 2) has outgoing-wave

boundary conditions. In order to calculate thec l 1l 2
L we use

the method of exterior complex scaling~ECS! where all ra-
dial coordinates are mapped to a contour,

r→H r , r ,R0 ,

R01~r 2R0!eih, r>R0 ,
, ~2.4!

that is real forr<R0 , but rotated into the upper half of th
complex plane beyondR0 . Any outgoing wave evaluated o
this contour becomes exponentially damped beyondR0 . Un-
der the ECS transformation thec l 1l 2

L are square integrable

functions that we calculate directly on a two-dimension
radial grid by solving sets of coupled, two-dimension
complex differential equations for each value ofL andS.

The rearrangement formalism we use for calculating
ionization amplitude was developed in two previous pap
@15,16# within the context of two-dimensional models o
electron-hydrogen scattering. It is similar to the formalis
given by Whelanet al. @18# and is used as the starting poi
for a number of ‘‘ansatz’’ approximations discussed
Lucey, Rasch, and Whelan@19#. Here we will present a
straightforward generalization of the formalism to the s
dimensional, two-electron problem.
9-2
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In Ref. @16#, we showed that if we started with an expre
sion for the ionization amplitude,F(k1 ,k2), that is, a func-
tion of the momentum vectors for both outgoing electron

F~k1 ,k2!5^fk1

0 fk2

0 uVuC1&, ~2.5!

in terms of undistorted plane waves,

fk
0~r !5eik•r , ~2.6!

then we could use conventional rearrangement theory to
rive an equivalent volume integral expression in terms
Coulomb distorted waves:

F~k1 ,k2!5^Fk1

~2 !Fk2

~2 !uE2T2V1uCsc
1&. ~2.7!

In Eq. ~2.7!, E is the total energy,T is the two-electron ki-
netic energy operator,V1 is the sum of all one-electron po
tentials defined as

V1~r1 ,r2![2
1

r 1
2

1

r 2
, ~2.8!

and theFk
(2)(r ) are Coulomb functions with effective charg

1, momentumk, and incoming-wave boundary condition
The integral in Eq.~2.7! must be evaluated over a finit
volume that lies within a region where both electronic co
dinates are real. We generally choose this to be the volu
enclosed by a hyperradiusr[A(r 1

21r 2
2)<R0 . Equation

~2.7! has an equivalent surface integral representation wh
appears upon application of Green’s theorem and is m
convenient for numerical calculations:

F~r1 ,k2!5 1
2 E

S
~Fk1

~1 !Fk2

~1 !
“Csc

12Csc
1
“Fk1

~1 !Fk2

~1 !!•dŜ.

~2.9!

The formal theory of ionization@1–3# shows that there is
a phase factor associated with the integral in Eq.~2.9! that
diverges as the enclosed volume becomes infinite. To el
nate the divergence of the phase, the formal theory requ
that the Coulomb functions carry effective chargesz1 andz2
that satisfy the so-called Peterkop relation@20#

z1

k1
1

z2

k2
5

1

k1
1

1

k2
2

1

uk12k2u
. ~2.10!

If we were to impose this condition in choosing the Coulom
distorted waves, however, they would no longer be ortho
nal to the hydrogenic bound states and, as shown in
@16#, this orthogonality is essential in eliminating the cont
butions from one-electron terms that formally vanish on
infinite volume but would otherwise ‘‘contaminate’’ the ca
culatedF when the integration in Eq.~2.7! is over a finite
volume. For this reason, it is important that theFk

(2) be
associated with charge one rather than effective charges
satisfy the Peterkop relation. We will see below that failu
to enforce the Peterkop relation does not lead to any ph
ambiguities, provided that the ionization amplitudes a
evaluated appropriately.
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To evaluate Eq.~2.9! with the partial-wave expansion o
Csc

1 in Eq. ~2.3! we use the expansion ofFk
(2) in spherical

harmonics:

Fk
~2 !~r !5(

l 50

`

(
m52 l

l
i le2 ih l

Akr
f̂ l~k;r !Yl ,m

! ~ k̂!Yl ,m~ r̂ !,

~2.11!

whereh l[arg$G(l112i/k)% and thef̂ l are regular solutions
of the radial Coulomb equation

F2
1

2

d2

dr2 1
l ~ l 11!

2r 2 2
1

r G f̂ l~k;r !5
k2

2
f̂ l~k;r !.

~2.12!

After substituting the expansions in Eqs.~2.3! and ~2.11!
into Eq.~2.9! and integrating over the angular coordinatesr̂1
andr̂2 we arrive at a partial-wave expansion of the ionizati
amplitude in Eq.~2.7!:

F~k1 ,k2!

5 (
L,l 1 ,l 2

i L2 l 12 l 2ei ~h l 1
1h l 2

! f l 1l 2
L ~k1 ,k2!Y l 1 ,l 2

L0 ~k1 ,k2!.

~2.13!

The partial-wave amplitudesf l 1l 2
L in Eq. ~2.13! are defined by

expressions analogous to Eq.~2.9!. If we use hyperspherica
coordinatesr and a such thatr 15r cosa and r 25r sina,
then the explicit expression for thef l 1l 2

L is a one-dimensiona

surface integral evaluated at some hyperradiusr5r0 :

f l 1l 2
L ~k1 ,k2 ;r0!

5
r0

2Ak1k2
E

0

p/2F f̂ l 1
~k1 ,r 1!f̂ l 2

~k2 ,r 2!
d

dr
c l 1l 2

L

2c l 1l 2
L d

dr
@f̂ l 1

~k1 ,r 1!f̂ l 2
~k2 ,r 2!#GU

r5r0

da.

~2.14!

Equation~2.14! is used to calculate thef l 1l 2
L for each partial-

wave radial functionc l 1l 2
L . The complete ionization ampli

tude can then be constructed according to Eq.~2.13! and
from that any differential cross section for ionization can
calculated.

III. CALCULATION

Calculating the scattered wave is by far the most com
tationally intensive of the two steps in our approach. Beca
of the number of terms kept in the partial-wave expans
and the size of the two-dimensional radial grid required,
need to solve linear systems of a few 106 complex equations.
The techniques used to calculateCsc

1 have been described i
detail elsewhere@8#. The complex scaling pointR0 used
ranges from 80a0 at the highest energy considered to 130a0
9-3
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at the lowest energy. Within a box of lengthR0 the radial
coordinates are real and the calculatedc l 1l 2

L are equal to

those of the physical~unscaled! scattered wave. The calcu
latedc l 1l 2

L are usable only within this box, so the hyperradi

r0 of the surface used to evaluate thef l 1l 2
L in Eq. ~2.14! is

constrained byr0<R0 .
To calculate thef l 1l 2

L we numerically integrate along

quarter-circle of radiusr0 in the r 1 , r 2 plane. We use Gauss
Legendre quadrature to evaluate the integrals. The integ
in Eq. ~2.14! can be highly oscillatory, so care must be tak
to ensure that sufficient quadrature points are used. We
culate thef l 1l 2

L for each partial wave over a range ofk1 with

k2 constrained by energy conservation,k2
252E2k1

2. We also
calculated thef l 1l 2

L for a range ofr0 . Once we have calcu

lated all of thef l 1l 2
L we can reconstruct the ionization amp

tude,F, according to Eq.~2.13!. The TDCS, which is differ-
ential in energy sharing and the directions of both outgo
electrons, is obtained directly fromF by the simple expres
sion

s ion~k1k2!5
16p2

ki
2 uF~k1k2!u2. ~3.1!

We have mentioned the fact that there is ar0-dependent
phase associated with Eq.~2.9! that diverges in the limitr0
→`. Since the enclosed integration volume is finite, t
phase does not diverge and a single volume-dependent p
that multiplies the full ionization amplitude will make n
contribution to any computed cross section. To produc
TDCS by reconstructing the full ionization amplitude fro
partial-wave components it is essential that all of thef l 1l 2

L

come from integration along arcs of the same hyperrad
r0 . Using f l 1l 2

L evaluated at differentr0 would, undoubtedly,

create problems due to phase inconsistencies among th
dividual terms in Eq.~2.13!. We previously expressed som
concern@16# that numerical instabilities in the phase migh
in practice, lead to inconsistencies among the partial-w
terms, even though the phases of thef l 1l 2

L are formally con-

sistent if they are all calculated at the samer0 . We have
found that there is no phase inconsistency, as evidence
the TDCS results presented in the next section.

The other differential cross section that we will consid
in this paper is the SDCS which is differential with respect
the energy of one of the outgoing electrons. The SDCS
obtained from the TDCS by integrating over the angular
ordinates of both momentak1 andk2 . Because of orthonor
mality of the Y l 1 ,l 2

L0 in Eq. ~2.13!, the SDCS can be ex

pressed as a simple sum of individual partial-wave terms

s ion~k1 ,k2!5
16p2

ki
2 (

L,l 1 ,l 2
u f l 1l 2

L ~k1 ,k2!u2. ~3.2!

It is worth noting that, according to Eq.~3.2!, the SDCS
would be impervious to any phase inconsistencies, if th
existed, among thef l 1l 2

L . The cross section definitions give
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in Eqs. ~3.1! and ~3.2! are normalized so that the total ion
ization cross section is given by integrating the SDCS o
half of the total energy:

s ion~E!5E
0

E/2

s ion„A2e,A2~E2e!…de. ~3.3!

By manipulating Eq.~2.7! and using Eq.~2.2!, it is easy to
show that the ionization amplitude can be written as

F~k1 ,k2!5^Fk1

~2 !Fk2

~2 !uV12uC1&, ~3.4!

which shows that it formally requires integration over t
range of the two-body part of the interaction potential. Sin
the electron-electron repulsion is of infinite range, it is na
ral to enquire about the dependence of the cross section
the size and shape of the volumes enclosed in computing
amplitudes. We have made the empirical observation that
volume integral in Eq.~2.7! should always be over a hype
sphere. We found that evaluating thef l 1l 2

L by integrating over

other closed surfaces—for example, over a hypercube
fined by r 1 , r 2<R0—produced spurious oscillations in th
SDCS on the order of several percent, which diminish asR0
is increased. When we look at the dependence of cross
tions upon the hyperradius at which the underlying amp
tudes were calculated, we observe small amplitude osc
tions generally on the order of a few percent. It is possi
that further investigation will shed light on the origin o
these oscillations and suggest ways of minimizing the as
ciated errors. For now, we use the observed dependenc
the cross sections uponr0 to estimate the accuracy of th
results presented in the next section.

IV. RESULTS

In an earlier paper@8# we reported singly and triply dif-
ferential cross sections, derived from flux extrapolation,
collision energies of 17.6, 19.6, 25, and 30 eV. We have si
recalculated those cross sections using the procedure
scribed in the previous section. A representative sample
the results are reported here. We wish to stress that the
sults at these energies were extracted from the samec l 1l 2

L

that were calculated in our earlier work. Thus, we have t
independent means of calculating differential cross secti
from the same numerical wave function.

The first results we report are for the SDCS as calcula
using Eq.~3.2!. These are shown, along with the individu
singlet and triplet components, in Fig. 1. With the SDC
there is no concern over possible phase inconsisten
among the differentf l 1l 2

L . Based on our earlier work usin

this rearrangement formalism@15–17#, we can be certain of
the accuracy of the magnitudes of thef l 1l 2

L . For the four

collision energies covered in Ref.@8# we also show the
SDCS derived from flux extrapolation. Agreement in sha
between results from the two methods is very good and c
firms the flattening of the SDCS with decreasing energy p
dicted by semiclassical theory@13#.

Primarily, the disagreement between the SDCS calcula
9-4
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FIG. 1. Singly differential
cross sections fore-H scattering
at the collision energies indicated
Individual components for single
~dashed line! and triplet ~dot-
dashed line! are shown. Where ap
plicable, earlier results based o
flux extrapolation@8# are shown in
light gray.
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using Eq.~3.2! and the SDCS derived from flux extrapol
tion is in the overall magnitude rather than the shape. F
extrapolation seems to produce SDCS results that are
tematically too high. The difference diminishes with increa
ing energy from about 10% at 17.6 eV to less than 2% by
eV. However, even at the lower collision energies the d
agreement is not beyond what one would expect after clo
examining the flux-extrapolation procedure@14#. As stated
earlier, we found that the SDCS calculated from Eq.~3.2!
exhibits small amplitude oscillations, as a function of t
hyperradiusr0 at which the underlyingf l 1l 2

L were calculated.

The origin of these small oscillations, which diminish wi
increasingr0 , is not yet fully understood, but we hasten
add that there is noa priori reason why convergence of th
SDCS with increasing box size be exactly monotonic. F
now, we obtain our final results by averaging through th
oscillations. Using the amplitude of the oscillations as
indicator of the accuracy of the calculation we estimate t
the SDCS are accurate to within 5% for 17.6 eV and 2%
30 eV.

In Fig. 1 we show the SDCS for 15.6 eV collision energ
just 2 eV above threshold. At this low energy we were una
to obtain reliable results using flux extrapolation. Even
f l 1l 2

L exhibit a more pronounced dependence uponr0 than

those calculated at the other energies, with the expected
certainty of our SDCS being higher at this energy. At 15.6
the SDCS is found to have the same flattened shape
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noticed at 17.6 eV. At both of these energies, the proced
has revealed subtle transitions in the SDCS from the sim
bow-shaped curves seen at the higher energies. These s
tures could not be found by the older flux-extrapolati
method because flux extrapolation was unable to produce
SDCS over the full range of energy sharing, as indicated
Fig. 1. The orthogonality of the Coulomb distorted waves
the bound hydrogenic functions makes the ionization am
tudes computed using Eq.~2.14! free from any ‘‘contamina-
tion’’ by two-body channels contained in the scattered wa
and we are now able to calculate the SDCS over the
range of energy sharing.

We also show results for the SDCS at 54.4 eV collisi
energy. At this relatively high energy ther0 dependence in
Eq. ~2.14! is very small, so thef l 1l 2

L should be very accurate

However, convergence of the angular momentum expan
requires more partial-wave terms at this energy than we w
able to include. This limits the accuracy of the 54.4 e
SDCS shown in Fig. 1 which we present here primarily
illustrate the dependence of the shape of the SDCS upon
total energy. Ourab initio calculation included angular mo
mentum components up toL513. BeyondL54 the indi-
vidual L components decay exponentially with increasingL.
We estimated the contributions fromL.13 by assuming a
simple exponential decay law for largeL. The effect of the
large-L components that were estimated is to raise the SD
by about 7% near the wings of the distribution.
9-5
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In Table I we list the integrated ionization cross sectio
The estimated accuracy of these results is the same as fo
corresponding SDCS’s. We should note that the SDC
shown in Fig. 1 were normalized so that integrating over h
of the energy range gives the integrated cross sections.
values for the singlet and triplet cross sectionssS and sT
given in Table I do not include spin statistical weights, so
total ionization cross section is (sS13sT)/4. The spin asym-
metry is defined as (sS2sT)/(sS13sT). For 54.4 eV col-
lision energy the cross sections include estimates for thL
.13 components that account for about 3% of the total.

Unlike the SDCS, the TDCS requires a construction of
complete ionization amplitude according to Eq.~2.13!, so
that any phase inconsistencies among thef l 1l 2

L would ad-

versely affect the calculated TDCS. In other words,

TABLE I. Singlet, triplet, and total ionization cross sections a
the spin asymmetry. Cross sections are in units ofa0

2; asymmetry is
dimensionless. Spin factors are not included in the singlet and
let cross sections.

Energy 15.6 eV 17.6 eV 19.6 eV 25 eV 30 eV 54.4 e

Singlet 0.93 1.78 2.45 3.54 3.97 3.94
Triplet 0.17 0.35 0.51 0.86 1.09 1.64
Total 0.36 0.71 0.99 1.53 1.81 2.21
Asymmetry 0.52 0.51 0.49 0.44 0.40 0.26
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SDCS tests only the magnitudes of the calculatedf l 1l 2
L but

the TDCS also tests the phases. In Figs. 2–7 we presen
equal-energy sharing TDCS at 30, 25, 19.6, 17.6, and 1
eV collision energies for a variety of coplanar geometries.
these geometries the trajectories of the incident and two
going electrons all lie in a single plane. For instance, e
panel in Fig. 2 shows a one-dimensional slice of the TD
for 30 eV collision energy corresponding to a particular fix
angular separationu12 between the directions of the two ou
going electrons.

Figure 2 contains our previous results, based on flux
trapolation, along with the current results. The agreem
between the TDCS results obtained from these two very
ferent methods is a strong indicator of the correctness of b
methods. We also show this same comparison at 25 eV
19.6 eV collision energies in Figs. 3 and 4, respectively, a
found that the agreement is equally good in these cases
the flux-extrapolation method this implies that the error
troduced by extrapolating from finite box sizes was sm
For our calculation of the ionization amplitude this implie
that there is no phase inconsistency among thef l 1l 2

L calcu-

lated at a finite hyperradius. Thus, we have found that
~2.7! @or, equivalently, Eq.~2.9!# leads to a viable method o
calculating the complete ionization amplitude despite the
istence of a formally divergent phase.

Experimental values due to Ro¨der et al. @11# are also
shown in Figs. 2, 3, and 4. These results were origina

p-
,
t

d
.

FIG. 2. Equal-energy sharing
coplanar TDCS for 30 eV inciden
energy with u12 fixed. Internor-
malized measurements@11#, origi-
nally reported in arbitrary units,
were multiplied by 0.16 to fit cal-
culated cross section. Solid
curves: present results. Dashe
curves: earlier results from Ref
@8#.
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FIG. 3. Same as Fig. 2 but fo
25 eV incident energy. The nor
malization factor to convert mea
sured values from arbitrary unit
is 0.16.
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presented in arbitrary units. We have normalized these va
by choosing a single scaling factor to give the best overal
between experiment and our calculations. Although comp
son in absolute magnitude is not possible at these ener
we see that agreement in the overall shape is quite good
17.6 eV collision energy, however, we can compare w
absolute experimental measurements, shown in Fig. 5.
set of fixedu12 data was originally presented in arbitrary, b
internormalized, units@11#. Later, theu125180° data were
remeasured in absolute units, allowing the entire set of d
to be put on an absolute scale@12#. These absolute exper
mental data are shown, along with our TDCS results ca
lated using Eq.~3.1! and our earlier results based on flu
extrapolation, in Fig. 5.

Agreement between our calculations and the experime
results is quite good with our results being well within t
reported 40% error bars of most of the measured valu
Overall, the comparison suggests that a slight reduction
the overall magnitude of the data would produce be
agreement. At 17.6 eV the difference between our pres
results and our earlier ones derived from flux extrapolatio
slightly more than at 25 eV. This is because of the grea
box-size dependence at lower energies, which is more p
lematic for the flux-extrapolation procedure than it is for c
culating the amplitudes.

In Fig. 6 we show results for two geometries at 17.6
where the position of one detector is held fixed at some an
02270
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es,
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u2 . In Ref. @11# the experimental data for these geometr
were normalized to fit distorted-wave Born approximati
~DWBA! calculations of Whelanet al.and were not reported
in the same arbitrary units as the fixedu12 geometries. We
present these experimental data as normalized by the DW
calculations. Experimentally normalized data for these
ometries do exist but have been shown by Bray to be inc
sistent with the data for fixedu12 @21#. Clearly, there is an
internormalization issue between the fixedu12 data and the
fixed u2 data at this energy. Consequently, we prefer
present the two different classes of geometries at this en
using separate normalizations.

Finally, in Fig. 7 we show results for the TDCS at 15.6 e
collision energy. At this energy we were unable to produ
reliable results using flux extrapolation. The ionization a
plitude expression is less sensitive to the box size an
allows us to calculate cross sections at lower collision en
gies than what we were able to treat using flux extrapolati
Still, our results at 15.6 eV are somewhat less accur
within 10% foru125180° and perhaps more for smalleru12,
than at higher energies. Absolute measurements at this
ergy @11,12# are available. However, Bray has suggest
based on convergent close-coupling calculations, that
normalization of the 15.6 eV data is incorrect@21#. Our cal-
culations indicate that the absolute measurements are
high by a factor of 2. Multiplying the experimental values b
9-7
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FIG. 4. Same as Fig. 2 but fo
19.6 eV incident energy. The nor
malization factor to convert mea
sured values from arbitrary unit
is 0.20.
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0.5 gives good overall agreement with our results, as sh
in Fig. 7. Distorted partial-wave~DPW! calculations for
u125180° by Pan and Starace@12,22# also indicate that the
15.6 eV data are too large by a factor of 2. In general,
have found that agreement between our results and D
results~the latter available only foru125180°! is excellent.
We show results for a variety of different geometries in F
7. In all geometries, including those withu2 fixed, dividing
the experimental values by two gives good agreement w
our calculation. There appears to be no problem at 15.6
with internormalization between the fixedu12 data and the
fixed u2 data as there was at 17.6 eV.

V. DISCUSSION

We have presented a formalism for calculating the co
plete amplitude for electron-impact ionization and succe
fully applied it to electron-hydrogen scattering using
partial-wave expansion. Cross sections produced by
methods described here are more accurate than our pre
results obtained by extrapolating the quantum mechan
flux. The improved accuracy is due to the new formalis
being less dependent on the finite range of the calcula
and being able to formally distinguish between ionizati
and excitation channels. The latter characteristic allows u
calculateab initio differential cross sections over the enti
range of energy sharing.
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Although the formalism presented here offers significa
improvement over our flux-extrapolation method it al
serves to validate the fundamental correctness of that ea
approach. Our results are in excellent agreement with th
of the DWBA and DPW methods at the limited geometri
for which they are available. The shapes of our calcula
SDCS agree well with semiclassical predictions@13#. They
also exhibit the proper symmetry and are free from the
physical oscillations that characterize some otherab initio
approaches@23#. To the extent that we are able to compa
with experiment, agreement is good. Agreement with exp
ment in the overall shape of the TDCS is very good, with t
noted exception of the inconsistencies between the fixedu12

and fixedu2 data at 17.6 eV. Absolute agreement with e
periment is reasonable at 17.6 eV, but not at 15.6 eV wh
our calculations, as well as the work of others@12,21,22#,
suggest there is factor of 2 error in the normalization of
experimental data.

The rearrangement formalism presented here allows
culation of the complete ionization amplitude over a bro
range of energies. In contrast to the quantum mechan
flux, whose asymptotic value generally requires calculatio
well beyond the range of the interaction potentials@15#, the
expressions we use for the ionization amplitude depend o
on the range of the two-body interaction potentials and
therefore far less sensitive to the restrictions imposed
9-8
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FIG. 5. Equal-energy sharing
coplanar TDCS for 17.6 eV inci-
dent energy withu12 fixed. Ex-
perimental data are absolute me
surements@11,12# with 40% error
bars. Solid curves: present result
Dashed curves: earlier result
from Ref. @8#.
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FIG. 6. Equal-energy sharing, coplanar TDCS for 17.6 eV in
dent energy withu2 fixed. Experimental data were normalized to
calculations by Whelanet al. @11#. Solid curves: present results
Dashed curves: earlier results from Ref.@8#.
02270
working in a finite volume. Nevertheless, the method is n
without its limitations. There are still practical lower limits t
the collision energies that can be treated, since the erro
the computed amplitude will scale roughly inversely with t
ratio of the total energy to the value of the potential on t
hypersphere used in the evaluation. With the present tech
ogy, it is currently not possible because of computatio
limitations to perform calculations below about 1 eV tot
energy. For the calculations at 15.6 eV incident energy~2 eV
total energy!, the surface integrals in Eq.~2.14! had to be
evaluated at hyperradii in excess of 100a0 . The minimum
hyperradii will increase as the collision energy approac
threshold.

Although there is a lower limit on the collision energy, w
have not noticed any limits on the energy of an outgo
electron and we believe the formalism is capable of prod
ing accurate amplitudes even when the energy of one e
tron is very close to either zero orE. At higher collision
energies the box-size requirements relax, but the numbe
terms needed in the angular momentum expansion increa
Collision energies above about 30 eV require more part
wave terms than one would generally consider practical in
ab initio calculation. Thus, it is worth investigating wheth
some sort of perturbative approximation to thef l 1l 2

L can be

used for highL. Finally, we wish to point out that the rear
rangement formalism is in no way connected to our exte

-
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FIG. 7. Equal-energy sharing
TDCS at 15.6 eV incident energy
for various coplanar geometries
Absolute experimental data
@11,12# have been multiplied by
0.5.
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complex scaling approach to solving the Schro¨dinger equa-
tion. It should be readily applicable to any method that c
produce a converged scattered wave at sufficiently large
tances.
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