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Accurate amplitudes for electron-impact ionization
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We show that the “two-potential” formalism of conventional distorted-wave rearrangement theory, which is
formally valid only for short-range interactions, can be used to evaluate amplitudes for the ionization of atomic
hydrogen by electron impact. The triply differential cross sections calculated using this method validate earlier
results obtained by extrapolating the quantum mechanical flux. Although it uses the same time-independent
wave functions, this method offers significant advantages over flux extrapolation. It is more accurate, can be
applied in practical calculations over a broader range of collision energies, and unlike the flux-extrapolation
method, can be applied for arbitrary values of energy sharing between the ejected electrons. Since this rear-
rangement formalism provides the complete scattering amplitude for ionization, it can be used to calculate any
differential cross section.
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[. INTRODUCTION The second step consists of using the calculated scattered
waves to extract detailed dynamical information about ion-
lonization of atomic hydrogen by electron impact is oneization. In the work referenced above, the extraction proce-
of the simplest examples of a three-body Coulomb problemdure we used was also designed to avoid relying on
It is one which has continued to attract the attention of theo@symptotic boundary conditions. This was accomplished by
rists since the 1960s when the quantum mechanical formuldlirectly evaluating the quantum mechanical flux through a
tion was first outlined by Peterkofl] and by Rudge and finite (hypep surface that bounds the region where we know
Seaton[2,3]. Most of the computational studies carried out (N wave function followed by a numerical extrapolation to
have been based on perturbation theory, which becomes iffinite volume, where the flux can be related to the differ-
creasingly unreliable as the collision energy decreases. Whilghtial cross sections for ionization. In two-dimensional
various nonperturbative approaches have been developdddel problems the cross sections computed this way could
and shown capable of producing accurate total ionizatio?® Mmade arbitrarily accura{d0]. When applied to the full
cross sections, only recently has a complete and accuraf§oblem of electron-hydrogen scatterifigg] this approach
quantum mechanical solution appeared feasible. The develproduced triply differential cross sectioi$DCS at equal
opment of accurat@b initio methods that can be applied nergy sharing that agree remarkably well with experiment
with reliability at energies of a few electron volts or less[11,12 and singly differential cross sectiofSDCS that
above the ionization energy will be crucial in probing the exhlb_|ted the low-energy behavior predicted by earlier semi-
dynamics of threshold ionization, since most of our presen€lassical work13]. _
understanding of that difficult region is based on classical Despite its successes, the flux-extrapolation method has
and semiclassical theofy]. its I|m_|tat|ons. Evep for collisions W'I'[h only short—rgnge in-
In a series of papef&—9] we developed a procedure for ter'actlons, evaluating the asymptotic flux can require palpu-
solving the time-independent Sckiinger equation for the lations well beyo_nd the range of the potenfuals, since itis _tled
wave function describing electron-hydrogen scattering abov& the asymptotic behavior of the scattering wave function.
the ionization threshold and from that produced various diffOr €xample, the asymptotic form of the full wave function
ferential cross sections describing the dynamics of the twdCr Simple potential scattering,
outgoing electrons following ionization. Our basic approach , A
to the electron-impact ionization problem consists of two VH(r) —— T+ e f(0)/r+O(1h?)], (1.
distinct steps. First, we calculate the outgoing wave portion r—e
of the full scattering wave function on a finite volume. By
using an exterior complex scaling transformation of the elechas corrections of orderr#, even for finite-range potentials.
tronic coordinates, this can be accomplished without reThis fact is rarely emphasized in textbook introductions to
course to any explicit asymptotic form for the scatteredscattering theory, since it is irrelevant to the common integral
wave. expressions for the scattering amplitudég), but it is quite
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relevant in determining the asymptotic flux. There are addi-our previous work. The first step in our approach is to solve
tional complications with the flux-extrapolation method in the time-independent Schiimger equation for electron-
the case of Coulomb interactions. The method requires thbBydrogen scattering using the method of exterior complex
use of grids large enough to allow the physical region inhabscaling to simplify the scattering boundary conditions. We
ited only by the ionization portion of the scattered wave to bepartition the total wave functiol? " into an appropriately
distinguishable from the parts that describe discrete twosymmetrized unperturbed stafe), describing a free elec-
body channels. The requirement_that the ionization wave bggn with momentunrk; incident oln a ground-state hydrogen
“uncovered” before the asymptotic flux is calculated can re- ;o -

quire grids that extend well beyond the range where the in-

teraction potentials are appreciable and sets practical lower

limits on the collision energies that can be considered. The ck): i[q)ls(rl)eiki»r2+(_1)Sq)ls(r2)eiki<r1],
flux-extrapolation procedure is inherently limited in its abil- V2
ity to describe ionization when a single electron carries most (2.1

of the available energy. This is due to its inability to distin-

guish between excitation channels and ionization where erand a scattered wave ’[erﬂq;_ The wave functions are ei-
ergy is shared asymmetrically. Consequently, in our previousher symmetric(for total spin S=0) or antisymmetric &
work we were able to calculatb initio SDCS's only when  =1) with respect to interchange of the two electronic coor-
one electron carried no more than about 75% of the tota§jinates. The scattered wave functigy, is defined as the

energy[14]. Similarly, triply and doubly differential cross qytgoing solution of the inhomogeneous differential equation
sections[9] were calculated most reliably at or near equal

energy sharing. Even in the regime where the calculation was E—H)W* —(H—E)¥° 29
deemed reliable, comparison to the assumed asymptotic form ( JWsdr1.r2) =( Wig(rora), (22
implies error on the order of 109d4]. In principle, these ) o

limitations could be made arbitrarily small by increasing thewhich comes from rearrangement of the Scfinger equa-

size of the calculation, but in practice the method falls shortion. Details of how we solve Eq2.2) can be found else-

of being truly complete. where[8] and will be described only briefly here.

In this paper we report on a procedure for extracting ion- The scattered wave functiol ¢, is expanded in terms of

ization cross sections from the computed scattered waveoupled spherical harmoni@Sfﬁ,z(fl,fg):
function that offers significant improvements over the flux-

extrapolation method. We show results for singly and triply it
differential cross sections obtained from ionizatiampli- Whirr)= > ﬁlz"le'z(rl'rZ)y 0, (F1,f2).
tudesthat are calculated using a “two-potential” formalism Lilplz Tal2

derived from conventional distorted-wave rearrangement 2.3

theory. The technique was initially developed in the context i — .
of short-range interactions and applied to several twoEach of the radial functiongy, (r1,r2) has outgoing-wave
dimensional model problemd5]. The formalism was then boundary conditions. In order to calculate tlz}bl|2 we use
extended to include the case of Coulomb interactii®l  the method of exterior complex scalif§CS where all ra-
and we have recently demonstrated that we could use thga| coordinates are mapped to a contour,
method to calculate th8-wave component of the SDCS for
the full e-H scattering problemi17]. Since the SDCS is an
incoherent sum of partial-wave contributions, its evaluation r— _
does not require phase coherence between various partial- Ro+(r—Rpe€'”, r=Rg,’
wave components of the ionization amplitude. Previously,
we expressed concern that a method which is formally validhat is real forr <Ry, but rotated into the upper half of the
only for short-range interactions might lead to phase inconeomplex plane beyonR,. Any outgoing wave evaluated on
sistencies when applied to a partial-wave expansion of théhis contour becomes exponentially damped beyRpdUn-
scattered wavgl 6] in the case of Coulomb interactions. This der the ECS transformation th,(q"ll2 are square integrable
would have made calculating the doubly and triply differen-fnctions that we calculate directly on a two-dimensional
tial ionization cross sections with this formalism impossible. 4 ig grid by solving sets of coupled, two-dimensional,
In this paper we report that no such difficulty exists and Wecomplex differential equations for each valuelond S
will show that the rearrangement formalism can be used to Tpe rearrangement formalism we use for calculating the
accurately calculate differential ionization cross sections fregynization amplitude was developed in two previous papers
from the limitations inherent in the flux-extrapolation [15,16 within the context of two-dimensional models of
method. electron-hydrogen scattering. It is similar to the formalism
given by Whelaret al. [18] and is used as the starting point
for a number of “ansatz” approximations discussed by
Lucey, Rasch, and Whelal9]. Here we will present a
The cross sections presented here were extracted frostraightforward generalization of the formalism to the six-
wave functions calculated in exactly the same manner as idimensional, two-electron problem.

r, r<Rg, 2.4

Il. THEORY
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In Ref.[16], we showed that if we started with an expres- To evaluate Eq(2.9) with the partial-wave expansion of
sion for the ionization amplitudeF(k, k,), that is, a func- W7 in Eq. (2.3 we use the expansion @’ in spherical
tion of the momentum vectors for both outgoing electrons, harmonics:

Fiky ko) =( g B V™), (2.9

Ak Y] ()Y (P,
(2.11

where 5, =argI'(I+1—-i/k)} and the, are regular solutions
then we could use conventional rearrangement theory to def the radial Coulomb equation
rive an equivalent volume integral expression in terms of

(-) o
P (r)=2,0m27| Jkr

in terms of undistorted plane waves,

P =e*r, (2.6

Coulomb distorted waves: 1d> 1(0+1) 1], Z.
szt oz 7 |akin=5aikr).

Filky ko) =(@ O E-T-Vo[W ). (2.7 (2.12
In Eq. (2.7), E is the total energyT is the two-electron ki- ~ After substituting the expansions in Ed&.3) and(2.11)
netic energy operatol; is the sum of all one-electron po- into Eq.(2.9) and integrating over the angular coordinates
tentials defined as andf, we arrive at a partial-wave expansion of the ionization

amplitude in Eq(2.7):
1 1
Vl(rlirZ)E_a_E! (28) f(kl,kz)

and thed{ )(r) are Coulomb functions with effective charge = > jthirlagilm,* ”'2>f}'1|2(k1,k2)y {'lq,z(kl,kz).
1, momentumk, and incoming-wave boundary conditions. Ltz
The integral in Eq.(2.7) must be evaluated over a finite (2.13

volume that lies within a region where both electronic coor-
dinates are real. We generally choose this to be the voluméhe partial-wave amplitudd$1,2 in Eq.(2.13 are defined by

enclosed by a hyperradiu;az\/(r21+r22)<R0. Equation  expressions analogous to Eg.9). If we use hyperspherical
(2.7) has an equivalent surface integral representation whicboordinatesp and a such thatr;=p cosa andr,=p sina,
appears upon application of Green's theorem and is morghen the explicit expression for trfél|2 is a one-dimensional

convenient for numerical calculations: surface integral evaluated at some hyperragieg,:

Firyka= 4 [ (@00 Vv ival el a8 fhy (ks keipo)
S
29 20 m[fb (KT (Ko 1) e
= ,r ,r —_—
The formal theory of ionizatiohl—3] shows that there is 2\kik, Jo TR 2 g p Pl
a phase factor associated with the integral in 39 that q
diverges as the enclosed volume becomes infinite. To ehml- _lﬂh AT (kzyrz)]} de.
nate the divergence of the phase, the formal theory requires tadp ™"t 2 =00
that the Coulomb functions carry effective chargesandz,
that satisfy the so-called Peterkop relat[@®] (2.19
Equation(2.14) is used to calculate t for each partial-
z, z, 1 1 1 11y
k_1+ k_2: k_1+ Ky, |ki—Ko| " (210 wave radial functiorv,blLllz. The complete ionization ampli-

tude can then be constructed according to Eg13 and

If we were to impose this condition in choosing the Coulombfrom that any differential cross section for ionization can be
distorted waves, however, they would no longer be orthogocalculated.

nal to the hydrogenic bound states and, as shown in Ref.

[16], this orthogonality is essential in eliminating th_e contri- Ill. CALCULATION

butions from one-electron terms that formally vanish on an

infinite volume but would otherwise “contaminate” the cal-  Calculating the scattered wave is by far the most compu-
culated 7 when the integration in Eq2.7) is over a finite tationally intensive of the two steps in our approach. Because
volume. For this reason, it is important that tig ) be  of the number of terms kept in the partial-wave expansion
associated with charge one rather than effective charges thand the size of the two-dimensional radial grid required, we
satisfy the Peterkop relation. We will see below that failureneed to solve linear systems of a few? lmplex equations.

to enforce the Peterkop relation does not lead to any phaskhe techniques used to calculake have been described in
ambiguities, provided that the ionization amplitudes aredetail elsewherd8]. The complex scaling poinR, used
evaluated appropriately. ranges from 88, at the highest energy considered to 430
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at the lowest energy. Within a box of lengRy, the radial in Egs.(3.1) and(3.2) are normalized so that the total ion-
coordinates are real and the calcula’ngfzkil,2 are equal to ization cross section is given by integrating the SDCS over

those of the physicalunscaled scattered wave. The calcu- half of the total energy:
lated 1,0}'1,2 are usable only within this box, so the hyperradius

E/2
po of the surface used to evaluate th‘92 in Eq. (2.19 is Tion(E) = fo Tion(\2€,V2(E— €))de. (3.3

constrained byo<Rj.
To calculate thef|L1|2 we numerically integrate along a By manipulating Eq(2.7) and using Eq(2.2), it is easy to

quarter-circle of radiug, in thery, r, plane. We use Gauss- show that the ionization amplitude can be written as
Legendre quadrature to evaluate the integrals. The integrand

in Eq. (2.14) can be highly oscillatory, so care must be taken Fiky ko) =(P@i @[V V), (3.9

to ensure that sufficient quadrature points are used. We cal-

culate thef,L1I2 for each partial wave over a rangelofwith ~ which shows that it formally requires integration over the
k, constrained by energy conservatid{§,=2E— ki- We also  ange of the two-body part of the interaction potential. Since

calculated thef-, for a range ofp,. Once we have calcu- the electron-electron repulsion is of infinite range, it is natu-
1l2 ral to enquire about the dependence of the cross sections on

lated all of thef{; we can reconstruct the ionization ampli- the size and shape of the volumes enclosed in computing the
tude, F, according to Eq(2.13. The TDCS, which is differ- amplitudes. We have made the empirical observation that the
ential in energy sharing and the directions of both outgoingrolume integral in Eq(2.7) should always be over a hyper-
electrons, is obtained directly frofi by the simple expres- sphere. We found that evaluating tf’[92 by integrating over

sion other closed surfaces—for example, over a hypercube de-
1672 fined byr,, r,<Ry—produced spurious oscillations in the
_ _ 2 SDCS on the order of several percent, which diminisiRgs
Tion( K1kz) == 2 | Ftkaka)[. @D i increased. When we look at the dependence of crogs sec-
tions upon the hyperradius at which the underlying ampli-
We have mentioned the fact that there ipiadependent tudes were calculated, we observe small amplitude oscilla-
phase associated with E@.9) that diverges in the limip,  tions generally on the order of a few percent. It is possible
—. Since the enclosed integration volume is finite, thethat further investigation will shed light on the origin of
phase does not diverge and a single volume-dependent phaese oscillations and suggest ways of minimizing the asso-
that multiplies the full ionization amplitude will make no ciated errors. For now, we use the observed dependence of
contribution to any computed cross section. To produce &he cross sections upgwy to estimate the accuracy of the
TDCS by reconstructing the full ionization amplitude from results presented in the next section.
partial-wave components it is essential that all of fhlqez

come from integration along arcs of the same hyperradius IV. RESULTS
Po- USIngflllz evaluated at different, would, undoubtedly, In an earlier papef8] we reported singly and triply dif-

create problems due to phase inconsistencies among the igsrential cross sections, derived from flux extrapolation, for
dividual terms in Eq(2.13. We previously expressed some collision energies of 17.6, 19.6, 25, and 30 eV. We have since
concern[16] that numerical instabilities in the phase might, recalculated those cross sections using the procedure de-
in practice, lead to inconsistencies among the partial-wavecriped in the previous section. A representative sample of
terms, even though the phases of fiig, are formally con-  the results are reported here. We wish to stress that the re-
sistent if they are all calculated at the samg We have sults at these energies were extracted from the samze

found that there is no phase inconsistency, as evidenced hifat were calculated in our earlier work. Thus, we have two
the TDCS results presented in the next section. independent means of calculating differential cross sections
The other differential cross section that we will considerfrom the same numerical wave function.

in this paper is the SDCS which is differential with respectto  The first results we report are for the SDCS as calculated
the energy of one of the outgoing electrons. The SDCS igsing Eq.(3.2). These are shown, along with the individual
obtained from the TDCS by integrating over the angular cosijnglet and triplet components, in Fig. 1. With the SDCS
ordinates of both moment andk,. Because of orthonor- there is no concern over possible phase inconsistencies
mality of the | in Eq. (2.13, the SDCS can be ex- among the differenf}, . Based on our earlier work using

pressed as a simple sum of individual partial-wave terms  thjs rearrangement formalisii5—17, we can be certain of
5 the accuracy of the magnitudes of tm}sllz. For the four
Gion(kl,k2)=16k_72T > It (kuko)l2 (3.2 collision energies covered in Ref8] we also show the
i Ll SDCS derived from flux extrapolation. Agreement in shape
between results from the two methods is very good and con-
It is worth noting that, according to Eq3.2), the SDCS firms the flattening of the SDCS with decreasing energy pre-
would be impervious to any phase inconsistencies, if theylicted by semiclassical theof{3].
existed, among théf'llz. The cross section definitions given  Primarily, the disagreement between the SDCS calculated
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using Eq.(3.2) and the SDCS derived from flux extrapola- noticed at 17.6 eV. At both of these energies, the procedure
tion is in the overall magnitude rather than the shape. Flwhas revealed subtle transitions in the SDCS from the simpler
extrapolation seems to produce SDCS results that are sybow-shaped curves seen at the higher energies. These struc-
tematically too high. The difference diminishes with increas-tures could not be found by the older flux-extrapolation
ing energy from about 10% at 17.6 eV to less than 2% by 3Qnethod because flux extrapolation was unable to produce the
eV. However, even at the lower collision energies the d|S'SDCS over the full range of energy sharing’ as indicated in
agreement is not beyond what one would expect after closelyig. 1. The orthogonality of the Coulomb distorted waves to
examining the flux-extrapolation procedur®d]. As stated  he pound hydrogenic functions makes the ionization ampli-
earlier, we found that the SDCS calculated from E32)  {,des computed using E(R.14) free from any “contamina-
exhibits small amplitude oscillations, as a function of thejgn» by two-body channels contained in the scattered wave
hyperradiug, at which the underlying;, were calculated. and we are now able to calculate the SDCS over the full
The origin of these small oscillations, which diminish with range of energy sharing.

increasingpg, is not yet fully understood, but we hasten to  We also show results for the SDCS at 54.4 eV collision
add that there is na priori reason why convergence of the energy. At this relatively high energy thg, dependence in
SDCS with increasing box size be exactly monotonic. ForEq. (2.14) is very small, so theE|L1|2 should be very accurate.

now, we obtain our final results by averaging through thesg,oyever, convergence of the angular momentum expansion

oscillations. Using the amplitude of the oscillations as anequires more partial-wave terms at this energy than we were
indicator of the accuracy of the calculation we estimate thalpie to include. This limits the accuracy of the 54.4 eV

the SDCS are accurate to within 5% for 17.6 eV and 2% forSDCS shown in Fig. 1 which we present here primarily to

30 eV.. . illustrate the dependence of the shape of the SDCS upon the
. In Fig. 1 we show the SDCS for 15.6 eV collision energy, | energy. Oumb initio calculation included angular mo-
just 2 eV above threshold. At this low energy we were unabléyentum components up to=13. BeyondL=4 the indi-

to obtain reliable results using flux extrapolation. Even thequal L components decay exponentially with increasing
flLllz exhibit a more pronounced dependence up@rthan  \we estimated the contributions froln>13 by assuming a
those calculated at the other energies, with the expected usimple exponential decay law for large The effect of the
certainty of our SDCS being higher at this energy. At 15.6 eMargeL components that were estimated is to raise the SDCS
the SDCS is found to have the same flattened shape firéty about 7% near the wings of the distribution.
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TABLE I. Singlet, triplet, and total ionization cross sections and SDCS tests only the magnitudes of the calculaftbg but
12

the spin asymmetry. Cross sections are in unitaéofasymmetry is the TDCS also tests the phases. In Figs. 2—7 we present the
dimensionless. Spin factors are not included in the singlet and trip- ) .

let cross sections. equal-energy sharing TDCS at 30, 25, 19.6, 17.6, and 15.6
eV collision energies for a variety of coplanar geometries. In

Energy 156 eV 17.6 eV 19.6 eV 25eV 30 eV 54.4 ey these geometries the trajectories of the incident and two out-
going electrons all lie in a single plane. For instance, each

Singlet 0.93 1.78 245 354 397 394 panelin Fig. 2 shows a one-dimensional slice of the TDCS
Triplet 0.17 0.35 051 086 109 164 for 30 eV collision energy corresponding to a particular fixed
Total 0.36 0.71 099 153 181 221 angular separatiofl;, between the directions of the two out-

Asymmetry  0.52 0.51 049 044 040 0.26 going electrons.

Figure 2 contains our previous results, based on flux ex-
trapolation, along with the current results. The agreement

In Table | we list the integrated ionization cross sections petween the TDCS results obtained from these two very dif-
The estimated accuracy of these results is the same as for th&rent methods is a strong indicator of the correctness of both
corresponding SDCS’s. We should note that the SDCS’snethods. We also show this same comparison at 25 eV and
shown in Fig. 1 were normalized so that integrating over halfl9.6 eV collision energies in Figs. 3 and 4, respectively, and
of the energy range gives the integrated cross sections. ThHeund that the agreement is equally good in these cases. For
values for the singlet and triplet cross sections and o the flux-extrapolation method this implies that the error in-
given in Table | do not include spin statistical weights, so thetroduced by extrapolating from finite box sizes was small.
total ionization cross section isrg+ 3o1)/4. The spin asym-  For our calculation of the ionization amplitude this implies
metry is defined asds— o1)/(os+307). For 54.4 eV col- that there is no phase inconsistency among ﬁ}f}g calcu-
lision energy the cross sections include estimates forLthe |5ted at a finite hyperradius. Thus, we have found that Eq.

>13 components that account for about 3% of the total. (2.7 [or, equivalently, Eq(2.9] leads to a viable method of

Unlike the SDCS, the TDCS requires a construction of the g |cyating the complete ionization amplitude despite the ex-
complete ionization amplitude according to B@.13, SO istence of a formally divergent phase.

that any phase inconsistencies among the, would ad- Experimental values due to ‘Rer et al. [11] are also
versely affect the calculated TDCS. In other words, theshown in Figs. 2, 3, and 4. These results were originally

S : : 0 ¥
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0.2 I

® Roederetal.

RS SRR S W S S
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were multiplied by 0.16 to fit cal-
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: : ; , g : : : : : curves: present results. Dashed
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[8].

. -18 -1
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presented in arbitrary units. We have normalized these value$,. In Ref.[11] the experimental data for these geometries
by choosing a single scaling factor to give the best overall fitvere normalized to fit distorted-wave Born approximation
between experiment and our calculations. Although comparitDWBA) calculations of Whelaet al. and were not reported
son in absolute magnitude is not possible at these energieg, the same arbitrary units as the fixég, geometries. We

we see that agreement in the overall shape is quite good. Afresent these experimental data as normalized by the DWBA
17.6 eV collision energy, however, we can compare Withcg|cylations. Experimentally normalized data for these ge-

absolute experimental measurements, shown in Fig. 5. Thgnetries do exist but have been shown by Bray to be incon-
set of fixed#,, data was originally presented in arbitrary, but gistent with the data for fixed,, [21]. Clearly, there is an

mternormal;zgd, tl)m'tlitll]' I__?ter,”the_alzjh180° t_data \;ve][ed internormalization issue between the fixég, data and the
remeasured in absolute units, afowing the entire Set ot datg, o 0, data at this energy. Consequently, we prefer to

to be put on an absolute scdl&2]. These absolute experi- : " .
mentalp data are shown ann% vv]ith our TDCS resultspcalcupresent the two different classes of geometries at this energy

: : using separate normalizations.

gtergpﬁ;:%f?rfiil;_a;d our earlier results based on flux F_ir_1a||y, in Fig. 7 We_show results for the TDCS at 15.6 eV

Agreement between our calculations and the experimentd°lliSion energy. At this energy we were unable to produce
results is quite good with our results being well within there_hable results using flux extrap_o_latlon. The |on|za_1t|on am-
reported 40% error bars of most of the measured valuedlitude expression is less sensitive to the box size and it
Overall, the comparison suggests that a slight reduction illows us to calculate cross sections at lower collision ener-
the overall magnitude of the data would produce bette@ies than what we were able to treat using flux extrapolation.
agreement. At 17.6 eV the difference between our preseritill, our results at 15.6 eV are somewhat less accurate,
results and our earlier ones derived from flux extrapolation igvithin 10% for 6,,=180° and perhaps more for smalkp,,
slightly more than at 25 eV. This is because of the greatethan at higher energies. Absolute measurements at this en-
box-size dependence at lower energies, which is more protergy [11,12 are available. However, Bray has suggested,
lematic for the flux-extrapolation procedure than it is for cal-based on convergent close-coupling calculations, that the
culating the amplitudes. normalization of the 15.6 eV data is incorrg2fl]. Our cal-

In Fig. 6 we show results for two geometries at 17.6 eVculations indicate that the absolute measurements are too
where the position of one detector is held fixed at some anglbigh by a factor of 2. Multiplying the experimental values by
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== ECS (flux) :
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0.25¢

FIG. 4. Same as Fig. 2 but for
19.6 eV incident energy. The nor-
malization factor to convert mea-
sured values from arbitrary units
is 0.20.

cross section (10“]8 em?eV ‘])

0 60 120 180 240 300 360

G0 60 120 180 240 300 360 00 60 120 180 240 300 360

scattering angle &, (degrees)

0.5 gives good overall agreement with our results, as shown Although the formalism presented here offers significant
in Fig. 7. Distorted partial-waveDPW) calculations for improvement over our flux-extrapolation method it also
01,=180° by Pan and Stara¢&2,22 also indicate that the serves to validate the fundamental correctness of that earlier
15.6 eV data are too large by a factor of 2. In general, weapproach. Our results are in excellent agreement with those
have found that agreement between our results and DP\¢f the DWBA and DPW methods at the limited geometries
results(the latter available only fop;,=180°) is excellent.  for which they are available. The shapes of our calculated
We show results_for a varie;ty of differe_nt g_eometr_ie_s _in Fig.spCs agree well with semiclassical predictidds]. They
7. In all geometries, including those with fixed, dividing  ais0 exhibit the proper symmetry and are free from the un-
the experimental values by two gives good agreement witlyhysical oscillations that characterize some otabrinitio
our calculation. There appears to be no problem at 15.6 €¥5h0ache§23]. To the extent that we are able to compare
v_v|th internormalization between the fixe#l, data and the | i, experiment, agreement is good. Agreement with experi-
fixed ¢ data as there was at 17.6 eV. ment in the overall shape of the TDCS is very good, with the
noted exception of the inconsistencies between the fiked
V. DISCUSSION and fixed #, data at 17.6 eV. Absolute agreement with ex-

We have presented a formalism for calculating the Comperiment is reasonable at 17.6 eV, but not at 15.6 eV where
plete amplitude for electron-impact ionization and success@Ur calculations, as well as the work of oth¢f®,21,23,
fully applied it to electron-hydrogen scattering using asugge_st there is factor of 2 error in the normalization of the
partial-wave expansion. Cross sections produced by th@xPerimental data.
methods described here are more accurate than our previous The rearrangement formalism presented here allows cal-
results obtained by extrapolating the quantum mechanicdulation of the complete ionization amplitude over a broad
flux. The improved accuracy is due to the new formalismrange of energies. In contrast to the quantum mechanical
being less dependent on the finite range of the calculatioflux, whose asymptotic value generally requires calculations
and being able to formally distinguish between ionizationwell beyond the range of the interaction potentidls], the
and excitation channels. The latter characteristic allows us texpressions we use for the ionization amplitude depend only
calculateab initio differential cross sections over the entire on the range of the two-body interaction potentials and are
range of energy sharing. therefore far less sensitive to the restrictions imposed by
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90 120
©
= 0.2t FIG. 5. Equal-energy sharing,
-~ 3 coplanar TDCS for 17.6 eV inci-
° i s . dent energy with6,, fixed. Ex-
E P S 0 perimental data are absolute mea-
S ; 3 ' : i surementg11,12 with 40% error
g / 0.05} s A bars. Solid curves: present results.
A d f : : ; : : Dashed curves: earlier results
& % 80 120 180 240 300 360 0 60 120 180 240 300 360 from Ref.[8].
0.04
7 ; 0.01f-
% 60 120 180 240 300 360 % 60 120 160 240 300 360
scattering angle &, (degrees)
working in a finite volume. Nevertheless, the method is not
£ i s B without its limitations. There are still practical lower limits to
' . . : the collision energies that can be treated, since the error in
0.25p g g\ g the computed amplitude will scale roughly inversely with the
0.2 ratio of the total energy to the value of the potential on the
- hypersphere used in the evaluation. With the present technol-
~ : ogy, it is currently not possible because of computational
ks &1 : limitations to perform calculations below about 1 eV total
a 0.05 gl R energy. For the calculations at 15.6 eV incident enégggV
g 0 ; : total energy, the surface integrals in E¢2.14 had to be
= g o =k Ae0 2N evaluated at hyperradii in excess of 30 The minimum
% hyperradii will increase as the collision energy approaches
g _ ; threshold.
‘§ e——140° Although there is a lower limit on the collision energy, we
5 B have not noticed any limits on the energy of an outgoing
g electron and we believe the formalism is capable of produc-
ing accurate amplitudes even when the energy of one elec-
tron is very close to either zero d. At higher collision
: energies the box-size requirements relax, but the number of

FIG. 6. Equal-energy sharing, coplanar TDCS for 17.6 eV inci-
dent energy withp, fixed. Experimental data were normalized to fit

GIO
scattering angle #, (degrees)

120 180 240

300

360

terms needed in the angular momentum expansion increases.
Collision energies above about 30 eV require more partial-
wave terms than one would generally consider practical in an
ab initio calculation. Thus, it is worth investigating whether
some sort of perturbative approximation to tﬂ'gz can be

calculations by Whelaret al. [11]. Solid curves: present results. used for highL. Finally, we wish to point out that the rear-
Dashed curves: earlier results from Rf].

rangement formalism is in no way connected to our exterior
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FIG. 7. Equal-energy sharing
TDCS at 15.6 eV incident energy
for various coplanar geometries.
Absolute  experimental  data
[11,22 have been multiplied by
0.5.
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