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Effect of quasiresonant dynamics on the predissociation of van der Waals molecules
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Rotational and vibrational distributions of zero-temperature collisional rate coefficients for atom-diatom
scattering are used together with effective range theory to obtain lifetimes for predissociation. High-order
indirect potential coupling in the quantum-mechanical calculation is interpreted using a simple classical picture
that describes the quasiresonant dynamics of atom-diatom collisions by the conservation of classical action.
The importance of closed channel thresholds in determining the structure of the distributions and the balance
between momentum gap and near-resonant effects is discussed.
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I. INTRODUCTION tional distributions could be a rotational rainbow phenom-
enon. This description requires that the rotational period of
The possibility to cool and trap molecul¢s—11] pro- the diatom be longer than the time required for the fragments
vides a unique opportunity to study collisions between atom40 separate.
and molecules at very low translational energit-16 and In the present work, we consider the opposite case where
may allow experimental detection of very narrow predisso-Lhe rotational period is short compared to the time required
ciation decay widthg13]. Vibrational predissociation will for the fragments to separate. For the most weakly bound
play an important role in the relaxation of vibrationally ex- State of the van der Waals complex, we find that the process
cited trapped molecules when the density of surrounding atof predissociation is controlled by the same classical dy-
oms is high and may be useful in determining Feshbach resdiamical quasiresonant transfer of energy that is found in ul-
nance parameters for ultracold atom-molecule collisiondracold atom-diatom collision$14]. To demonstrate this
[13]. Calculations have demonstrated that very efficient andinding, we calculate zero-temperature quenching rate coef-
specific rovibrational transitions occur in the limit of zero ficients for He collisions with K using the general purpose
temperaturdé14]. The dynamics that produce these so-callegscattering progranMoLSCAT [23] and the potential energy
quasiresonantransitions can be expected to influence thesurface of Muchnick and RussgR4]. Effective range theory
predissociation of van der Waals molecules. is used to relate the rate coefficients to the predissociation
The importance of near-resonant effects in vibrational andifetimes. Threshold behavior is explained using a perturba-
rotational predissociation of van der Waals molecules ha§ve description of the scattering matrix elements.
long been recognized 7—29. For a van der Waals molecule
consisting of an atom and a diatom, the internal energy of the
diatom is converted into translational energy of the frag-
ments. In pure vibrational predissociation where all of the The calculation of predissociation lifetimes of weak-
diatom’s vibrational energy is converted into translationalanisotropy van der Waals molecules using perturbation
energy, the predissociation widths are very small due to théneory has been the subject of several detailed investigations
large number of oscillations in the final-state continuum[20,21]. The studies concluded that perturbation theory cal-
wave function. This so-called “momentum gap” effect is re- culations could successfully model the qualitative features of
duced when some of the diatom’s vibrational energy is connumerically exact close-coupling results, but could not pro-
verted to rotational energy. A near-resonant process of thigide results that were quantitatively accurf2,21. The
kind generally requires a large change in the rotational quanreason was due to the difficulty in achieving an adequate
tum number of the diatom. If the van der Waals molecule hasepresentation of the bound state wave function and the ne-
weak anisotropy, the direct bound-continuum potential couglect of potential coupling between open channels. This can
pling is very small. In this case, the higher-order indirectbe understood by considering the simplest type of perturba-
potential coupling is controlling the predissociatip?l].  tive scheme which is often referred to as the space-fixed
However, a detailed understanding of the mechanism undedistortion (SFD) method. In the zeroth-order approximation,
lying the high-order indirect potential coupling has not beenthe wave functions are computed by neglecting the nondi-
given. agonal matrix elementg;; , and the decay process is calcu-
Typically, the balance between the momentum gap anghated using the standard rule
near resonant effects will produce an oscillatory rotational
distribution for the partial predissociation widths of van der
Waals molecules that have little or no internal angular mo- ri=> Ti,fZZWE g(f )U YiVirxsdr
mentum. It has been suggesféd] that the oscillatory rota- f f
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where x; and y; are the unperturbed radial functions and 9000
g(f) is the degree of degeneracy of the final state. If the
momentum transfer is large, then the final continuum wave

function will have many oscillations in the region of overlap, 8000 T
and the decay width will be small. In addition, the matrix
element(1) will be very sensitive to small variations of the 7000 | |

bound state wave function. Therefore a potential source ¢ g
error in perturbation theory is an inadequate representatio .°
of the bound state wave functig@1i].

The other major source of error in perturbation theory
comes from neglecting indirect potential couplif20,21].
As stated in the introduction, the largest partial widths are
typically found for final states for which the amount of trans-
ferred momentum is small. The direct bound-continuum po- 4000 » N .
tential coupling elements/;; that allow low-momentum o zfs N
transfer, however, arise from high-order terms in a Legendr B N
expansion of the anisotropy of the intermolecular potential 3000 |
These terms are very small for weak anisotropy van de
Waals molecules suggesting that the predissociation widt  9pgg ‘ ;
will be small unless there is a substantial contribution com- 0 10 20 30
ing from the indirect intermediate potential couplings. In this j
case, the perturbative expressiahprovides a poor approxi-
mation to the predissociation width due to its neglect of the FIG. 1. Zero-energy elastic scattering cross sections for
indirect coupling terms. It is possible to construct more so-*He+H,(v,j) as a function of the initial vibrational and rotational
phisticated perturbation theories such as the secular equatioantum numbers andj.
perturbation theory for the open channe&PTOQJ that are
more accurate than the SFD metj@@). At this stage, how- tering length approximation may be obtained by setting the
ever, the utility in using perturbation theory to gain a quali- effective range parametey; equal to zero in Eq(2), yield-
tative understanding of the physics of predissociation being
comes limited.

A numerically exact procedure for computing the predis- 1 i
sociation lifetimes is to solve a set of coupled channel equa- Tj _zwaﬁj T'Lno Ry (T). @
tions for energies below threshold. TBamatrix is then di-

agonalized and the eigenphase sum is differentiated withysicajly, the real part of the scattering length is much larger
respect to energy to obtain the resonance widths. This agraq the imaginary part. This allows,; to be obtained di-

proaph was take|ﬁ1.3] in order to estgblish the validity of rectly from the zero-energy elastic scattering cross section
multichannel effective range expansions for weakly bound

complexes. The inverse of the predissociation lifetime of the 0y =Am(a?+ B )~4ma’,. (5)
most weakly bound state of the van der Waals complex was v v Y
found to be well approximated HyL3]
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Figure 1 shows zero-energy elastic scattering cross sections
for *He+H,(v,j) as a function of the initial vibrational and
1 2a,r,| ional bersandj. The fi hows th
Flo 1 S%vi i —1!0im R, (T) rotational quantum numbersandj. The figure shows that
U2 ila,l? la,|? o a,; decreases afsis increased and the rate of decrease is
) greater aw is increased. Generally, the variation®f; with
j is slow enough that the predissociation lifetimes are con-

where trolled by the total quenching rate coefficielRg(T).
The multichannel effective range theory described above
4rh B, provides a link between the dynamics of quasiresof@m)
R,,J-(T)=E Rvj_,v/j,(T)z—UJ (3) scattering and the vibrational predissociation of weakly
v’ m bound complexes. We have shoyt¥] that the quenching

_ _ o rate coefficientR,;_.,/;(T) are strongly influenced by clas-
is the total quenching rate coefficient,; and g,; are the  sical dynamics in thd —0 limit. The general rule followed

real and imaginary parts of the scattering lengfh=a,; by quasiresonant vibration-rotatig@RVR) transitions is
—iB,;, andr,; is the effective range for the diatomic level

labeled by vibrational quantum number and rotational Al=njAj+n,Av=0, (6)
guantum numbey. It is assumed in this analysis that the

end-over-end angular momentum of the complex is zero andherel =n;j+n,v is the conserved action amg andn, are
the vibrational stretching quantum number is the largest possmall integers. When the vibrational and rotational motion
sible integer that allows the complex to be bound. The scatare in approximate low-order resonance, the condition
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FIG. 2. A scatter plot ofAj versusAv for v;=2, j;=8, andE
=10"° atomic units. The frequency ratio for this caseds/ o
~4.5 and there is no correlation betwe&n andAv.

nU/nJ-%wU/wj (7)
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units. The ratio of vibrational frequency to rotational fre-
quency is approximately equal to 4.5 for this case. Because
this rotational level is unable to satisfy conditior) there is

no correlation betweeAv andAj. Whenj =9, however, the
ratio of vibrational frequency to rotational frequency is ap-
proximately equal to 4 and there is strong correlation be-
tweenAv and Aj. This is shown in Fig. 3 along with the
straight line corresponding thj=—4Aw.

The correlation betweehv and Aj will persist in the
gquantum-mechanical calculations when there is enough en-
ergy that the quasiresonant channel is open. The conservation
of action therefore provides a qualitative understanding of
the mechanism underlying the high-order potential coupling
that governs predissociation. The momentum gap argument
is also explained by the classical analysis. Equati@hsnd
(7) yield

dH

dH
AEint:%AU‘F (7]

Aj=hw Av+hojAj~0 (8

which is the condition that the internal energy of the diatom
is approximately constant, or equivalently, that the momen-
tum gap is as small as possible.

QRVR energy transfer in atom-diatom collisions at high
energies has been described as a series of collisioh2gks
Each collisionette resembles a separate collision that occurs

also holds, wher@, andw; are the classical vibrational and when the rapidly rotating diatom is stretched to its outer
rotational frequencies of the diatom. In this case, essentialljurning point and is nearly collinear with the atom. Because
all of the classical trajectories will obey the quasiresonanthe molecules are fully stretched, collisionettes can occur for
rule (6) for a single ,,,n;) pair[25]. The classical behavior large impact parameters and produce large cross sections
will persist asT—0 if AvandAj are allowed to take on [25]. In between each collisionette, however, the interaction
noninteger valuegl4]. This is demonstrated in Figs. 2 and 3. potential decreases by several orders of magnitude. We have

Figure 2 shows a scatter plot &fv versusAj for an initial
rotational levelj=8 at a collision energy of 10 atomic
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FIG. 3. A scatter plot ofAj versusAv for v;=2, j;=9 andE
=10"° atomic units. The frequency ratio for this caseds/ o
~4 and there is strong correlation betwepandAv.

shown[14] that the collisionette picture needs to be modified
in the T—0 limit. The distinct collisionettes are replaced by

a strong modulation of the interaction potential at the char-
acteristic frequency of the quasiresonant transition. Whereas
the high-order potential coupling description is very compli-
cated and difficult to understand, the modulation of the time-
dependent potential provides a simplified picture of the dy-
namics. The interaction potential alternates between positive
and negative values and often binds the atom and diatom
together for several successive subcollisions. Figure 4 illus-
trates such a long-time classical collision. The number of
subcollisions depends on the choice of initial conditions.
Since each subcollision follows the quasiresonant rule sepa-
rately, the entire collision process does not depend on the
initial conditions and therefore obeys the quasiresonant rule.

IIl. RESULTS

Figures 5 and 6 show zero-temperature quenching rate
coefficients as a function of initial vibrational and rotational
guantum numbers andj. It was shown previouslj{14] that
rotational distributions like those shown in Figs. 5 and 6 had
classical analogs that were a direct result of the correlation
betweenAv and Aj described above. A major difference,
however, between the classical and quantum calculations
arises at ultracold temperatures because it is not possible to
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FIG. 4. A plot of the interaction potential versus time. The
modulation occurs at the characteristic frequency of the quasireso- FIG. 6. Quantum-mechanical calculations of the zero-
nant transition. Seven subcollisions are contained within the totalemperature rate coefficients fare+Ho(v,j) as a function of the
collision for this plot. Because each subcollision separately obey#litial vibrational and rotational quantum numberandj.
the quasiresonant rule, the total collision preserves the correlation
betweenAj andAv.
Av=1, Aj=—4 transitions(see Fig. 5 The v=2 curve
shows a similar structure whejp=7 which is due to the
have fractional changes in andj. Therefore many of the Ay=—1, Aj=4 quasiresonant transition. This symmetry is
quasiresonant channels are closed. Furthermore, when quagissing in thev=0 curve since\v=—1 transitions are not
tum transitions are energetically barely allowed, they areyjiowed. Thev=2 curve shows a second symmetric struc-
subject to threshold behavior. The threshold structure in th@re centered aboyjt=22. This structure is due to the qua-
rate coefficients will have a strong effect on the lifetimes.gjresonant\v=—1, Aj=2 andAv=1, Aj=—2 transitions
Using the results of Figs. 5 and 6, we computed predissocianat are energetically allowed wher 21 andj =23 but are
tion lifetimes for several vibrational levels as a functionj.of = forpidden whenj=22. Thev=0 curve shows a sharp de-
The results fon=0 andv=2 are shown in Fig. 7. For each - ease wherj=24 due to the opening of thAv=1, Aj
of the calculations, the scattering length approximation given. _ » quasiresonant channel. As before, the0 curve is
by Eq.(4) was used to compute the lifetimes. The effect of 5gymmetric due to inaccessiblev=—1 transitions. The
quasiresonant dynamics can be seen when 712 and 20 predissociation lifetimes for other vibrational levels are very

<J<25. Whenj=12 there is a sharp decrease in both thegimijar to the ones shown for=2. Generally, the largest
v=0 andv=2 lifetimes. This is due to strong quasiresonant
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FIG. 5. Quantum-mechanical calculations of the zero- FIG. 7. Quantum-mechanical calculations of the predissociation
temperature rate coefficients fide+H,(v,]) as a function of the lifetimes for “He---Hy(v,j) as a function of the initial rotational
initial vibrational and rotational quantum numbarandj. quantum numbey.
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lifetimes occur for quasiresonant channels that are energeti- uC 2i U 7
cally closed. Kit=77 gy 2F1(1,5:10:2kk; 1+0(k; /kp)].
In the vicinity of a threshold, the classical mechanics no h (11)
longer applies and it is desirable to find a simple description
that is fully quantum mechanical. Because perturbation
theory failed for bound-free transitions, we expect the samé&quation(11) shows that thé<-matrix element vanishes as
to be true for free-free transitions. Nevertheless, the suddelm?’2 for small k; [note that the hypergeometric function
decrease in the zero-temperature quenching rate coefficiepF,(1,5;10;2) is pure imaginary so thématrix element is
at values ofj near thresholdge.g., the sharp=3 feature reall. The inelastic scattering cross section therefore vanishes
shown in Fig. 3 may be understood qualitatively by consid- ask/ for smallk;, and we see that the effect of the long-
ering the Born approximation for the inelasiematrix ele-  range interaction is to remove two powers lgf from the
ment, threshold behavior produced by the short-range part of the
potential. Equatiorill) agrees with the result of NesdeX7]
5 . when u=1 for electron scattering. For ultracold atom-
Kij=— 25 \/k_kff i (kOV(r)j, (kr)r2dr,  (9)  diatom collisionsu=kf/2(e;— €r) + O(kf), wheree; and e
h o ! are the respective diatomic energies in the initial and final
channels. Therefore the zero-temperature rate coefficient is

wherek; andk; are the respective wave numbers &neind given by

I; are the respective orbital angular momenta in the initial
and final channels. For a short-range potential, the spherical
Bessel functions in the integrand of E§) may be expanded _ TS 0
in a power series. Th&-matrix element then behaves as lim Ry ,j(T)= T:O(kf)- (12
Ok A3 with 1;=0 for ultracold collisions. The o

zero-temperature rate coefficients are independeit ahd
the discussion of threshold behavior is given in terms of

ki. Forl{=2 andl;=4, the respectiv&k-matrix elements The actual momentum dependence —of the zero-

. 5/2 9/2 . | . temperature rate coefficient near threshold will depend on
vanish ad(_f andk;™ for smgll Ke. The 9|nelast|c scattering ¢ anisotropy of the potential energy surface. If the anisot-
cross sections therefore vr;_mlshlésandkf for smallk, and ropy is weak, then the coefficie in Eq. (11) will be very
we see sharp decreases in the zero-temperature rate coeffiall or could even be zero. In order to determine the
cients near the thresholds for forbidden transitions. k.-momentum dependence of thej=—4Awv rate coeffi-

The exactk; dependence of the cross sections may b&ients for He-H, we studied thev=1, =7 and v=3

modified for systems that possess a significant Iong-rangja:7 threshold regions by smoothly varying the mass of the

plote;ngial.h Fc_)r a valn der Wzals p(f)tentiaJ of tlhe_ fol\;mr)h helium atom. This is equivalent to varyitk@ in the limit that
=CIr® the integral(9) may be performed analytically. The k;— 0. The results are given in Figs. 8 and 9. For the initial

result is v=1, j=7 state we find that the zero-temperature rate coef-
ficients behave Iikek? for small k;. The good agreement
uC 2T (I +1i—4)! between this fit and the exact curve whignis less than 2

Kis= A1 indicates that the long-range part of the potential has a

YA ] | 1 Ti(k. li+1¢—3
AT 2L+ DI+ DE LGk T strong influence on the threshold behavior. For the initial

=3, ]=7 state, we find that the zero-temperature rate coef-

li+1i=3li+ 1+ 1520 ficients also behave likk{ for smallk;, but that it is neces-
sary to include an additiona])(kfll) term in order to obtain
good agreement with the exact curve. Therefore we conclude
that the long-range part of the potential has a weak influence
on the threshold behavior for this case.

Figures 8 and 9 also show that a sharp spike appears in
whereF; is the generalized hypergeometric function definedthe rate coefficients when the reduced massveeps below
by Appell [26]. The right-hand side of Eq(10) diverges 1.2 amu. This spike occurs when the most weakly bound
whenl;+1;=<3 due to the singularity of the potential at the state of the van der Waals complex approaches zero energy.
origin. When the full potential is taken into account, this These so-called zero-energy resonances have a strong influ-
unphysical singularity is removed and tKematrix element ence on both the elastic and inelastic scattering cross sec-
is unchanged from th@(k:iﬂ/zk'ffﬂlz) behavior that is due tions. Using the asymptotic analysis developed previously
to the short-range part of the potential. The right-hand side of13] we may show that the function
Eq. (10) is well behaved wher;+1;>3 and provides a
modification of theK-matrix element whertk; is small. For

% k: i+ 1/2k|ff + 1/2F2

2k, 2k
+2,2+2;

KTk K k) (10

the interesting quasiresonant cdge 0, |(=4, andk;<Kk;, foi(p)= ’B_ZJ (13)
Eg. (10) reduces to Qo
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FIG. 8. Quantum-mechanical calculation of the zero-
temperature rate coefficient for initial=1, j=7 making aAj=
—4Av transition(solid curve. The total quenching rate coefficient
(dotted curve decays exponentially with increasirkg on the left

side.of the Zero-energy resonance. Me=—44v tr.a.nsition Is the left side of the zero-energy resonance whieje= —2, Av=0 tran-
dominant transition whek; is greater than the position of the reso- sitions are dominant. Also shown are fitdashed curveand fit 2

hance a_nd théj=-2,Av=0 tr_a}nsmon is the dominant transition . (long dashed curyewhich are proportional tck?. An additional
whenk; is smaller than the position of the resonance. Also shown i erm proportional td™ has been included in fit 2
a fit (dashed curyewhich is proportional tck{ in agreement with P f '

Eq. (11).

FIG. 9. Quantum-mechanical calculation of the zero-
temperature rate coefficient for initial=3, j=7 making aA]j
= —4Av transition (solid curve. The total quenching rate coeffi-
cient (dotted curvg decays exponentially with increasitkg on the

the quasiresonanj=—4Av transition that is dominant.
is analytic in the vicinity of the zero-energy resonance. ThisThe predissociation lifetimes may be obtained from these
was confirmed by numerical tests which showed thgt rate coefficients using Eq2) as above. In this case, how-
x(u—pmo) "t and ﬁuj“(ﬂ«—p«o)fz for u near ug ever, the predissociation lifetimes do not exhibit exponential
=1.16 amu. dependence on the momentum gap because of the impor-

An interesting observation may be made from Figs. 8 andance of the indirect contributions.

9 regarding the nearly linear behavi@n the logarithmic
scale of the total quenching rate coefficient on the left side
of the zero-energy resonance. On the left side of the reso-
nance, the total quenching rate coefficient is dominated by It has been known for some tinj¢7-21 that a balance
theAj=—2, Av=0 transition. The energy gap for this tran- exists between momentum gap and near-resonant effects in
sition produces &; value that is much larger than those the vibrational predissociation of weakly bound complexes.
shown on the horizontal axis of the figufthe k; values It has also been shown that high-order indirect potential cou-
shown on the figure are for thaj=—4Av energy gap plings must be influencing the predissociatidi]. In the
Figures 8 and 9 show that when the quasiresonant transitigoresent work, we considered the special case where the van
is on the threshold of closing, the dominant quenching rateler Waals molecule is comprised of a vibrating diatom that is
coefficient tends to follow an exponential dependence withalso in a state of high rotation. For this case, we showed that
the momentum gap. Because the total quenching rate coeffihe process of predissociation for the most weakly bound
cient at zero temperature is inversely related to the predissstate of a van der Waals complex is controlled by the same
ciation lifetime of the most weakly bound stdsee Eq(2)], quasiresonant transfer of energy that is found in atom-diatom
this analysis would predict an exponential dependence on thepllisions whenever the quasiresonant channel is energeti-
momentum gap for predissociation. This is in agreementally open. The conservation of classical action provides an
with the well-known “exponential momentum gap law” understanding of the mechanism underlying the high-order
which may be derived using E¢l) and is a consequence of potential coupling. This is consistent with the vi¢28] that
the Franck-Condon overlap between the vibrational waveinderlying the quantum-mechanical atom-molecule scatter-
function of the bound complex and the continuum waveing is “a coarser graining rooted in the classical mechanics
function of the fragment§18,19. The exponential gap law of the collision.” The lifetimes are also strongly influenced
assumes that the transition is the result of a direct procesby the proximity of closed channel thresholds. We studied
On the right side of the zero-energy resonance, however, it ithe analytic structure of the threshold behavior and made

IV. CONCLUSION
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predictions that may be experimentally tested with the use of ACKNOWLEDGMENTS

trapped molecules. Since the effective range theory that was

used to relate the collisional rate coefficients to the predisso- The research of R.C.F. was supported by National Science
ciation lifetimes applies only to weakly bound states, it will Foundation Grant No. PHY-0070920. The research of A.D.
be interesting to see whether quasiresonant behavior is alseas supported by the Chemical Sciences, Geosciences and
found in the more deeply bound states of the van der WaalBiosciences Division of the Office of Basic Energy Sciences,
complex. We leave this as a subject for future investigationOffice of Science, U.S. Department of Energy.

[1] J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, and J.[14] R. C. Forrey, N. Balakrishnan, A. Dalgarno, M. Haggerty, and

M. Doyle, Nature(London 395, 148(1998; J. Doyle and B. E. J. Heller, Phys. Rev. Let82, 2657(1999.
Friedrich, Chem. Br35, 31 (1999. [15] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev.

[2] J. T. Bahns, P. L. Gould, and W. C. Stwalley, Adv. At., Mol., Mod. Phys.71, 1 (1999.
Opt. Phys.42, 171(2000. [16] J. L. Bohn, Phys. Rev. £203 2701(2000.

[3] A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou- [17] M. S. Child and C. J. Ashton, Faraday Discuss. Chem. 63c.
Seeuws, and P. Pillet, Phys. Rev. L&, 4402(1998. 307 (1977.

[4] A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. [18] J. A. Beswick and J. Jortner, J. Chem. PH§8&.2277(1978;
Stwalley, and P. L. Gould, Phys. Rev. Ledd, 246 (2000; A. Adv. Chem. Phys47, 363(1981).
N. Nikolov, E. E. Eyler, X. Wang, H. Wang, J. Li, W. C. [19] G. E. Ewing, Chem. Phy9, 253(1978; J. Chem. Phys71,
Stwalley, and P. L. Gouldhid. 82, 703(1999. 3143(1979; 72, 2096(1980.

[5] T. Takekoshi, B. M. Patterson, and R. J. Knize, Phys. Rev. A20] R. J. LeRoy, G. C. Corey, and J. M. Hutson, Faraday Discuss.
59, R5(1999; Phys. Rev. Lett81, 5109(1998. Chem. Soc73, 339(1982.

[6] H. L. Bethlem, G. Berden, and G. Meijer, Phys. Rev. L88§. [21] J. M. Hutson, C. J. Ashton, and R. J. LeRoy, J. Phys. Chem.
1558(1999; H. L. Bethlem, G. Berden, A. A. van Roij, F. M. 87, 2713(1983.
H. Crompvoets, and G. Meijeibid. 84, 5744(1999. [22] T. Takayanagi and Y. Kurosaki, Chem. Phys. L&t86 35

[7]1 3. A. Maddi, T. P. Dinneen, and H. Gould, Phys. Rev6@ (1998; T. Takayanagi and Y. Kurosaki, J. Chem. Ph¥69,
3882(1999. 8929(1998.

[8] M. Gupta and D. Herschbach, J. Phys. Chenml08 10670 [23] J. M. Hutson and S. GreeROLSCAT computer code, version
(1999. 14 (1994, distributed by Collaborative Computational Project

[9] J. M. Gerton, D. V. Strekalov, I. D. Prodan, and R. G. Hulet, No. 6 of the Engineering and Physical Sciences Research
Bull. Am. Phys. Soc45, 13 (2000. Council (UK).

[10] C. J. Williams and P. S. Julienne, Scier&7, 986 (2000. [24] P. Muchnick and A. Russek, J. Chem. Phi80, 4336(1994).

[11] R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. Heinzen[25] B. Stewart, P. D. Magill, T. P. Scott, J. Derouard, and D. E.
Science287, 1016(2000. Pritchard, Phys. Rev. Let60, 282 (1988; P. D. Magill, B.

[12] N. Balakrishnan, R. C. Forrey, and A. Dalgarno, Phys. Rev. Stewart, N. Smith, and D. E. Pritchartjd. 60, 1943(1988.
Lett. 80, 3224 (1998; Chem. Phys. Lett280, 1 (1997; N. [26] A. Erdelyi, Higher Transcendental FunctiondicGraw-Hill,
Balakrishnan, A. Dalgarno, and R. C. Forrey, J. Chem. Phys. New York, 1953, \Vol. 1.

113 621 (2000. [27] R. K. Nesbet,Variational Methods in Electron-Atom Scatter-
[13] R. C. Forrey, V. Kharchenko, N. Balakrishnan, and A. Dal- ing Theory(Plenum Press, New York, 1980

garno, Phys. Rev. A9, 1 (1999; R. C. Forrey, N. Balakrish- [28] A. J. McCaffery and R. J. Wilson, Phys. Rev. Left7, 48

nan, V. Kharchenko, and A. Dalgarnibjd. 58, R2645(1998. (1996.

022706-7



