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Effect of quasiresonant dynamics on the predissociation of van der Waals molecules
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Rotational and vibrational distributions of zero-temperature collisional rate coefficients for atom-diatom
scattering are used together with effective range theory to obtain lifetimes for predissociation. High-order
indirect potential coupling in the quantum-mechanical calculation is interpreted using a simple classical picture
that describes the quasiresonant dynamics of atom-diatom collisions by the conservation of classical action.
The importance of closed channel thresholds in determining the structure of the distributions and the balance
between momentum gap and near-resonant effects is discussed.
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I. INTRODUCTION

The possibility to cool and trap molecules@1–11# pro-
vides a unique opportunity to study collisions between ato
and molecules at very low translational energies@12–16# and
may allow experimental detection of very narrow predis
ciation decay widths@13#. Vibrational predissociation will
play an important role in the relaxation of vibrationally e
cited trapped molecules when the density of surrounding
oms is high and may be useful in determining Feshbach r
nance parameters for ultracold atom-molecule collisio
@13#. Calculations have demonstrated that very efficient a
specific rovibrational transitions occur in the limit of ze
temperature@14#. The dynamics that produce these so-cal
quasiresonanttransitions can be expected to influence t
predissociation of van der Waals molecules.

The importance of near-resonant effects in vibrational a
rotational predissociation of van der Waals molecules
long been recognized@17–22#. For a van der Waals molecul
consisting of an atom and a diatom, the internal energy of
diatom is converted into translational energy of the fra
ments. In pure vibrational predissociation where all of t
diatom’s vibrational energy is converted into translation
energy, the predissociation widths are very small due to
large number of oscillations in the final-state continuu
wave function. This so-called ‘‘momentum gap’’ effect is r
duced when some of the diatom’s vibrational energy is c
verted to rotational energy. A near-resonant process of
kind generally requires a large change in the rotational qu
tum number of the diatom. If the van der Waals molecule
weak anisotropy, the direct bound-continuum potential c
pling is very small. In this case, the higher-order indire
potential coupling is controlling the predissociation@21#.
However, a detailed understanding of the mechanism un
lying the high-order indirect potential coupling has not be
given.

Typically, the balance between the momentum gap
near resonant effects will produce an oscillatory rotatio
distribution for the partial predissociation widths of van d
Waals molecules that have little or no internal angular m
mentum. It has been suggested@21# that the oscillatory rota-
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tional distributions could be a rotational rainbow pheno
enon. This description requires that the rotational period
the diatom be longer than the time required for the fragme
to separate.

In the present work, we consider the opposite case wh
the rotational period is short compared to the time requi
for the fragments to separate. For the most weakly bo
state of the van der Waals complex, we find that the proc
of predissociation is controlled by the same classical
namical quasiresonant transfer of energy that is found in
tracold atom-diatom collisions@14#. To demonstrate this
finding, we calculate zero-temperature quenching rate c
ficients for He collisions with H2 using the general purpos
scattering programMOLSCAT @23# and the potential energy
surface of Muchnick and Russek@24#. Effective range theory
is used to relate the rate coefficients to the predissocia
lifetimes. Threshold behavior is explained using a pertur
tive description of the scattering matrix elements.

II. THEORY

The calculation of predissociation lifetimes of wea
anisotropy van der Waals molecules using perturbat
theory has been the subject of several detailed investigat
@20,21#. The studies concluded that perturbation theory c
culations could successfully model the qualitative features
numerically exact close-coupling results, but could not p
vide results that were quantitatively accurate@20,21#. The
reason was due to the difficulty in achieving an adequ
representation of the bound state wave function and the
glect of potential coupling between open channels. This
be understood by considering the simplest type of pertur
tive scheme which is often referred to as the space-fi
distortion~SFD! method. In the zeroth-order approximatio
the wave functions are computed by neglecting the non
agonal matrix elementsVi f , and the decay process is calc
lated using the standard rule

G i5(
f

G i , f52p(
f

g~ f !U E x iVi f x fdtU2

, ~1!
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where x i and x f are the unperturbed radial functions a
g( f ) is the degree of degeneracy of the final state. If
momentum transfer is large, then the final continuum wa
function will have many oscillations in the region of overla
and the decay width will be small. In addition, the matr
element~1! will be very sensitive to small variations of th
bound state wave function. Therefore a potential source
error in perturbation theory is an inadequate representa
of the bound state wave function@21#.

The other major source of error in perturbation theo
comes from neglecting indirect potential coupling@20,21#.
As stated in the introduction, the largest partial widths
typically found for final states for which the amount of tran
ferred momentum is small. The direct bound-continuum
tential coupling elementsVi f that allow low-momentum
transfer, however, arise from high-order terms in a Legen
expansion of the anisotropy of the intermolecular potent
These terms are very small for weak anisotropy van
Waals molecules suggesting that the predissociation w
will be small unless there is a substantial contribution co
ing from the indirect intermediate potential couplings. In th
case, the perturbative expression~1! provides a poor approxi
mation to the predissociation width due to its neglect of
indirect coupling terms. It is possible to construct more
phisticated perturbation theories such as the secular equ
perturbation theory for the open channels~SEPTOC! that are
more accurate than the SFD method@20#. At this stage, how-
ever, the utility in using perturbation theory to gain a qua
tative understanding of the physics of predissociation
comes limited.

A numerically exact procedure for computing the pred
sociation lifetimes is to solve a set of coupled channel eq
tions for energies below threshold. TheS matrix is then di-
agonalized and the eigenphase sum is differentiated
respect to energy to obtain the resonance widths. This
proach was taken@13# in order to establish the validity o
multichannel effective range expansions for weakly bou
complexes. The inverse of the predissociation lifetime of
most weakly bound state of the van der Waals complex
found to be well approximated by@13#

ty j
215

1

2pr y j uay j u2 H F12
2ay j r y j

uay j u2 G21/2

21J lim
T→0

Ry j~T!,

~2!

where

Ry j~T!5(
y8 j 8

Ry j→y8 j 8~T!5
4p\by j

m
~3!

is the total quenching rate coefficient,ay j and by j are the
real and imaginary parts of the scattering lengthay j5ay j
2 iby j , andr y j is the effective range for the diatomic lev
labeled by vibrational quantum numbery and rotational
quantum numberj. It is assumed in this analysis that th
end-over-end angular momentum of the complex is zero
the vibrational stretching quantum number is the largest p
sible integer that allows the complex to be bound. The s
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tering length approximation may be obtained by setting
effective range parameterr y j equal to zero in Eq.~2!, yield-
ing

ty j
215

1

2pay j
3 lim

T→0
Ry j~T!. ~4!

Typically, the real part of the scattering length is much larg
than the imaginary part. This allowsay j to be obtained di-
rectly from the zero-energy elastic scattering cross sectio

sy j→y j54p~ay j
2 1by j

2 !'4pay j
2 . ~5!

Figure 1 shows zero-energy elastic scattering cross sec
for 4He1H2(y, j ) as a function of the initial vibrational and
rotational quantum numbersy and j. The figure shows tha
ay j decreases asj is increased and the rate of decrease
greater asy is increased. Generally, the variation ofay j with
j is slow enough that the predissociation lifetimes are c
trolled by the total quenching rate coefficientsRy j (T).

The multichannel effective range theory described ab
provides a link between the dynamics of quasiresonant~QR!
scattering and the vibrational predissociation of wea
bound complexes. We have shown@14# that the quenching
rate coefficientsRy j→v8 j 8(T) are strongly influenced by clas
sical dynamics in theT→0 limit. The general rule followed
by quasiresonant vibration-rotation~QRVR! transitions is

DI 5njD j1nyDy50, ~6!

whereI 5nj j 1nyy is the conserved action andnj andny are
small integers. When the vibrational and rotational moti
are in approximate low-order resonance, the condition

FIG. 1. Zero-energy elastic scattering cross sections
4He1H2(y, j ) as a function of the initial vibrational and rotationa
quantum numbersy and j.
6-2
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EFFECT OF QUASIRESONANT DYNAMICS ON THE . . . PHYSICAL REVIEW A 64 022706
ny /nj'vy /v j ~7!

also holds, wherevy andv j are the classical vibrational an
rotational frequencies of the diatom. In this case, essent
all of the classical trajectories will obey the quasireson
rule ~6! for a single (ny ,nj ) pair @25#. The classical behavio
will persist asT→0 if Dy and D j are allowed to take on
noninteger values@14#. This is demonstrated in Figs. 2 and
Figure 2 shows a scatter plot ofDy versusD j for an initial
rotational level j 58 at a collision energy of 1025 atomic

FIG. 2. A scatter plot ofD j versusDy for y i52, j i58, andE
51025 atomic units. The frequency ratio for this case isvy /v j

'4.5 and there is no correlation betweenD j andDy.

FIG. 3. A scatter plot ofD j versusDy for y i52, j i59 andE
51025 atomic units. The frequency ratio for this case isvy /v j

'4 and there is strong correlation betweenD j andDy.
02270
ly
t

units. The ratio of vibrational frequency to rotational fr
quency is approximately equal to 4.5 for this case. Beca
this rotational level is unable to satisfy condition~7! there is
no correlation betweenDy andD j . When j 59, however, the
ratio of vibrational frequency to rotational frequency is a
proximately equal to 4 and there is strong correlation
tweenDy and D j . This is shown in Fig. 3 along with the
straight line corresponding toD j 524Dy.

The correlation betweenDy and D j will persist in the
quantum-mechanical calculations when there is enough
ergy that the quasiresonant channel is open. The conserv
of action therefore provides a qualitative understanding
the mechanism underlying the high-order potential coupl
that governs predissociation. The momentum gap argum
is also explained by the classical analysis. Equations~6! and
~7! yield

DEint5
]H

]y
Dy1

]H

] j
D j 5\vyDy1\v jD j '0 ~8!

which is the condition that the internal energy of the diato
is approximately constant, or equivalently, that the mom
tum gap is as small as possible.

QRVR energy transfer in atom-diatom collisions at hi
energies has been described as a series of collisionettes@25#.
Each collisionette resembles a separate collision that oc
when the rapidly rotating diatom is stretched to its ou
turning point and is nearly collinear with the atom. Becau
the molecules are fully stretched, collisionettes can occur
large impact parameters and produce large cross sec
@25#. In between each collisionette, however, the interact
potential decreases by several orders of magnitude. We h
shown@14# that the collisionette picture needs to be modifi
in the T→0 limit. The distinct collisionettes are replaced b
a strong modulation of the interaction potential at the ch
acteristic frequency of the quasiresonant transition. Wher
the high-order potential coupling description is very comp
cated and difficult to understand, the modulation of the tim
dependent potential provides a simplified picture of the
namics. The interaction potential alternates between pos
and negative values and often binds the atom and dia
together for several successive subcollisions. Figure 4 il
trates such a long-time classical collision. The number
subcollisions depends on the choice of initial condition
Since each subcollision follows the quasiresonant rule se
rately, the entire collision process does not depend on
initial conditions and therefore obeys the quasiresonant r

III. RESULTS

Figures 5 and 6 show zero-temperature quenching
coefficients as a function of initial vibrational and rotation
quantum numbersy and j. It was shown previously@14# that
rotational distributions like those shown in Figs. 5 and 6 h
classical analogs that were a direct result of the correla
betweenDy and D j described above. A major difference
however, between the classical and quantum calculat
arises at ultracold temperatures because it is not possib
6-3
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R. C. FORREYet al. PHYSICAL REVIEW A 64 022706
have fractional changes iny and j. Therefore many of the
quasiresonant channels are closed. Furthermore, when q
tum transitions are energetically barely allowed, they
subject to threshold behavior. The threshold structure in
rate coefficients will have a strong effect on the lifetime
Using the results of Figs. 5 and 6, we computed predisso
tion lifetimes for several vibrational levels as a function ofj.
The results fory50 andy52 are shown in Fig. 7. For eac
of the calculations, the scattering length approximation giv
by Eq. ~4! was used to compute the lifetimes. The effect
quasiresonant dynamics can be seen when 7, j ,12 and 20
, j ,25. When j 512 there is a sharp decrease in both
y50 andy52 lifetimes. This is due to strong quasiresona

FIG. 4. A plot of the interaction potential versus time. Th
modulation occurs at the characteristic frequency of the quasir
nant transition. Seven subcollisions are contained within the t
collision for this plot. Because each subcollision separately ob
the quasiresonant rule, the total collision preserves the correla
betweenD j andDy.

FIG. 5. Quantum-mechanical calculations of the ze
temperature rate coefficients for4He1H2(y, j ) as a function of the
initial vibrational and rotational quantum numbersy and j.
02270
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Dy51, D j 524 transitions~see Fig. 5!. The y52 curve
shows a similar structure whenj 57 which is due to the
Dy521, D j 54 quasiresonant transition. This symmetry
missing in they50 curve sinceDy521 transitions are not
allowed. They52 curve shows a second symmetric stru
ture centered aboutj 522. This structure is due to the qua
siresonantDy521, D j 52 andDy51, D j 522 transitions
that are energetically allowed whenj 521 andj 523 but are
forbidden whenj 522. They50 curve shows a sharp de
crease whenj 524 due to the opening of theDy51, D j
522 quasiresonant channel. As before, they50 curve is
asymmetric due to inaccessibleDy521 transitions. The
predissociation lifetimes for other vibrational levels are ve
similar to the ones shown fory52. Generally, the larges
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FIG. 6. Quantum-mechanical calculations of the ze
temperature rate coefficients for4He1H2(y, j ) as a function of the
initial vibrational and rotational quantum numbersy and j.

FIG. 7. Quantum-mechanical calculations of the predissocia
lifetimes for 4He¯ H2(y, j ) as a function of the initial rotationa
quantum numberj.
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EFFECT OF QUASIRESONANT DYNAMICS ON THE . . . PHYSICAL REVIEW A 64 022706
lifetimes occur for quasiresonant channels that are ener
cally closed.

In the vicinity of a threshold, the classical mechanics
longer applies and it is desirable to find a simple descript
that is fully quantum mechanical. Because perturbat
theory failed for bound-free transitions, we expect the sa
to be true for free-free transitions. Nevertheless, the sud
decrease in the zero-temperature quenching rate coeffi
at values ofj near thresholds~e.g., the sharpy53 feature
shown in Fig. 5! may be understood qualitatively by consi
ering the Born approximation for the inelasticK-matrix ele-
ment,

Ki f 52
2m

\2 AkikfE
0

`

j l i
~kir !V~r ! j l f

~kfr !r 2dr, ~9!

whereki andkf are the respective wave numbers andl i and
l f are the respective orbital angular momenta in the ini
and final channels. For a short-range potential, the sphe
Bessel functions in the integrand of Eq.~9! may be expanded
in a power series. TheK-matrix element then behaves a
O(ki

l i11/2kf
l f11/2) with l i50 for ultracold collisions. The

zero-temperature rate coefficients are independent ofki and
the discussion of threshold behavior is given in terms
kf . For l f52 and l f54, the respectiveK-matrix elements
vanish askf

5/2 andkf
9/2 for small kf . The inelastic scattering

cross sections therefore vanish askf
5 andkf

9 for smallkf , and
we see sharp decreases in the zero-temperature rate c
cients near the thresholds for forbidden transitions.

The exactkf dependence of the cross sections may
modified for systems that possess a significant long-ra
potential. For a van der Waals potential of the formV(r )
5C/r 6, the integral~9! may be performed analytically. Th
result is

Ki f 52
mC

\2

2l i1 l f11l i ! l f !

~2l i11!! ~2l f11!!

~ l i1 l f24!!

@ i ~ki1kf !#
l i1 l f23

3ki
l i11/2kf

l f11/2F2S l i1 l f23;l i11,l f11;2l i

12,2l f12;
2ki

ki1kf
,

2kf

ki1kf
D , ~10!

whereF2 is the generalized hypergeometric function defin
by Appell @26#. The right-hand side of Eq.~10! diverges
when l i1 l f<3 due to the singularity of the potential at th
origin. When the full potential is taken into account, th
unphysical singularity is removed and theK-matrix element
is unchanged from theO(ki

l i11/2kf
l f11/2) behavior that is due

to the short-range part of the potential. The right-hand sid
Eq. ~10! is well behaved whenl i1 l f.3 and provides a
modification of theK-matrix element whenkf is small. For
the interesting quasiresonant casel i50, l f54, andki!kf ,
Eq. ~10! reduces to
02270
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Ki f 5
mC

\2

2i

9!! 2F1~1,5;10;2!ki
1/2kf

7/2@11O~ki /kf !#.

~11!

Equation~11! shows that theK-matrix element vanishes a
kf

7/2 for small kf @note that the hypergeometric functio

2F1(1,5;10;2) is pure imaginary so theK-matrix element is
real#. The inelastic scattering cross section therefore vanis
as kf

7 for small kf , and we see that the effect of the lon
range interaction is to remove two powers ofkf from the
threshold behavior produced by the short-range part of
potential. Equation~11! agrees with the result of Nesbet@27#
when m51 for electron scattering. For ultracold atom
diatom collisions,m5kf

2/2(e i2e f)1O(ki
2), wheree i ande f

are the respective diatomic energies in the initial and fi
channels. Therefore the zero-temperature rate coefficien
given by

lim
T→0

Ry j→y8 j 8~T!5
kisy j→v8 j 8

m
5O~kf

9!. ~12!

The actual momentum dependence of the ze
temperature rate coefficient near threshold will depend
the anisotropy of the potential energy surface. If the anis
ropy is weak, then the coefficientC in Eq. ~11! will be very
small or could even be zero. In order to determine
kf-momentum dependence of theD j 524Dy rate coeffi-
cients for He-H2, we studied they51, j 57 and y53,
j 57 threshold regions by smoothly varying the mass of
helium atom. This is equivalent to varyingkf

2 in the limit that
ki→0. The results are given in Figs. 8 and 9. For the init
y51, j 57 state we find that the zero-temperature rate co
ficients behave likekf

9 for small kf . The good agreemen
between this fit and the exact curve whenkf is less than 2
Å21 indicates that the long-range part of the potential ha
strong influence on the threshold behavior. For the initiay
53, j 57 state, we find that the zero-temperature rate co
ficients also behave likekf

9 for smallkf , but that it is neces-
sary to include an additionalO(kf

11) term in order to obtain
good agreement with the exact curve. Therefore we concl
that the long-range part of the potential has a weak influe
on the threshold behavior for this case.

Figures 8 and 9 also show that a sharp spike appear
the rate coefficients when the reduced massm sweeps below
1.2 amu. This spike occurs when the most weakly bou
state of the van der Waals complex approaches zero en
These so-called zero-energy resonances have a strong
ence on both the elastic and inelastic scattering cross
tions. Using the asymptotic analysis developed previou
@13# we may show that the function

f y j~m!5
by j

ay j
2 ~13!
6-5
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is analytic in the vicinity of the zero-energy resonance. T
was confirmed by numerical tests which showed thatay j
}(m2m0)21 and by j}(m2m0)22 for m near m0
51.16 amu.

An interesting observation may be made from Figs. 8 a
9 regarding the nearly linear behavior~on the logarithmic
scale! of the total quenching rate coefficient on the left si
of the zero-energy resonance. On the left side of the re
nance, the total quenching rate coefficient is dominated
theD j 522, Dy50 transition. The energy gap for this tran
sition produces akf value that is much larger than thos
shown on the horizontal axis of the figure~the kf values
shown on the figure are for theD j 524Dy energy gap!.
Figures 8 and 9 show that when the quasiresonant trans
is on the threshold of closing, the dominant quenching r
coefficient tends to follow an exponential dependence w
the momentum gap. Because the total quenching rate co
cient at zero temperature is inversely related to the predi
ciation lifetime of the most weakly bound state@see Eq.~2!#,
this analysis would predict an exponential dependence on
momentum gap for predissociation. This is in agreem
with the well-known ‘‘exponential momentum gap law
which may be derived using Eq.~1! and is a consequence o
the Franck-Condon overlap between the vibrational w
function of the bound complex and the continuum wa
function of the fragments@18,19#. The exponential gap law
assumes that the transition is the result of a direct proc
On the right side of the zero-energy resonance, however,

FIG. 8. Quantum-mechanical calculation of the ze
temperature rate coefficient for initialy51, j 57 making aD j 5
24Dy transition~solid curve!. The total quenching rate coefficien
~dotted curve! decays exponentially with increasingkf on the left
side of the zero-energy resonance. TheD j 524Dy transition is the
dominant transition whenkf is greater than the position of the res
nance and theD j 522, Dy50 transition is the dominant transitio
whenkf is smaller than the position of the resonance. Also show
a fit ~dashed curve! which is proportional tokf

9 in agreement with
Eq. ~11!.
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the quasiresonantD j 524Dy transition that is dominant
The predissociation lifetimes may be obtained from the
rate coefficients using Eq.~2! as above. In this case, how
ever, the predissociation lifetimes do not exhibit exponen
dependence on the momentum gap because of the im
tance of the indirect contributions.

IV. CONCLUSION

It has been known for some time@17–21# that a balance
exists between momentum gap and near-resonant effec
the vibrational predissociation of weakly bound complex
It has also been shown that high-order indirect potential c
plings must be influencing the predissociation@21#. In the
present work, we considered the special case where the
der Waals molecule is comprised of a vibrating diatom tha
also in a state of high rotation. For this case, we showed
the process of predissociation for the most weakly bou
state of a van der Waals complex is controlled by the sa
quasiresonant transfer of energy that is found in atom-dia
collisions whenever the quasiresonant channel is energ
cally open. The conservation of classical action provides
understanding of the mechanism underlying the high-or
potential coupling. This is consistent with the view@28# that
underlying the quantum-mechanical atom-molecule scat
ing is ‘‘a coarser graining rooted in the classical mechan
of the collision.’’ The lifetimes are also strongly influence
by the proximity of closed channel thresholds. We stud
the analytic structure of the threshold behavior and m

-

is

FIG. 9. Quantum-mechanical calculation of the zer
temperature rate coefficient for initialy53, j 57 making aD j
524Dy transition ~solid curve!. The total quenching rate coeffi
cient ~dotted curve! decays exponentially with increasingkf on the
left side of the zero-energy resonance whereD j 522, Dy50 tran-
sitions are dominant. Also shown are fit 1~dashed curve! and fit 2
~long dashed curve! which are proportional tokf

9. An additional
term proportional tokf

11 has been included in fit 2.
6-6
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predictions that may be experimentally tested with the us
trapped molecules. Since the effective range theory that
used to relate the collisional rate coefficients to the predis
ciation lifetimes applies only to weakly bound states, it w
be interesting to see whether quasiresonant behavior is
found in the more deeply bound states of the van der W
complex. We leave this as a subject for future investigati
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