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Variational calculation of positronium-helium-atom scattering length
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We present a variational basis-set calculational scheme for elastic scattering of positronium atom by helium
atom inS wave and apply it to the calculation of the scattering length. Highly correlated trial functions with
appropriate symmetry are used in this calculation. We report numerical result for the scattering length in atomic
unit: (1.060.1)a0. This corresponds to a zero-energy elastic cross section of (4.060.8)pa0

2.
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I. INTRODUCTION

Recent successful measurements of ortho positron
scattering~Ps! cross sections by H2, N2, He, Ne, Ar, C4H10,
and C5H12 @1–7# have spurred renewed theoretical activity
this subject@8–13#. Of these, the Ps-He system is of spec
interest as it is the simplest system in which there are exp
mental results for total cross section@2–4# and pickoff
quenching rate@5,14#. The experimental results for partia
and differential cross sections for this system should
available soon@1#. A complete understanding of this syste
is necessary before a venture to more complex targets.

The pioneering calculations in this system using the st
exchange approximation were performed by Barker a
Bransden@15,16# and by Fraser and Kraidy@17,18#. There
have also beenR-matrix @8#, close-coupling~CC! @11,12# and
model-potential@19# calculations for Ps-He scattering. Mor
recently, there has been successful calculation of Ps sca
ing by H @20#, He @21–23#, Ne @23#, Ar @23#, and H2 @24#
using a regularized model exchange potential in a coup
channel formulation.

However, there is considerable discrepancy among
different theoretical Ps-He cross sections at zero ene
which we discuss below. The static-exchange calculation
Sarkar and Ghosh@11#, and by Blackwoodet al. @8# yielded
14.38pa0

2 ~at 0.068 eV!, and 14.58pa0
2 ~at 0 eV!, respec-

tively, for the elastic cross section. The inclusion of mo
states of Ps in the CC@12# andR-matrix @8# calculations does
not change these results substantially. The pioneering st
exchange calculations by Barker and Bransden@15# yielded
13.04 pa0

2 and by Fraser@17# yielded 14.2pa0
2 for zero-

energy Ps-He cross section. These results are in good a
ment with each other. However, the model potential calcu
tion by Drachman and Houston@19# yielded 7.73pa0

2 and by
this author@22# yielded 3.34pa0

2 for the zero-energy Ps-H
cross section. So there is considerable discrepancy in
results of different theoretical calculation of low-ener
Ps-He elastic scattering.

On the experimental front, there have been conflict
results for the low-energy Ps-He elastic cross section by
gashimaet al. @4#, who measured a cross section of (
64)pa0

2 at 0.15 eV, by Colemanet al. @6#, who reported
9pa0

2 at 0 eV, by Canteret al. @5#, who found 8.47pa0
2 at 0

eV, and by Skalseyet al. @3#, who measured (2.660.5)pa0
2
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at 0.9 eV. It is unlikely that these findings could be consist
with each other.

The results for the total cross section of Ps scattering
tained from the coupled-channel calculation employing
model potential@21–23# are in agreement with experimen
of Refs.@1–3# at low energies. For Ps-He, this model, whi
it agrees@21–23# with the experimental total cross section
@1,3# in the energy range 0 to 70 eV, reproduces@25# suc-
cessfully the experimental pickoff quenching rate@5,14#. All
other calculations could not reproduce the general trend
cross sections of Ps-He scattering in the energy range 0 t
eV and yielded a much too small quenching rate at ther
energies@15,17,25#. However, the very low-energy elasti
cross sections of the model-potential calculation@21–23# are
at variance with the experiments of Refs.@4–6#.

Pointing at the discrepancy above among different th
retical and experimental studies, Blackwoodet al. @8# called
for a ‘‘fully fledged calculation’’ to resolve the situation
Here, we present a variational basis-set calculational sch
for low-energy Ps-He scattering inS wave below the lowest
Ps-excitation threshold at 5.1 eV. Using this method, we
port numerical results for the scattering length of Ps-He
ing a one-parameter uncorrelated He ground-state w
function @26#.

We present the formulation for the variational basis-
calculation in Sec. II, the numerical result for Ps-He scatt
ing length in Sec. III, and a summary in Sec. IV.

II. FORMULATION

Because of the existence of three identical fermions~elec-
trons! in the Ps-He system, one needs to antisymmetrize
full wave function. The position vectors of the electro
2r1 of Ps, andr2 andr3 of He 2 and positron (x) measured
with respect to the massive alpha particle at the origin
shown in Fig. 1. In this configuration, the wave function f
elastic scattering in the electronic doublet state of Ps-H
taken as

ck
1~1,2,3!5f~2,3!h~1!Fk~1,2,3!x~1,2,3!, ~1!

wherek is the incident Ps momentum and

x~1,2,3!5a~1!
1

A2
@a~2!b~3!2b~2!a~3!#, ~2!
©2001 The American Physical Society02-1
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represents the doublet wave function of Ps-He and whera
denotes the spin-up state andb denotes down andh(1) de-
notes the Ps wave function of electron 1. The He grou
state wave functionf(2,3) and the scattering functio
Fk(1,2,3) are symmetric under the exchange of electron
and 3. The spin functionx(1,2,3) is antisymmetric under th
same exchange. The full antisymmetrization operator for
three electrons is (12P122P13)(12P23) where Pi j is an
operator for exchange in both space and spin of electroi
and j. As the scattering wave function~1! above is already
antisymmetrized with respect to electrons 2 and 3, the op
tor (12P23) in the antisymmetrizer is redundant and t
relevant antisymmetrizer in this case isA[(12P122P13).
Hence, the fully antisymmetric stateck

A of Ps-He scattering
is given by

ck
A5Ack

1

5f~2,3!h~1!Fk~1,2,3!x~1,2,3!

2f~3,1!h~2!Fk~2,3,1!x~2,3,1!

2f~1,2!h~3!Fk~3,1,2!x~3,1,2!. ~3!

The projection of the Schro¨dinger equation (H2E)uck
A&

50 on the doublet statex(1,2,3) is

^x~1,2,3!u~H2E!uck
A&5~H2E!uf~2,3!h~1!Fk~1,2,3!

2f~3,1!h~2!Fk~2,3,1!&50,

~4!

with H the full Ps-He Hamiltonian. The incident Ps ener
E56.8k2 eV. Using the identitieŝ x(1,2,3)ux(1,2,3)&51
and^x(1,2,3)ux(2,3,1)&5^x(1,2,3)ux(3,1,2)&51/2, we see
that the last two terms on the right-hand side of Eq.~3! give
equivalent contribution that are combined in Eq.~4!, which
is rewritten as

~H2E!~12P12!uf~2,3!h~1!Fk~1,2,3!&50. ~5!

Hence, after the spin projection to the doublet state the
fective antisymmetrizer to be used on state~1! is A1[(1

FIG. 1. Different position vectors for the Ps-He system w
respect to the massive alpha particle at the origin in arrangeme
with electrons 2 and 3 forming He and one forming Ps. The arro
on the electrons indicate the orientations of spin up and down.
02270
-
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2P12). We shall use this antisymmetrizer in the followin
and suppress the spin functions.

The full Ps-He HamiltonianH can be broken in the con
venient form as follows:H5H11V1 whereH1 includes the
full kinetic energy and intracluster interaction of He and
for the arrangement shown in Fig. 1 andV1 is the sum of the
intercluster interaction between He and Ps in the same c
figuration:

V15F2

x
2

2

r 1
1

1

r 12
2

1

r2
1

1

r 13
2

1

r3
G . ~6!

We employ the position vectorssj5(x1r j )/2, r j5x2r j ,
r i j 5r i2r j , i , j 51,2,3, iÞ j .

The fully antisymmetric state satisfies the Lippman
Schwinger equation@27#

uck
1&5ufk

1&1G1M1uck
1&, ~7!

M15V1A11~E2H1!~12A1![A1V11~12A1!~E2H1!,
~8!

where the channel Green’s function is given byG1[(E
1 i02H1)21 and the incident waveufk

1& satisfies (E
2H1)ufk

1&50. We are using atomic units~au! in which a0

5e5m5\51, wheree ~m! is the electronic charge~mass!
anda0 the Bohr radius.

The properly symmetrized transition matrix for elas
scattering is defined by ^fk

1uTAufk
1&5^fk

1uV1uck
A&

5^fk
1uV1A 1uck

1&5^ck
1uA1V1ufk

1& @27#. A basis-set calcula-
tional scheme for the transition matrix can be obtained fr
the following expression@28#

^fk
1uTAufk

1&5^ck
1uA1V1ufk

1&1^fk
1uA1V1uck

1&

2^ck
1uA1V12M1G1A1V1uck

1&. ~9!

Using Eq.~7!, it can be verified that Eq.~9! is an identity if
exact-scattering wave functionsck

1 are used. If approximate
wave functions are used, expression~9! is stationary with
respect to small variations ofuck

1& but not of^ck
1u. This one-

sided variational property emerges because of the lack
symmetry of the formulation in the presence of explicit a
tisymmetrization operatorA1. However, this variational
property can be used to formulate a basis-set calculatio
scheme with the following trial functions@28#

uck
1& t5 (

n51

N

anu f n&, t^ck
1u5 (

m51

N

bm^ f mu, ~10!

where the suffixt denotes trial andf n ,n51,2, . . . ,N, are the
basis functions. Substituting Eq.~10! into Eq. ~9! and using
this variational property with respect touck

1& we obtain@28#

t^ck
1u5 (

m51

N

^fk
1uA1V1u f n&Dnm^ f mu, ~11!

~D21!mn5^ f muA1V12@A1V11~12A1!~E2H1!#

3G1A1V1u f n&. ~12!

t 1
s

2-2
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Using the variational form~11! and definition^fk
1uTAufk

1&
5^ck

1uA1V1ufk
1& we obtain the following basis-set calcula

tional scheme for the transition matrix

^fk
1uTAufk

1& t5 (
m,n51

N

^fk
1uA1V1u f n&Dnm^ f muA1V1ufk

1&.

~13!

Equations~12! and ~13! are also valid in partial-wave form
In the presentS-wave calculation, the basis functions a

taken in the following form

f m~r2 ,r3 ,r1 ,s1!5w~r3!gm~r2 ,r1 ,s1!, ~14!

gm~r2 ,r1 ,s1!5w~r2!h~r1!

3e2dmr 22amr12bms12gm(r21r 12)2mm(x1r 1)

3
sin~ks1!

ks1
, ~15!

wheredm ,am ,bm ,gm , andmm are nonlinear variational pa
rameters. The ground-state wave function of the He atom
taken to be f(r2 ,r3)5w(r2)w(r3) with w(r )5l3/2exp
(2lr)/Ap and l51.6875 @26# and h(r)5exp
(20.5r)/A8p represent the Ps(1s) wave function. For elas-
tic scattering, the direct Born amplitude is zero and the
change correlation dominates scattering. To be consis
with this, the direct terms in the form factors^ f muA1V1ufk

1&
and ^fk

1uA1V1u f n& are zero with the above choice of corr
lations in the basis functions viagm andmm . This property
follows as the above function is invariant with respect to
interchange ofx and r1, whereas the remaining part of th
integrand in the direct terms changes sign under this tra
formation. In Ps-He elastic scattering, the electron 2 of H
the active electron undergoing exchange with the electro
of Ps, whereas the electron 3 of He is a passive spectato
this calculation, we include in Eq.~15! correlation between
electrons 1 and 2. Consequently, we deal with integrals
three vector variables –r1 ,r2, and x. If we also include
correlation involving electron 3 we shall have to deal w
integration in four-vector variables, which is beyond t
scope of the present study. However, we believe that a m
ingful calculation can be performed only with correlatio
between the active electrons 1 and 2. Hence, to avoid c
plication, we ignore correlation involving electron 3, whic
is expected to lead to correction over the present study.

In theSwave at zero energy, sin(ks1)/(ks1)51 in Eq.~15!;
also, ufp

1&5w(r2)w(r3)h(r1)sin(ps1)/(ps1). The useful ma-
trix elements of the present approach are explicitly written
@28#

^fp
1uA1V1u f n&52

1

2pE w~r1!w~r3!h~r2!
sin~ps2!

ps2
@V1#

3 f n~r2 ,r3 ,r1 ,s1!dr2dr3dr1ds1 , ~16!
02270
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52
1

2pE w~r1!h~r2!
sin~ps2!

ps2
@V1#

3gn~r2 ,r1 ,s1!dr2dr1ds1 , ~17!

^ f muA1V1ufp
1&52

1

2pE gm~r1 ,r2 ,s2!@V1#

3w~r2!h~r1!
sin~ps1!

ps1
dr2dr1ds1 ,

~18!

^ f muA1V1u f n&52
1

4pE gm~r1 ,r2 ,s2!@V1#

3gn~r2 ,r1 ,s1!dr2dr1ds1 , ~19!

with

V15Fh~x!2h~r 1!1
1

r 12
2

1

r2
G ,

~20!

h~x!5
1

x
1

exp~22lx!

x
1lexp~22lx!,

^ f muM1G1A1V1u f n&'2
2

pE0

`

dp^ f muA1V1ufp
1&

3^fp
1uA1V1u f n&, ~21!

where the so-called off-shell term (12A1)(E2H1) has
been neglected for numerical simplification in this calcu
tion. This term is expected to contribute to refinement o
the present calculation. In this convention, the on-sh
t-matrix element at zero energy is the scattering lengtha
5^f0

1uTAuf0
1&.

All the matrix elements above can be evaluated by
method presented in Refs.@29#. We describe it in the follow-
ing for ^fp

1uA1V1u f n& of Eq. ~16!. By a transformation of
variables from (r2 ,r1 ,s1) to (s1 ,s2 ,x) with Jacobian 26 and
separating the radial and angular integrations, the form fa
~16! is given by

^fp
1uA1V1u f n&52

26l3

16p3E0

`

ds2s2
2sin~ps2!

ps2
E

0

`

ds1s1
2

3e2bns1E
0

`

dxx2e2mnxE e2(ar11br1/2)

3e2(cr21dr2/2)e2gnr 12@V1#dŝ1dŝ2dx̂,

~22!

wherea5l1mn , b52an11, c5l1dn , andd52gn11.
Recalling that r j52sj2x, r1252(s12s2), r j52(x2sj ), j
51,2, we employ the following expansions of the expone
tials in Eq.~22!
2-3
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e2au2s2xu2bux2su5
4p

sx (
lm

Gl
(a,b)~s,x!Ylm* ~ ŝ!Ylm~ x̂!,

~23!

h~ u2s2xu!e2au2s2xu2bux2su

5
4p

sx (
lm

Jl
(a,b)~s,x!Ylm* ~ ŝ!Ylm~ x̂!, ~24!

e2au2s2xu2bux2su

us2xu
5

4p

sx (
lm

Kl
(a,b)~s,x!Ylm* ~ ŝ!Ylm~ x̂!,

~25!
th

d
1

ra
u

02270
e2aus12s2u
us12s2u

5
4p

s1s2
(
lm

Al
(a)~s1 ,s2!Ylm* ~ ŝ1!Ylm~ ŝ2!, ~26!

e2aus12s2u5
4p

s1s2
(
lm

Bl
(a)~s1 ,s2!Ylm* ~ ŝ1!Ylm~ ŝ2!, ~27!

where theYlm’s are the usual spherical harmonics. Usi
Eqs.~23!–~27! in Eq. ~22! we get
ly. The
^fp
1uA1V1u f n&5228l3E

0

`

ds1e2bns1E
0

`

ds2

sin~ps2!

ps2
E

0

`

dxe2mnx(
l 50

L

~2l 11!Fh~x!Gl
(a,b)~s1 ,x!Gl

(c,d)~s2 ,x!Bl
(2gn)

~s1 ,s2!

2Jl
(a,b)~s1 ,x!Gl

(c,d)~s2 ,x!Bl
(2gn)

~s1 ,s2!1
1

2
Gl

(a,b)~s1 ,x!Gl
(c,d)~s2 ,x!Al

(2gn)
~s1 ,s2!

2
1

2
Gl

(a,b)~s1 ,x!Kl
(c,d)~s2 ,x!Bl

(2gn)
~s1 ,s2!G , ~28!

where thel sum is truncated atl 5L. This procedure avoids complicated angular integrations involvings1 , s2, andx. The
matrix element takes a simple form requiring straightforward numerical computation of certain radial integrals on
functionsGl , Jl , Kl , etc., are easily calculated using Eqs.~23!–~27!:

Gl
(a,b)~s,x!5

sx

2 E
21

1

duPl~u!e2au2s2xu2bux2su, ~29!

wherePl(u) is the usual Legendre polynomial andu is the cosine of the angle betweens andx. The integrals~18! and ~19!
can be evaluated similarly. For example,

^ f muA1V1u f n&5227l3E
0

`

ds1e2bns1E
0

`

ds2e2bms2E
0

`

dxe2(mn1mm)x(
l 50

L

~2l 11!

3Fh~x!Gl
(e, f )~s1 ,x!Gl

(g,h)~s2 ,x!Bl
(2gmn)~s1 ,s2!2Jl

(e, f )~s1 ,x!Gl
(g,h)~s2 ,x!Bl

(2gmn)~s1 ,s2!

1
1

2
Gl

(e, f )~s1 ,x!Gl
(g,h)~s2 ,x!Al

(2gmn)~s1 ,s2!2
1

2
Gl

(e, f )~s1 ,x!Kl
(g,h)~s2 ,x!Bl

(2gmn)~s1 ,s2!G , ~30!
nu-

The

r-

q.
not

hod
ate
on,
ters
ive
wheree5l1dm1mn , f 52an12gm11, g5l1dn1mm ,
h52am12gn11, andgmn5gm1gn .

III. NUMERICAL RESULT

We tested the convergence of the integrals by varying
number of integration points in thex, s1, ands2 integrals in
Eqs. ~28! and ~30! and theu integral in Eq. ~29!. The x
integration was relatively easy and 20 Gauss-Legen
quadrature points appropriately distributed between 0 and
were enough for convergence. In the evaluation of integ
of type ~29!, 40 Gauss-Legendre quadrature points were s
e

re
6

ls
f-

ficient for adequate convergence. The convergence in the
merical integration overs1 and s2 was achieved with 300
Gauss-Legendre quadrature points between 0 and 12.
maximum value ofl in the sum in Eqs.~28! and ~30!, L, is
taken to be 7, which is sufficient for obtaining the conve
gence with the partial-wave expansions~23!–~27!.

We find that a judicial choice of the parameters in E
~15! is needed for convergence. The present method does
provide a bound on the result. Consequently, the met
could lead to a wrong scattering length if an inappropri
~incomplete! basis set is chosen. After some experimentati
we find that for good convergence, the nonlinear parame
dn andan should be taken to have both positive and negat
2-4
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values andbn should have progressively increasing valu
till about 1.5. If no care is taken in choosing the paramete
a large number of functions could be necessary for obtain
convergence. The results reported in this paper are obta
with the following parameters for the functionsf n ,n
51, . . .,14: $dn ,an ,bn ,gn ,mn%[$20.5,20.25,0.3,0.01,
0.02%, $20.7,20.25,0.5,0.04,0.02%, $20.7,20.25,0.7,
0.03,0.06%, $20.4,20.1,0.6,0.2,0.2%, $20.2,0.1,0.8,
0.2,0.2%, $0.4,20.2,0.6,0.3,0.3%, $20.2,20.1,0.7,0.4,0.3%,
$0.3,0.2,0.8,0.3,0.4%, $0.2,0.2,1,0.4,0.4%, $0.3,0.2,1.2,
0.5,0.5%, $20.5,0.2,1.3,0.6,0.6%, $20.2,0.1,1.4,0.7,0.7%,
$0.3,0,1.5,0.8,0.8%, $20.2,20.1,1.6,0.9,0.9%. By employing
a suitably chosen set of the parameters, we have kept
number of functions to a minimum.

In Table I, we show the convergence pattern of the pres
calculation with respect to the number of partial wavesL and
basis functionsN used in the calculation. The convergence
satisfactory considering that we are dealing with a com
cated five-body problem. However, as the present calcula
does not produce a bound on the result, the convergen
not monotonic with increasingN. The final result of the
present calculation is that forN514 andL57: a51.02 a.u.
Although it is difficult to provide a quantitative measure
convergence, from the fluctuation of this result for largeN
andL we believe the error in our result to be less than 10
so that the final Ps-He scattering length is taken asa5(1.0
60.1) a.u. The results for largeN andL reported in Table I
all lie in this domain.

The maximum number of functions (N514) used in this
calculation is also pretty small, compared to those used
different Kohn-type variational calculations for electro
hydrogen (N556) @30#, positron-hydrogen (N<286) @31#,
and positron-helium (N<502) @32# scattering. Because o
the explicit appearance of the Green’s function, the pres
basis-set approach is similar to the Schwinger variatio
method. Using the Schwinger method, convergent results
electron-hydrogen@33# and positron-hydrogen@34# scatter-
ing have been obtained with a relatively small basis setN

TABLE I. Ps-He scattering length in~a.u.! for differentL andN.

N L50 L52 L53 L54 L55 L56 L57

1 2.056 1.867 1.782 1.721 1.681 1.655 1.63
3 2.418 21.662 28.016 4.151 3.061 2.839 2.93
5 213.653 1.563 1.234 1.128 1.135 1.168 1.19
6 0.712 0.982 0.782 0.637 0.650 0.769 0.87
7 3.372 0.983 0.792 0.694 0.727 0.824 0.91
8 21.657 1.124 0.944 0.877 0.907 0.971 1.02
9 6.283 0.976 0.832 0.801 0.841 0.897 0.94

10 1.332 1.123 0.941 0.897 0.929 0.981 1.0
11 1.225 1.112 0.945 0.886 0.909 0.963 1.0
12 0.756 1.468 0.995 0.918 0.931 0.964 0.9
13 1.229 1.197 1.008 0.944 0.970 1.028 1.0
14 1.061 1.249 1.060 0.980 0.983 1.026 1.0
02270
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~N;10). These suggest a more rapid convergence in th
problems with a Schwinger-type method.

IV. SUMMARY AND DISCUSSION

To summarize, we have formulated a basis-set calc
tional scheme forS-wave Ps-He elastic scattering below th
lowest inelastic threshold using a variational expression
the transition matrix. We illustrate the method numerica
by calculating the scattering length in the electronic doub
state: a51.060.1 a.u. This corresponds to a zero-ener
cross section of (4.060.8)pa0

2 in reasonable agreement wit
a model calculation by this author (3.34pa0

2) @22# and the
experiment of Skalseyet al. @(2.660.5)pa0

2 at 0.9 eV# @3#.
This calculation, as well as our previous studies of Ps-
scattering using a model exchange potential@21,23#, possibly
consolidates the experimental result of Skalseyet al. How-
ever, these low-energy Ps-He elastic-scattering cross sec
are in disagreement with other experiments by Nagash
et al. @(1364)pa0

2 at 0.15 eV# @4#, by Canter et al.
(8.47pa0

2) @5#, and by Colemanet al. (9pa0
2) @6#, as well as

with conventional static-exchange,R-matrix, and close-
coupling calculations of Refs.@8,11,12,15,17# (;14pa0

2)
and a model potential calculation of Ref.@19# (7.73pa0

2).
As the effective interaction for elastic scattering betwe

Ps and He is repulsive in nature, a smaller scattering len
as obtained in this paper and in Refs.@21,22# would imply a
weaker effective Ps-He interaction. This would allow the
atom to come closer to He and would lead@25# to a large
pickoff quenching rate and a large1Zeff (;0.11) in agree-
ment with experiment@5,14#. The conventional close
coupling @12#, R-matrix @8# and static-exchange@11,15–17#
models yielded a much too large scattering length co
sponding to a stronger repulsion between Ps and He. Co
quently, these models led to a much too small1Zeff
(;0.04) @15–17,25# in disagreement with experiment@5,14#.
This is addressed in detail in Ref.@25#, where we established
a correlation between the different scattering lengths and
corresponding1Zeff . This correlation suggests that a sma
Ps-He scattering length as in this paper is consistent with
large experimental1Zeff .

Although we have used a simple wave function for He
this complex five-body calculation, we do not believe th
the use of a more refined He wave function would subst
tially change our findings and conclusions. However, ind
pendent calculations and accurate experiments at low e
gies are welcome for a satisfactory resolution of th
controversy.
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