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Variational calculation of positronium-helium-atom scattering length
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We present a variational basis-set calculational scheme for elastic scattering of positronium atom by helium
atom inSwave and apply it to the calculation of the scattering length. Highly correlated trial functions with
appropriate symmetry are used in this calculation. We report numerical result for the scattering length in atomic
unit: (1.0=0.1)ay. This corresponds to a zero-energy elastic cross section ot()ﬂ,&)wag.

DOI: 10.1103/PhysRevA.64.022702 PACS nuntber34.90:+q, 36.10.Dr

[. INTRODUCTION at 0.9 eV. It is unlikely that these findings could be consistent
with each other.

Recent successful measurements of ortho positronium The results for the total cross section of Ps scattering ob-
scattering(Ps cross sections by 5 N,, He, Ne, Ar, GHy,, tained from the coupled-channel calculation employing the
and GH,, [1-7] have spurred renewed theoretical activity in model potentia[21-23 are in agreement with experiments
this subjec{8—13. Of these, the Ps-He system is of specialOf Refs.[1-3] at low energies. For Ps-He, this model, while
interest as it is the simplest system in which there are experft 2grees{21-23 with the experimental total cross sections
mental results for total cross sectid@—4] and pickoff 1.3l in the energy range O to 70 eV, reproduges] suc-
quenching ratd5,14. The experimental results for partial c€SSfully the experimental pickoff quenching riel4]. All
and differential cross sections for this system should bé)ther calcglanons could not re_pro<_juce the general trend of
available soorj1]. A complete understanding of this system cross sections of Ps-He scattering in the energy range 0t 70
is necessary before a venture to more complex targets. ev an.d y'fldfg; m:_J'Ch too sm:ll quenclhmg rate at tlher_mal

The pioneering calculations in this system using the stati energies[15,17,23, However, the very low-energy elastic

T ross sections of the model-potential calculafiph—23 are
exchange approximation were performed by Barker an

) t variance with the experiments of Reffd—6].
Bransden[15,1§ and by Fraser and Kraidjl7,18. There Pointing at the discrepancy above among different theo-

have also beeR-matrix[8], close-couplindCC) [11,13and  (efical and experimental studies, Blackwoeial. [8] called

model-potentia[19] calculations for Ps-He scattering. More o, g “fully fledged calculation” to resolve the situation.

recently, there has been successful calculation of Ps scattgfzre, we present a variational basis-set calculational scheme

ing by H [20], He [21-23, Ne [23], Ar [23], and K [24]  for low-energy Ps-He scattering Bwave below the lowest

using a regularized model exchange potential in a coupledPs-excitation threshold at 5.1 eV. Using this method, we re-

channel formulation. port numerical results for the scattering length of Ps-He us-
However, there is considerable discrepancy among thiéng a one-parameter uncorrelated He ground-state wave

different theoretical Ps-He cross sections at zero energyunction[26].

which we discuss below. The static-exchange calculation by We present the formulation for the variational basis-set

Sarkar and GhosL1], and by Blackwoockt al.[8] yielded  calculation in Sec. Il, the numerical result for Ps-He scatter-

14.387a3 (at 0.068 eV, and 14.583a3 (at 0 e\), respec- ing length in Sec. Ill, and a summary in Sec. IV.

tively, for the elastic cross section. The inclusion of more

states of Ps in the C[12] andR-matrix[8] calculations does Il. FORMULATION

not change these results substantially. The pioneering static-

exchange calculations by Barker and Brans ielded _ . .
g y HEs y trong in the Ps-He system, one needs to antisymmetrize the

13.04 7a3 and by Frasef17] yielded 14.2ra3 for zero- . .
. . full wave function. The position vectors of the electrons
energy Ps-He cross section. These results are in good agree; ¢ ps and', andr of He — and positron §) measured
. . 1 y

ment with each other. However, th? model poter21t|al CaICUIai/vith respect to the massive alpha particle at the origin are
tion by Drachman and HOUSt(EElg] yielded 7.73rag and by ghown in Fig. 1. In this configuration, the wave function for
this author{22] yielded 3.34raj for the zero-energy Ps-He elastic scattering in the electronic doublet state of Ps-He is
cross section. So there is considerable discrepancy in thaken as
results of different theoretical calculation of low-energy
Ps-He elastic scattering. 1 1,2,3= (2,3 n(1)F(1,2,3 x(1,2,3), (1)

On the experimental front, there have been conflicting i ¢ 7 3 X
results for the low-energy Ps-He elastic cross section by Na\/'vherek is the incident Ps momentum and
gashimaet al. [4], who measured a cross section of (13
+4)ma at 0.15 eV, by Colemart al. [6], who reported 1
97ra3 at 0 eV, by Canteet al.[5], who found 8.4%a3 at 0 1.2.3)= a(1)—[a(2) B(3)— B(2) a(3) @)
eV, and by Skalsegt al. [3], who measured (2:60.5)7aj x(1,23=a(l) \/E[ (2)B(3)=A(2)a(3)].

Because of the existence of three identical fermi@hsc-
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e (2) —P45). We shall use this antisymmetrizer in the following

12 and suppress the spin functions.
7

The full Ps-He HamiltoniaH can be broken in the con-
venient form as followsH =H;+V; whereH; includes the
full kinetic energy and intracluster interaction of He and Ps
for the arrangement shown in Fig. 1 avd is the sum of the
intercluster interaction between He and Ps in the same con-
figuration:

_ 2 2 N 1 1 N 1 1 ®
e (3) Yxory o ri opa otz opsl

FIG. 1. Different position vectors for the Ps-He system with We employ the position vectors = (X+r1,)/2, pj=Xx—r
respect to the massive alpha particle at the origin in arrangement g =y, — ry, 1,j=1,2,3,i#]j.

with electrons 2 and 3 forming He and one forming Ps. The arrows * The fully antisymmetric state satisfies the Lippmann-
on the electrons indicate the orientations of spin up and down. Schwinger equatiofi27]

i

represents the doublet wave function of Ps-He and where |y =] pi) + G1Mq| ¥, (7)
denotes the spin-up state agddenotes down angj(1) de-

notes the Ps wave function of electron 1. The He ground-M;=VA;+(E—H)(1-A)=AV+(1-A))(E—Hy),
state wave function$(2,3) and the scattering function (8)
F«(1,2,3) are symmetric under the exchange of electrons 2 , S o
and 3. The spin functiog(1,2,3) is antisymmetric under the Where theﬁ lchannel Greten-s function is lglven_ G,Az(E
same exchange. The full antisymmetrization operator for théL'O_H%) and the incident v.vave1.¢>k> satisfies £
three electrons is (2P~ P13 (1—P,3) where P is an —Hy)|¢i)=0. We are using atomic unit@u in which a,
operator for exchange in both space and spin of electrons=&=mM=%=1, wheree (m) is the electronic chargemass
andj. As the scattering wave functiofl) above is already @ndao the Bohr radius. N _ _
antisymmetrized with respect to electrons 2 and 3, the opera- The properly symmetrized transition matrix for elastic
tor (1— P, in the antisymmetrizer is redundant and thescattering is defined by (¢l T ¢ic)=(bidl Val ¥

relevant antisymmetrizer in this caseds=(1— P~ P1a).  ={ bl VA1 i) = (il A1Va| &) [27]. A basis-set calcula-
Hence, the fully antisymmetric staﬂa:‘ of Ps-He scattering tional scheme for the transition matrix can be obtained from
is given by the following expressiof28]
W= Ay (Al T i) = (Ui ArVal i)+ il ArVal v
= (23 9(DF(1.23x(1,23 ANV = MG AN ). ()
— (3, 7(2)F(2,3,D)x(2,3,) Using Eq.(7), it can be verified that Eq9) is an identity if
exact-scattering wave functionfi are used. If approximate
— (1,2 7(3)F(3,1,2x(3,1,2. (3)  wave functions are used, expressi@ is stationary with

o - _ y respect to small variations ofi) but not of( . This one-
The projection of the Schdinger equationi—E)[#i)  sided variational property emerges because of the lack of

=0 on the doublet statg(1,2,3) is symmetry of the formulation in the presence of explicit an-
y tisymmetrization operator4,. However, this variational
(X(1,23|(H=B)[¢i)=(H-E)|[#(2,3 n(1)F(1,2,3 property can be used to formulate a basis-set calculational

scheme with the following trial function28]
—¢(3,D)7(2)F(2,3,1))=0,
k ) N

N
@ =3 alf, (=3 balfal. (10

with H the full Ps-He Hamiltonian. The incident Ps energy

E=6.8? eV. Using the identitieg x(1,2,3)x(1,2,3)=1  where the suffix denotes trial and,,,n=1,2,... N, are the
and(x(1,2,3)x(2,3,1))=(x(1,2,3) x(3,1,2))=1/2, we see  basis functions. Substituting E¢L0) into Eq.(9) and using
that the last two terms on the right-hand side of B).give  this variational property with respect tgi) we obtain[28]
equivalent contribution that are combined in E4), which
is rewritten as N

(vl = 2 (Bl AValfo) Do . (1
(H=E)(1-P1p)| (23 7(1)F(1,2,3)=0.  (5) "

D™ Hmn={(fmlA1V1i—[ AV +(1— A (E—H
Hence, after the spin projection to the doublet state the ef- (D™ D= frnl ArVa = [AV2 +( 1 V]
fective antisymmetrizer to be used on stéte is A;=(1 X G A V| ). (12
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Using the variational form(11) and definition( ¢p|T| #i) 1 sin(ps,)
= (| A1V1| &%) we obtain the following basis-set calcula- == EJ' @(ry) ﬂ(Pz)W[Vl]
tional scheme for the transition matrix
X gn(rz,p1,8)drodp,ds;, 7

N
(e T4 ¢&>t=m;:1 (i AV4 | f ) D Frnl A1V | 1)

1
(fml ALVi| )=~ ﬁf Im(r1,p2,)[ V1]
(13
—Si P dr,dp,d
Equations(12) and (13) are also valid in partial-wave form. X(rz2)n(p1) ps, Cr2dpids
In the presenB-wave calculation, the basis functions are

taken in the following form (18)

1
fm(r2,rs3,p1,8)=¢(r3)gm(r2,p1,81), (14 <fm|A1V1|fn>=_EJ Im(r1,02,9)[ V1]

X ] 3 d d d y 19
Am(r2,p1,81)=¢(rz) n(p1) On(r2,p1,1)dr2dpsds, (19

X @~ Oml 2~ @mp1~ BmS1~ Ymp2+ 112 —#m(X+11) with
ks (153 V)= h(x)—h<r1>+r—12—5},
(20)
wheredy,, @m,Bm, ¥m, andu, are nonlinear variational pa- 1 exp(—2\Xx)
rameters. The ground-state wave function of the He atom is h(x)=+ X +Aexp(—2rx),
taken to be ¢(r,,rz)=e(r)e(rs) with o(r)=x%%exp
(- )7 and A=1.6875 [26] and n(p)=exp 2 (u
(—0.50)/ /87 represent the Psg) wave function. For elas- (FnIM1G 1A V| )~ — ;J dp(fm|A1V1|¢>F1,>
tic scattering, the direct Born amplitude is zero and the ex- 0
change correlation dominates scattering. To be consistent X( L AV, (21)
p L

with this, the direct terms in the form factot,|.A; V.| ¢i)

and( | A1Vy| ) are zero with the above choice of corre- \yhere the so-called off-shell term (14;)(E—H,) has
lations in the basis functions vig, and uy,. This property  peen neglected for numerical simplification in this calcula-
follows as the above function is invariant with respect to thetion, This term is expected to contribute to refinement over
interchange ok andr,, whereas the remaining part of the the present calculation. In this convention, the on-shell
integrand in the direct terms changes sign under this trang=matrix element at zero energy is the scattering length:
formation. In Ps-He elastic scattering, the electron 2 of He is— ¢ y1 74| 41y,

the active electron undergoing exchange with the electron 1 Al the matrix elements above can be evaluated by a

of Ps, whereas the electron 3 of He is a passive spectator. ljethod presented in Ref®9]. We describe it in the follow-
this calculation, we include in Eq15) correlation between ing for (2|A,V4|f,) of Eq. (16). By a transformation of
b n . .

electrons 1 and 2. Consequently, we deal with integrals in . ; -
. ' . variables from €,,p1,5,) to (s;,S,,x) with Jacobian 2 and
three vector variables +,,r,, and x. If we also include (2,p1,%) 10 ($1,%%)

s ; ... separating the radial and angular integrations, the form factor
correlation involving electron 3 we shall have to deal with P g g 9

integration in four-vector variables, which is beyond the(16) 's given by

scope of the present study. However, we believe that a mean- 2673 (= : .

ingful calculation can be performed only with correlation 41 4 v/ | )= — A J dszszs'”(psﬂf ds.s?

between the active electrons 1 and 2. Hence, to avoid com- P~ - 1" 1673J)o 2 ps, Jo MH

plication, we ignore correlation involving electron 3, which

is expected to lead to correction over the present study. « @ Bns1 J “dxxze, X J e~ (ary+bpy/2)
In the Swave at zero energy, skg)/(ks))=1 in Eq.(15); 0

also, | ¢)=(r2) ¢(r3) n(pa)sines)/(ps). The useful ma-

trix elements of the present approach are explicitly written as x e~ ezt dezDe™ M Vv, ]ds; ds,dX,
[28] (22)
N 1 sSin(ps,) wherea=\+u,, b=2a,+1, c=A+6,, andd=2y,+1.
(Bpl AVyfo)=— ﬁj @(ry)e(ra) ﬂ(Pz)W[Vﬂ Recalling thatr;=2s—X, 11,=2(8,—- %), p;=2(X—5),]

=1,2, we employ the following expansions of the exponen-
X fn(rs,rs3,p1,5)drodrsdp,ds;, (16)  tialsin EQ.(22)
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e-ds% 4

4 ~ ~ - -
e a2 = S G (5,0 V() Yim(X), —os 2 A1) Yin(5) Yim(S2), (26)

Isi—s| S5 Tm
(23
h(|25_x|)e—a\25—x\—b\x—s|
am (ab) . : “als g AT (@ % (S S
:_E I (8, X) Y m(S)Yim(X), (24 € |:_2 B (51,52) Yim(81) Yim(S2), (27)
sX $1S2 ‘Im

e—a\Zs—x\—b\x—s| A

- (a,b) * (a Y . . .
= Sx % KiZ2(8,X) Yim(S) Yim(X), where theY,,,’s are the usual spherical harmonics. Using

(25) Egs.(23)-(27) in Eq. (22) we get

sin(ps,) (= .
dxe #n* 21+1
pPs, 0 20( )

h(x)G®P(s1,%)GED(s,, B (sy,5,)

(bpl AVl fn) = _28)‘3J'0 dsle*ﬁnsljo ds,

1
=3 (510G (5, X)BI 7 (51,5) 5 G(* (51, G{* (5, A (51,5))

1

2
5 GI*(51, 0K (5, B (51,55

, (28

where thel sum is truncated dt=L. This procedure avoids complicated angular integrations involgjngs,, andx. The
matrix element takes a simple form requiring straightforward numerical computation of certain radial integrals only. The
functionsG,, J,, K,, etc., are easily calculated using E(3)—(27):

SX (1
G,(a'b)(s,x):?f duP(u)e—a/2s—xI-blx=s (29)
-1

whereP,(u) is the usual Legendre polynomial ands the cosine of the angle betwesmandx. The integralg18) and(19)
can be evaluated similarly. For example,

L

(Frnl AV | o) = —27>\3L dsle‘ﬁnslfo olsze—ﬁmSzf0 dxe‘(”n+“m)"|§() (21+1)

X

h(x)G{D(s1,%)G{OM(s,,x)BZ ™ (s,,5,) — I (5,,%) G0N (5,,)BP "™V (54 ,5,)

1 1
+EGI(e'f)(Sl ,X)Gfg'h)(sz ,X)AI(Zan)(Sl 1S2) — §G|(e'f)(51 ,X)ng’h)(sz ,X)szymn)(sl 1S2) |, (30

wheree=\+ S+ un, F=2ap+2y,+1, g=A+ 63+ um, ficient for adequate convergence. The convergence in the nu-
h=2ay,+2y,+1, andymn=¥Ym+ ¥n- merical integration oves; ands, was achieved with 300
Gauss-Legendre quadrature points between 0 and 12. The
maximum value of in the sum in Egs(28) and(30), L, is
Il NUMERICAL RESULT taken to_be 7, Whic_h is sufficient fqr obtaining the conver-
gence with the partial-wave expansia28)—(27).

We tested the convergence of the integrals by varying the We find that a judicial choice of the parameters in Eq.
number of integration points in the s;, ands, integrals in  (15) is needed for convergence. The present method does not
Egs. (28) and (30) and theu integral in Eq.(29). The x  provide a bound on the result. Consequently, the method
integration was relatively easy and 20 Gauss-Legendreould lead to a wrong scattering length if an inappropriate
guadrature points appropriately distributed between 0 and 1@8ncomplete basis set is chosen. After some experimentation,
were enough for convergence. In the evaluation of integralsve find that for good convergence, the nonlinear parameters
of type (29), 40 Gauss-Legendre quadrature points were sufé,, and«,, should be taken to have both positive and negative

022702-4



VARIATIONAL CALCULATION OF THE POSITRONIUM- . .. PHYSICAL REVIEW A 64 022702

TABLE I. Ps-He scattering length ifa.u) for differentL andN. (N~10). These suggest a more rapid convergence in these

problems with a Schwinger-type method.

N L=0 L=2 L=3 L=4 L=5 L=6 L=7

1 2.056 1.867 1.782 1.721 1.681 1.655 1.638

3 2418 —1.662 28.016 4.151 3.061 2.839 2.933

5 —13.653 1563 1.234 1.128 1.135 1.168 1.190 IV. SUMMARY AND DISCUSSION

6 0.712 0.982 0.782 0.637 0.650 0.769 0.878

7 3372 0983 0792 0.694 0.727 0.824 0.910 To summarize, we have formulat_ed a bagis—set calcula-
8 —1657 1124 0944 0877 0907 0971 1.023 tional s.cheme. foSwave Ps—He elast|c. scattering beloyv the
9 6.283 0976 0832 0801 0841 0897 0.94 lowest mg!astlc thrgshold using a variational expression for
10 1332 1123 0941 0897 0929 0981 1.023 the transition matrix. We_|llustrate t_he method nu_merlcally
1 1295 1112 0945 0.886 0909 0963 1.011 by ca.llculatlng the scattermg length in the electronic doublet
12 0756 1468 0995 0918 0931 0964 0,977 SAe:a=10x0.1 au. This corresponds to a zero-energy
13 1229 1197 1008 0944 0970 1028 1.022 CrosS section of (_4;60.8)77@0 in reasonablg agreement with
14 1061 1249 1060 0980 0983 1.026 10192 model calculation by this author (3:845) [22] and the

experiment of Skalsegt al. [(2.6+0.5)7a3 at 0.9 eV [3].

This calculation, as well as our previous studies of Ps-He
scattering using a model exchange poterfidl, 23, possibly
consolidates the experimental result of Skalséywl. How-

ever, these low-energy Ps-He elastic-scattering cross sections
values andg,, should have progressively increasing valuesa’e in disagreement with other experiments by Nagashima
. . . . 2

till about 1.5. If no care is taken in choosing the parameterset al. [(13+4)7a; at 0.15 eV [4], by Canteretal.

a large number of functions could be necessary for obtainin§8-477ag) [5], and by Colemast al. (97af) [6], as well as
convergence. The results reported in this paper are obtainddth conventional static-exchangek-matrix, and close-

with the following parameters for the function§,,n
=1,...,14: {6,,an,Bn:¥n mun={—0.5-0.25,0.3,0.01,
0.0%2, {-0.7-0.25,0.5,0.04,0.2 {-0.7,—0.25,0.7,
0.03,0.08, {-0.4-0.1,0.6,0.2,0.p {-0.2,0.1,0.8,
0.2,0.2, {0.4-0.2,0.6,0.3,08 {-0.2-0.1,0.7,0.4,0.8
{0.3,0.2,0.8,0.3,04 {0.2,0.2,1,0.4,04 {0.3,0.2,1.2,
0.5,0.5, {-0.5,0.2,1.3,0.6,0}6 {-0.2,0.1,1.4,0.7,0}7
{0.3,0,1.5,0.8,0)8 {—0.2,-0.1,1.6,0.9,0.2 By employing

coupling calculations of Refs[8,11,12,15,1F (~14waj)
and a model potential calculation of R¢19] (7.73ra3).

As the effective interaction for elastic scattering between
Ps and He is repulsive in nature, a smaller scattering length
as obtained in this paper and in R€f21,22 would imply a
weaker effective Ps-He interaction. This would allow the Ps
atom to come closer to He and would legb] to a large
pickoff quenching rate and a larg&Z.4 (~0.11) in agree-

a suitably chosen set of the parameters, we have kept tHBent with experiment[5,14]. The conventional close-

number of functions to a minimum.

coupling[12], R-matrix [8] and static-exchangl1,15-17

In Table I, we show the convergence pattern of the preserifiodels yielded a much too large scattering length corre-

calculation with respect to the number of partial walesnd

sponding to a stronger repulsion between Ps and He. Conse-

basis functiond\ used in the calculation. The convergence isduently, these models led to a much too smalley
satisfactory considering that we are dealing with a compli{~0.04)[15-17,23in disagreement with experimef#, 14].
cated five-body problem. However, as the present calculatiohhis is addressed in detail in R¢25], where we established
does not produce a bound on the result, the convergence &correlation between the different scattering lengths and the

not monotonic with increasingN. The final result of the
present calculation is that fdt=14 andL=7: a=1.02 a.u.

corresponding'Z.s. This correlation suggests that a small
Ps-He scattering length as in this paper is consistent with the

Although it is difficult to provide a quantitative measure of large experimentatZ.

convergence, from the fluctuation of this result for laige

Although we have used a simple wave function for He in

andL we believe the error in our result to be less than 10% this complex five-body calculation, we do not believe that

so that the final Ps-He scattering length is takeraag1.0
+0.1) a.u. The results for large andL reported in Table |
all lie in this domain.

The maximum number of functiondNE 14) used in this

the use of a more refined He wave function would substan-
tially change our findings and conclusions. However, inde-

pendent calculations and accurate experiments at low ener-

gies are welcome for a satisfactory resolution of this

calculation is also pretty small, compared to those used iONtroversy.

different Kohn-type variational calculations for electron-

hydrogen N=56) [30], positron-hydrogen N<286) [31],

and positron-helium N=<502) [32] scattering. Because of
the explicit appearance of the Green’s function, the present
basis-set approach is similar to the Schwinger variational
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