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Quantum fluid dynamics from density-functional theory
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A partial-differential eigenvalue equation for the density displacement fields associated with electronic
excitations is derived in the framework of density-functional theory. Our quantum fluid-dynamical approach is
based on a variational principle and the Kohn-Sham ground-state energy functional, using only the occupied
Kohn-Sham orbitals. It allows for an intuitive interpretation of electronic excitations in terms of intrinsic local
currents that obey a continuity equation. We demonstrate the capabilities of this nonempirical approach by
calculating the photoabsorption spectra of small sodium clusters. The quantitative agreement between theoret-
ical and experimental spectra shows that even for the smallest clusters, the resonances observed experimentally
at low temperatures can be interpreted in terms of density vibrations.
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[. INTRODUCTION spectra of sodium clusters. We first derive a general varia-
tional principle for the exact energy spectrum of an interact-
Since its formal foundation as a theory of ground-stateng many-body system. From this, we derive an approximate
properties[1], density-functional theory has developed into solution in the form of quantum fluid-dynamical differential
one of the most successful methods of modern many-bod§quations for the density displacement fields associated with
theory, also with well-established extensions such as, e.gthe electronic vibrations around their ground state. By solv-
time-dependent[2] and current[3,4] density-functional ing these equations, we obtain the eigenmodes within the
theory(DFT). In particular, in the field of metal cluster phys- DFT; hereby only the ground-state energy functional and the
ics, DFT calculations have contributed substantially to aoccupied Kohn-Sham orbitals are required. We demonstrate
qualitative and quantitative understanding of both groundthe accuracy of our approach by calculating the photoabsorp-
and excited-state propertifs,6]. Understanding the proper- tion spectra of small sodium clusters and comparing our re-
ties of small metal particles in turn offers technological op-Sults to low-temperature experiments and to configuration-
portunitieS, e.g., to better control Cata'yimﬂ’ as well as |nteraCt|0n(C|) calculations. In this way we can show that
fundamental insights into how matter groy&9]. Since the also the spectra of the smallest clusters can be understood,
electronic and geometric structure of metal particles consistwithout knowledge of the molecular many-body wave func-
ing of 0n|y a few atoms still cannot be measured direct'y,tion, in an intuitive piCtUre of oscillations of the valence-
photoabsorption spectra are their most accurate probes. Eglectron density against the ionic background.
pecially the spectra of charged sodium clusters have been
measured with high accuracy for a broad range of cluster Il. A VARIATIONAL PRINCIPLE
sizes and temperaturgs0]. A distinct feature of these spec- ) ) o o
tra is that at elevated temperatures of several hundred K, in The starting point for the derivation of the variational
particular for the larger clusters, only a few broad peaks ar@rinciple is the well-known fact that for a many-body system
observed, whereas at lower temperatu@0 K and less a  described by a Hamiltoniaii with ground statef0) and
greater number of sharp lines can be resolved for cluster@n€rgyEo, the creation and annihilation operators of all the
with only a few atoms. The peaks observed in the high-figenstates obey the so-called equations of motion for exci-
temperature experiments found an early and intuitive explal@tion operator$12]
nation as collective excitations in analogy to the bulk plas-

mon and the giant resonances in nuclei: different peaks in the (0|O,[H 1OI]|0>:71%<0|OVOI|0>1 1)
spectrum were understood as belonging to the different spa-
tial directions of the collective motion of the valence elec- (0]O,[H,0,]|0)=hw,(0]0,0,|0)=0, (2)

trons with respect to the inert ionic background. On the other
hand, the sharp lines observed in the low-temperature expenvhereO, and OI are defined by
ments were interpreted as a hallmark of the moleculelike

properties of the small clusters explicable, in the language of o10y=|v),0,|v)=|0), and 0,|0)=0. ©)
guantum chemistrj11], only in terms of transitions between
molecular states. Of course, the exact solutions of these equations are in gen-

In this work we present a density-functional approach toeral unknown. But a variety of approximations to the true
the calculation of excitations that leads us to a unified andxcited states can be derived from them, e.g., the Tam-
transparent physical understanding of the photoabsorptiobancoff scheme and the small-amplitude limit of time-

dependent Hartree-Fock theofyandom-phase approxima-
tion (RPA)]. As discussed in[12], also higher-order
*Email address: skuemmel@tulane.edu approximations can be obtained.
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Related to these equations, we derive the following variaWith §Q Hermitian,[ 5Q,H] is anti-Hermitian, and Eq12)

tional principle: solving Eqs(1) and (2) for the lowest ex-

therefore is an equation of the forat-c* =0 with

cited state can be achieved by solving the variational equa-

tion
SE4[Q]
5Q 0

in the space of all Hermitian operators. HekEg, is defined
by

(4)

_m3[Q]
ES[Q]_ ml[Q], (5)
m; andm; are the multiple commutators
1
m;[Q]=5(0|[Q.[H,Q]]|0), (6)

1
ms[Q]= 5 (O|[[H,Q],[[H,Q1,H]I|0), @)

and Q is some general Hermitian operator that, as will be
shown in the course of the arguméaee Eq(15)], takes the

¢=(0|[6Q,H](H,[H,Q]]- (hw1)*Q)|0) e C. (13)
Since|0) by definition is the exact ground state df and
Eq. (13) must hold for anysQ, the equation

([H![H!Q]]_(ﬁwl)zQ)|O>:0

is obtained. It resembles the equation of motion for a
harmonic-oscillator. Therefor®) is interpreted as a general-
ized coordinate, and in analogy to the well-known algebraic
way of solving the harmonic-oscillator proble@,is written

as a linear combination

(14

Qx0l+0, (15
of the creation and annihilation operator for the first excited
state. Inserting Eq15) into Eq.(14) leads to the two equa-
tions

[H.[H,011]10)=(fw;)?0]]0), (16)

[H,[H,01]110)=(f ©1)?04|0)=0. a7

interpretation of a generalized coordinate. The minimum enr; .t consider Eq(16). After closing with state(1], one ex-

ergy E; after the variation gives the first excitation energy
fwq4. The second excitation with energy», can be obtained

ploits that, by definition|0) and|1) are eigenstates ¢f and
evaluates the outer commutator by lettidgact once to the

from variation in an operator space that has been orthogonajz¢ 41q once to the right. Recalling th&t|=(0|©,, one

ized to the minimun®, and in this way the whole spectrum

fhw, can be calculated.

The variation6Q of an operator can be understood as a

finally obtains

(0|04[H,011/0) =1 w1(0]0,0 ]| 0). (18)

variation of the matrix elements of the operator in the matrix

mechanics picture. Therefore,

i(ms[Q])”Z_g(mS[Q])“Z 5 (mS[Q]) ©

=% \mQl] ~2\m[Ql] QlmlQ]

This is exactly Eq(1) for the first excited state. In the same
way, Eq.(2) is obtained from Eq(17), which completes the
derivation of the variational principle.

We would like to point out that in earlier worKL3], the
RPA equations have been derived with a related technique

and noting that the first factors in the expression to the righthat made use of both generalized coordinate and momentum

are just 1/(E,),

0= i(ms[Q]) _ 1 omg[Q] _ m3[Q] omy[Q]
oQ\my[Q]) my[Q] 8Q m[Q]? Q
9
is obtained. With the definitiok;=7%w,, Eq. (9) turns into
1] 1]
”:;([QQ] ~ (hwy)? ”:;éQ] ~o. (10
The variations
omg[ Q]=m5[Q+ Q] —m5[Q],
11

omy[Q]=m[Q+ Q] —my[Q]

operators. The advantage of our present derivation is that—
although within linear-response theory—it goes beyond the
RPA and, due to the formulation in terms of a generalized
coordinate only, is particularly suitable for the formulation of
the variational principle in the framework of density-
functional theory as shown below.

IIl. QUANTUM FLUID DYNAMICS FROM
THE GROUND-STATE ENERGY FUNCTIONAL:
A LOCAL CURRENT APPROXIMATION

In principle, the exact eigenenergies are defined, via Egs.
(1) and(2), by the variational equatio@), provided that the
operatorQ is chosen in a sufficiently general form. However,
just as in the equations of motion technique, one is forced to
make some explicit ansatz for the form Qf which neces-
sarily introduces approximations. In R¢L3] it was shown

are evaluated by straightforward application of the commuthat if Q is taken to be a one-particle—one-hole excitation

tation rules(6) and(7), leading to

(O[[[6Q,H],(H,[H,Q]]- (fw1)?Q)]|0)=0. (12

operator, Eq(4) leads to the RPA equations. Simplifications
of the RPA, in whichQ was chosen from restricted sets of
local operatorsQ,(r), were proposed in connection with
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both semiclassicdll4] and Kohn-Sham density functionals 1 52

[13]. In the present paper, we derive a set of quantum fluid- mg[Q]= = —<a|H|a)

dynamical equations from the variational princig) by 2 ga 0

choosingQ to a general local operat@(r). These equations (27

are then solved without any restriction other than Ezp)

below. where E[n] is the usual ground-state Kohn-Sham energy
First we recall a relation that is well known in nuclear functional

physics[15]: the commutator of Eq(7) can be exactly ob-

tained from

(92
SEIN(r )]

R
I

n(rn(r’)

[r—r’|

E[n;{R}]=Tdn]+En]+— jf d3r’d3r

92
H ) 19
a2<a| |a> a=0 ( ) +J n(r)vion(r; {R})dsr (28)

1
ms[Q]= >

where|a) is the state that results from the unitary transfor-to, 5 cluster with valence electron densityand ionic coor-
mation dinates{R}
L us Equation(26) is exact and also Eq24) can be verified
|ay=e"30), (20 order by order, but Eq27) goes beyond the safe grounds on
which the energy functional is defined. However, the replace-
fhent of an energy expectation value by the energy functional
is intuitively very plausible, and its practical validity can be
S=[H,0] 21) judgeda posterioriby the results. A further strong argument
e for why the density should really be the basic variable can be
made by calculating the derivative with respect to the time of
the scaled density, using Eq24) and (25),

with « being a real and possibly time-dependent paramete
and S the so-called scaling operator defined by

Assuming tha) is just a function of and that the potentials
in H do not contain derivatives with respect tpas is the
case for Coulombic systems, E@.1) is easily evaluated,

d .
an(r,a(t))= —Sha(t)n(r,a(t))

Ne Ne

1
§=2, s(r)=2, 3 (Viur)+u(r)-vi. (22 VL [MOuOnC.a®)], 29

Here, the displacement field where for the sake of clarity we now explicitly wrote the
, time dependence af. Since
u(n=- velr) @3 i(r.H)=abu(nn(r,a(t)) (30
has been introduced, amd, is the number of electrons. is a current density, Eq29) is just the continuity equation

These equations can be related to DFT by noting thatdn(r,a(t))/dt+V-j(r,t)=0. Thus, the variational prin-
first, we can introduce a set of single-particle orbitalsciple, Eq.(4), with a local functionQ(r) describes excita-
{,(r)}, and from the scaled single-particle orbitals, ations by intrinsic local currents. The time dependence of the

scaled single particle density can be constructed via parametera is obviously harmonic, i.e.q(t)> cos@,t),
since the present derivation is based on linear-response
Ne theory.
n(r,a)= 21 lem sy, (r)]?=e " *Sn(r), (29 The physical significance of the variational approach now
=

being clear, it remains to derive the actual equations that
determine the displacement field&) and the energiebwv

that are associated with particular excitations. Starting from
Eq. (10) and using an explicit notation,

with a density scaling operator

Sh=(V-u(r))+u(r)-V. (25
Second, Eq(6) can straightforwardly be evaluated for a lo- w_ Zw
hwy)
cal Q(r), &Q(r") oQ(r")
m _ o] OMALU(D] L omlu(n)]] ucr”)
mﬂQFﬁJ u(r)-u(n(r)d’r, (26) —0= fd [ au(r”) ~(hoy su(r’y ] aQ(r’)

(31
showing thatm; depends only om andu and is similar to a
fluid-dynamical inertial parameter. And third, we replace thefollows by virtue of the chain rule for functional derivatives.
expectation value in Eq19) by Thus, solutions of
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omglu(r)] (e )Zéml[u(r)] (32
su(r’) Y sur)

will also be solutions to Eq(10) and thus Eq(4). m; is
already given as the functionah;[u] by Eq. (26), and
ms[ u] is readily obtained by inserting the scaled Kohn-Sham
orbitals and density from Eq24) into the energy functional
Eq. (28) and calculating the second derivative with respect to
the parameter, Eq. (27). The final equations are then de-
rived in a lengthy but straightforward calculation from Eg.
(32 by explicitly performing the variation om. Using the
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dn/dt

Experiment t

4 eV
dn/dt n

usual definition

omg[u](r)
Suy(r’)

smg[u(r)] _
su(r’)

+5m3[U(r)]
ouy(r’)

L omalu(n)]

su r’y
(33

whereg are the unit vectors in the Cartesian directions, a set 5

(20)

20
15

10

10 15 yx (ao) 5 10 15 X (ao)

of three coupled, partial-differential eigenvalue equations of

fourth order for the Cartesian componenigr) is obtained:

omgz[u] _ ,omy[u]

FIG. 1. From top left to bottom right: experimental photoab-
sorption cross sectiof24] and LCA cross sectiof of Na, in arbi-
trary units versus eV, contour plots of the density change associated

. j=1,2,3, (34) with the first excitation, the second excitation, and contour plot of
ou;(r) ou;(r) the ground-state valence electron density. The length unit for the
axes of the contour plots is the Bohr radiug
where
sm37[u] 5
smyfu]  m UL (1) :”f > [a/ui(r)In(r")
—n(nuj(r), (35 i =1
ou;(r) )
r.
+u(r') (@ n(r’ ))} i d®r’, (39
omg[u] _dm5"[u]  omgTu] omgiu] omiu] r=r'f?
5U](r) 5UJ(r) 5UJ(r) 5U1(r) 5UJ(r) ' 3
(36) oM u]
=— E {a;L (Gupn+u;( an)]
ou; (r)
and
Fuan] o 22 40
kln[u] ﬁ 1 % i R A . ui( |n)] j an 1 ( )
Su(n | 2m2 & A (A (95U (i)

+(9j0,Ui) Y+ Ui (90 U) 1+ [ (9U) (3 A )

where we used the shorthand notatién= o/ 9x, etc., and
indicated the terms to which derivatives refer by including
them in parentheses. The usual Kohn-Sham and exchange-

+ Ui (901 A Y) 19— Uil (0 907) (9 A o) correlation potential are denoted yg and v,., respec-
tively.
1 . . .
+ (9 AP (9,91 +2| (9 'r/’:q)[A(z(aiui)‘//m Equations(34) — (40) are our quantum fluid-dynamical
equations. In analogy to the local-density approximation

1
+Ui(07il//m))}_[%A(E(aiui)lﬁm

+ui<r9i¢m)”‘”:“”’

miSu] 12

WZE 21 {n[(d;u) (divks) — (diu;) (djuks) ]

+ui[n(d;djvks) — (din)(djuks) 1},

(37)

(38)

(LDA) used forv,., we term our scheme tHecal current
approximation(LCA) to the dynamics due to the use of a
local functionQ(r) in the variational principl€4). It should

be noted that the above equations differ from the equations
derived earlier in a semiclassical approximat{d4] or by
explicit particle-hole averagingl3]. Due to the fact that our
approach is completely based on the Kohn-Sham density
functional and therefore contains the full quantum-
mechanical shell effects in the ground-state density, it is also
different from some fluid-dynamical approaches developed
in nuclear physic§16] (and used in cluster physid47])
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FIG. 2. Upper left: ionic ground-state configuration ofsNalower left: corresponding LCA photoabsorption spectrum; upper right:
experimental low-temperature photoabsorption spectrL@h lower right: configuration-interaction photoabsorption spectrum from Ref.
[11]. See text for discussion.

which involved either schematic liquid-drop model densitieswhich was shown to strongly influence optical properties
or semiclassical densities derived from an extended Thoma$22,23, is corrected to a large extent by using the smooth-
Fermi model. core pseudopotential which by construction gives bond

Although Eqgs.(34)—(40) look rather formidable, they can lengths close to the experimental ones when used with the
be solved numerically with reasonable computational effortL. DA [9].
and we have done so for the sodium clusters alad Na*. Figure 1 shows the experimental photoabsorption spec-
The Kohn-Sham equations were solved basis-set free ontaum[24] of Na, in the upper left picturéadapted from Ref.
three-dimensional Cartesian real-space grid using thg6]), and below the spectrum obtained in the just described
damped gradient iteration with multigrid relaxatigk8]. The  LCA. We introduced a phenomenological line broadening in
ionic coordinates were obtained by minimizing the total en-the LCA results to guide the eye. The LCA correctly repro-
ergy using a smooth-core pseudopotent®l For E,., we  duces the electronic transitions, despite the fact that only two
employed the LDA functional of Ref19]. Theu;(r) were  electrons are involved. Due to E@9), one can very easily
expanded in harmonic-oscillator wave functions and we exvisualize how the electrons move in a particular excitation by
plicitly enforced Eq.(23). The convergence rate of the ex- plotting the corresponding -j(r), giving a “snapshot” pic-
pansion can be improved by adding a few polynomial functure ofdn/dt. For the two main excitations, a crossection of
tions to the basis. By multiplying Eqé32) and subsequently this quantity along the symmetry axig @xis) is shown in
Egs. (34)—(40) from the left withu and integrating over all the lower left and upper right contour plots, and the ground-
space, a matrix equation for the expansion coefficients istate valence-electron density is shown in the lower right for
obtained which can be solved using library routines. Thereference. In the plots ofin/dt, shadings darker than the
square roots of the eigenvalues then give the excitation erbackground gray indicate a density increase, lighter shadings
ergies and from the eigenvectors, the oscillator strengths candicate a decrease. It becomes clear that the lower excitation
be computed. corresponds to a density oscillation along #exis whereas

It should be noted that for systems as small as the onethe higher excitation corresponds to two energetically degen-
studied here, generalized-gradient approximati®@® and  erate oscillations perpendicular to the symmetry aifar
their extension$21] in general are a better approximation to the sake of clarity, we plotted the corresponding oscillator
the exchange and correlation energy than the LDA. Howeveistrengths on top of each other in the photoabsorption spec-
in the present case LDA is a good approximation since thérum, This is exactly what one would have expected intu-
valence electrons in sodium clusters are strongly delocalizedtively. But the plots reveal that besides the expected general
Furthermore, the bond-length underestimation in the LDAcharge transfer from one end of the cluster to the other, the
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presence of the ionic cores hinders the valence electrons tive heights of the peaks the LCA is very close to the ClI

be shifted freely, creating a density shift of reverse sign irnresults, with differences observed only in the small subpeaks

between the ionic cores. that are not seen experimentally anyway. And small differ-
Figure 2 shows the ionic ground-state configuration ofences to the Cl calculation are already to be expected simply

Nas* with our labeling of axes in the upper left, the experi- because of the use of different pseudopotentials and the re-

mental low-temperature~{ 100 K) photoabsorption spec- sulting small differences in the ground-state structure.

trum [10] in the upper right, the LCA photoabsorption spec-

trum in the lower left, and the Cl spectrum adapted from Ref. IV. CONCLUSION

[11] in the lower right. Again, a phenomenological line In summary, we have derived a set of quantum fluid-

broadening was introduced in the presentation of both the . ; L I
dynamical equations from a general variational principle for

LCA and the Cl results. The LCA spectrum again is in close, S :
agreement with the experimentally observed s ectrumthe excitations of a many-body system. The equations de-
gree . pert Y : b Scribe here the eigenmodes of the systetwaence elec-
showing three intense transitions. With our choice of the co- . .
: o trons and require only the knowledge of the occupied
ordinate system, the lowest excitation corresponds to a der-

sity oscillation inz direction, whereas the two higher excita- ground-state Kohn-Sham orbltalg. From these equations, we
. . . oo . ) have computed the photoabsorption spectra for small sodium
tions oscillate in botlx andy directions. In the interpretation

; o clusters and find quantitative agreement with the experimen-
of the LCA results, it must be kept in mind that due to Ourtally observed peak positions. Thus, even low-temperature

finite grid spacing the numerical accuracy for the eXCItat'Onphotoabsorption spectra can be understood in an intuitive

energies is about 0.03 eV, which is absolutely sufficient in’. f densi lati ithout k led fth
the light of the physical approximations that we are making picture of density oscillations, without knowledge of the true
(or any approximatemany-body wave function.

But due to this finite numerical resolution and the fact that
we evaluate each dlrecthn (_)f oscillation separatelyxtaed _ ACKNOWLEDGMENTS
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