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Quantum fluid dynamics from density-functional theory
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A partial-differential eigenvalue equation for the density displacement fields associated with electronic
excitations is derived in the framework of density-functional theory. Our quantum fluid-dynamical approach is
based on a variational principle and the Kohn-Sham ground-state energy functional, using only the occupied
Kohn-Sham orbitals. It allows for an intuitive interpretation of electronic excitations in terms of intrinsic local
currents that obey a continuity equation. We demonstrate the capabilities of this nonempirical approach by
calculating the photoabsorption spectra of small sodium clusters. The quantitative agreement between theoret-
ical and experimental spectra shows that even for the smallest clusters, the resonances observed experimentally
at low temperatures can be interpreted in terms of density vibrations.
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I. INTRODUCTION

Since its formal foundation as a theory of ground-st
properties@1#, density-functional theory has developed in
one of the most successful methods of modern many-b
theory, also with well-established extensions such as, e
time-dependent@2# and current @3,4# density-functional
theory~DFT!. In particular, in the field of metal cluster phys
ics, DFT calculations have contributed substantially to
qualitative and quantitative understanding of both grou
and excited-state properties@5,6#. Understanding the proper
ties of small metal particles in turn offers technological o
portunities, e.g., to better control catalysis@7#, as well as
fundamental insights into how matter grows@8,9#. Since the
electronic and geometric structure of metal particles cons
ing of only a few atoms still cannot be measured direc
photoabsorption spectra are their most accurate probes
pecially the spectra of charged sodium clusters have b
measured with high accuracy for a broad range of clu
sizes and temperatures@10#. A distinct feature of these spec
tra is that at elevated temperatures of several hundred K
particular for the larger clusters, only a few broad peaks
observed, whereas at lower temperatures~100 K and less!, a
greater number of sharp lines can be resolved for clus
with only a few atoms. The peaks observed in the hig
temperature experiments found an early and intuitive ex
nation as collective excitations in analogy to the bulk pl
mon and the giant resonances in nuclei: different peaks in
spectrum were understood as belonging to the different
tial directions of the collective motion of the valence ele
trons with respect to the inert ionic background. On the ot
hand, the sharp lines observed in the low-temperature exp
ments were interpreted as a hallmark of the molecule
properties of the small clusters explicable, in the languag
quantum chemistry@11#, only in terms of transitions betwee
molecular states.

In this work we present a density-functional approach
the calculation of excitations that leads us to a unified a
transparent physical understanding of the photoabsorp
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spectra of sodium clusters. We first derive a general va
tional principle for the exact energy spectrum of an intera
ing many-body system. From this, we derive an approxim
solution in the form of quantum fluid-dynamical differenti
equations for the density displacement fields associated
the electronic vibrations around their ground state. By so
ing these equations, we obtain the eigenmodes within
DFT; hereby only the ground-state energy functional and
occupied Kohn-Sham orbitals are required. We demonst
the accuracy of our approach by calculating the photoabs
tion spectra of small sodium clusters and comparing our
sults to low-temperature experiments and to configurati
interaction~CI! calculations. In this way we can show th
also the spectra of the smallest clusters can be underst
without knowledge of the molecular many-body wave fun
tion, in an intuitive picture of oscillations of the valence
electron density against the ionic background.

II. A VARIATIONAL PRINCIPLE

The starting point for the derivation of the variation
principle is the well-known fact that for a many-body syste
described by a HamiltonianH with ground stateu0& and
energyE0, the creation and annihilation operators of all t
eigenstates obey the so-called equations of motion for e
tation operators@12#

^0uOn@H,O n
†#u0&5\vn^0uOnOn

†u0&, ~1!

^0uOn@H,On#u0&5\vn^0uOnOnu0&50, ~2!

whereOn andO n
† are defined by

O n
†u0&5un&,Onun&5u0&, and Onu0&50. ~3!

Of course, the exact solutions of these equations are in g
eral unknown. But a variety of approximations to the tr
excited states can be derived from them, e.g., the T
Dancoff scheme and the small-amplitude limit of tim
dependent Hartree-Fock theory@random-phase approxima
tion ~RPA!#. As discussed in @12#, also higher-order
approximations can be obtained.
©2001 The American Physical Society06-1
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S. KÜMMEL AND M. BRACK PHYSICAL REVIEW A 64 022506
Related to these equations, we derive the following va
tional principle: solving Eqs.~1! and ~2! for the lowest ex-
cited state can be achieved by solving the variational eq
tion

dE3@Q#

dQ
50 ~4!

in the space of all Hermitian operators. Here,E3 is defined
by

E3@Q#5Am3@Q#

m1@Q#
, ~5!

m1 andm3 are the multiple commutators

m1@Q#5
1

2
^0u@Q,@H,Q##u0&, ~6!

m3@Q#5
1

2
^0u@@H,Q#,†@H,Q#,H‡#u0&, ~7!

and Q is some general Hermitian operator that, as will
shown in the course of the argument@see Eq.~15!#, takes the
interpretation of a generalized coordinate. The minimum
ergy E3 after the variation gives the first excitation ener
\v1. The second excitation with energy\v2 can be obtained
from variation in an operator space that has been orthogo
ized to the minimumQ, and in this way the whole spectrum
\vn can be calculated.

The variationdQ of an operator can be understood as
variation of the matrix elements of the operator in the ma
mechanics picture. Therefore,

05
d

dQ S m3@Q#

m1@Q# D
1/2

5
1

2 S m3@Q#

m1@Q# D
21/2 d

dQ S m3@Q#

m1@Q# D , ~8!

and noting that the first factors in the expression to the ri
are just 1/(2E3),

05
d

dQ S m3@Q#

m1@Q# D5
1

m1@Q#

dm3@Q#

dQ
2

m3@Q#

m1@Q#2

dm1@Q#

dQ
~9!

is obtained. With the definitionE35\v1, Eq. ~9! turns into

dm3@Q#

dQ
2~\v1!2

dm1@Q#

dQ
50. ~10!

The variations

dm3@Q#5m3@Q1dQ#2m3@Q#,
~11!

dm1@Q#5m1@Q1dQ#2m1@Q#

are evaluated by straightforward application of the comm
tation rules~6! and ~7!, leading to

^0u@@dQ,H#,„†H,@H,Q#‡2~\v1!2Q…#u0&50. ~12!
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With dQ Hermitian,@dQ,H# is anti-Hermitian, and Eq.~12!
therefore is an equation of the formc1c* 50 with

c5^0u@dQ,H#„†H,@H,Q#‡2~\v1!2Q…u0&PC. ~13!

Since u0& by definition is the exact ground state ofH, and
Eq. ~13! must hold for anydQ, the equation

„†H,@H,Q#‡2~\v1!2Q…u0&50 ~14!

is obtained. It resembles the equation of motion for
harmonic-oscillator. Therefore,Q is interpreted as a genera
ized coordinate, and in analogy to the well-known algebr
way of solving the harmonic-oscillator problem,Q is written
as a linear combination

Q}O 1
†1O1 ~15!

of the creation and annihilation operator for the first excit
state. Inserting Eq.~15! into Eq. ~14! leads to the two equa
tions

†H,@H,O 1
†#‡u0&5~\v1!2O 1

†u0&, ~16!

†H,@H,O1#‡u0&5~\v1!2O1u0&50. ~17!

First consider Eq.~16!. After closing with statê 1u, one ex-
ploits that, by definition,u0& andu1& are eigenstates ofH and
evaluates the outer commutator by lettingH act once to the
left and once to the right. Recalling that^1u5^0uO1, one
finally obtains

^0uO1@H,O 1
†#u0&5\v1^0uO1O 1

†u0&. ~18!

This is exactly Eq.~1! for the first excited state. In the sam
way, Eq.~2! is obtained from Eq.~17!, which completes the
derivation of the variational principle.

We would like to point out that in earlier work@13#, the
RPA equations have been derived with a related techni
that made use of both generalized coordinate and momen
operators. The advantage of our present derivation is tha
although within linear-response theory—it goes beyond
RPA and, due to the formulation in terms of a generaliz
coordinate only, is particularly suitable for the formulation
the variational principle in the framework of density
functional theory as shown below.

III. QUANTUM FLUID DYNAMICS FROM
THE GROUND-STATE ENERGY FUNCTIONAL:

A LOCAL CURRENT APPROXIMATION

In principle, the exact eigenenergies are defined, via E
~1! and~2!, by the variational equation~4!, provided that the
operatorQ is chosen in a sufficiently general form. Howeve
just as in the equations of motion technique, one is forced
make some explicit ansatz for the form ofQ, which neces-
sarily introduces approximations. In Ref.@13# it was shown
that if Q is taken to be a one-particle–one-hole excitati
operator, Eq.~4! leads to the RPA equations. Simplification
of the RPA, in whichQ was chosen from restricted sets
local operatorsQn(r ), were proposed in connection wit
6-2
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QUANTUM FLUID DYNAMICS FROM DENSITY- . . . PHYSICAL REVIEW A 64 022506
both semiclassical@14# and Kohn-Sham density functiona
@13#. In the present paper, we derive a set of quantum flu
dynamical equations from the variational principle~4! by
choosingQ to a general local operatorQ(r ). These equations
are then solved without any restriction other than Eq.~23!
below.

First we recall a relation that is well known in nucle
physics@15#: the commutator of Eq.~7! can be exactly ob-
tained from

m3@Q#5
1

2

]2

]a2
^auHua&U

a50

, ~19!

whereua& is the state that results from the unitary transf
mation

ua&5e2aSu0&, ~20!

with a being a real and possibly time-dependent parame
andS the so-called scaling operator defined by

S5@H,Q#. ~21!

Assuming thatQ is just a function ofr and that the potentials
in H do not contain derivatives with respect tor , as is the
case for Coulombic systems, Eq.~21! is easily evaluated,

S5(
i 51

Ne

s~r i !5(
i 51

Ne 1

2
„“ iu„r i)…1u„r i)•“ i . ~22!

Here, the displacement field

u„r …52
\2

m
“Q~r ! ~23!

has been introduced, andNe is the number of electrons.
These equations can be related to DFT by noting th

first, we can introduce a set of single-particle orbita
$cm(r i)%, and from the scaled single-particle orbitals,
scaled single particle density can be constructed via

n~r ,a!5 (
m51

Ne

ue2as(r )cm~r !u25e2aSnn~r !, ~24!

with a density scaling operator

Sn5„“•u~r !…1u~r !•“. ~25!

Second, Eq.~6! can straightforwardly be evaluated for a l
cal Q(r ),

m1@Q#5
m

2\2E u„r …•u„r …n~r !d3r , ~26!

showing thatm1 depends only onn andu and is similar to a
fluid-dynamical inertial parameter. And third, we replace t
expectation value in Eq.~19! by
02250
-
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m3@Q#5
1

2

]2

]a2
^auHua&U

a50

→ 1

2

]2

]a2
E@n~r ,a!#U

a50

,

~27!

where E@n# is the usual ground-state Kohn-Sham ener
functional

E@n;$R%#5Ts@n#1Exc@n#1
e2

2 E E n„r …n~r 8!

urÀr 8u
d3r 8d3r

1E n~r !Vion~r; ˆR‰!d3r ~28!

for a cluster with valence electron densityn and ionic coor-
dinates$R%

Equation~26! is exact and also Eq.~24! can be verified
order by order, but Eq.~27! goes beyond the safe grounds o
which the energy functional is defined. However, the repla
ment of an energy expectation value by the energy functio
is intuitively very plausible, and its practical validity can b
judgeda posterioriby the results. A further strong argume
for why the density should really be the basic variable can
made by calculating the derivative with respect to the time
the scaled density, using Eqs.~24! and ~25!,

d

dt
n„r ,a~ t !…52Snȧ~ t !n„r ,a~ t !…

52“•@ȧ~ t !u~r !n„r ,a~ t !…#, ~29!

where for the sake of clarity we now explicitly wrote th
time dependence ofa. Since

j ~r ,t !5ȧ~ t !u~r !n„r ,a~ t !… ~30!

is a current density, Eq.~29! is just the continuity equation
dn„r ,a(t)…/dt1“• j (r ,t)50. Thus, the variational prin-
ciple, Eq. ~4!, with a local functionQ(r ) describes excita-
tions by intrinsic local currents. The time dependence of
parametera is obviously harmonic, i.e.,a(t)} cos(vnt),
since the present derivation is based on linear-respo
theory.

The physical significance of the variational approach n
being clear, it remains to derive the actual equations t
determine the displacement fieldsu„r … and the energies\vn
that are associated with particular excitations. Starting fr
Eq. ~10! and using an explicit notation,

dm3†u@Q~r !#‡

dQ~r 8!
2~\v1!2

dm1†u@Q~r !#‡

dQ~r 8!

505E d3r 9H dm3@u~r !#

du~r 9!
2~\v1!2

dm1@u~r !#

du~r 9!
J du~r 9!

dQ~r 8!

~31!

follows by virtue of the chain rule for functional derivative
Thus, solutions of
6-3
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S. KÜMMEL AND M. BRACK PHYSICAL REVIEW A 64 022506
dm3@u~r !#

du~r 8!
5~\v1!2

dm1@u~r !#

du~r 8!
~32!

will also be solutions to Eq.~10! and thus Eq.~4!. m1 is
already given as the functionalm1@u# by Eq. ~26!, and
m3@u# is readily obtained by inserting the scaled Kohn-Sh
orbitals and density from Eq.~24! into the energy functiona
Eq. ~28! and calculating the second derivative with respec
the parametera, Eq. ~27!. The final equations are then de
rived in a lengthy but straightforward calculation from E
~32! by explicitly performing the variation onu. Using the
usual definition

dm3@u~r !#

du~r 8!
5

dm3@u#~r !

dux~r 8!
ex1

dm3@u~r !#

duy~r 8!
ey1

dm3@u~r !#

duz~r 8!
ez ,

~33!

whereei are the unit vectors in the Cartesian directions, a
of three coupled, partial-differential eigenvalue equations
fourth order for the Cartesian componentsuj (r ) is obtained:

dm3@u#

duj~r !
5~\v!2

dm1@u#

duj~r !
, j 51,2,3, ~34!

where

dm1@u#

duj~r !
5

m

\2
n~r !uj~r !, ~35!

dm3@u#

duj~r !
5

dm3
kin@u#

duj~r !
1

dm3
KS@u#

duj~r !
1

dm3
h2@u#

duj~r !
1

dm3
xc2@u#

duj~r !
,

~36!

and

dm3
kin@u#

duj~r !
52

\2

2m

1

2 (
m51

Ne

(
i 51

3

ReH ~Dcm!@~] jui !~] icm* !

1~] j] iui !cm* 1ui~] j] icm* !#1@~] jui !~] iDcm!

1ui~] j] iDcm!#cm* 2ui@~] icm* !~] jDcm!

1~] iDcm!~] jcm* !#12F ~] jcm* !FDS 1

2
~] iui !cm

1ui~] icm! D G2F] jDS 1

2
~] iui !cm

1ui~] icm! D Gcm* G J , ~37!

dm3
KS@u#

duj~r !
5

1

2 (
i 51

3

$n@~] jui !~] ivKS!2~] iui !~] jvKS!#

1ui@n~] i] jvKS!2~] in!~] jvKS!#%, ~38!
02250
o
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dm3
h2@u#

duj~r !
5nE F(

i 51

3

@] i8ui~r 8!#n~r 8!

1ui~r 8!„] i8n~r 8!…G r j2r j8

ur2r 8u3
d3r 8, ~39!

dm3
xc2@u#

duj~r !
52n(

i 51

3 F $] j@~] iui !n1ui~] in!#%
]vxc

]n
1@~] iui !n

1ui~] in!#S ] j

]vxc

]n D G , ~40!

where we used the shorthand notation]15]/]x, etc., and
indicated the terms to which derivatives refer by includi
them in parentheses. The usual Kohn-Sham and excha
correlation potential are denoted byvKS and vxc , respec-
tively.

Equations~34! – ~40! are our quantum fluid-dynamica
equations. In analogy to the local-density approximat
~LDA ! used forvxc , we term our scheme thelocal current
approximation~LCA! to the dynamics due to the use of
local functionQ(r ) in the variational principle~4!. It should
be noted that the above equations differ from the equati
derived earlier in a semiclassical approximation@14# or by
explicit particle-hole averaging@13#. Due to the fact that our
approach is completely based on the Kohn-Sham den
functional and therefore contains the full quantum
mechanical shell effects in the ground-state density, it is a
different from some fluid-dynamical approaches develop
in nuclear physics@16# ~and used in cluster physics@17#!

FIG. 1. From top left to bottom right: experimental photoa
sorption cross section@24# and LCA cross sectionSof Na2 in arbi-
trary units versus eV, contour plots of the density change associ
with the first excitation, the second excitation, and contour plot
the ground-state valence electron density. The length unit for
axes of the contour plots is the Bohr radiusa0.
6-4
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FIG. 2. Upper left: ionic ground-state configuration of Na5
1; lower left: corresponding LCA photoabsorption spectrum; upper rig

experimental low-temperature photoabsorption spectrum@10#; lower right: configuration-interaction photoabsorption spectrum from R
@11#. See text for discussion.
ie
a

or

n
th

n

ex
x-
nc

l
s
h
e
c

n

to
ve
th
ze
A

ies
th-
nd
the

ec-

ed
in

o-
two

by

of

d-
for
e
ings
tion

en-

tor
ec-

tu-
eral
the
which involved either schematic liquid-drop model densit
or semiclassical densities derived from an extended Thom
Fermi model.

Although Eqs.~34!–~40! look rather formidable, they can
be solved numerically with reasonable computational eff
and we have done so for the sodium clusters Na2 and Na5

1.
The Kohn-Sham equations were solved basis-set free o
three-dimensional Cartesian real-space grid using
damped gradient iteration with multigrid relaxation@18#. The
ionic coordinates were obtained by minimizing the total e
ergy using a smooth-core pseudopotential@9#. For Exc , we
employed the LDA functional of Ref.@19#. The uj (r ) were
expanded in harmonic-oscillator wave functions and we
plicitly enforced Eq.~23!. The convergence rate of the e
pansion can be improved by adding a few polynomial fu
tions to the basis. By multiplying Eqs.~32! and subsequently
Eqs.~34!–~40! from the left withu and integrating over al
space, a matrix equation for the expansion coefficient
obtained which can be solved using library routines. T
square roots of the eigenvalues then give the excitation
ergies and from the eigenvectors, the oscillator strengths
be computed.

It should be noted that for systems as small as the o
studied here, generalized-gradient approximations@20# and
their extensions@21# in general are a better approximation
the exchange and correlation energy than the LDA. Howe
in the present case LDA is a good approximation since
valence electrons in sodium clusters are strongly delocali
Furthermore, the bond-length underestimation in the LD
02250
s
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t,

a
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e
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r,
e
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which was shown to strongly influence optical propert
@22,23#, is corrected to a large extent by using the smoo
core pseudopotential which by construction gives bo
lengths close to the experimental ones when used with
LDA @9#.

Figure 1 shows the experimental photoabsorption sp
trum @24# of Na2 in the upper left picture~adapted from Ref.
@6#!, and below the spectrum obtained in the just describ
LCA. We introduced a phenomenological line broadening
the LCA results to guide the eye. The LCA correctly repr
duces the electronic transitions, despite the fact that only
electrons are involved. Due to Eq.~29!, one can very easily
visualize how the electrons move in a particular excitation
plotting the corresponding“• j „r …, giving a ‘‘snapshot’’ pic-
ture ofdn/dt. For the two main excitations, a crossection
this quantity along the symmetry axis (z axis! is shown in
the lower left and upper right contour plots, and the groun
state valence-electron density is shown in the lower right
reference. In the plots ofdn/dt, shadings darker than th
background gray indicate a density increase, lighter shad
indicate a decrease. It becomes clear that the lower excita
corresponds to a density oscillation along thez axis whereas
the higher excitation corresponds to two energetically deg
erate oscillations perpendicular to the symmetry axis.~For
the sake of clarity, we plotted the corresponding oscilla
strengths on top of each other in the photoabsorption sp
trum.! This is exactly what one would have expected in
itively. But the plots reveal that besides the expected gen
charge transfer from one end of the cluster to the other,
6-5
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S. KÜMMEL AND M. BRACK PHYSICAL REVIEW A 64 022506
presence of the ionic cores hinders the valence electron
be shifted freely, creating a density shift of reverse sign
between the ionic cores.

Figure 2 shows the ionic ground-state configuration
Na5

1 with our labeling of axes in the upper left, the expe
mental low-temperature (' 100 K! photoabsorption spec
trum @10# in the upper right, the LCA photoabsorption spe
trum in the lower left, and the CI spectrum adapted from R
@11# in the lower right. Again, a phenomenological lin
broadening was introduced in the presentation of both
LCA and the CI results. The LCA spectrum again is in clo
agreement with the experimentally observed spectr
showing three intense transitions. With our choice of the
ordinate system, the lowest excitation corresponds to a d
sity oscillation inz direction, whereas the two higher excit
tions oscillate in bothx andy directions. In the interpretation
of the LCA results, it must be kept in mind that due to o
finite grid spacing the numerical accuracy for the excitat
energies is about 0.03 eV, which is absolutely sufficient
the light of the physical approximations that we are maki
But due to this finite numerical resolution and the fact th
we evaluate each direction of oscillation separately, thex and
y components of the excitations at 2.7 eV and 3.4 eV, wh
really should be degenerate for symmetry reasons, appe
extremely close-lying double lines. However, since the sy
metry of the cluster was in no way an input to our calcu
tion, it is a reassuring test that the LCA, indeed, fulfills t
symmetry requirement within the numerical accuracy. F
thermore, it is reassuring to see that with respect to the r
M

rd
.
.

,
.

n,

.

er-
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tive heights of the peaks the LCA is very close to the
results, with differences observed only in the small subpe
that are not seen experimentally anyway. And small diff
ences to the CI calculation are already to be expected sim
because of the use of different pseudopotentials and the
sulting small differences in the ground-state structure.

IV. CONCLUSION

In summary, we have derived a set of quantum flu
dynamical equations from a general variational principle
the excitations of a many-body system. The equations
scribe here the eigenmodes of the system’s~valence! elec-
trons and require only the knowledge of the occup
ground-state Kohn-Sham orbitals. From these equations
have computed the photoabsorption spectra for small sod
clusters and find quantitative agreement with the experim
tally observed peak positions. Thus, even low-tempera
photoabsorption spectra can be understood in an intui
picture of density oscillations, without knowledge of the tr
~or any approximate! many-body wave function.
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