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Quantum algorithms for fermionic simulations
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We investigate the simulation of fermionic systems on a quantum computer. We show in detail how quantum
computers avoid the dynamical sign problem present in classical simulations of these systems, therefore
reducing a problem believed to be of exponential complexity into one of polynomial complexity. The key to
our demonstration is the spin-particle connection generalized Jordan-Wigner transformajidmat allows
exact algebraic invertible mappings of operators with different statistical properties. We give an explicit
implementation of a simple problem using a quantum computer based on standard qubits.
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I. INTRODUCTION swer was unequivocally “No. This answer is surprising for
even at that time some quantum systems were being very
Because of recent exciting algorithms, like the factoringsuccessfully simulated probabilistically on classical comput-
algorithm of Shoif1] and the search algorithm of Grove], ers, mainly by quantum Monte Cal®@MC) methodg5]. To
that solve difficult problems on a quantum computer usinghe question, “Can quantum systems be simulated with a
algorithms that would be impractical on a classical computerguantum computer?,” his answer was a qualified “Yes.” He
it is easy to overlook that the original proposals for quantumbelieved almost certainly that this could be done for a system
computers were for the purpose of solving quantum physicef bosons but was unsure that it could be done for a system
problemg 3]. People like Feynmal8] focused on the extent of fermions. In this paper, we present a design for a universal
to which such a computer could imitate a specific physicaljuantum computer that will simulate a system of fermions.
process, suggesting in part that quantum problems were ifgefore doing so, we first discuss some problems that can be

herently too complex for a classical compuf8t. . solved by a probabilistic simulation of a quantum system on
The obvious difficulty with deterministically solving a 4 ¢jassical computer and others that cannot.

guantum many-body problertof fermions or bosornson a
classical computer is the exponentially large basis set need
(i.e., the dimension of its Hilbert space grows exponentiaIIyM

with the number of degrees of freednnkxact diagonaliza- e . .
tion approachege.g., the Lanczos methpduffer from this troduced to overcome the difficulty of exponentially growing

exponential “catastrophe.” Viewed the other way around phase Spaces by pumerically evalua}ting the accom.panying
this basis set scaling is what restricts today’s classical Corrr_nany-d|men5|onal mtegrals by samplmg from a function as-
puter to simulating only small quantum computers. ThigSumed to be non-negative. On a classical cor.nput_er,.o?e can
point seems indisputable, but should not be taken as pro robabilistically simulate a quantum system like I|qU|d He _
that quantum systems cannot be simulated on a classic (ﬂ and prodL_Jce r.esults that acc_urately compare with experi-
computer. By the same token, the recent claib that ment. The situation, however, is far from satisfactory. An
quantum computers can simuléte all quantum systems efansatisfactory state of affairs results from the frequent break-
ciently lacks explicit and detailed algorithms for specific down of the non-negativity assumption and is called "the

problems, and lacks a generic model of quantum computa2d" Problem.” The sign problem is manifested by the seem-
tion including the unitary mapéguantum gatésthat can be ingly exponentially hard task of estimating the expectation

physically implementabie. Even if a quantum computer ex-Yalue of an observable with a given error. Interestingly, Fey-
isted, some interesting quantum problems, such as findinMan's nNegativism about quantum systems being probabilis-
the ground state of a general quantum Hamiltonian, do no cally_ S|mulated_ _b_y classical computers was a claim “th_at
yet have efficient quantum algorithms. Finding such a quan_negatlve probabilities were unavoidable because of the “hid-

tity for small systems is relatively routine on a classical com—derl vgrlable” problem and the poss@le violation .Of BeI.I n-
puter. equalities. The extent to which the sign problem is a hidden

Feynman in fact analyzed two alternatives for simulating’a'1able problem is unclear. On the other hand, QMC meth-

physics with computeri$3]. One uses a probabilistic classical 90'? do not faithfully adhere to Feynman's idea of a probabi-
computer that would produce from the same input as giveH\'StIC cqmput_er. Two important differences are 'ghat .mOSt
to a physical system the same distribution of outputs as op2MC simulations are nonlocal and performed in imaginary
served for the physical system. The other uses a computé'fne' Feynman. dlscussed reaI—nme simulations on a local
constructed of distinctively quantum-mechanical element£OMPUter. Implications of these differences have been noted

that obey the laws of quantum mechanics. This latter pro-
posal is the quantum computer.

To the question, “Can quantum systems be probabilisti- There is as yet no mathematical proof that this is the correct
cally simulated by a classical computer?,” Feynman’s an-answer.

Probabilistic simulations of quantum systems on a classi-
| computer are mainly performed with the use of the
onte Carlo method. These statistical approaches were in-
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by Ceperley[7] who suggests Feynman really argues just |\p(7)>:e*ATHe*ATH. . .e*ATH|\p(0)>_ @)
against simulating quantum dynamics on a local classical
computer. In any case, the known probabilistic simulations

on a classical computer clearly do not qualify asraver-  (._ M7 and the HamiltoniaH is assumed time indepen-
sally efficient computational scheme for general quantunyent) This transformation permits QMC simulations of time-
many-body problems. The limiting factors, for whatever réa-eyersa| invariant interacting boson systems to a high degree
sons, are negative or complex-valued probabilities whethegs accuracy. For systems of interacting quantum spins and
the simulations are done in real or imaginary time. _fermions (or bosons with complex hermitian Hamiltonians
To place the sign problem in a better perspective, we will11)) the transformation does not solve the sign problem.
start with a re_al-t|me analysis of a col_lectlon of interacting g, quantum spin systems, the difficulty is finding a basis in
quantum particles. Quantum mechanics tells us that theSghich all matrix elements of the positive-definite operator
partlc_les _e|ther obey Bo_sonlc statistics, whereby the WaV"exp(—AqH) are positive. Most notably, this difficulty occurs
function is symmetric with respect to the exchange of theqr frystrated quantum spins. For fermion systems, the prob-
states of any two particles, or obey fermionic stalisticS e js the Monte Carlo process causing state exchanges that
whereby the wave function is antisymmettthanges sign  pecause of the antisymmetrization requirement just happen
with respect to the exchange of any two partid8$ Ex- {4 produce samples that are as frequently positive as nega-
amples of bosons are photons and gluons; examples of fefie For the sign problem found in both types of systems, the
mions are electrons, protons, neutrons, and quarks. Oftefiasistical error of the measured observables grows exponen-
these two quantum statistics conveniently and efficientlyia)ly fast with increasing system size. Another difficulty
map onto a third, quantum spin stat_|st[(9§. Still in other \yith the imaginary-time approach is analytically continuing
cases, when particle exchange is unlikely, particle statistics i§,q results back to real time if real-time, i.e., truly dynamical,

M factors

simply ignored. information is needef12]. This continuation is an ill-posed
For a given initial quantum staf&’(0)), a quantum com-  5plem whose solution places extraordinary demands on the
puter solves the time-dependent Satinger equation simulation[13].
In this paper, we will focus on the dynamical sign prob-
| lem for a system of fermions, seemingly the most challeng-
ih——=H[¥) (1) ing case. Eventually we will give a detailed implementation

of a simulation of the dynamical properties of a collection of
interacting fermions on a quantum computer. The implemen-

by incrementally propagating the initial state via tation avoids the sign problem. First, in Sec. Il we will dis-
cuss more fully the mathematical origin of the dynamical
W (1))= e TAMHI G —IAHIE |, ~iAHI |G () sign problem in classical computation and show why a quan-

2 tum algorithm overcomes the problem. In Sec. Il we will
give the elements required for Deutsch’s quantum network
model of a quantum computgt4]. The quantum gate in this

(t=MAt and the HamiltoniarH is assumed time indepen- model conveniently allows the propagation of systems of

dent) It should be reasonably apparent that if the Montelocal two state objects, e.g., a localized quantum spin-1/2

Carlo method is applied to the evaluation of the right-handparticle called qubit. We also propose a universal set of quan-

side of this equation, it is faced with sampling from oscilla- tum gatequnitary operatorsthat allows generic propagation

tory integrands that are not always positive and have unef systems of fermiongthe fabled “Grassmann chip15)).
known nodal surfaces. Further, as titnicreases, the inte- The resulting fermion algebra has been the main technical
grand fluctuates with increasing rapidity. While clevertool for studying the classical Ising model in two spatial
stationary-phase forms of the QMC method have been devellimensiond16], a prototype lattice model that had an enor-
oped, acceptable solutions are possible only for relativelynous impact on our understanding of phase transitions.
short times. This form of the sign problem is called the  Next, In Sec. IV, we show how this propagation can be ef-
namical sign problemand we are unaware of any efficient fected by the quantum spin gate. We will demonstrate the

[10] real-time QMC simulations for bosonic, fermionic, or polynomial scaling of the construction of the initial state, its

qguantum spin systems. subsequent time propagation, and the measurement of some

Years agd5], before quantum computers were proposedobservable. Here we will also demonstrate the control of the
it was realized that by transforming Schinger’s equation error in the results. In Sec. V, we apply our model of dynami-
to imaginary-timer viat— —i% 7 the problem with the rapid cal fermion computation to a toy problem to illustrate our
fluctuations was eliminated. With this transformation, calledprocedures in more detail. The exact solution of this toy

M factors

Wick’s rotation, one solves the diffusionlike equation problem will be given in the Appendix; however, if one were
to solve this problem in the obvious Hilbert space, its solu-

PR tion would require a quantum computer for a sufficiently
o = —H|W¥) (3) large system. Finally, in Sec. VI, we summarize and make

some remarks about future research directions.
Our universal fermion gate and its mapping to the stan-
by incrementally propagating the initial state via dard universal quantum gate is very similar to the one re-
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cently discussed by Bravyi and Kitadé7] who actually t (1/dR(7)\?

propose that a quantum computer built from fermions might S[R(t)]ZJ dT[i(T) —V[R(7)]
be more efficient than one built from distinguishable two 0

state systems.

. (6)

Bosonic or fermionic statistics are introduced by applying
the corresponding symmetrization operator to the propagator,
II. DYNAMICAL SIGN PROBLEM Eq. (5). However, because the dynamical sign problem oc-

. o curs for any particle statistics, we will ignore particle statis-
In order to understand the mathematical origin of the dy+jcs for the sake of simplicity.

namical sign problem, we use the Feynman path integral The description of the properties of different physical sys-
formulation[18] for continuum systems in the first quantiza- tems in terms of correlations of physical observables is the
tion representation. In this formalism, one maps a quantumatyral way to compare with available experimental informa-
problem inD dimensions into a classical one D+1 di-  tion. In this regard, linear response theory provides a way to
mensions and then simulates that problem probablllstlcally;ompute the response of a system to a weak external dy-
on a classical computer. The algorithm is efficient except fohamical perturbatiofi20]. This linear response is always ex-
the I’epetltlon needed to obtain SuffICIently gOOd Stat|St|CSpressed in terms of a time correlation function of the dy_
The “distinguishable particle” quantum-mechanical propa-namical variables that couple to the perturbation. For
gator of a system represented by the Hamiltonidn example, if we were to apply an external time-dependent

=%2?‘jlpi2+V(R) is expressed 9] magnetic field and we wanted to calculate the average in-
duced magnetization, we would have to compute a time-
G(R-R":t)=(R',t|je”"|R,0) dependent magnetization-magnetization correlation function.
The two-time correlation function between arbitrary local
R()=R' . i i i
:f O D R(t)]&iSRO], (5  dynamical variables andB is
o= Cas(1)=(A(1)B(0))=(e"'Ae MB), (7)
where the measur® R(t)]=limy_..(27it/M)"MP2dR,  if the Hamiltonian is time independent. Expressed in integral
---dRy_1, and the action form

f dR AR 'dR" p(R, R") G(R'—R":~t)A(R')G(R—R';)B(R)
Cag(h)= , (8)
dedR’ AR p(RR")G(R' —R":—)G(R—R':t)

where the “distinguishable particle” density matrpx specifies the way the system was initially prepared. The next step
consists of writing Eq(8) in path-integral form using E(5)

f dRy- - dRom A(Ry+1)B(R)P(Ry, . . . ;Roy)e PR - Raw)
Cas(t)= . , (9)
f de . 'dRZM P(Rl, PP ,'R,ZM)elq)(Rl """ Rowm)

whereP and® are real-valued functions. Generically, a sto-immediately sees that the origin of the dynamical sign prob-
chastic estimate o€g(t) is lem is the oscillatory phase fact@'® that leads to large
phase fluctuations at long times. Manifestlyg' ®(%i)) |

E ARy 1)B(Ry)e PR —0 in an exponential fashion agets larger. Therefore, the
M+1 1

I total statistical error for the evaluation Ef,g(t) grows ex-
Cag(t)= ponentially with time because of large cancellations both in
E el PURY) the numerator and denominator. The so-called “fermion sign
R} problem” is a particular case of this problem whelf =
- _ +1 and time is imaginary21].
— <A(RM+1)B(R1)9@({R'})>P (10) Will a quantum computer solve this problem? One often
(e!®URiby ’ hears that it will because a quantum computer is a physical

system, whether a system of fermions or not, and physical
where the configuration§R,;} are sampled from the prob- systems have no dynamical or fermion sign problems. Fur-
ability distribution P (positive semidefinite measyreOne  thermore, it has been argued that there are means for map-
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ping most physical systems to a quantum computer in such iato the Hamiltonians available in the standard model of
way that the quantum computer’s controlled evolution mim-quantum computation. In contrast to quantum simulations on
ics that of the physical systefi,22]. A closer look, how- a classical computer, this translation prevents uncontrolled
ever, makes the situation less clear. A quantum computer is@xchange processes that are the dominant source of the fer-
computer, and as such, it suffers from limited accuracy. Morenion sign problem. With respect to the dynamical sign prob-
importantly, this type of computer predicts results stochastitem, we then argue by using standard error correction analy-
cally, meaning each measurement is one member of the esis developed for the standard model of quantum computing
semble of measurements possible from a distribution specthat these gates will enable sufficiently accurate measure-
fied by the modulus squared of the wave function for thements of correlation functions so the accuracy of the average
Hamiltonian H modeled by the quantum computer. For aof these measurements will be dominated by the statistical
fixed physical time>0, how accurate is an individual mea- error. The statistical error is problem dependent but polyno-
surement, how accurate is the expectation value of thesmially bounded, so that the difficulty associated with phase-
measurements, and how controlled is their estimated variweighted averages is eliminated.

ance? Is the level of accuracy and control achievable poly-
nomially with complexity and?

There is an area where a problem similar to the sign prob-
lem has been recognized and resolved by quantum computa- The quantum controimodel of quantum computation as-
tion. Recently it was shown that quantum computation issumes the existence of physical systems that can be con-
polynomially equivalent to classical probabilistic computa-trolled by modulating the parameters of the system’s Hamil-
tion with an oracle for estimating the value of simple sums oftonianH, . The control possibilities are abstracted and used
rational numbers calledjuadratically signed weight enu- to implement specifiquantum gateshat represent the uni-
merators (QWGT's) [23]. In other words, if these sums tary evolution of the physical system over a time step ob-
could be evaluated, one could use them to generate the quagained by specific modulations of the Hamiltonian. In most
tum statistics needed to simulate the desired quantum Syﬁeatmentsy the physica] systems, together with the gates, are
tem. More specifically, what was demonstrated was the obthen taken as the abstract model of quantum computation.
tainability of expectation value of operators in quantumThe quantum control and quantum gate viewpoints are effec-

IIl. MODELS OF QUANTUM COMPUTATION

computation by evaluating sums of the form tively equivalent, but to tie the computational model to the
physics simulation problem more closely, we choose to de-
S(AB,X,y) = 2 (— 1)bTBbX\b|ynf\b|, (11) scribe quantum computation from the point of view of quan-

b:Ab=0 tum control; that is, we will assume athp . In this context

we begin by giving the standard model of quantum compu-
whereA and B are 0-1-matrices witlB of dimensionnXn  tation and then defining an alternative model based on fer-
and A of dimensionmxn. The variableb in the summand mions.
ranges over 0-1-column vectors of dimensigrb” denotes Defining a model of quantum computation consists of giv-
the transpose df, |b| is theweightof b (the number of ones ing an algebra of operators, a set of controllable Hamilto-
in the vectorb), and all calculations involvind\, B, andb  nians(Hermitian operators in the algebra set of measur-
are done modulo 2. The absolute value S§fA,B,x,y) is  able observables, and an initial state of the physical system.
bounded by [x|+]y|)". Quantum computation corresponds In the simplest case, the observables are measured by the
to the problem of determining the sign & A,It(A),k,1] method of projective measurements, and the initial state of
with the restrictions of having dég() =1, k, andl being posi- the physical system is an expectation value of the algebra’s
tive integers, andiS[ A, It(A) k,1]|=(k?+12)"2/2. dg(A) isa  operators.
diagonal matrix formed from the diagonal elements\aind
[t(A) is a lower triagonal matrix formed from the lower tri-
angular elements dk. Details of this quantum algorithm can
be found in[23]. The standard model of quantum computati@eutsch’s

The main point is that these sums are similar to the nuguantum network representatjas based on an assembly of

merator of Eq.(10), and attempts to estimate them by ran-two state systems calleglibits controlled by one- and two-
dom sampling result in exponentially bad signal to noisequbit Hamiltonians, and on a measurement process deter-
ratios. In the case of QWGT’s, quantum computers can estimined by one-qubit observables.
mate the sum exponentially better than classical computers,
but the estimate is not exact. The situation for the dynamical 1. Operator algebra

sign problem is similar: Quantum computers cannot obtain |t js convenient to define the standard model through the
exact values for the desired correlation functions, but camygebra of operators acting on the qubits. This algebra is

obtain estimates sufficiently exact to avoid the sign problemyenerated by the unit and Pauli matriegs oy, ande, for
suffered by the known classical algorithms and to yield useach qubit,

able information about the physical models simulated.

In this paper, we will show explicitly how the sign prob-
lem is avoided in the case of simulating fermions. Below we ]:(1 0) o :(O 1)
will give a means for translating local fermion Hamiltonians 0o 1)’ * 11 o)

A. Standard model of quantum computation
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0 —i
i o) 77

1 0 this capability, it is unnecessary to give an initial state ex-
0 -1/ (12 plicitly, as the desired state can be prepared by using mea-
surement and operations. To learn the expectation of an ob-

These matrices represent quantum operators with mixeﬁeavi:’ézga:grengnf O:Oiréglﬁg”rt:;?; Oﬂfqéip:r?éséczggg:tg\%r
commutation relations and span the space of complex-value P y 9

22 malices. For qubis+k, he 5 commute, and for "% TCTSISTENS UL e osted accuracy s acneved.
qubits j =k, they satisfy the relatiowr, o, +0,0,=25,,1 P q

(1,v=xy,7). For aquantum registewith n qubits M(V)n,e putation in terms of quantum Turing machines, $28].
ma{ tak,e ’thé operatar!, defined in terms of a Kro,necker Quantum networks are discussed[B¥]. Introductory de-
Y P wm scriptions of the standard model may be found2e,30.

O'y:

product
Fd=lgl®---® o & -1 B. Fermion model of quantum computation: Grassmann chip
[ [
jthvfactor Somewhat analogously, we now describe a standard

model of fermion computation. For simplicity, we only con-
of matrices acting om two-dimensional linear spaces. Thus Sider spinless fermions, i.e., fermions without internal spin

o1 admits a matrix representation of dimensigh2". degrees of freedom, although we could have considered
a more general fermionic algebras with internal degrees of
2. Control Hamiltonians freedom[9]. Physically, a system of spinless fermions might

L . ) L be a system of spin-1/2 electrons in a magnetic field suffi-
Control of qubits is achieved by applying Hamiltonians gieniiy ‘strong to polarize it fully. The basic system of this

that act on either one or two qubits. A theor¢@4,25 in o qe| is a statéor fermionic modgthat can be occupied by
quantum mformauo_n processing says that a generic OPergy or 1 spinless fermion. We define the model forsuch
tion on a single qubit and any interaction between two qubit,,oqes.

is sufficient for building any unitary operation. We take
1. Operator algebra

Hp(t)=>, [axj(t)aix+ayj(t)aiy]+2 aij(hayol, We define the model through the algebra of the spinless
! b fermion operators; anda/ for each qubif (j=1, ... n),

where thea ,(t) are controllable. Ideally, no constraints on €., through the aIgepra ofnzelements satisfying canonical
p anticommutation relations

the control functions are assumed. However, it is often sim-
pler to design the required control by assuming that only one
of the a,(t) is nonzero at any time. A quantum algorithm for
this model of quantum computation consists of prescribin
the control function$26]. A convenient measure of the com- dan oroducta’ (a;) creates(annihilated a spinless fermion
plexity of such an algorithm is the integrﬁfgdt’ \/Euai(t’) P (A P

. . . in state(mode j. Each element admits a matrix representa-
(the action of the algorithm. The quantum gates are _SImpIy tion of dimension 2 2". The fermion algebra is isomorphic

S(as a* -algebra to the standard modébr Paulj algebra. The

{ai,a;}=0, {a ,ajT}=5ij '

Eimhere{A,B}=AB+ BA denotes the anticommutator or Jor-

of Hp. A convenient u_nni/ersal set of g_atcies is given by Op'isomorphism is established through the Jordan-Wigner map-
erators of the form expg ,7/4) and expio ,oiml8). In the ing [31]
guantum network representation of the standard model, a% '
algorithm is a specific sequence of these operators applied to 2 Control Hamiltonians
the initial state of the qubits.
We take

3. Initial state

The initial state of the qubits is assumed to benatlerm szz [aj(t)aj+aj(t)a;r]+2 aij(t)(arajﬁ—afai).
Kronecker product of the stal@)=(g) which is an eigen- ! !

state ofa, with eigenvalue 1. The state is completely deter-_, . . . S I
. . i . . This is a universal Hamiltonian, i.e., any other Hamiltonian
mined by the expectation valugs|o, [0), which are 1 if

: i . _ . ~ for a system of interacting spinless fermions can be gener-
theo, are allo; or the identity, and are O otherwise. Physi- ated by it. Physical operators must fgermitian products

cally, the initial state has all “spins” up. of bilinear combinations of the creation and annihilation op-
erators, i.e., products of sums afai for arbitraryi andj
4. Measurement modes.

The final feature of the model of computation is the spe-
cific means for extracting information after a sequence of
operations has been applied to the initial state. In the stan- The initial state is assumed to be arnterm Kronecker
dard model, it is always possible to apply a projectiven  product of the stat¢0) that is an eigenstate of the number
Neumann measuremerj27] using the observables, . With operatora}raj with eigenvalue 0. The state is completely de-

3. Initial state
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termined by the expectation value@|a;raj|0>=0 for all j. 171 A . . 4
i it i al— H —ollol=(-1)i"tols?. .. 1]
Physically, the initial state has all modes unoccupied. ] e z| 0+ 20 2 z 0%
4. Measurement —(—1)i-t Yoj—1F1 Y2
Measurements can again be performed by using von Neu- 2 '

mann’s scheme of projective measurements. In Sec. IV C,
we will discuss another scheme more appropriate for th‘\a’/vhereakz(aﬁ(iio{,)/Z, defines a-algebra isomorphism

physical systems at hand. to the algebra of operators of the standard model. It is the

In the next section we show how to simulate the fermion - .
model by using the standard spin-1/2 model. In particular iso-called spin-1/2 Jordan-Wigner transformati@i], and

is possible to efficiently map the fermion Hamiltonians to as the property thab;=a/a;= o). o] =1/2(1+ 0'}). We
Pauli operators that can be simulated using the contrahote thatn; is a “local” particle-number(or density opera-
Hamiltonians of the standard model. This establishes thdor and many types of interaction in physical systems are of
these two models of computation are polynomially equiva-the form “density times density,” which simplifies the simu-
lent. Here, the point of view is similar to the one used forlation as we will see.

classical models of computation: the simulation of one It is important to emphasize that the success of our ap-

model by another establishes their equivalence. proach depends upon the mapping of algel{gasl not of
Hilbert spacek In this regard, it is relevant to mention that
IV. FERMION COMPUTATION the transformation just presented is a particular case of a
VIA THE STANDARD MODEL more general set of mappings that we would like to name

generalized Jordan-Wigner transformati¢@s It is possible
In the previous section we gave the elements required folo imagine a quantum computer implemented, for example,
Deutsch’s quantum network model of a quantum computewith a three state unit§=1) instead of a qubit. In such a
[14] and proposed a universal set of quantum gatestary  case, these generalized transformations still allow one to
operatorgthat allows generic propagation of systems of fer-simulate fermions or particles with arbitrary statistics.
mions (the fabled “Grassmann chip['15]). Here we show Two additional comments are in order: The mapping for
how this propagation can be effected by the quantum spig; anda/ described above corresponds to a one-dimensional
gate. We will demonstrate the polynomial scaling of the con-array of spins. The extension to higher spatial dimensions
struction of the initial state, its subsequent time propagationgan be don€9,32,33 in various ways. A straightforward
and the measurement of some observable. We will also demgxtension to two dimensions is to remap the sites of a two-
onstrate the control of the error in the results. dimensional array onto a one-dimensional string and proceed
The first step is the observation that the setofr@atrices  as before. Also there is nothing special about using the fer-
¥, (of dimension 2Xx2") satisfying the Clifford algebra mion instead of a quantum spin as an alternative model of
identities computation. One could have just as well used the hard core
boson[9]. The main question is whether different algebras
{Vu 7k =26, admit a physical realization. For hard-core bosons this real-

admits a representation in terms of Pauli matri®@sauer- ization is Hé atoms.

Weyl construction

A. Evolution
_ 1 _ 1
N0 V2T 9y Given a fermion model algorithm, it is necessary to effi-
1 2 1 2 ciently obtain a corresponding standard model algorithm that
Y3T020x,  YaT 020y at least approximates the desired evolution. The general prin-
12 3 12 3 ciple is to map the time-dependent fermion Hamiltonian
Y5= 02020%x, Y6~ 00,0y, H(t)=2XH; to the standard model operators via the Jordan-

Wigner transformation, express the result in terms of a sum
of simple products of Pauli operators, and then use the Trot-

- ter approximation

_ j n _ n

Yon-1— 1_.[1 oLo%, Y= gy.
j=

n-1
I o}
=1

e*iAt(HO+H1+---)/h:H e*iAtHi/h_’_O[(At)Z]‘ (13)
[
The following mapping of fermion operators
i1 Each time stepAt is chosen so that the final error of the

. ool =(=1)i"lglg2.. . gLy simulation is sufficiently small. Provided that the number of

aJ_’( 11 UZ) o= oz0g 0 Te terms in the sum is polynomially bounded in the numibef
) qubits or fermionic modes and provided that each term can

—(—1)i-t Y2i-17 172 be polynomially simulated, the simulation is efficient rin

2 ' and 1/error.
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To see how to do the simulation, consider the example of _ L (e i) 0
the bilinear operatoH.=a,al +a;a] in the control Hamil- Uj,p=e (M7= T
tonian of the fermion model:

@le---®l

: . : : : 1.1
Ho=(-1)i[ot ol ot +olol o2 1o ] that takesoy— o

? 27+02707 Hence, to construct this nonlocal fermion operator from

12 -1 ] the standard model requires additional steps that are propor-
oxtoyoy 07 Toyl tional to . This number scales polynomially with the com-
plexity so the construction is efficient if the standard model

It is readily checked that the Jordan-Wigner transformatioriS €fficient. o
for the other terms in the control Hamiltonians are also de- "€ one- and two-body nature of naturally occurring in-

composable into sums of a few products of Pauli operatorstéractions means that a term in a second-quantized represen-

The whole idea of a quantum computer is simulatingtation of a Hamiltonian only has one of two forms: either
. . . . T o ot :
the operations we want by using unitary matrices & @j or a;a;a,a,. We just demonstrated how to handle the

=exp(—iAtHp/h). These unitary matrices, representingfirst case. The second case merely requires applying that al-
quantum gates, perform reversible computation and are ca§®rithm twice. This squares the complexity.

dependent. For our particular case, we know how to simulate

H= cr% in the spin-1/2 casét is directly implemented in the B. State preparation

standard modgl so we ask what set of unitary opera- |, yhis section we discuss the preparation of states of

tions produce the evolutiotd =exp(~iAtH./%). In other  physical relevance. Clearly, the preparation of the initial state

words, how do we write aJ=U;...Uy such thatH. s a very important step since the study and efficiency of the

=U'HU? Consider, for example, the HamiltoniaH,  given physical process one wants to simulate depends upon

(-1
T2

1 2 -1
[UXUZ" "0z

=oio2- -0l o). The procedure is as follows: The uni- i,
tary operator Consider a system o, fermions andn operatorsa;r
(single-particle statgsA genericNg-particle state of a Hil-
: 1 1. 11 1 bert spaceHy of antisymmetrized wave functions can al-
U,=e(™ o= —[T1igl]= — 81 ol paceriy, of antisy . .
\/5 y \/E -1 1 ways be expanded in terms of the antisymmetric states
N
1 1 T 1 _ 1 e
takeso,— oy, i.e.,U;0,U;=0. The operator 0,)=1] bJT|vac>,
j=1
U :ei('n'/4)o';(r§: i[i"f‘l 1 2] + ) .
2 V2 7292 whereb; creates a stajeand|vac)=|0)®|0)- - - ®|0) is the

vacuum statéi.e.,b;|0)=0, Vj). The operatob' is in gen-
eral a linear combination a's, i.e., bJT=Ei”:1aiTPij where
Pj; is some matrix andN.<n.
Uszei(wm)gggf The state$®,) (a=1, ... ,Qe)) in general form an over-
complete set of nonorthogonal states that span the whole
to take oLo2— —oyoias. By successively similar steps Hn,. i.e., redundantly generaté/y . They are known as

y
we easily build the required string of operators: Slater determinantg20]. Typically, |®,) is the result of a

1

o2 . The next step is

takeSO'>1(—> o

oto? ool self-consistent mean-fielr generalized Hartree-Fockal-
If j is odd, culation. Even a Bardeen-Cooper-Schrieffer superconducting
_ state, which does not preserve the number of particles, can be
U= ei(w/4)cr§zr‘z written in this way after an appropriate canonical transforma-
tion that redefines the vacuum sta84].
will take alo?. - .Uiz—lﬁ(_l)[(J—l)IZ]aigg. . ‘le where One can easily prepare the stat%) noticing that the
[m/1] is the integer part ofn/I. The final operator quantum gate, represented by the unitary operator
. j i T
Uj+l:el(ﬂ'/4) o’{, Um:e'(W/z)(bm+bm)

will bring the control operator to the desired ohg to a when acting on the vacuum state, produbér;l;O) up to a
global phase ¢ 1)~ )72} phasee'(™2). Therefore, the successive application of similar

, unitary operators will generate the stade,) up to a global
al. phase.

Except for very small systems, the total Hilbert space is

If j is even, we need an additional unitary operator that flipgoo large to be fully usedt has an exponential growth with
the first qubit’SUf, into a o2 . This flip is achieved with the increasing system sizeln practice, one works in a subspace
operator of Hy, that closely represents the physical state one is trying

1 .2

gt
0x0; 07
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to simulate. Generically, as initial state, we will consider a (2.3) Conditional on|b) being|0), rotate thea=2 qubit,
very general expression of a many-fermion state: and then conditional on the=2 qubit being|1), flip |b):

N X1X2|0)®[00)+X1y2|1)®[01) +y4[1)®[10).  (18)
[W(t=0))= 2, a,|P,), _ _ ,
a=1 (2.4) Project out the states witlio) being|1):

where the integeN is a finite and small number. The state X1Y,|01) +y4]10). (19)
can be prepared efficientlfin N) by a number of proce-
dures. We now describe one. The rotations are chosen so tlgt=y, anda,=x,Y».

To make the description simple, we will assume For the explanation of ste@), we will display the physi-
Sh_ia.?=1 and(®,|® g =4,,, which is equivalent to cal states. The problem is: Starting withy|10)®|®,)
requiring{|®,)} to be an orthonormal set af@ (t=0)) to  +a,|01)®|®P,), produce Eq(16).
be normalized to unity. With these assumptions, the steps of (4.1) Adjoin an ancilla qubitb) initially being |0). The
the state preparation algorithm are: initial state is noway|0)®[10)® |D4) +a,|0)®|01) @ | D).
(4.2 Conditional on|b) being|0), rotate thea=1 qubit,

(1) Adjoin N auxiliary (ancilla) qubits, each in the state gnd then conditional on the=1 qubit being|1), flip |b):

|0), to the vacuum of the physical system. The resulting stat

s ay(x4/0)®[00) +y4|1)®[10)) ®|P )
[0)®]0)® - - -[0)® |vac)=[0),®|vac). (14 +ay(x,|0)®[01) +y,]1)®|11)) ® | D,) (20)
N

_ (4.3) Conditional on|b) being|0), rotate theaw=2 qubit,
~ (2) From this state generaﬁé’\'azlaa|_a)®_|vac) wherel@)  and then conditional on the=2 qubit being|1), flip |b):
is an ancilla state with only the qubit being|1). The pro-
cedure for generating this combination of states is describech, x,(x,/0)®|00) +y,|1)®|01)) ® | P, )+ ax;(X,|0)®|00)
below.

(3) For eacha=1, ... N, conditional on thex qubit be- +Y,[1)®|01)) ® | D,). (21)
ing | 1), apply the state preparation procedure [fbr,). The

resulting state is (4.4) Project out the states witlo)=|0):

N X1X2(21|00) ® | P 1) + 2| 00) ® | D). (22
;1 2|@)®|Dy). (15 The rotations are chosen so thak, equals 1{/N where
N=2. Comparing steg2) with step(4), one sees they are
(4) From this state generate structurally identical, differing by the set of amplitudes gen-

\ erated and the complementarity of the subspaces selected for
1 ) the final result. This latter difference in some sense makes
N El 2,[0)4®|® ) +terms withouO),.  (16)  gpe procedure the inverse of the other. For the casM of
>2, one simply replaces stefa.2) and(2.3) and stepg4.2)
This step will also be described below. and(4.3) by “do loops” over « from 1 toN.
On average, the entire procedure nebidgials before a
The final step is accepted if a measurement shows all theuccessful state preparatidin many cases, the other mea-
ancillas being returned 1®),. The probability of successful surement outcomes can be used also to avoid too many tri-
preparation is, thusE';:l|aa|2/N:1/N. Consequently, on als) Construction of the initial state thus scales as
average N trials will be needed before a successful state@(N2nN,)<O(N?n?) so unless the number of Slater deter-
preparation. minants is exponentially large, general many-fermion states
The procedure to produce sté}) is most easily described can be initialized efficiently.
by example. We will assumd=2. The problem then is to
generates;|10)® |vac) +a,|01)® |vag) from |00)®|vac). In C. Measurement
what follows, all operations will be only on the ancilla part
of the initial state so we will not explicitly show the vacuum.
We also note that one can always apply a rotation to a givea
qubit that will take|0) into x|0)+y|1) with [x|+]y[2=1.
The steps of the procedure are:

While there is a variety of physical observables one mea-
ures experimentally and calculates theoretically, at this time,
is difficult to demonstrate that they all can be computed

efficiently on a quantum computer. Fortunately, we will now
argue that one important class of observables, the temporal

(2.1) Adjoin an ancilla qubit|b) initially being |0). The  correlation function<Cag(t), can be computed not only ef-

initial state is now{0)®|00). ficiently but also accurately. These functions describe the
(2.2 Conditional on|b)=|0), rotate thex=1 qubit, and temporal evolution of some observalbAét) in response to
then conditional on ther=1 qubit being|1), flip |b): some weak external stimulus that couples to the system’s
variable B(0). They are at the heart of understanding, for
X1/0)® |00y +y,|1)®|10). (17  example, the optical properties of materials.
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The goal is to determine correlations of the fo@pg(t) simulating the evolution under, applying Bj,, and then
=(A(t)B(0))=(e'"*Ae "'B) up to a sufficiently small sta- undoing the evolution undeH.
tistical error. Clearly, measuring efficientl§,g is not pos- An alternative approach to the measurement process is
sible for an arbitranA andB. One sufficient condition is that von Neumann’'s projection method. We sketch it here for
A andB are efficiently simulatable Hamiltonians. This obser-completeness and comparison. In this approach, we also add
vation is based on a method for determinigg refined by  an auxiliary(ancilla) degree of freedom to the problem. Sup-
Kitaev [35] and applied to the measurement of correlationpose that this extra qubit corresponds to an harmonic oscil-
functions by Terhal and DiVincenz[86]. Here we give a lator degree of freedor®). Then, we consider the composite

different method based on an idea giver] 37]. state
A general principle that can be used to obt&ixg(t) is to
decompose the operator whose expectation needs to be de- [W)s®|e)o,

termined, i.e. A(t)B(0), into a small sum of operators of a AN
simpler form and measure each summand individually. Ou‘r"lherel\y>S Zjhj|#j)s s the state of the system we want to

. . probe ande), is the state of the harmonic oscillator in the
wﬁézogl;(;rri%tzsr?g?is;;elzrﬁ;ﬁﬁg;a?ﬁgsur?iiat:]yeJgg;lgks coordinate(x) representation. The corresponding state in the
and V are available. General correlation functions are thedomentum(p) representation is denoted),.
determined by decomposing operators using a unitary opera- ASsume the observablé-{ndependent Hermitian opera-
tor basis, for example, the one consisting of products of Paulor) We want to measure isl. Then, we are interested in

matrices. determining 5(¥|.A|¥)g in an efficient way. Suppose that
The method for measuringJ V) consists of the follow- We know how to implement the unitary operatids(t)
ing steps: =e " Following Kitaev we want to implement the follow-
(1) Adjoin via a direct product an ancilld.e., an auxil- g conditional evolution
iary) qubit a in the state [0)+]1))/v2 with density matrix
pa=(1+0%)/2 to the initial state of the system described by U=, |e)(e|Us(t).
t

the density matrix.

(2) Apply the conditional evolutionsU;=|0)(0|®U  From the spectral theorem we can writed
+[1)(1|®1 and Up=[1)(1|@V+|0)(0|®@] (U=U1U,).  =3;Ajl¢))s ;| Then,

The methods of24] may be used to implement these evolu-
tions given algorithms fotJ andV.

(3) Measure &% = oy +ioy=2|0)(1|. This may be done
by measuringsy and crj‘ in sufficiently many independent N
trials of these steps. =[¢)s®| A1,

(4) Given the initial density matrix, the expectation

Lf|<f>j>s®|©>o:2t u|¢j>$®|e>t22 e M) s® )

o o wherelf))o is a state with f=0) zero momentum. Basically,
(o5 +i09), 0p=2 Tro.1[UT|0)(1]Up,@p]  (23)  the conditional evolutiord/ is a momentum translation op-
erator for the harmonic-oscillator extra state. Finally,

=T 4[10)(1|©UVp,®p]

z/{|‘I’>S‘X’|()>0:Z )\j|¢j>s®|f\j>t-
=Tr,[UTVp]=(U'V),, (24) i

) o o Although the second measurement method is conceptually
asTdesqed. The statistical noise in the measurement Qfimpler, it requires approximately implementing the ancillary
(U'V), is determined by that of two binary random vari- harmonic oscillator, the conditional evolutions for many dif-
ables, and therefore, depends only on the value Oferent choices of, and a more complex analysis of the mea-
Tr,[U™Vp], which is inside the unit complex circle. As a syrement statistics. The conditional evolutions can be simpli-

result, it is a simple matter to determine the number of meafieq somewhat, and in special casesich as factoring
surement attempts required to achieve sufficient statisticglecome very efficient—sd@5s).

accuracy.

. D. Measurement noise control
The procedure for measurir@,g(t) can now be summa-

rized as follows: First expresa=A(0) andB=B(0) as a The _quantum physics simulation sillgori'_[hm described
sum of unitary operators A=Ejm:A1aJ-Aj and above is approximate and the output is noisy. In order to

Mg ) _ ) properly use it, we need explicit estimates of the eran
=27 ,Bj/Bj . A convenient unitary operator basis that the inferred expectations given the noise in the implementa-
works well for the local observables of interest consists of altion. Furthermore, the effort required to makesmall must

the products of Pauli operators, as each such product is easigale polynomially with 1d. There are three sources of error
implemented as a quantum algorithm. Then, for geafdj’  that need to be considered. The first is associated with intrin-
one uses the just described method Witk e'HtA;re‘IHI and  sic noise in the implementation of the gates due to imperfec-
V=B to obtain(A;(t)B;.(0)). V may be implemented by tions and unwanted interactions. The second comes from the
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discretization of the evolution operator and the use of théAs usualb’s andc’s are fermion(anticommuting operators.
Trotter decomposition. The third is due to the statistics inThe indexi labels the lattice sitesRj=ia is the lattice site
measuring the desired correlation function using the techposition and strict periodic boundary conditions are as-
nigue given above. sumed, i.e.,

1. Gate imperfections

The problem of gate imperfections can be dealt with by Cien=Ci- (26)

using quantum error correctiof88,39 and fault tolerant We now imagine that the system is initially prepared in

?hﬁg:]uor& Ctﬁ;noa:t;tlorﬁri?/;jig. tﬁgco;]dlgi%atlo :‘tisaﬁgl;;az%fﬁt_he zero-temperature ground state of the ring in the absence
: L P ) phy 9 . of the impurity. Then, at timé=0, a fermion is injected into
ciently low error, it is possible to quantum compute arbi-

the impurity state. After the system has evolved for some

el sccurael The il lorant comutalon e et e want o compte the propatity ampltuce a
yop q volved state is still in the initial state. The relevant quantity

overheads bounded bg[log¥(1/e)] for somek. This expo- o
nentially efficient convergence implies that the effects oft0 compute is =1 andt=0)
physical noise can in principle be ignored.

o G(t)=(¥(0)|b(t)b"(0)|W(0)), (27)

2. Discretization error
A second type of error is the one introduced by the dis- it it
cretization of the evolution operator. This discretization is b(t)=e""b(0)e” ", (28)
very similar to the one used in classical simulation of dy- o ) ) )
namical quantum systems. It is possible to estimate the siz&¢here the initial state is the Fermi sealf<n fermions
of this error by a detailed analysis of the discretization. For
example, using the Trotter approximation Ng—1
(w()=IF)= I c0). (29

e 1(H1+HA_ o= i(HY)AU2gi(H)Atg=I(HDAUZ . o (A1)3], =

The coefficient of At)3~—i(H,+H,)%6 can be bounded | 1S the vacuum of fermions and

by estimating the largest eigenvaluetdf andH,.

n

cli: > ekiRicl. (30)
Our technique for measuring the correlation function ni=

(A(1)B(0)) requires measuring the expectations of unitary. . _ -

operatorSJjTVj, associated with the implemented evolution. The an(.e.numbTeki_ls Sete;m'h”‘?d flr.om the periodic bound-

In most cases, the operatoksand B are a sum of0(mj g) ary conditionsg;.,=¢; , which implies

products of Pauli matrices, so th@(my) UJT’s and O(mg)

V;.’s are needed. This means that the expectation is a sum of 27N

O(mamg) random variables;; where|r”-,|s1. To assure kj=TJ, with n; an integer. (31

that the statistical nois@given by the standard deviatipis

less thane it suffices to measure eaah;: O(mamg/€?)

times.

3. Measurement statistics i

There is no unique way to choose the sengé. The com-
mon convention is to define the first Brillouin zone as

V. EXAMPLE: RESONANT IMPURITY SCATTERING T ’7T
— —<k=s—, (32
A. Formulation of the physical problem a a

Our toy problem is a ring of equally spaced lattice sites i k values uniformly distributed in this interval with spac-
on which spinless fermions hop to nearest-neighbor sites 9hg Ak=27/L.

hop onto or from an “impurity” state. The length of the ring
is L=na, wherea is the distance between sites. The system _
is described by the Hamiltoniafin second quantized form B. Quantum algorithm

We want to write a quantum algorithm that allows one to

computeG(t) (see the Appendix for the exact closed-form

n n

\Y solution. To this end, we start by representing fermion op-
_ o to tha o t : =nd, , _
H= 7241 (CiCit1+Ciy1Ci) +ebb+ ol (cib erators in EQ(A5) in terms of Pauli matrices. Because of the
form of the hybridization term, EqA4), a most convenient
+b'c)). (250  representation is the following
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b=o!, bf=¢?,
Ciy=— 7202, ¢l = olo?,
—( l)na'za'z . aQa’l“, CTn =(- )n(rza'Z . 0'201“ , (36)
|
from which the following mapping results with E=(e+& )/2, A=(e—&)/2, and cog=1/y1+ 5
1 with 5=(A+ JAZ+V?)/V.
b'b==(1+ U%), In general, such a constrained transformation is not easily
2 realized and one performs a Trotter decomposition
Cle:_(l—F |+2) eiH—t:[eiH—S]M:[eiﬁzseiﬁxys—q-(9(52)]"/', (44)

37)  whereH=H,+H,, with H,,=V/2(o50%+ o}0?) and time
slice s=t/M. On the other ha_nd one can easny perform a

to _ = 2 2 \
Ck0b+b Cko (UXU +U ): physical unitary mapping foe'x®

Oy

Therefore, the Hamiltonian operator reads eMxys=UelHrisyT, (45
n—-1 n—-1 1 2
. whereHp;=V/2(o;, — o) and
2H=| e+ 2 E |1+ 60’%-1- 2 Ek_(r'z+2+V(0' T +0')1/0'§) P (%= 0y)
=0 =0 T — ai(718) 02 a=i(ml4) ot =i (wl4)oto?
(39) U=ellmime e timtrars, 49

An additional simplification can be introduced when one re-Finally, the “string” one has to simulate with the quantum

alizes that the structure of the observable to be measured §@mputer is

such that . y

_ _ A =[S(s)Mat[S'(s) Mo,
b(t)=ethb(O)e_th=eiH‘ol_e_th, (39) o B (47)

S(S)=e'HZSUe'HP15UT,

whereH is given by andG(t) (A1),

_ Eky

v
H=> ot —= > o2+ E(a'x ooy, (40) VI. CONCLUDING REMARKS

. . We investigated the implementation of algorithms for the
and, therefore, the “string” one has to simulate has lengthsimulation of fermionic quantum systems, and gave an ex-

equal to twa(it involves only qubits 1 and)2 plicit mapping that relates the usual qubit of a quantum com-
_ puter to the fermionic modes that we want to simulate. Our
At =b(t)b'(0)=eot e Higt (41)  attention focused on the so-called dynamical sign problem. It

o is a problem appearing in attempts to simulate classically the
If we were to transformH=UHp,U" unitarily with U dynamics of quantum systems. We reviewed the origin of
:lel:leiH]Pth andn a finite integer UUT=1) in such a way this problem and_ shoyved h_ow this problem is avoided in
that bothHp; andHp, are physical Hamiltonians, then the duantum computing simulation. The evolution of quantum
simulation would be straightforwardWe call this type of computers is intrinsically quantum mechanical and this is the
mapping a physical unitary mappifgEor our two qubit main difference with a classical computer that allows one to
case, one can always perform a physical unitary mappin%mve the sign problem. We studied sources of errors in a

with uantum computer, such as gate imperfections and the ex-
pansion of the evolution operator, and argued that they
U :ei(7/4)g§efi(ﬁ/4)gie7i(9/z)g§o§ei(w/4)0§ei(,T/4),,i would not open a back door to a problem similar to the sign
problem.
x @ (T4 =i(wlA) o i (012)050% o =i (wlA)aygi (wl4)ay We gave a very general definition of what is a model of

quantum computation. In particular and because of our par-
(42 ticular interest, i.e., the simulation of fermion systems, we
described the standard and the fermionic mod&Grass-

_ AT V) ol S (E+ AZE VD)o mann _Chip’). These are, of course, n_ot the only ones. Iso-
Hp1= ATHV )U (E ATHV Z’ “3) morphisms of«-algebras allow one to introduce more “eso-
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teric” models[9]. Indeed, there is nothing special about the Ex
spinless fermionic model of quantum computation. One 2T
could have used a “hard-core boson” model that admits, in ’
principle, a realization in terms of Hetoms. The key point

is the implementation of the physical gates.

Our effort focused on the simulation of the dynamics of
fermionic quantum systems. However other problems can be
of interest: the thermodynamic or ground-state properties of
a Hamiltonian. Even if one had a quantum computer, it is not
clear how to use it to efficiently compute these quantities. On
the other hand, at present, no proof exists showing that this is —27
not possible.

An approach that, in principle, could be used to compute
the spectrum of a HamiltoniaH (e.g., the ground stater FIG. 1. Single-particle energy spectrum for a4 site ring.
expectation values of arbitrary observables is the adiabatic
“switching on” in conjunction with the Gell-Mann-Low L0s Alamos is sponsored by the U.S. DOE, under Contract
theorem[45] of quantum field theory. The idea simply con- No. W-7405-ENG-36.
sists of introducing a fictitious Hamiltonian

APPENDIX: TOY PROBLEM: EXACT SOLUTION

Hd(D)=Ho+T(OH, (48 We can rewrite our original Hamiltonian, E€25), in the

wave-number representation.

where bothH, and H, are time-independent operatord ( (1) Kinetic energy:

=Hy+H,) and the scalar functiorf (t) is such that

lim,_, .. f(t)=0 and lim_, f.(t)=1, for an arbitrary adia- n

batic parametek. In other wordsH _(t=0)=H andH (t T= —TE (clciii+cl i)

=+w)=H,. Hy is typically an operator whose spectrum is =1

known, e.g., an arbitrary bilinear operator representing a T

mean-field solution ofH and whose eigenstates can be =—— >, eK-WRglk'aygmikaycle (A1)
straightforwardly preparedet us call it|®g)). The Gell- Nk

Mann-Low theorem asserts that
Thus,

lim UE(O!_OO)|(I)O> _ |q,0>
Lol®olU(0,— )| D) (Do| V)’

n

5 (49) T:I_El gkiclicki' (A2)
if the state yvhose limit one is performing admlts.all seriesyhere&, = — 27 coska
expansion in a coupling parameter characterizing the (2) Hybridization energy:
strength ofH,. This formal device generates the eigenstate
adiabatically connected {@,). The theorem does not guar- n
antee that if @) is the ground state dfi, then| V) isthe  Hpyp=—7%= > (c/b+bfe)=
ground state oH. If the conditions of the theorem are satis- \/ﬁ =1
fied then computation of the spectrum Idfis straightfor- (A3)
ward. To our knowledge, this approach has never bee
implemented in practice.

The work presented here is only a first step in a program
investigating the simulation of quantum systems using quan- Hiyp= \/2 (Clb"' b'c,) Sio- (A4)
tum computers. We have given a rather explicit algorithm for k
a simple problem and we will increase the complexity of the ) . .
problems in the work to come. An interesting problem would ~ Thus, in the wave-number representation, the total Hamil-
be to provide algorithms to test for superconductivity in sys-tonian reads
tems such as the Hubbard model. Such simulations using o1 ho1
classical computers cannot unequivocally answer this impor-
tant question because of the sign problem, but a quantum H= Z‘O gkiclicki+ebTb+Vi=§:() (Clib“LbTCki)‘skiO'
computer could. (A5)

SI<

; (e *Ric/b+e*RibTey).
i

I:f'herefore,

The quantization ok quantizes the single-particle energy
spectrumg, . For example, for am=4 site ring, the allowed
We acknowledge the Aspen Center for Physics for its kindk values and energig are shown in Fig. 1.
hospitality while part of this work was performed. Work at  Its ground state witiN.=3 is
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[FS)=c{_ci,ck,|0), T~
T G(t)? LA
. v v l‘ ; j
with kozo, k]_:_, and k2:__. (AG) S A
2 2 vl
The Heisenberg equations of motion are iy
bT=i[H,b'], (A7)
ci=i[H,c], (A8) 0 i 3 4

where[A,B]=AB—BA. These commutators equal )
[ ] g FIG. 2. |G(t)|? for different values of the parameterg,&

[H,bT]=eb™+ V)64, (A9)  —2)

H,cl1=Eci+VbTs,,. A10 e+é e—&\2
[H,c =&y ko (A10) Ny 2oi ( 20 e (A17)

Clearly, one can distinguish two cases.

(1) k#0: and
ch(t)=e'’Kcl(0)=e"127coskac (), (A11)
\
= =— : X= —, Al8
(2) k=0 (&= —27): VO —e)Z+ V2 (A18)
—ibT=eb™+Vc], (A12)
V
—ici=Eoch+ Vb, (A13) y= Niversva (A19)
or in matrix notation : .
Thus, the operatadb(t) is expressible as
[ (e V bT . .
el =ily g\ ct] (A14) b(t)=U7T,(1)b(0) +UTAt)ce(0), (A20)
The solution of these first-order differential equations is where
(bT(t)) p[ (e v) (bT(O)> T =x%e MtyZe i, (A21)
=exp it . Al5
clo voelllcjo) A e g
1) =xy(e "i—e 12), (A22)
From elementary matrix algebra
o and deu(t):eit()\1+}\2):eit(e+50)_
uo=exait| € V) _(x Tyt 0 Finally, G(t) is simply given by
V & y X 0 €'
Xy G(t)=UT(1). (A23)
x| ) (A16) a4 o : .
y X |G(t)[*=x*+y*+2x°y“cosf;—N\)t and is plotted in

) ] . Fig. 2.
wherel, ; are the eigenvalues Of/(\elo) with corresponding Note thatG(t) is independent of the number of fermions
eigenvectors)’p and (¥), andx?+y?=1. After elementary N, present in the initial statg¥(0)). This is why this toy

algebraic manipulations: problem reduces to a two qubit problem.
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