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Quantum algorithms for fermionic simulations
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~Received 13 December 2000; published 18 July 2001!

We investigate the simulation of fermionic systems on a quantum computer. We show in detail how quantum
computers avoid the dynamical sign problem present in classical simulations of these systems, therefore
reducing a problem believed to be of exponential complexity into one of polynomial complexity. The key to
our demonstration is the spin-particle connection~or generalized Jordan-Wigner transformation! that allows
exact algebraic invertible mappings of operators with different statistical properties. We give an explicit
implementation of a simple problem using a quantum computer based on standard qubits.
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I. INTRODUCTION

Because of recent exciting algorithms, like the factori
algorithm of Shor@1# and the search algorithm of Grover@2#,
that solve difficult problems on a quantum computer us
algorithms that would be impractical on a classical compu
it is easy to overlook that the original proposals for quant
computers were for the purpose of solving quantum phy
problems@3#. People like Feynman@3# focused on the exten
to which such a computer could imitate a specific physi
process, suggesting in part that quantum problems were
herently too complex for a classical computer@3#.

The obvious difficulty with deterministically solving
quantum many-body problem~of fermions or bosons! on a
classical computer is the exponentially large basis set nee
~i.e., the dimension of its Hilbert space grows exponentia
with the number of degrees of freedom!. Exact diagonaliza-
tion approaches~e.g., the Lanczos method! suffer from this
exponential ‘‘catastrophe.’’ Viewed the other way aroun
this basis set scaling is what restricts today’s classical c
puter to simulating only small quantum computers. T
point seems indisputable, but should not be taken as p
that quantum systems cannot be simulated on a clas
computer. By the same token, the recent claims@4# that
quantum computers can simulate all quantum systems
ciently lacks explicit and detailed algorithms for speci
problems, and lacks a generic model of quantum comp
tion including the unitary maps~quantum gates! that can be
physically implementable. Even if a quantum computer
isted, some interesting quantum problems, such as fin
the ground state of a general quantum Hamiltonian, do
yet have efficient quantum algorithms. Finding such a qu
tity for small systems is relatively routine on a classical co
puter.

Feynman in fact analyzed two alternatives for simulat
physics with computers@3#. One uses a probabilistic classic
computer that would produce from the same input as gi
to a physical system the same distribution of outputs as
served for the physical system. The other uses a comp
constructed of distinctively quantum-mechanical eleme
that obey the laws of quantum mechanics. This latter p
posal is the quantum computer.

To the question, ‘‘Can quantum systems be probabili
cally simulated by a classical computer?,’’ Feynman’s a
1050-2947/2001/64~2!/022319~14!/$20.00 64 0223
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swer was unequivocally ‘‘No.’’1 This answer is surprising fo
even at that time some quantum systems were being
successfully simulated probabilistically on classical comp
ers, mainly by quantum Monte Carlo~QMC! methods@5#. To
the question, ‘‘Can quantum systems be simulated wit
quantum computer?,’’ his answer was a qualified ‘‘Yes.’’ H
believed almost certainly that this could be done for a sys
of bosons but was unsure that it could be done for a sys
of fermions. In this paper, we present a design for a unive
quantum computer that will simulate a system of fermio
Before doing so, we first discuss some problems that can
solved by a probabilistic simulation of a quantum system
a classical computer and others that cannot.

Probabilistic simulations of quantum systems on a cla
cal computer are mainly performed with the use of t
Monte Carlo method. These statistical approaches were
troduced to overcome the difficulty of exponentially growin
phase spaces by numerically evaluating the accompan
many-dimensional integrals by sampling from a function
sumed to be non-negative. On a classical computer, one
probabilistically simulate a quantum system like liquid H4

@6# and produce results that accurately compare with exp
ment. The situation, however, is far from satisfactory. A
unsatisfactory state of affairs results from the frequent bre
down of the non-negativity assumption and is called ‘‘t
sign problem.’’ The sign problem is manifested by the see
ingly exponentially hard task of estimating the expectat
value of an observable with a given error. Interestingly, F
nman’s negativism about quantum systems being probab
tically simulated by classical computers was a claim t
negative probabilities were unavoidable because of the ‘‘h
den variable’’ problem and the possible violation of Bell i
equalities. The extent to which the sign problem is a hidd
variable problem is unclear. On the other hand, QMC me
ods do not faithfully adhere to Feynman’s idea of a proba
listic computer. Two important differences are that mo
QMC simulations are nonlocal and performed in imagina
time. Feynman discussed real-time simulations on a lo
computer. Implications of these differences have been no

1There is as yet no mathematical proof that this is the corr
answer.
©2001 The American Physical Society19-1
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by Ceperley@7# who suggests Feynman really argues j
against simulating quantum dynamics on a local class
computer. In any case, the known probabilistic simulatio
on a classical computer clearly do not qualify as auniver-
sally efficient computational scheme for general quant
many-body problems. The limiting factors, for whatever re
sons, are negative or complex-valued probabilities whe
the simulations are done in real or imaginary time.

To place the sign problem in a better perspective, we w
start with a real-time analysis of a collection of interacti
quantum particles. Quantum mechanics tells us that th
particles either obey Bosonic statistics, whereby the w
function is symmetric with respect to the exchange of
states of any two particles, or obey fermionic statisti
whereby the wave function is antisymmetric~changes sign!
with respect to the exchange of any two particles@8#. Ex-
amples of bosons are photons and gluons; examples of
mions are electrons, protons, neutrons, and quarks. O
these two quantum statistics conveniently and efficien
map onto a third, quantum spin statistics@9#. Still in other
cases, when particle exchange is unlikely, particle statistic
simply ignored.

For a given initial quantum stateuC(0)&, a quantum com-
puter solves the time-dependent Schro¨dinger equation

i\
]uC&

]t
5HuC& ~1!

by incrementally propagating the initial state via

~2!

(t5MDt and the HamiltonianH is assumed time indepen
dent.! It should be reasonably apparent that if the Mon
Carlo method is applied to the evaluation of the right-ha
side of this equation, it is faced with sampling from oscill
tory integrands that are not always positive and have
known nodal surfaces. Further, as timet increases, the inte
grand fluctuates with increasing rapidity. While clev
stationary-phase forms of the QMC method have been de
oped, acceptable solutions are possible only for relativ
short times. This form of the sign problem is called thedy-
namical sign problem, and we are unaware of any efficie
@10# real-time QMC simulations for bosonic, fermionic, o
quantum spin systems.

Years ago@5#, before quantum computers were propos
it was realized that by transforming Schro¨dinger’s equation
to imaginary-timet via t→2 i\t the problem with the rapid
fluctuations was eliminated. With this transformation, cal
Wick’s rotation, one solves the diffusionlike equation

]uC&
]t

52HuC& ~3!

by incrementally propagating the initial state via
02231
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~4!

(t5MDt and the HamiltonianH is assumed time indepen
dent.! This transformation permits QMC simulations of tim
reversal invariant interacting boson systems to a high deg
of accuracy. For systems of interacting quantum spins
fermions ~or bosons with complex hermitian Hamiltonian
@11#!, the transformation does not solve the sign proble
For quantum spin systems, the difficulty is finding a basis
which all matrix elements of the positive-definite opera
exp(2DtH) are positive. Most notably, this difficulty occur
for frustrated quantum spins. For fermion systems, the pr
lem is the Monte Carlo process causing state exchanges
because of the antisymmetrization requirement just hap
to produce samples that are as frequently positive as n
tive. For the sign problem found in both types of systems,
statistical error of the measured observables grows expo
tially fast with increasing system size. Another difficul
with the imaginary-time approach is analytically continuin
the results back to real time if real-time, i.e., truly dynamic
information is needed@12#. This continuation is an ill-posed
problem whose solution places extraordinary demands on
simulation@13#.

In this paper, we will focus on the dynamical sign pro
lem for a system of fermions, seemingly the most challe
ing case. Eventually we will give a detailed implementati
of a simulation of the dynamical properties of a collection
interacting fermions on a quantum computer. The implem
tation avoids the sign problem. First, in Sec. II we will di
cuss more fully the mathematical origin of the dynamic
sign problem in classical computation and show why a qu
tum algorithm overcomes the problem. In Sec. III we w
give the elements required for Deutsch’s quantum netw
model of a quantum computer@14#. The quantum gate in this
model conveniently allows the propagation of systems
local two state objects, e.g., a localized quantum spin-
particle called qubit. We also propose a universal set of qu
tum gates~unitary operators! that allows generic propagatio
of systems of fermions~the fabled ‘‘Grassmann chip’’@15#!.
The resulting fermion algebra has been the main techn
tool for studying the classical Ising model in two spat
dimensions@16#, a prototype lattice model that had an eno
mous impact on our understanding of phase transitio
Next, In Sec. IV, we show how this propagation can be
fected by the quantum spin gate. We will demonstrate
polynomial scaling of the construction of the initial state,
subsequent time propagation, and the measurement of s
observable. Here we will also demonstrate the control of
error in the results. In Sec. V, we apply our model of dynam
cal fermion computation to a toy problem to illustrate o
procedures in more detail. The exact solution of this t
problem will be given in the Appendix; however, if one we
to solve this problem in the obvious Hilbert space, its so
tion would require a quantum computer for a sufficien
large system. Finally, in Sec. VI, we summarize and ma
some remarks about future research directions.

Our universal fermion gate and its mapping to the st
dard universal quantum gate is very similar to the one
9-2
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QUANTUM ALGORITHMS FOR FERMIONIC SIMULATIONS PHYSICAL REVIEW A64 022319
cently discussed by Bravyi and Kitaev@17# who actually
propose that a quantum computer built from fermions mi
be more efficient than one built from distinguishable tw
state systems.

II. DYNAMICAL SIGN PROBLEM

In order to understand the mathematical origin of the
namical sign problem, we use the Feynman path inte
formulation@18# for continuum systems in the first quantiz
tion representation. In this formalism, one maps a quan
problem in D dimensions into a classical one inD11 di-
mensions and then simulates that problem probabilistic
on a classical computer. The algorithm is efficient except
the repetition needed to obtain sufficiently good statist
The ‘‘distinguishable particle’’ quantum-mechanical prop
gator of a system represented by the HamiltonianH
5 1

2 ( i 51
Ne pi

21V(R) is expressed as@19#

G~R→R8;t !5^R8,tue2 iHt uR,0&

5E
R(0)5R

R(t)5R8D@R~ t !#eiS[R(t)] , ~5!

where the measureD@R(t)#5 limM→`(2p i t /M )2MD/2dR1
•••dRM21, and the action
o-

-
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S@R~ t !#5E
0

t

dtH 1

2 S dR~t!

dt D 2

2V@R~t!#J . ~6!

Bosonic or fermionic statistics are introduced by applyi
the corresponding symmetrization operator to the propaga
Eq. ~5!. However, because the dynamical sign problem
curs for any particle statistics, we will ignore particle stat
tics for the sake of simplicity.

The description of the properties of different physical sy
tems in terms of correlations of physical observables is
natural way to compare with available experimental inform
tion. In this regard, linear response theory provides a way
compute the response of a system to a weak external
namical perturbation@20#. This linear response is always ex
pressed in terms of a time correlation function of the d
namical variables that couple to the perturbation. F
example, if we were to apply an external time-depend
magnetic field and we wanted to calculate the average
duced magnetization, we would have to compute a tim
dependent magnetization-magnetization correlation funct
The two-time correlation function between arbitrary loc
dynamical variablesA andB is

CAB~ t !5^A~ t !B~0!&5^eiHtAe2 iHtB&, ~7!

if the Hamiltonian is time independent. Expressed in integ
form
step
CAB~ t !5

E dR dR 8dR9 r~R, R9! G~R8→R9;2t !A~R8!G~R→R8;t !B~R!

E dR dR8 dR9 r~R,R9!G~R8→R9;2t !G~R→R8;t !

, ~8!

where the ‘‘distinguishable particle’’ density matrixr specifies the way the system was initially prepared. The next
consists of writing Eq.~8! in path-integral form using Eq.~5!

CAB~ t !5

E dR1•••dR2M A~RM11!B~R1!P~R1 , . . . ,R2M !eiF(R1 , . . . ,R2M)

E dR1•••dR2MP~R1 , . . . ,R2M !eiF(R1 , . . . ,R2M)

, ~9!
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whereP andF are real-valued functions. Generically, a st
chastic estimate ofCAB(t) is

CAB~ t !5

(
$Ri %

A~RM11!B~R1!eiF($Ri %)

(
$R i %

eiF($Ri %)

5
^A~RM11!B~R1!eiF($Ri %)&P

^eiF($Ri %)&P

, ~10!

where the configurations$Ri% are sampled from the prob
ability distribution P ~positive semidefinite measure!. One
immediately sees that the origin of the dynamical sign pr
lem is the oscillatory phase factoreiF that leads to large
phase fluctuations at long times. Manifestly,u^eiF($Ri %)&Pu
→0 in an exponential fashion ast gets larger. Therefore, th
total statistical error for the evaluation ofCAB(t) grows ex-
ponentially with time because of large cancellations both
the numerator and denominator. The so-called ‘‘fermion s
problem’’ is a particular case of this problem wheneiF5
61 and time is imaginary@21#.

Will a quantum computer solve this problem? One oft
hears that it will because a quantum computer is a phys
system, whether a system of fermions or not, and phys
systems have no dynamical or fermion sign problems. F
thermore, it has been argued that there are means for m
9-3
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ping most physical systems to a quantum computer in su
way that the quantum computer’s controlled evolution mi
ics that of the physical system@3,22#. A closer look, how-
ever, makes the situation less clear. A quantum computer
computer, and as such, it suffers from limited accuracy. M
importantly, this type of computer predicts results stocha
cally, meaning each measurement is one member of the
semble of measurements possible from a distribution sp
fied by the modulus squared of the wave function for
Hamiltonian H modeled by the quantum computer. For
fixed physical timet.0, how accurate is an individual mea
surement, how accurate is the expectation value of th
measurements, and how controlled is their estimated v
ance? Is the level of accuracy and control achievable p
nomially with complexity andt?

There is an area where a problem similar to the sign pr
lem has been recognized and resolved by quantum comp
tion. Recently it was shown that quantum computation
polynomially equivalent to classical probabilistic compu
tion with an oracle for estimating the value of simple sums
rational numbers calledquadratically signed weight enu
merators ~QWGT’s! @23#. In other words, if these sum
could be evaluated, one could use them to generate the q
tum statistics needed to simulate the desired quantum
tem. More specifically, what was demonstrated was the
tainability of expectation value of operators in quantu
computation by evaluating sums of the form

S~A,B,x,y!5 (
b:Ab50

~21!bTBbxubuyn2ubu, ~11!

whereA andB are 0-1-matrices withB of dimensionn3n
and A of dimensionm3n. The variableb in the summand
ranges over 0-1-column vectors of dimensionn, bT denotes
the transpose ofb, ubu is theweightof b ~the number of ones
in the vectorb), and all calculations involvingA, B, andb
are done modulo 2. The absolute value ofS(A,B,x,y) is
bounded by (uxu1uyu)n. Quantum computation correspond
to the problem of determining the sign ofS@A, lt(A),k,l #
with the restrictions of having dg(A)5I , k, andl being posi-
tive integers, anduS@A, lt(A),k,l #u>(k21 l 2)n/2/2. dg(A) is a
diagonal matrix formed from the diagonal elements ofA and
lt(A) is a lower triagonal matrix formed from the lower tr
angular elements ofA. Details of this quantum algorithm ca
be found in@23#.

The main point is that these sums are similar to the
merator of Eq.~10!, and attempts to estimate them by ra
dom sampling result in exponentially bad signal to no
ratios. In the case of QWGT’s, quantum computers can e
mate the sum exponentially better than classical compu
but the estimate is not exact. The situation for the dynam
sign problem is similar: Quantum computers cannot obt
exact values for the desired correlation functions, but
obtain estimates sufficiently exact to avoid the sign probl
suffered by the known classical algorithms and to yield
able information about the physical models simulated.

In this paper, we will show explicitly how the sign prob
lem is avoided in the case of simulating fermions. Below
will give a means for translating local fermion Hamiltonia
02231
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into the Hamiltonians available in the standard model
quantum computation. In contrast to quantum simulations
a classical computer, this translation prevents uncontro
exchange processes that are the dominant source of the
mion sign problem. With respect to the dynamical sign pro
lem, we then argue by using standard error correction an
sis developed for the standard model of quantum compu
that these gates will enable sufficiently accurate meas
ments of correlation functions so the accuracy of the aver
of these measurements will be dominated by the statist
error. The statistical error is problem dependent but poly
mially bounded, so that the difficulty associated with pha
weighted averages is eliminated.

III. MODELS OF QUANTUM COMPUTATION

The quantum controlmodel of quantum computation as
sumes the existence of physical systems that can be
trolled by modulating the parameters of the system’s Ham
tonianHP . The control possibilities are abstracted and us
to implement specificquantum gatesthat represent the uni
tary evolution of the physical system over a time step o
tained by specific modulations of the Hamiltonian. In mo
treatments, the physical systems, together with the gates
then taken as the abstract model of quantum computat
The quantum control and quantum gate viewpoints are ef
tively equivalent, but to tie the computational model to t
physics simulation problem more closely, we choose to
scribe quantum computation from the point of view of qua
tum control; that is, we will assume anHP . In this context
we begin by giving the standard model of quantum com
tation and then defining an alternative model based on
mions.

Defining a model of quantum computation consists of g
ing an algebra of operators, a set of controllable Hamil
nians~Hermitian operators in the algebra!, a set of measur-
able observables, and an initial state of the physical syst
In the simplest case, the observables are measured by
method of projective measurements, and the initial state
the physical system is an expectation value of the algeb
operators.

A. Standard model of quantum computation

The standard model of quantum computation~Deutsch’s
quantum network representation! is based on an assembly o
two state systems calledqubits, controlled by one- and two-
qubit Hamiltonians, and on a measurement process de
mined by one-qubit observables.

1. Operator algebra

It is convenient to define the standard model through
algebra of operators acting on the qubits. This algebra
generated by the unit and Pauli matricessx , sy , andsz for
each qubitj,

15S 1 0

0 1D , sx5S 0 1

1 0D ,
9-4
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sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D . ~12!

These matrices represent quantum operators with m
commutation relations and span the space of complex-va
232 matrices. For qubitsj Þk, the s ’s commute, and for
qubits j 5k, they satisfy the relationsmsn1snsm52dmn1,
(m,n5x,y,z). For a quantum registerwith n qubits, one
may take the operatorsm

j defined in terms of a Kronecke
product

of matrices acting onn two-dimensional linear spaces. Thu
s m

j admits a matrix representation of dimension 2n32n.

2. Control Hamiltonians

Control of qubits is achieved by applying Hamiltonia
that act on either one or two qubits. A theorem@24,25# in
quantum information processing says that a generic op
tion on a single qubit and any interaction between two qu
is sufficient for building any unitary operation. We take

HP~ t !5(
j

@axj
~ t !s x

j 1ayj
~ t !s y

j #1(
i , j

a i j ~ t !sz
i sz

j ,

where theam(t) are controllable. Ideally, no constraints o
the control functions are assumed. However, it is often s
pler to design the required control by assuming that only
of theam(t) is nonzero at any time. A quantum algorithm f
this model of quantum computation consists of prescrib
the control functions@26#. A convenient measure of the com
plexity of such an algorithm is the integral*0

t dt8A(mam
2 (t8)

~the action of the algorithm!. The quantum gates are simp
specific unitary evolutions that may be implemented in ter
of HP . A convenient universal set of gates is given by o
erators of the form exp(is m

i p/4) and exp(is z
is z

jp/8). In the
quantum network representation of the standard model
algorithm is a specific sequence of these operators applie
the initial state of the qubits.

3. Initial state

The initial state of the qubits is assumed to be ann term
Kronecker product of the stateu0&[(0

1) which is an eigen-
state ofsz with eigenvalue 1. The state is completely det
mined by the expectation values^0usm i

i u0&, which are 1 if

thes m i

i are allsz
i or the identity, and are 0 otherwise. Phys

cally, the initial state has all ‘‘spins’’ up.

4. Measurement

The final feature of the model of computation is the sp
cific means for extracting information after a sequence
operations has been applied to the initial state. In the s
dard model, it is always possible to apply a projective~von
Neumann! measurement@27# using the observablessz

i . With
02231
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this capability, it is unnecessary to give an initial state e
plicitly, as the desired state can be prepared by using m
surement and operations. To learn the expectation of an
servable at the end of an algorithm, one repeats the algor
and measurement procedure many times and averages
the measurements until the desired accuracy is achieved

For a description of the standard model of quantum co
putation in terms of quantum Turing machines, see@28#.
Quantum networks are discussed in@24#. Introductory de-
scriptions of the standard model may be found in@29,30#.

B. Fermion model of quantum computation: Grassmann chip

Somewhat analogously, we now describe a stand
model of fermion computation. For simplicity, we only con
sider spinless fermions, i.e., fermions without internal s
degrees of freedom, although we could have conside
more general fermionic algebras with internal degrees
freedom@9#. Physically, a system of spinless fermions mig
be a system of spin-1/2 electrons in a magnetic field su
ciently strong to polarize it fully. The basic system of th
model is a state~or fermionic mode! that can be occupied by
0 or 1 spinless fermion. We define the model forn such
modes.

1. Operator algebra

We define the model through the algebra of the spinl
fermion operatorsaj andaj

† for each qubitj ( j 51, . . . ,n),
i.e., through the algebra of 2n elements satisfying canonica
anticommutation relations

$ai ,aj%50, $ai ,aj
†%5d i j ,

where$A,B%5AB1BA denotes the anticommutator or Jo
dan product.aj

† (aj ) creates~annihilates! a spinless fermion
in state~mode! j. Each element admits a matrix represen
tion of dimension 2n32n. The fermion algebra is isomorphi
~as a* -algebra! to the standard model~or Pauli! algebra. The
isomorphism is established through the Jordan-Wigner m
ping @31#.

2. Control Hamiltonians

We take

HP5(
j

@a j~ t !aj1ã j~ t !aj
†#1(

i j
a i j ~ t !~ai

†aj1aj
†ai !.

This is a universal Hamiltonian, i.e., any other Hamiltoni
for a system of interacting spinless fermions can be gen
ated by it. Physical operators must be~Hermitian! products
of bilinear combinations of the creation and annihilation o
erators, i.e., products of sums ofaj

†ai for arbitrary i and j
modes.

3. Initial state

The initial state is assumed to be ann term Kronecker
product of the stateu0& that is an eigenstate of the numb
operatoraj

†aj with eigenvalue 0. The state is completely d
9-5
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termined by the expectation values^0uaj
†aj u0&50 for all j.

Physically, the initial state has all modes unoccupied.

4. Measurement

Measurements can again be performed by using von N
mann’s scheme of projective measurements. In Sec. IV
we will discuss another scheme more appropriate for
physical systems at hand.

In the next section we show how to simulate the ferm
model by using the standard spin-1/2 model. In particula
is possible to efficiently map the fermion Hamiltonians
Pauli operators that can be simulated using the con
Hamiltonians of the standard model. This establishes
these two models of computation are polynomially equi
lent. Here, the point of view is similar to the one used
classical models of computation: the simulation of o
model by another establishes their equivalence.

IV. FERMION COMPUTATION
VIA THE STANDARD MODEL

In the previous section we gave the elements required
Deutsch’s quantum network model of a quantum compu
@14# and proposed a universal set of quantum gates~unitary
operators! that allows generic propagation of systems of f
mions ~the fabled ‘‘Grassmann chip’’@15#!. Here we show
how this propagation can be effected by the quantum s
gate. We will demonstrate the polynomial scaling of the co
struction of the initial state, its subsequent time propagat
and the measurement of some observable. We will also d
onstrate the control of the error in the results.

The first step is the observation that the set of 2n matrices
gm ~of dimension 2n32n) satisfying the Clifford algebra
identities

$gm ,gn%52dmn

admits a representation in terms of Pauli matrices~Brauer-
Weyl construction!

g15sx
1 , g25sy

1,

g35sz
1sx

2 , g45sz
1sy

2,

g55sz
1sz

2sx
3 , g65sz

1sz
2sy

3,

]

g2n215F )
j 51

n21

s z
j Gsx

n , g2n5F )
j 51

n21

s z
j Gsy

n .

The following mapping of fermion operators

aj→S )
i 51

j 21

2s z
i Ds 2

j 5~21! j 21s z
1s z

2
•••s z

j 21s 2
j

5~21! j 21
g2 j 212 ig2 j

2
,
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aj
†→S )

i 51

j 21

2s z
i Ds 1

j 5~21! j 21s z
1s z

2
•••s z

j 21s 1
j

5~21! j 21
g2 j 211 ig2 j

2
,

wheres6
j 5(s x

j 6 is y
j )/2, defines a* -algebra isomorphism

to the algebra of operators of the standard model. It is
so-called spin-1/2 Jordan-Wigner transformation@31#, and
has the property thatn̂ j5aj

†aj5 s1
j s 2

j 51/2(11s z
j ). We

note thatn̂ j is a ‘‘local’’ particle-number~or density! opera-
tor and many types of interaction in physical systems are
the form ‘‘density times density,’’ which simplifies the simu
lation as we will see.

It is important to emphasize that the success of our
proach depends upon the mapping of algebras~and not of
Hilbert spaces!. In this regard, it is relevant to mention tha
the transformation just presented is a particular case o
more general set of mappings that we would like to na
generalized Jordan-Wigner transformations@9#. It is possible
to imagine a quantum computer implemented, for exam
with a three state unit (S51) instead of a qubit. In such a
case, these generalized transformations still allow one
simulate fermions or particles with arbitrary statistics.

Two additional comments are in order: The mapping
aj andaj

† described above corresponds to a one-dimensio
array of spins. The extension to higher spatial dimensi
can be done@9,32,33# in various ways. A straightforward
extension to two dimensions is to remap the sites of a tw
dimensional array onto a one-dimensional string and proc
as before. Also there is nothing special about using the
mion instead of a quantum spin as an alternative mode
computation. One could have just as well used the hard c
boson@9#. The main question is whether different algebr
admit a physical realization. For hard-core bosons this re
ization is He4 atoms.

A. Evolution

Given a fermion model algorithm, it is necessary to ef
ciently obtain a corresponding standard model algorithm t
at least approximates the desired evolution. The general p
ciple is to map the time-dependent fermion Hamiltoni
H(t)5( iHi to the standard model operators via the Jord
Wigner transformation, express the result in terms of a s
of simple products of Pauli operators, and then use the T
ter approximation

e2 iDt(H01H11¯)/\5)
i

e2 iDtHi /\1O@~Dt !2#. ~13!

Each time stepDt is chosen so that the final error of th
simulation is sufficiently small. Provided that the number
terms in the sum is polynomially bounded in the numbern of
qubits or fermionic modes and provided that each term
be polynomially simulated, the simulation is efficient inn
and 1/error.
9-6
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To see how to do the simulation, consider the example
the bilinear operatorHc5a1aj

†1aja1
† in the control Hamil-

tonian of the fermion model:

Hc5~21! j@s2
1 sz

1
•••sz

j 21s 1
j 1sz

1s1
1 sz

2
•••s z

j 21s 2
j #

5
~21! j

2
@sx

1sz
2
•••s z

j 21s x
j 1sy

1s z
2
•••s z

j 21sy
j #.

It is readily checked that the Jordan-Wigner transformat
for the other terms in the control Hamiltonians are also
composable into sums of a few products of Pauli operato

The whole idea of a quantum computer is simulati
the operations we want by using unitary matricesU
5exp(2iDtHP /\). These unitary matrices, representi
quantum gates, perform reversible computation and are
dependent. For our particular case, we know how to simu
H5sz

1 in the spin-1/2 case~it is directly implemented in the
standard model!, so we ask what set of unitary oper
tions produce the evolutionŨ5exp(2iDtHc /\). In other
words, how do we write aU5U1 . . . Uk such thatHc
5U†HU? Consider, for example, the HamiltonianHx

5sx
1sz

2
•••s z

j 21s x
j . The procedure is as follows: The un

tary operator

U15ei ~p/4! sy
1
5

1

A2
@ 1̂1 isy

1#5
1

A2
S 1 1

21 1D ^ 1^ •••^ 1

takessz
1→sx

1 , i.e., U1
†sz

1U15sx
1 . The operator

U25ei (p/4)sz
1sz

2
5

1

A2
@ 1̂1 isz

1sz
2#

takessx
1→sy

1sz
2 . The next step is

U35ei (p/4)sz
1sz

3

to take sy
1sz

2→2sx
1sz

2sz
3 . By successively similar step

we easily build the required string of operator
sx

1sz
2
•••s z

j 21s x
j .

If j is odd,

U j5ei (p/4)sz
1s z

j

will take sy
1sz

2
•••s z

j 21→(21)[( j 21)/2]sx
1sz

2
•••s z

j , where
@m/ l # is the integer part ofm/ l . The final operator

U j 115ei ~p/4! sy
j

will bring the control operator to the desired one@up to a
global phase (21)[( j 21)/2]#:

sx
1sz

2
•••s z

j 21s x
j .

If j is even, we need an additional unitary operator that fl
the first qubit’ssy

1 into a sx
1 . This flip is achieved with the

operator
02231
f

n
-

s.

se
te

s

U j 125e2 i (p/4)sz
1
5S e2 i (p/4) 0

0 ei (p/4)D ^ 1^ •••^ 1

that takessy
1→sx

1 .
Hence, to construct this nonlocal fermion operator fro

the standard model requires additional steps that are pro
tional to j. This number scales polynomially with the com
plexity so the construction is efficient if the standard mod
is efficient.

The one- and two-body nature of naturally occurring
teractions means that a term in a second-quantized repre
tation of a Hamiltonian only has one of two forms: eith
ai

†aj or ai
†ajak

†al . We just demonstrated how to handle th
first case. The second case merely requires applying tha
gorithm twice. This squares the complexity.

B. State preparation

In this section we discuss the preparation of states
physical relevance. Clearly, the preparation of the initial st
is a very important step since the study and efficiency of
given physical process one wants to simulate depends u
it.

Consider a system ofNe fermions andn operatorsaj
†

~single-particle states!. A genericNe-particle state of a Hil-
bert spaceHNe

of antisymmetrized wave functions can a
ways be expanded in terms of the antisymmetric states

uFa&5)
j 51

Ne

bj
†uvac&,

wherebj
† creates a statej anduvac&5u0& ^ u0&•••^ u0& is the

vacuum state~i.e., bj u0&50, ; j ). The operatorb† is in gen-
eral a linear combination ofa†’s, i.e., bj

†5( i 51
n ai

†Pi j where
Pi j is some matrix andNe<n.

The statesuFa& „a51, . . . ,(Ne

n )… in general form an over-

complete set of nonorthogonal states that span the w
HNe

, i.e., redundantly generateHNe
. They are known as

Slater determinants@20#. Typically, uFa& is the result of a
self-consistent mean-field~or generalized Hartree-Fock! cal-
culation. Even a Bardeen-Cooper-Schrieffer superconduc
state, which does not preserve the number of particles, ca
written in this way after an appropriate canonical transform
tion that redefines the vacuum state@34#.

One can easily prepare the statesuFa& noticing that the
quantum gate, represented by the unitary operator

Um5ei (p/2)(bm1bm
† )

when acting on the vacuum state, producesbm
† u0& up to a

phaseei (p/2). Therefore, the successive application of simi
unitary operators will generate the stateuFa& up to a global
phase.

Except for very small systems, the total Hilbert space
too large to be fully used~it has an exponential growth with
increasing system size!. In practice, one works in a subspac
of HNe

that closely represents the physical state one is try
9-7
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to simulate. Generically, as initial state, we will consider
very general expression of a many-fermion state:

uC~ t50!&5 (
a51

N

aauFa&,

where the integerN is a finite and small number. The sta
can be prepared efficiently~in N) by a number of proce-
dures. We now describe one.

To make the description simple, we will assum
(a51

N uaau251 and ^FauFb&5dab , which is equivalent to
requiring$uFa&% to be an orthonormal set anduC(t50)& to
be normalized to unity. With these assumptions, the step
the state preparation algorithm are:

~1! Adjoin N auxiliary ~ancilla! qubits, each in the stat
u0&, to the vacuum of the physical system. The resulting s
is

~14!

~2! From this state generate(a51
N aaua& ^ uvac& whereua&

is an ancilla state with only thea qubit beingu1&. The pro-
cedure for generating this combination of states is descr
below.

~3! For eacha51, . . . ,N, conditional on thea qubit be-
ing u1&, apply the state preparation procedure foruFa&. The
resulting state is

(
a51

N

aaua& ^ uFa&. ~15!

~4! From this state generate

1

AN
(
a51

N

aau0&a^ uFa&1terms withoutu0&a . ~16!

This step will also be described below.

The final step is accepted if a measurement shows all
ancillas being returned tou0&a . The probability of successfu
preparation is, thus,(a51

N uaau2/N51/N. Consequently, on
average,N trials will be needed before a successful st
preparation.

The procedure to produce step~2! is most easily described
by example. We will assumeN52. The problem then is to
generatea1u10& ^ uvac&1a2u01& ^ uvac& from u00& ^ uvac&. In
what follows, all operations will be only on the ancilla pa
of the initial state so we will not explicitly show the vacuum
We also note that one can always apply a rotation to a gi
qubit that will takeu0& into xu0&1yu1& with uxu21uyu251.
The steps of the procedure are:

~2.1! Adjoin an ancilla qubitub& initially being u0&. The
initial state is nowu0& ^ u00&.

~2.2! Conditional onub&5u0&, rotate thea51 qubit, and
then conditional on thea51 qubit beingu1&, flip ub&:

x1u0& ^ u00&1y1u1& ^ u10&. ~17!
02231
of

te

d

e

e

n

~2.3! Conditional onub& beingu0&, rotate thea52 qubit,
and then conditional on thea52 qubit beingu1&, flip ub&:

x1x2u0& ^ u00&1x1y2u1& ^ u01&1y1u1& ^ u10&. ~18!

~2.4! Project out the states withub& being u1&:

x1y2u01&1y1u10&. ~19!

The rotations are chosen so thata15y1 anda25x1y2.
For the explanation of step~4!, we will display the physi-

cal states. The problem is: Starting witha1u10& ^ uF1&
1a2u01& ^ uF2&, produce Eq.~16!.

~4.1! Adjoin an ancilla qubitub& initially being u0&. The
initial state is nowa1u0& ^ u10& ^ uF1&1a2u0& ^ u01& ^ uF2&.

~4.2! Conditional onub& beingu0&, rotate thea51 qubit,
and then conditional on thea51 qubit beingu1&, flip ub&:

a1~x1u0& ^ u00&1y1u1& ^ u10&) ^ uF1&

1a2~x1u0& ^ u01&1y1u1& ^ u11&) ^ uF2& ~20!

~4.3! Conditional onub& beingu0&, rotate thea52 qubit,
and then conditional on thea52 qubit beingu1&, flip ub&:

a1x1~x2u0& ^ u00&1y2u1& ^ u01&) ^ uF1&1a2x1~x2u0& ^ u00&

1y2u1& ^ u01&) ^ uF2&. ~21!

~4.4! Project out the states withub&5u0&:

x1x2~a1u00& ^ uF1&1a2u00& ^ uF2&). ~22!

The rotations are chosen so thatx1x2 equals 1/AN where
N52. Comparing step~2! with step ~4!, one sees they are
structurally identical, differing by the set of amplitudes ge
erated and the complementarity of the subspaces selecte
the final result. This latter difference in some sense ma
one procedure the inverse of the other. For the case oN
.2, one simply replaces steps~2.2! and~2.3! and steps~4.2!
and ~4.3! by ‘‘do loops’’ over a from 1 to N.

On average, the entire procedure needsN trials before a
successful state preparation.~In many cases, the other mea
surement outcomes can be used also to avoid too many
als.! Construction of the initial state thus scales
O(N2nNe)<O(N2n2) so unless the number of Slater dete
minants is exponentially large, general many-fermion sta
can be initialized efficiently.

C. Measurement

While there is a variety of physical observables one m
sures experimentally and calculates theoretically, at this ti
it is difficult to demonstrate that they all can be comput
efficiently on a quantum computer. Fortunately, we will no
argue that one important class of observables, the temp
correlation functionsCAB(t), can be computed not only ef
ficiently but also accurately. These functions describe
temporal evolution of some observableA(t) in response to
some weak external stimulus that couples to the syste
variable B(0). They are at the heart of understanding, f
example, the optical properties of materials.
9-8
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The goal is to determine correlations of the formCAB(t)
5^A(t)B(0)&5^eiHtAe2 iHtB& up to a sufficiently small sta
tistical error. Clearly, measuring efficientlyCAB is not pos-
sible for an arbitraryA andB. One sufficient condition is tha
A andB are efficiently simulatable Hamiltonians. This obse
vation is based on a method for determiningCAB refined by
Kitaev @35# and applied to the measurement of correlat
functions by Terhal and DiVincenzo@36#. Here we give a
different method based on an idea given in@37#.

A general principle that can be used to obtainCAB(t) is to
decompose the operator whose expectation needs to b
termined, i.e.,A(t)B(0), into a small sum of operators of
simpler form and measure each summand individually. O
method directly measures expectations of the form^U†V&
when algorithms for implementing the unitary operatorsU
and V are available. General correlation functions are th
determined by decomposing operators using a unitary op
tor basis, for example, the one consisting of products of P
matrices.

The method for measurinĝU†V& consists of the follow-
ing steps:

~1! Adjoin via a direct product an ancilla~i.e., an auxil-
iary! qubit a in the state (u0&1u1&)/A2 with density matrix
ra5(11sx

a)/2 to the initial state of the system described
the density matrixr.

~2! Apply the conditional evolutionsŪ15u0&^0u ^ U

1u1&^1u ^ 1 and Ū25u1&^1u ^ V1u0&^0u ^ 1 (Ū5Ū1Ū2).
The methods of@24# may be used to implement these evo
tions given algorithms forU andV.

~3! Measure 2s1
a 5sx

a1 isy
a52u0&^1u. This may be done

by measuringsx
a and sy

a in sufficiently many independen
trials of these steps.

~4! Given the initial density matrixr, the expectation

^sx
a1 isy

a&ra^ r52 Trn11@Ū†u0&^1uŪra^ r# ~23!

5Trn11@ u0&^1u ^ U†Vra^ r#

5Trn@U†Vr#5^U†V&r , ~24!

as desired. The statistical noise in the measuremen
^U†V&r is determined by that of two binary random va
ables, and therefore, depends only on the value
Trn@U†Vr#, which is inside the unit complex circle. As
result, it is a simple matter to determine the number of m
surement attempts required to achieve sufficient statis
accuracy.

The procedure for measuringCAB(t) can now be summa
rized as follows: First expressA5A(0) andB5B(0) as a
sum of unitary operators A5( j 51

mA a jAj and B

5(
j 851

mB b j 8Bj 8 . A convenient unitary operator basis th
works well for the local observables of interest consists of
the products of Pauli operators, as each such product is e
implemented as a quantum algorithm. Then, for eachj and j 8
one uses the just described method withU5eiHtAj

†e2 iHt and
V5Bj 8 to obtain^Aj (t)Bj 8(0)&. V may be implemented by
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simulating the evolution underH, applying Bj 8 , and then
undoing the evolution underH.

An alternative approach to the measurement proces
von Neumann’s projection method. We sketch it here
completeness and comparison. In this approach, we also
an auxiliary~ancilla! degree of freedom to the problem. Su
pose that this extra qubit corresponds to an harmonic os
lator degree of freedomue&. Then, we consider the composi
state

uC&S^ ue&0 ,

whereuC&S5( jl j uf j&S is the state of the system we want
probe andue& t is the state of the harmonic oscillator in th
coordinate~x! representation. The corresponding state in
momentum~p! representation is denoteduê& t .

Assume the observable (t-independent Hermitian opera
tor! we want to measure isA. Then, we are interested i
determining S^CuAuC&S in an efficient way. Suppose tha
we know how to implement the unitary operationUS(t)
5e2 iAt. Following Kitaev we want to implement the follow
ing conditional evolution

U5(
t

ue& t t^euUS~ t !.

From the spectral theorem we can writeA
5( jL j uf j&S Ŝ f j u. Then,

U uf j&S^ u0̂&05(
t

U uf j&S^ ue& t5(
t

e2 iL j tuf j&S^ ue& t

5uf j&S^ uL̂ j& t ,

whereu0̂&0 is a state with (p50) zero momentum. Basically
the conditional evolutionU is a momentum translation op
erator for the harmonic-oscillator extra state. Finally,

U uC&S^ u0̂&05(
j

l j uf j&S^ uL̂ j& t .

Although the second measurement method is conceptu
simpler, it requires approximately implementing the ancilla
harmonic oscillator, the conditional evolutions for many d
ferent choices oft, and a more complex analysis of the me
surement statistics. The conditional evolutions can be sim
fied somewhat, and in special cases~such as factoring!
become very efficient—see@35#.

D. Measurement noise control

The quantum physics simulation algorithm describ
above is approximate and the output is noisy. In order
properly use it, we need explicit estimates of the errore in
the inferred expectations given the noise in the implemen
tion. Furthermore, the effort required to makee small must
scale polynomially with 1/e. There are three sources of err
that need to be considered. The first is associated with int
sic noise in the implementation of the gates due to imperf
tions and unwanted interactions. The second comes from
9-9
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discretization of the evolution operator and the use of
Trotter decomposition. The third is due to the statistics
measuring the desired correlation function using the te
nique given above.

1. Gate imperfections

The problem of gate imperfections can be dealt with
using quantum error correction@38,39# and fault tolerant
quantum computation@40–44#. According to the accuracy
threshold theorem, provided the physical gates have s
ciently low error, it is possible to quantum compute ar
trarily accurately. The fault tolerant computation impleme
unitary operations and measurements on encoded qubits
overheads bounded byO@ logk(1/e)# for somek. This expo-
nentially efficient convergence implies that the effects
physical noise can in principle be ignored.

2. Discretization error

A second type of error is the one introduced by the d
cretization of the evolution operator. This discretization
very similar to the one used in classical simulation of d
namical quantum systems. It is possible to estimate the
of this error by a detailed analysis of the discretization. F
example, using the Trotter approximation

e2 i (H11H2)Dt5e2 i (H1)Dt/2e2 i (H2)Dte2 i (H1)Dt/21O@~Dt !3#.

The coefficient of (Dt)3;2 i (H11H2)3/6 can be bounded
by estimating the largest eigenvalue ofH1 andH2.

3. Measurement statistics

Our technique for measuring the correlation functi
^A(t)B(0)& requires measuring the expectations of unita
operatorsU j

†Vj 8 associated with the implemented evolutio
In most cases, the operatorsA andB are a sum ofO(mA,B)
products of Pauli matrices, so thatO(mA) U j

†’s andO(mB)
Vj 8’s are needed. This means that the expectation is a su
O(mAmB) random variablesr j j 8 , whereur j j 8u<1. To assure
that the statistical noise~given by the standard deviation! is
less thane it suffices to measure eachr j j 8 O(mAmB /e2)
times.

V. EXAMPLE: RESONANT IMPURITY SCATTERING

A. Formulation of the physical problem

Our toy problem is a ring ofn equally spaced lattice site
on which spinless fermions hop to nearest-neighbor site
hop onto or from an ‘‘impurity’’ state. The length of the rin
is L5na, wherea is the distance between sites. The syst
is described by the Hamiltonian~in second quantized form!

H52T (
i 51

n

~ci
†ci 111ci 11

† ci !1eb†b1
V

An
(
i 51

n

~ci
†b

1b†ci !. ~25!
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As usual,b’s andc’s are fermion~anticommuting! operators.
The indexi labels the lattice sites (Ri5 ia is the lattice site
position! and strict periodic boundary conditions are a
sumed, i.e.,

ci 1n
† 5ci

† . ~26!

We now imagine that the system is initially prepared
the zero-temperature ground state of the ring in the abse
of the impurity. Then, at timet50, a fermion is injected into
the impurity state. After the system has evolved for so
time t, we want to compute the probability amplitude that t
evolved state is still in the initial state. The relevant quant
to compute is (\51 andt>0)

G~ t !5^C~0!ub~ t !b†~0!uC~0!&, ~27!

b~ t !5eiHtb~0!e2 iHt , ~28!

where the initial state is the Fermi sea ofNe<n fermions

uC~0!&5uFS&5 )
i 50

Ne21

cki

† u0&. ~29!

u0& is the vacuum of fermions and

cki

† 5
1

An
(
j 51

n

eikiRjcj
† . ~30!

The wave numberkj is determined from the periodic bound
ary conditions,ci 1n

† 5ci
† , which implies

kj5
2pnj

L
, with nj an integer. ~31!

There is no unique way to choose the set ofnj ’s. The com-
mon convention is to define the first Brillouin zone as

2
p

a
,k<

p

a
, ~32!

with k values uniformly distributed in this interval with spac
ing Dk52p/L.

B. Quantum algorithm

We want to write a quantum algorithm that allows one
computeG(t) ~see the Appendix for the exact closed-for
solution!. To this end, we start by representing fermion o
erators in Eq.~A5! in terms of Pauli matrices. Because of th
form of the hybridization term, Eq.~A4!, a most convenient
representation is the following
9-10
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b5s2
1 , b†5s1

1 ,

ck0
52sz

1s2
2 , ck0

† 52sz
1s1

2 ,

] ]

ckn21
5~21!nsz

1sz
2
•••sz

ns2
n11, ckn21

† 5~21!nsz
1sz

2
•••sz

ns1
n11 , ~36!
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from which the following mapping results

b†b5
1

2
~11sz

1!,

cki

† cki
5

1

2
~11sz

i 12!,

~37!

ck0

† b1b†ck0
5

1

2
~sx

1sx
21sy

1sy
2!.

Therefore, the Hamiltonian operator reads

2H5F e1 (
i 50

n21

EkiG11esz
11 (

i 50

n21

Eki
sz

i 121V~sx
1sx

21sy
1sy

2!.

~38!

An additional simplification can be introduced when one
alizes that the structure of the observable to be measure
such that

b~ t !5eiHtb~0!e2 iHt5eiH̄ ts2
1 e2 iH̄ t, ~39!

whereH̄ is given by

H̄5
e

2
sz

11
Ek0

2
sz

21
V

2
~sx

1sx
21sy

1sy
2!, ~40!

and, therefore, the ‘‘string’’ one has to simulate has len
equal to two~it involves only qubits 1 and 2!

A~ t !5b~ t !b†~0!5eiH̄ ts2
1 e2 iH̄ ts1

1 . ~41!

If we were to transformH̄5UHP1U† unitarily with U

5) j 51
n eiH P2

j t j andn a finite integer (UU†51) in such a way
that bothHP1 and HP2 are physical Hamiltonians, then th
simulation would be straightforward.~We call this type of
mapping a physical unitary mapping.! For our two qubit
case, one can always perform a physical unitary mapp
with

U5ei (p/4)sx
2
e2 i (p/4)sy

1
e2 i (u/2)sz

1sz
2
ei (p/4)sy

1
ei (p/4)sx

1

3e2 i (p/4)sx
2
e2 i (p/4)sy

2
ei (u/2)sz

1sz
2
e2 i (p/4)sx

1
ei (p/4)sy

2
,

~42!

HP15
1

2
~E2AD21V2!sz

11
1

2
~E1AD21V2!sz

2 , ~43!
02231
-
is

h

g

with E5(e1Ek0
)/2, D5(e2Ek0

)/2, and cosu51/A11d2

with d5(D1AD21V2)/V.
In general, such a constrained transformation is not ea

realized and one performs a Trotter decomposition

eiH̄ t5@eiH̄s#M5@eiH̄ zseiH̄ xys1O~s2!#M, ~44!

whereH̄5H̄z1H̄xy with H̄xy5V/2(sx
1sx

21sy
1sy

2) and time
slice s5t/M . On the other hand, one can easily perform
physical unitary mapping foreiH̄ xys

eiH̄ xys5ŪeiH P1sŪ†, ~45!

whereHP15V/2(sx
12sy

2) and

Ū5ei (p/4)sx
2
e2 i (p/4)sy

1
e2 i (p/4)sz

1sz
2
. ~46!

Finally, the ‘‘string’’ one has to simulate with the quantu
computer is

A~ t !.@S~s!#Ms2
1 @S†~s!#Ms1

1 ,
~47!

S~s!5eiH̄ zsŪeiH P1sŪ†,

andG(t)5^A(t)&.

VI. CONCLUDING REMARKS

We investigated the implementation of algorithms for t
simulation of fermionic quantum systems, and gave an
plicit mapping that relates the usual qubit of a quantum co
puter to the fermionic modes that we want to simulate. O
attention focused on the so-called dynamical sign problem
is a problem appearing in attempts to simulate classically
dynamics of quantum systems. We reviewed the origin
this problem and showed how this problem is avoided
quantum computing simulation. The evolution of quantu
computers is intrinsically quantum mechanical and this is
main difference with a classical computer that allows one
solve the sign problem. We studied sources of errors i
quantum computer, such as gate imperfections and the
pansion of the evolution operator, and argued that th
would not open a back door to a problem similar to the s
problem.

We gave a very general definition of what is a model
quantum computation. In particular and because of our p
ticular interest, i.e., the simulation of fermion systems,
described the standard and the fermionic models~‘‘Grass-
mann Chip’’!. These are, of course, not the only ones. Is
morphisms of* -algebras allow one to introduce more ‘‘es
9-11
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teric’’ models @9#. Indeed, there is nothing special about t
spinless fermionic model of quantum computation. O
could have used a ‘‘hard-core boson’’ model that admits
principle, a realization in terms of He4 atoms. The key point
is the implementation of the physical gates.

Our effort focused on the simulation of the dynamics
fermionic quantum systems. However other problems can
of interest: the thermodynamic or ground-state propertie
a Hamiltonian. Even if one had a quantum computer, it is
clear how to use it to efficiently compute these quantities.
the other hand, at present, no proof exists showing that th
not possible.

An approach that, in principle, could be used to comp
the spectrum of a HamiltonianH ~e.g., the ground state! or
expectation values of arbitrary observables is the adiab
‘‘switching on’’ in conjunction with the Gell-Mann-Low
theorem@45# of quantum field theory. The idea simply con
sists of introducing a fictitious Hamiltonian

He~ t !5H01 f e~ t !H1 , ~48!

where bothH0 and H1 are time-independent operators (H
5H01H1) and the scalar functionf e(t) is such that
limt→6` f e(t)50 and limt→0 f e(t)51, for an arbitrary adia-
batic parametere. In other words,He(t50)5H and He(t
56`)5H0 . H0 is typically an operator whose spectrum
known, e.g., an arbitrary bilinear operator representing
mean-field solution ofH and whose eigenstates can
straightforwardly prepared~let us call it uF0&). The Gell-
Mann-Low theorem asserts that

lim
e→0

Ue~0,2`!uF0&

^F0uUe~0,2`!uF0&
5

uC0&

^F0uC0&
, ~49!

if the state whose limit one is performing admits a ser
expansion in a coupling parameter characterizing
strength ofH1. This formal device generates the eigenst
adiabatically connected touF0&. The theorem does not gua
antee that ifuF0& is the ground state ofH0 then uC0& is the
ground state ofH. If the conditions of the theorem are sati
fied then computation of the spectrum ofH is straightfor-
ward. To our knowledge, this approach has never b
implemented in practice.

The work presented here is only a first step in a progr
investigating the simulation of quantum systems using qu
tum computers. We have given a rather explicit algorithm
a simple problem and we will increase the complexity of t
problems in the work to come. An interesting problem wou
be to provide algorithms to test for superconductivity in s
tems such as the Hubbard model. Such simulations u
classical computers cannot unequivocally answer this imp
tant question because of the sign problem, but a quan
computer could.
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APPENDIX: TOY PROBLEM: EXACT SOLUTION

We can rewrite our original Hamiltonian, Eq.~25!, in the
wave-number representation.

~1! Kinetic energy:

T52T(
i 51

n

~ci
†ci 111ci 11

† ci !

52
T
n (

k,k8,i

ei (k82k)Ri~eik8a1e2 ika!ck
†ck8 . ~A1!

Thus,

T5(
i 51

n

Eki
cki

† cki
, ~A2!

whereEk522T coska.
~2! Hybridization energy:

Hhyb5
V

An
(
i 51

n

~ci
†b1b†ci !5

V

n (
k,i

~e2 ikRick
†b1eikRib†ck!.

~A3!

Therefore,

Hhyb5V(
k

~ck
†b1b†ck!dk0 . ~A4!

Thus, in the wave-number representation, the total Ham
tonian reads

H5 (
i 50

n21

Eki
cki

† cki
1eb†b1V(

i 50

n21

~cki

† b1b†cki
!dki0

.

~A5!

The quantization ofk quantizes the single-particle energ
spectrumEk . For example, for ann54 site ring, the allowed
k values and energiesEk are shown in Fig. 1.

Its ground state withNe53 is

FIG. 1. Single-particle energy spectrum for ann54 site ring.
9-12
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uFS&5ck0

† ck1

† ck2

† u0&,

with k050, k15
p

2
, and k252

p

2
. ~A6!

The Heisenberg equations of motion are

ḃ†5 i @H,b†#, ~A7!

ċk
†5 i @H,ck

†#, ~A8!

where@A,B#5AB2BA. These commutators equal

@H,b†#5eb†1Vck
†dk0 , ~A9!

@H,ck
†#5E kck

†1Vb†dk0 . ~A10!

Clearly, one can distinguish two cases.
~1! kÞ0:

ck
†~ t !5eiE ktck

†~0!5e2 i2tT coskack
†~0!. ~A11!

~2! k50 (E0522T ):

2 i ḃ†5eb†1Vc0
† , ~A12!

2 i ċ0
†5E 0c0

†1Vb†, ~A13!

or in matrix notation

S ḃ†

ċ0
†D 5 i S e V

V E0
D S b†

c0
†D . ~A14!

The solution of these first-order differential equations is

S b†~ t !

c0
†~ t ! D 5expF i t S e V

V E0
D G S b†~0!

c0
†~0!

D . ~A15!

From elementary matrix algebra

U~ t !5expF i t S e V

V E0
D G5S x 2y

y x D S eitl1 0

0 eitl2
D

3S x y

2y xD , ~A16!

wherel1,2 are the eigenvalues of (V
e

E0

V ) with corresponding

eigenvectors (y
x) and (x

2y), andx21y251. After elementary
algebraic manipulations:
02231
l1,25
e1E0

2
6AS e2E0

2 D 2

1V2, ~A17!

and

x5
V

A~l12e!21V2
, ~A18!

y5
V

A~l22e!21V2
. ~A19!

Thus, the operatorb(t) is expressible as

b~ t !5U 11* ~ t !b~0!1U 12* ~ t !c0~0!, ~A20!

where

U 11* ~ t !5x2e2 i tl11y2e2 i tl2, ~A21!

U 12* ~ t !5xy~e2 i tl12e2 i tl2!, ~A22!

and detU(t)5eit (l11l2)5eit (e1E0).
Finally, G(t) is simply given by

G~ t !5U 11* ~ t !. ~A23!

uG(t)u25x41y412x2y2 cos(l12l2)t and is plotted in
Fig. 2.

Note thatG(t) is independent of the number of fermion
Ne present in the initial stateuC(0)&. This is why this toy
problem reduces to a two qubit problem.

FIG. 2. uG(t)u2 for different values of the parameters (E05
22).
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