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Linear optical implementation of nonlocal product states and their indistinguishability
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In a recent paper, Bennettet al. @Phys. Rev. A59, 1070 ~1999!# have shown the existence of a basis of
product states of a bipartite system with manifest nonlocal properties. In particular these states cannot be
completely discriminated by means of bilocal measurements. In this paper we propose an optical realization of
these states and we will show that they cannot be completely discriminate by means of a global measurement
using only optical linear elements, conditional transformation, and auxiliary photons.
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I. INTRODUCTION

Quantum optical systems are ideal for the experime
test of the foundation of quantum mechanics@2# as well as
for the experimental implementation of quantum informati
protocols like quantum cryptography@3#, quantum teleporta-
tion @4#, quantum dense coding@5#, and quantum computa
tion @6#. In most of the above experiments the key point
the generation and the detection of entangled states. W
the generation of various kinds of entangled states is n
part of the daily routine of a good laboratory the detect
can be a surprisingly difficult task. The most typical exam
is probably the detection of Bell states@7#, for which it has
been shown to be impossible to build a setup able to
criminate with 100% efficiency all four Bell states using on
linear optical devices@8–10#. Such impossibility to discrimi-
nate the states of an orthogonal basis is by no means
stricted to entangled systems. We will show that this di
culty is present also in the case of an orthogonal basis
bipartite system that has been introduced in connection w
nonlocality without entanglement. Nonlocality has alwa
been associated with quantum entanglement. In a recen
ticle, however@1#, Bennettet al have provided a counterex
ample by showing the existence of an orthogonal set of st
of a bipartite system which, although not entangled, are
distinguishable by means of bilocal measurements~Fig. 1!.
Given two particles, each of which are described by a thr
dimensional Hilbert space, they construct the following
thogonal basis:

uc0&5u2&A^ u2&,

uc61&5
1

A2
u1&A^ ~ u1&6u2&)B ,

uc62&5
1

A2
u3&A^ ~ u2&6u3&)B , ~1.1!
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uc63&5
1

A2
~ u2&6u3&)A^ u1&B ,

uc64&5
1

A2
~ u1&6u2&)A^ u3&B ,

where A and B label the two particles andu1&,u2&,u3& are
three orthogonal states for each particle.

The peculiar property of states~1.1! is that they cannot be
reliably distinguished by two separate observers by mean
any sequence of local operations even if they are allowe
exchange classical communication.

In this paper we propose an optical realization of sta
~1.1! and investigate the possibility to fully discriminat
them with a global measurement by means of linear e
ments. A related problem has been investigated in connect

FIG. 1. Graphical representation of the states of Ref.@1# as a
system of dominos. The fact that, even if these states are glob
orthogonal, their parts are not, is evident in the picture, where
measurement are represented as a cut along solid lines.
©2001 The American Physical Society18-1
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with the possibility to discriminate Bell states. It has be
shown@8–10# that it is not possible to perform a comple
Bell measurement on a product Hilbert space of two tw
level bosonic systems states by means of purely linear o
cal elements. One might expect that this is due to the
tangled nature of the Bell states. However, following the l
of @9#, we will show that also states~1.1! are not fully dis-
tinguishable by a global measurement using only linear
ments, even though they are not entangled.

II. THE SETUP

In our optical setup the three-dimensional Hilbert space
each subsystem is mapped into the single photon stat
three different modes of the electromagnetic field. The ba
statesu1&,u2&,u3& for each of the two subsystems will ther
fore be of the formu i &A5ai

†u0&, u i &B5bi
†u0& whereai

† , bi
†

~i51,2,3! are bosonic creation operators of three orthogo
modes andu0& is the vacuum state. In this notation stat
~1.1! are written as follows:

uc0&5â2
†b̂2

†u0&,

uc61&5
1

A2
â1

†~ b̂1
†6b̂2

†!u0&,

uc62&5
1

A2
b̂1

†~ â3
†6â2

†!u0&, ~2.1!

uc63&5
1

A2
â3

†~ b̂3
†6b̂2

†!u0&,

uc64&5
1

A2
b̂3

†~ â1
†6â2

†!u0&.

The impossibility to distinguish states~2.1! by means of
bilocal measurements implies that they are not distingu
able by measuring directly the photon number of each in
vidual mode. A first attempt to implement a collective me
surement could be to mix the modes by means of lin
devices and then to measure the output modes of su
device. However, following@9# we will adopt a more genera
strategy. We will assume to have at our disposal a set o
many additional modes as we like, here indicated w
bosonic creation operatorscj

† , with any number of photons
we like and we will assume that these auxiliary modes can
mixed with modesai

† ,bk
† in a black box.

The output modes of this box are linked to the input on
by a unitary transformationU. It has been shown@11,12# that
any such unitary transformations of modes can be obta
by means of linear optical devices, like beam splitters a
phase shifters. To ensure the largest possible generalit
our measurement apparatus we will assume the possibilit
performing conditional measurements. In practice this me
we assume that a measurement is made on one selected
put mode while the others are kept in a delay loop and t
according to the outcome of the measurement, these m
02231
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are fed into a selected further black box, in a cascade s
~see Fig. 2!. The final assumption we will make is that ou
detectors have the ability to discriminate the number of in
dent photons. This assumption is clearly unrealistic. We w
show, however, that even if such detectors were availa
the measurement setup described above cannot discrim
states~2.1!.

III. SYMMETRY PROPERTIES

In this section we will describe some symmetry propert
of states~2.1! that are not only interestingper sebut will also
turn out useful in the following.

Consider the following transformationT̂ that permutes
the modes of photonA with the ones of photonB:

T̂:H u i &A→u i &B

u i &B→u42 i &A .

This is obviously a linear transformation. In the bas
statesu1&A ,u2&A ,u3&A ,u1&B ,u2&B ,u3&B T̂ takes the following
matrix form:

T̂5S 0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

D .

The set of states~2.1! is globally invariant under the ac
tion of T̂ since

uc0&→
T̂

uc0&,

uc61&→
T̂

uc62&,

FIG. 2. Cascade setup in which the modes of the states~2.1! are
mixed in a first ‘‘box’’ with auxiliary modes. Selected output mod
is then measured and depending on its outcome the remaining
put modes are fed in a new box. The process can be repeated
and over again.
8-2
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LINEAR OPTICAL IMPLEMENTATION OF NONLOCAL . . . PHYSICAL REVIEW A 64 022318
uc62&→
T̂

uc63&,

uc63&→
T̂

uc64&,

uc64&→
T̂

uc61&.

Furthermore it is straightforward to verify thatT̂451̂. An-
other linear transformation we will use in the following is th
one that introduces a phase change ofp on statesu2&A and
u2&B leaving unaltered all the others. In matrix form

Ŝ5S 1 0 0 0 0 0

0 21 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 21 0

0 0 0 0 0 1

D .

The action ofŜ on states~2.1! is simply

Ŝ:uc i&→uc2 i&.

With Ŝ andT̂ form a group that leaves states~2.1! invari-
ant. Furthermore, by repeated action ofŜ andT̂, it is possible
to transform anyuc i& into any otheruc j&, with the exception
of uc0&, which is mapped onto itself. For instance, we c
transformc1 into a genericc6k ~with k51, . . . ,4) byacting
with the operator

R̂6k5Ŝ(161)/2
•T̂k21.

This implies that the problem of how to generate t
states~2.1! reduces to the problem of how to generate one
them as the others can be obtained by repeated actionŜ
and T̂ and, as we have said already, this can be achieve
linear optical devices.

IV. AUXILIARY PHOTONS DO NOT INCREASE
DISTINGUISHABILITY

We will now show that the use of auxiliary photons in th
measurement setup described in Sec. II does not help in
creasing the distinguishability of states~2.1!. The argument
is a generalization to our more complex set of states of
one used in@9# in connection with the problem of distin
guishing Bell states with an analogous setup. In this sec
we will outline the proof, leaving the details to Appendix A

As already, described our measuring apparatus consis
a cascade of ‘‘black boxes,’’ in which modes are linea
mixed, and partial measurements, which determine the
quence of unitary mixing. The first such black box, deno
by U1, is made out of linear optical elements and its inp
and output are a set of bosonic modes. The joint input mo
consist of our six ‘‘system’’ modesai

† ,bk
† and an arbitrary

number of auxiliary modesci
† . These input modes are un
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tarily mixed in the box into a set of output modesei
† ,d†

where thed† mode is the one on which a measurement w
be performed. The measurement outcome will determine
specific unitary mixing that will be performed in the ne
step of the measurement, consisting of a second boxU2.
While the measurement on moded† is performed, the pho-
tons in the remainingei

† modes are kept in a waiting loop
The whole measurement procedure consists of a cascad
conditional measurements as described above.

Let us now look more in detail at the first block of th
apparatus. The input state ofU1 can be written as

uc i
tot&5ucaux& ^ uc i&5Paux~ck

†!Pi~an
† ,bm

† !u0&,

wherePi(ai
† ,bi

†) is a polynomial of degree 2 andPaux(ck
†)

is a polynomial of arbitrary degree in theck
† .

The corresponding output state is

uc i
tot&5 P̃aux~d†,ek

†!P̃c i
~d†,ek

†!u0&, ~4.1!

whereP̃aux(d
†,ek

†) andP̃c i
(d†,ek

†) are nothing butPaux(ck
†)

andPi(an
† ,bm

† )u0& written in terms of the creation and ann
hilation operators at the output ofU1.

We can expandP̃aux andP̃c i
in terms of decreasing pow

ers ofd† as follows:

P̃aux~d†,ek
†!5 (

n50

na

~d†!nQ̃a
(n)~ek

†!, ~4.2!

P̃c i
~d†,ek

†!5 (
n50

ns

~d†!nQ̃c i

(n)~ek
†!. ~4.3!

In Eq. ~4.4! ns is the largest order ind† for the nineP̃c i

and by definition is independent on indexi (Q̃c i
can be zero

for somei ). Analogously,na is defined as the order ind† of
polynomial P̃aux . We can therefore rewrite Eq.~4.1! as

uc i
tot&5 (

n,m50

na ,ns

~d†!n1mQ̃a
(n)~en

†!Q̃c i

(m)~ek
†!u0&. ~4.4!

Out of the possible outcomes of the measurement of
numberN of photons in moded we will concentrate on two
particular outcomes, namely those resulting in the high
number,Nmax andNmax21 whereNmax5ns1na . The rea-
son for this particular choice will be shortly evident.

Let us suppose now that the number of photons on
selected moded is measured. IfN is the outcome of such
measurement the~un-normalized! conditional state of the re
maining modes can be we written as

uc i
cond→N&5 (

n5max$0,N2ns%

min$na ,N%

Q̃a
(n)Q̃c i

(N2n)u0. ~4.5!

If the input states are to be distinguishable the conditio
statesuc i

N& must be orthogonal for each possible value of,
i.e.,
8-3
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^c i
Nuc j

N&50 ;N, iÞ j .

In Appendix A we will show that the two conditions

^c i
Nmaxuc j

Nmax&50,

~4.6!
^c i

Nmax21uc j
Nmax21

&50,

can be simultaneously satisfied if and only if the two con
tions

^0uQ̃c i

(ns)†Q̃c j

(ns)u0&50,

~4.7!
^0uQ̃c i

(ns21)†Q̃c j

(ns21)u0&50 ~ for nsÞ0!,

are simultaneously satisfied. The important point is that E
~4.8! do not depend on the auxiliary input states. It is easy to
convince oneself that this is the case since from Eq.~4.5!
follows that

^0uQ̃c i

(N)†Q̃c j

(N)u0&}^c i
Nuc j

N&na50 , ~4.8!

whereuc i
N&na50 is the conditional output state obtained fro

c i in the absence of auxiliary photons whenN photons are
measured in moded.

The central point of this section is that the fact that co
dition ~4.6! implies condition~4.7! is equivalent to say tha
any pair of statesc i , c j are distinguishable in the presen
of auxiliary photons only if they are distinguishable in th
absence of auxiliary photons. In other words auxiliary ph
tons do not improve complete distinguishability.

V. IT IS IMPOSSIBLE TO BUILD A COMPLETE LINEAR
DISCRIMINATOR

We will now show that it is impossible for states~2.1! to
satisfy

^c i
nsuc j

ns&na5050, ~5.1a!

^c i
ns21uc j

ns21
&na5050 ~ for nsÞ0!, ~5.1b!

for all i, j P$24, . . . ,4% ( iÞ j ).
In the absence of auxiliary photons statesuc i& can be

written in terms of a polynomial of creation operators as

uc i&5Pc i
~a1

† ,a2
† ,a3

† ,b1
† ,b2

† ,b3
†!u0&.

Let us now define the creation operator vector as

A[~ â1
† ,â2

† ,â3
† ,b̂1

† ,b̂2
† ,b̂3

† ,$ck
†%!T,

where $ck
†% are a possible set of~empty! auxiliary modes.

Since thec i are two-photon states they can be written
terms of a real symmetric matrixM ( i ) as follows:

uc i&5ATM ( i )Au0&,

where the exact form ofM ( i ) can be obtained from Eq.~2.1!.
02231
-
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If U is a generic unitary matrix transforming the inp
modes into the output ones of our apparatus than

uc i&5ÃTM̃ ( i )Ãu0&, ~5.2!

where

M̃ ( i )5UTM ( i )U

and

Ã5U†A5~d†,e1
† ,e2

† , . . . !T,

with d† corresponding to the detected output mode.
States~5.2! can than be written as

uc i&5M̃00
( i )~d†!2u0&12(

k51

D

M̃0k
( i )d†ek

†u0&1 (
k,l 51

D

M̃kl
( i )ek

†el
†u0&,

~5.3!

whereM̃ kl
( i ) is the generic matrix element ofM̃ ( i ) whose di-

mensionD11 corresponds to the number of output mod
involved.

Let us writeU as

U5S u0 r0

u1 r1

A A

uD rD

D ,

whereui are the element of the first column of the matrix a
r i ~with i P$0, . . . ,D%) are vectors of dimensionD repre-
senting the remaining elements of rowi. As a consequence o
the unitarity ofU we have

ui* uj1r i
†
•r j5d i j . ~5.4!

We define the columns vectorc0 whose elements are the firs
six elements of the zeroth column ofU:

c05~u0 , . . . ,u5,0, . . . ,0!T. ~5.5!

We recall thatns is the highest degree ofd† in polynomials
ÃTM̃ ( i )Ã for all values of i, in other words the maximum
number of photons that can be detected ind for all possible
input states$c i ,i P$24, . . . ,4%%. Obviouslyns can assume
only values 0,1,2, depending on the specific choice ofU and
d. We will now show that for all possible value ofns it is
impossible to satisfy simultaneously Eqs.~5.1a! and ~5.1b!.

ns50: this corresponds to a bad choice of moded, as the
monitored mode would be decoupled from the input ones
all possible input state.

ns51: this corresponds toM̃00
( i )50 for all value ofi @see

Eq. ~5.3!#. This implies that

M̃00
( i )5 (

k,l 50

D

Mkl
( i )uk* ul5c0

T
•M ( i )

•c050 ; i P$24, . . . ,4%.

~5.6!
8-4
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The above relation is a constrain onc0 that we will now
show to be incompatible with Eq.~5.1a!.

To this end we note that from Eq.~5.3! follows that after
the detection of one photon in moded the remaining modes
are left in the~un-normalized! conditional state

uc i
cond→1&5 (

k51

D

M̃0k
( i )ek

†u0&5M¢ 0
( i )
•Ãu0&, ~5.7!

where for convenience of notation we have introduced
vector

M¢ 0
( i )5 (

k,l 51

5

Mkl
( i )ukr l5~0,M̃01

( i ) ,M̃02
( i ) , . . . ,M̃0D

( i ) !. ~5.8!

From Eqs.~5.7! and~5.8! follows that the trivial solution
c050 implies uc i

cond→1&50 ; i , i.e., ns50. We must there-
fore look for possible nontrivial solutions of Eq.~5.6! com-
patible with Eq.~5.1a!, which in this particular case reads

^c i
cond→1uc j

cond→1&5M¢ 0
( i )†

•M¢ 0
( j )50. ~5.9!

However, as shown in Appendix B, conditions~5.6! and
~5.9! are compatible only with the trivial solution. This im
plies that it is not possible to build a complete discrimina
for ns51.

ns52 corresponds to a nonzero probability to meas
two photons in moded for somec i that impliesM̃00

( i )Þ0 for
at least one value ofi. On the other hand, condition~5.1a!
can be satisfied in this specific case if and only ifM̃00

( i )Þ0 for
at most one value ofi, which we will denote byi o . Condi-
tion ~5.1a! then becomes

M̃00
( i )5c0

T
•M ( i )

•c050 iÞ i o ~5.10!

and Eq.~5.1b! becomes equivalent to condition Eq.~5.9!. In
order to complete our proof it will therefore be enough
show that whatever the value ofi o , conditions~5.10! and
~5.9! cannot be simultaneously satisfied. Suppose, in part
lar, that they are not satisfied fori o51; the symmetry analy-
sis carried out in the previous section immediately leads
the conclusion that they cannot be satisfied by any o
valuei o ~apart fromi o50). We have shown that it is alway
possible to build a linear operatorR̂i that transformsc1 into
c i ( iÞ0) and leaves the set of states$c i% globally invariant.
If there were a linear operatorU8 such to satisfy conditions
~5.10! and ~5.9! for any value ofi oÞ0 thanU5R̂i

!
•U8•R̂i

would satisfy the same conditions fori o51, which contra-
dicts our initial assumption. The problem then reduces to
analysis of the casesi o50 and i o51. Such analysis
straightforward but tedious~see Appendix B!, leads to the
result that indeed for both values ofi o conditions~5.10! and
~5.9! are incompatible.

VI. CONCLUSIONS

In this paper we have proposed an optical realization
states~1.1!. Bennettet al. @1# have shown that they cannot b
discriminated by means of local action and classical comm
02231
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nication. We have demonstrated that to add the possibility
global interference it is still not sufficient. In other words w
have shown the impossibility to fully discriminate them b
means of a global measurement using linear elements,
beam splitters and phase shifters, delay lines and electr
cally switched linear elements, photodetectors, and auxil
photons.

The impossibility to implement such a measurement
already been shown for the set of maximally entangled B
states. We have proved an analogous no-go theorem for
of states which, although nonlocal, are not entangled. T
opens new questions on which the class of photon states
be, in general, fully discriminated by means of linear optic
systems.
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APPENDIX A

In this appendix we will show that the two conditions

^c i
Nmaxuc j

Nmax&50,

~A1a!
^c i

Nmax21uc j
Nmax21

&50,

can be simultaneously satisfied if and only if the followin
conditions

^0uQ̃c i

(ns)†Q̃c j

(ns)u0&50,

~A1b!
^0uQ̃c i

(ns21)†Q̃c j

(ns21)u0&50,

are simultaneously satisfied. From Eq.~4.6! it follows that
the scalar product between the~un-normalized! states
uc i

cond→N&,uc j
cond→N& obtained after the measurement ofN

photons in moded is

^c i
Nuc j

N&5(
n,m

^0uQ̃c i

(N2m)†Q̃a
(m)†Q̃a

(n)Q̃c i

(N2n)u0& ~A2!

with max$0,N2ns%<n,m<min$na ,N%.
Let us first consider the caseN5na1ns5Nmax:

^c i
Nmaxuc j

Nmax&5^0uQ̃c i

(ns)†Q̃a
(na)†Q̃a

(na)Q̃c j

(ns)u0&

5^0uQ̃a
(na)†Q̃a

(na)Q̃c i

(ns)†Q̃c j

(ns)u0&

5(
$n%

^0uQ̃a
(na)†Q̃a

(na)un&^nuQ̃c i

(ns)†Q̃c j

(ns)u0&

5^0uQ̃a
(na)†Q̃a

(na)u0&^0uQ̃c i

(ns)†Q̃c j

(ns)u0&.

~A3!
8-5
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Above we have used the fact that@Q̃c i

(ns) ,Q̃a
(na)†

#50 @13# and

introduced the completeness relation($n%un&^nu, whereun& is
a Fock state of the relevant modes. Note that only the t
corresponding tou0&^0u survives.

Let us now evaluate Eq.~A2! whenN5Nmax21

^c i
Nmax21uc j

Nmax21
&5 (

n,m50

1

Cm,n~ i , j !, ~A4!

where

Cm,n~ i , j !5^0uQ̃c i

(ns2m)†Q̃a
(na211m)†Q̃a

(na211n)Q̃c j

(ns2n)u0&.

It is straightforward to verify@13# that@ P̃aux ,P̃c i

† #50 im-

plies that

@Q̃a
(na) ,Q̃c i

(n)†#5@Q̃a
(m) ,Q̃c i

(ns)†#50 ; m,n ~A5a!

and that

@Q̃a
(na21),Q̃c i

(ns21)†
#5nansQ̃a

(na)Q̃c i

(ns)† . ~A5b!

Relation ~A5a!, with a procedure analogous to the o
used to derive Eq.~A3!, can be used to show that

C0,0~ i , j !5^0uQ̃c i

(ns)†Q̃a
(na21)†Q̃a

(na21)Q̃c j

(ns)u0&

5^0uQ̃a
(na21)†Q̃a

(na21)u0&^0uQ̃c i

(ns)†Q̃c j

(ns)u0&.

~A6!

Let us now consider terms

C1,0~ i , j !5^0uQ̃c i

(ns21)†Q̃a
(na)†Q̃a

(na21)Q̃c j

(ns)u0&

5~^0uQ̃c j

(ns)†Q̃a
(na21)†Q̃a

(na)Q̃c i

(ns21)u0&!* 5C0,1* ~ j ,i !,

~A7!

which, with the help of Eq.~A5a! can be expressed as

C1,0~ i , j !5^0uQ̃a
(na)†Q̃a

(na21)Q̃c i

(ns21)†Q̃c j

(ns)u0&

2^0uQ̃a
(na)†

@Q̃a
(na21) ,Q̃c i

(ns21)†
#Q̃c j

(ns)u0&.

~A8!

As all the statesc i contain a definite number of photon
namely,N52, P̃c i

(d†,ek
†) is a homogeneous polynomial o

degreeN in d† and ek
† and therefore the genericQ̃c i

(n) is a

homogeneous polynomial of degreeN2n in ek
† . As a con-

sequenceQ̃c i

(ns21)†Q̃c j

(ns)u0&50. From this follows that the

first term at the right-hand-side of Eq.~A8! is equal to zero.
Finally, with the help of Eqs.~A5b! and ~A5a! we obtain
02231
m

C1,0~ i , j !52nans^0uQ̃a
(na)†Q̃a

(na)Q̃c i

(ns)†Q̃c j

(ns)u0&

52nans^0uQ̃a
(na)†Q̃a

(na)u0&^0uQ̃c i

(ns)†Q̃c j

(ns)u0&

5C0,1* ~ j ,i !5C0,1~ i , j !, ~A9!

where again we have made use of a completeness relat
We are left with the termC1,1( i , j ) in the sum of Eq.~A4!,

which can be simplified with the same procedure as in
~A3! to obtain

C1,1~ i , j !5^0uQ̃c i

(ns21)†Q̃a
(na)†Q̃a

(na)Q̃c j

(ns21)u0&

5^0uQ̃a
(na)†Q̃a

(na)u0&^0uQ̃c i

(ns21)†Q̃c j

(ns21)u0&.

~A10!

By inserting Eqs.~A6!, ~A9!, and ~A10! into ~A4! we
obtain

^c i
Nmax21uc j

Nmax21
&5Ans

^0uQ̃c i

(ns)†Q̃c j

(ns)u0&

1Ans21^0uQ̃c i

(ns21)†Q̃c j

(ns21)u0&,

~A11!

where, up to irrelevant multiplicative constants,

Ans
5^0uQ̃a

(na21)†Q̃a
(na21)u0&22nans^0uQ̃a

(na)†Q̃a
(na)u0&,

Ans215^0uQ̃a
(na)†Q̃a

(na)u0&, ~A12!

which concludes our proof, as, from Eqs.~A3! and ~A11!
follows the implication between Eqs.~A1a! and ~A1b!.

APPENDIX B

In this appendix we will prove that condition~5.10! is
incompatible with Eq.~5.9! for both i 050 andi 051. To this
goal it is helpful to define a matrixM , linear combination of
the M ( i ):

M5(
i

m iM
( i ),

so that a generic input state can be defined as

uc&5(
i

m i uc i&5ATMA u0&.

From Eq.~2.1! follows that
8-6
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M5
1

A23 1
0 0 0 m211m1 m212m1 m241m4 ••• 0

0 0 0 m231m3 A2m1 m242m4 ••• 0

0 0 0 m232m3 m221m2 m222m2 ••• 0

m212m1 m231m3 m232m3 0 0 0 ••• 0

m212m1 A2m1 m221m2 0 0 0 ••• 0

m241m4 m242m4 m222m2 0 0 0 ••• 0

A A A A A A � A

0 0 0 0 0 0 ••• 0

2 .
e

t

n a

on

y

We can then write

M̃005c0
T
•M•c0

5m0•u1u41$m1•u0~u31u4!1m21•u0~u32u4!

1m2•u2~u41u5!/1m22•u2~u42u5!

1m3•u3~u11u2!/1m23•u3~u12u2!

1m4•u5~u01u1!/1m23•u5~u02u1!%/A2. ~B1!

We now impose condition~5.10! with i 050 on vectorc0,
i.e., we impose thatM̃00

(0) is the only nonzero coefficient. W
have therefore to set to zero all coefficients in Eq.~B1! ex-
cept the one multiplyingm0. The only solution compatible
with this condition is

c05~0,u1,0,0,u4,0, . . . ,0!T. ~B2!

From the form ofM and from Eq.~B2! follows that Eq.
~5.8! can be rewritten as follows:

M¢ 05(
i

m iM¢ 0
( i )5m0

u1r41r1u4

2
1

m12m21

23/2
u4r0

1
m21m22

23/2
u4r21

m31m23

23/2
u1r31

m42m24

23/2
u1r5 .

~B3!

Condition ~5.9! implies

^c1
cond→1uc21

cond→1&}uu4u2ir0i250, ~B4a!

^c3
cond→1uc23

cond→1&}uu1u2ir3i250. ~B4b!
n,

A

r,

02231
Since condition~5.4! requires thatir0i25ir3i251, to
fulfill Eq. ~B4! we must imposeuu1u5uu4u50. This, how-
ever, would implyns50.

We will now show that conditions~5.9! and~5.10! cannot
be simultaneously fulfilled withi 051, i.e, that the only non-
zero coefficient ofM̃00 is the one multiplying the coefficien
m1.

Along the same lines of the previous case we obtai
constraint on the vectorc0 leading to the following relation

cO05~u0,0,0,u,u,0, . . . ,0!T,

andM¢ 0 reduces to

M¢ 05222/3$m1@u0~r31r4!1r12u#1m21u0~r32r4!

1~m22m22!ur21~m41m24!u0r51m3u~r11r2!

1m23u~r12r2!%. ~B5!

Therefore we obtain

^c2
cond→1uc22

cond→1&}uuu2ir2i250,

^c4
cond→1uc24

cond→1&}uu0u2ir5i250.

From the unitarity condition~5.4! follows that ir2i
5ir5i51 and Eq.~5.1a! can be satisfied only ifu andu0 are
both zero.

As before this requirement leads to the trivial soluti
c050, which is incompatible withns.0.

Both with i 051 and i 050 we find that conditions~5.9!
and ~5.10! lead to the trivial solutionc050, i.e., ns50.

A fortiori conditions~5.9! and ~5.6! will admit as a solu-
tion only the trivial one. This implies indistinguishabilit
also in the casens51.
.
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