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Linear optical implementation of nonlocal product states and their indistinguishability
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In a recent paper, Bennett al. [Phys. Rev. A59, 1070(1999] have shown the existence of a basis of
product states of a bipartite system with manifest nonlocal properties. In particular these states cannot be
completely discriminated by means of bilocal measurements. In this paper we propose an optical realization of
these states and we will show that they cannot be completely discriminate by means of a global measurement
using only optical linear elements, conditional transformation, and auxiliary photons.
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I. INTRODUCTION

Quantum optical systems are ideal for the experimental

PACS nuntder03.67.Hk, 42.50-p, 03.65.Ta

1
|¢hag)= E(|2>_’—_|3>)A®|1>Ba

test of the foundation of quantum mechan(i2s as well as
for the experimental implementation of quantum information
protocols like quantum cryptograpli], quantum teleporta-
tion [4], quantum dense codirn], and quantum computa-

tion [6]. In most of the above experiments the key point iS\yhere A and B label the two particles anfll),|2),|3) are

1

|ha)= \/E(|1>i|2>)A®|3>Ba

the generation and the detection of entangled states. Whilgee orthogonal states for each patrticle.

the generation of various kinds of entangled states is NowW The peculiar property of statés.1) is that they cannot be
part of the daily routine of a good laboratory the detectionyejiaply distinguished by two separate observers by means of
can be a surprisingly difficult task. The most typical exampleyny sequence of local operations even if they are allowed to

is probably the detection of Bell statgg], for which it has

exchange classical communication.

been shown to be impossible to build a setup able to dis- | thjs paper we propose an optical realization of states
criminate with 100% efficiency all four Bell states using only (1 1) and investigate the possibility to fully discriminate

linear optical deviceg8—10]. Such impossibility to discrimi-

them with aglobal measurement by means of linear ele-

nate the states of an orthogonal basis is by no means resenisA related problem has been investigated in connection

stricted to entangled systems. We will show that this diffi-
culty is present also in the case of an orthogonal basis of a

bipartite system that has been introduced in connection with A 7 2 3
nonlocality without entanglement. Nonlocality has always B . ~
been associated with quantum entanglement. In a recent ar- 7 7 )
ticle, howeveir[1], Bennettet al have provided a counterex- 7 (4 v,
ample by showing the existence of an orthogonal set of states \ WZ
of a bipartite system which, although not entangled, are not
distinguishable by means of bilocal measureméhtg. 1). 2 W,
Given two particles, each of which are described by a three- 2 Y, -
dimensional Hilbert space, they construct the following or- v, \ )
thogonal basis: -
V., \
|o)=12)a®|2), 3 Vs W3 )
1
[her)= E|1>A®(|l>i|2>)8’

1
[hsp)= E|3>A®(|2>t|3>)81

1050-2947/2001/62)/0223188)/$20.00

(1.9

FIG. 1. Graphical representation of the states of Ref.as a
system of dominos. The fact that, even if these states are globally
orthogonal, their parts are not, is evident in the picture, where the
measurement are represented as a cut along solid lines.
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with the possibility to discriminate Bell states. It has been selecfied
shown[8-1(] that it is not possible to perform a complete p mode
Bell measurement on a product Hilbert space of two two-
level bosonic systems states by means of purely linear opti
cal elements. One might expect that this is due to the en-
tangled nature of the Bell states. However, following the line
of [9], we will show that also stated.1l) are not fully dis-

tinguishable by a global measurement using only linear ele-
ments, even though they are not entangled.

control

Il. THE SETUP

In our optical setup the three-dimensional Hilbert space of
each subsystem is mapped into the single photon state of _ _
three different modes of the electromagnetic field. The basis F!C- 2. Cascade setup in which the modes of the statdsare
stateﬂ 1>’|2>,|3> for each of the two subsystems will there- mixed in a first “box” with auxiliary modes. Selected output mode
fore be of the form|i) =a-T|0) |i) =b-T|0) wherea! bl is then measured and depending on its outcome the remaining out-
(i=1.2.3 are bosonic%realtion’op:ratolrs of three olrt,holgonagm modes are fed in a new box. The process can be repeated over
modes and0) is the vacuum state. In this notation states

nd over again.
(1.1) are written as follows: are fed into a selected further black box, in a cascade setup

(see Fig. 2 The final assumption we will make is that our

_atpt
|ho) =a3b;|0), detectors have the ability to discriminate the number of inci-
dent photons. This assumption is clearly unrealistic. We will
sy = iéT(6T+6T)|O> show, however, that even if such detectors were available,
1 N the measurement setup described above cannot discriminate
states(2.1).
1., .. -
[p0) = Ebl(agi aj)[0), (2.1) Il. SYMMETRY PROPERTIES
In this section we will describe some symmetry properties
1. fr oy of stateq2.1) that are not only interestinger sebut will also
[¢p3)= Eas(bsi b3)[0), turn out useful in the following.

Consider the following transformatioi that permutes
1 the modes of photoA with the ones of photoi:
|4-4)=—=bi(aj+a})|0).

V2

The impossibility to distinguish state®.1) by means of De—[4=1)a.
bilocal measurements implies that they are not distinggish- This is obviously a linear transformation. In the basis
able by measuring directly the photon number of each indi- - i
vidual mode. A first attempt to implement a collective mea-St&t€31)a.2)a.[3)a.[1)e.[2)e.[3)e T takes the following
surement could be to mix the modes by means of lineafatrix form:
devices and then to measure the output modes of such a
device. However, following9] we will adopt a more general
strategy. We will assume to have at our disposal a set of as
many additional modes as we like, here indicated with
bosonic creation operator§, with any number of photons
we like and we will assume that these auxiliary modes can be
mixed with modesa/ b} in a black box.

The output modes of this box are linked to the input ones 0
by a unitary transformatiobl. It has been showji1,12 that
any such unitary transformations of modes can be obtained Thg gt of state2.1) is globally invariant under the ac-
by means of linear optical devices, like beam splitters and. P
phase shifters. To ensure the largest possible generality ?hon of T since
our measurement apparatus we will assume the possibility of 2
performing conditional measurements. In practice this means | o) — | o),
we assume that a measurement is made on one selected out-
put mode while the others are kept in a delay loop and that, =
according to the outcome of the measurement, these modes [ 1) —|h0),

Iy |i>A—>|i>B

—
I
o »r O O O
O »r O O O O
O O O O O
O ©O O »r O O
O O O O +» O
SO O O O O Bk
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T tarily mixed in the box into a set of output modeé,dJr
o) —3), where thed" mode is the one on which a measurement will

N be performed. The measurement outcome will determine the
sy —| ), specific unitary mixing that will be performed in the next

step of the measurement, consisting of a second Bex
7 While the measurement on modé is performed, the pho-
|ea)—|=1). tons in the remaining modes are kept in a waiting loop.
L The whole measurement procedure consists of a cascade of
Furthermore it is straightforward to verify thaf=1. An- conditional measurements as described above.
other linear transformation we will use in the following isthe et us now look more in detail at the first block of the
one that introduces a phase changerobn state§2), and  apparatus. The input state of; can be written as
|2)g leaving unaltered all the others. In matrix form
|41°) = awd ® [41) = Pau( ) Pi(al ,b})[0),

1 0 0O 0
0 -1 00 0 0O whereP;(a] ,bl) is a polynomial of degree 2 ari,(c;)
is a polynomial of arbitrary degree in thg .
& 0 010 00 The corresponding output state is
0 0 01 0 0 5 5
0 000 -1 0 |41°) =Paudd",e) P, (d",eh)|0), (4.9)
0 000 01 whereP,(d",el) andP, (d",ef) are nothing buP,(c;)
The action ofS on stateg2.1) is simply andP;(a/,b/)|0) written in terms of the creation and anni-
hilation operators at the output of;.
S|y —| ). We can expan®, andl~:’¢i in terms of decreasing pow-

. . ers ofd" as follows:
With SandT form a group that leaves statéx1) invari-

ant. Furthermore, by repeated actiorSdndT, it is possible ~ A =)t

to transform any¢;) into any other;), with the exception Paux(dT'ek)_ngo (d")"Qg (ek), (4.2)
of |4o), which is mapped onto itself. For instance, we can

transformy, into a generiay., (with k=1, ... ,4) byacting Ng

with the operator TDwi(dT,ebano (dH"QP(eh). 4.3

§+k:é(lil)/2.-'|‘—kfl'
- In Eq. (4.4) ng is the largest order id" for the nineP,,

This implies that the problem of how to generate thegng by definition is independent on inde¢Q,, can be zero
stateg2.1) reduces to the problem of how to generate one of i

_ A for somei). Analogously,n, is defined as the order ' of
them as the others can be obtained by repeated acti@ of olvnomial P We can therefore rewrite Eg4.1) as
andT and, as we have said already, this can be achieved b@/ y awe o

linear optical devices. Na.Ns
9= > (dH" QM (eh QM (e)|0). (4.9
IV. AUXILIARY PHOTONS DO NOT INCREASE nm=0

DISTINGUISHABILITY Out of the possible outcomes of the measurement of the

We will now show that the use of auxiliary photons in the NumberN of photons in model we will concentrate on two
measurement setup described in Sec. Il does not help in iarticular outcomes, namely those resulting in the highest
creasing the distinguishability of statéz 1). The argument NUMber,Npay andNpya,—1 whereNp . =ns+n,. The rea-
is a generalization to our more complex set of states of th&é0on for this particular choice will be shortly evident.
one used in9] in connection with the problem of distin- ~ Let us suppose now that the number of photons on the
guishing Bell states with an analogous setup. In this sectiofielected model is measured. IN is the outcome of such
we will outline the proof, leaving the details to Appendix A. Measurement thein-normalized! conditional state of the re-

As already, described our measuring apparatus consists 8faining modes can be we written as
a cascade of “black boxes,” in which modes are linearly
mixed, and partial measurements, which determine the se- lw_condHN>:
guence of unitary mixing. The first such black box, denoted ! n=maXON-ng
by U4, is made out of linear optical elements and its input
and output are a set of bosonic modes. The joint input modes If the input states are to be distinguishable the conditional
consist of our six “system” modes/ ,b] and an arbitrary  stateg ) must be orthogonal for each possible value of N
number of auxiliary modes;‘. These input modes are uni- i.e.,

min{ng N}

Q"QY"Mo. (45
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(lg})=0 VN, i#].
In Appendix A we will show that the two conditions

<lr/liNmax| l//;\‘max> — O,
B B (4.6
(e gt =o,

can be simultaneously satisfied if and only if the two condi-

tions

~ T~
(01Q”"Q;?10)=0,

A(ns—1)T=(ng—1) _ (47)
(O[Q%MRY Vlo)=0  (for ny#0),

are simultaneously satisfied. The important point is that Egs.

(4.8) do not depend on the auxiliary input statéisis easy to
convince oneself that this is the case since from @d)
follows that

(015 Q10 (4| ] n,~o. 4.8
where| ¢’iN>na:0 is the conditional output state obtained from

¢; in the absence of auxiliary photons whBnphotons are
measured in modd.

The central point of this section is that the fact that con-

dition (4.6) implies condition(4.7) is equivalent to say that
any pair of states);, ¢; are distinguishable in the presence
of auxiliary photons only if they are distinguishable in the

PHYSICAL REVIEW A64 022318

If U is a generic unitary matrix transforming the input
modes into the output ones of our apparatus than

i) =ATMDA|0), (5.2
where
MO=u"mOy
an
I

with d* corresponding to the detected output mode.
States(5.2) can than be written as

A=U'A=(d"el e}, ..

D D
~fga"?0)+23, Fgarelioy+ 3 Melel[o)
(5.3

|4

whereM{} is the generic matrix element & () whose di-
mensionD +1 corresponds to the number of output modes
involved.

Let us writeU as

Up To

u n;
u=| . 7|

Up I'p

absence of auxiliary photons. In other words auxiliary pho-

tons do not improve complete distinguishability.

V. IT IS IMPOSSIBLE TO BUILD A COMPLETE LINEAR
DISCRIMINATOR

We will now show that it is impossible for stat¢®.1) to
satisfy

(B 4)n,~0=0, (5.13

(W g n—0=0  (for ng#0), (5.1

foralli, je{—4,...,4 (i#]).

In the absence of auxiliary photons states) can be
written in terms of a polynomial of creation operators as
|4i)=Py,(a] aj,al,b],bj,b})[0).

Let us now define the creation operator vector as
A=(a],a},a},bl,b},bl {cIHT,

where{c/} are a possible set dempty auxiliary modes.

whereu; are the element of the first column of the matrix and
ri (with i€{0,... D}) are vectors of dimensio® repre-
senting the remaining elements of rowAs a consequence of
the unitarity ofU we have

We define the columns vectgg whose elements are the first
six elements of the zeroth column of

0" (5.5

We recall thatng is the highest degree af' in polynomials

ATMOA for all values ofi, in other words the maximum
number of photons that can be detectedlifor all possible
input stateg ¢; ,i e{—4, ... ,4}. Obviouslyng can assume
only values 0,1,2, depending on the specific choice aind
d. We will now show that for all possible value of; it is
impossible to satisfy simultaneously E@5.19 and(5.1h).
ns=0: this corresponds to a bad choice of matias the
monitored mode would be decoupled from the input ones for
all possible input state.

ne=1: this corresponds t?{}=0 for all value ofi [see

EOZ(UO, P ,U5,0, .

Since they; are two-photon states they can be written in Eq. (5.3]. This implies that

terms of a real symmetric matrid () as follows:
l)=ATMDA|0),

where the exact form d¥1() can be obtained from Eq2.1).

=cg-MW.=0 Vie{-4,....4.
(5.6
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The above relation is a constrain gpthat we will now  nication. We have demonstrated that to add the possibility of
show to be incompatible with E¢5.1a. global interference it is still not sufficient. In other words we

To this end we note that from E¢6.3) follows that after have shown the impossibility to fully discriminate them by
the detection of one photon in modehe remaining modes means of a global measurement using linear elements, like

are left in the(un—normalizeaj conditional state beam splitters and phase shifters, delay lines and electroni-
cally switched linear elements, photodetectors, and auxiliary

TORVY hotons.

gront )= Z y=N{.Al0), (57 PnUOme

The impossibility to implement such a measurement has
already been shown for the set of maximally entangled Bell
where for convenience of notation we have introduced thestates. We have proved an analogous no-go theorem for a set
vector of states which, although nonlocal, are not entangled. This
opens new questions on which the class of photon states can

5
v ~ ~ (i be, in general, fully discriminated by means of linear optical
M = E: GDur=0MY MY, ... MY). 5.8 Systen?& y y P
From Egs.(5.7) and(5.8) follows that the trivial solution ACKNOWLEDGMENTS
co=0implies |¢°"*"1)=0 Vi, i.e.,ns=0. We must there- . o
fore ook for possible nontrivial solutions of E¢.6) com- We would like to thank C.H. Bennett, J. Calsamiglia, D.

patible with Eq.(5.1a, which in this particular case reads DiVincenzo, AK. Ekert, I. Jex, and N. ltkenhaus for help-
ful discussions. This work was supported in part by the EU

<¢f°”%1|¢f°”%1>:mg)1.ng):o, (5.9  under Grant Nos. TMR ERB FMR XCT 96-0087 and IST
1999-11053-EQUIP.
However, as shown in Appendix B, conditioffs.6) and

(5.9 are compatible only with the trivial solution. This im- APPENDIX A
plies that it is not possible to build a complete discriminator
for ng=1. In this appendix we will show that the two conditions

=2 corresponds to a nonzero probability to measure N N
. . L~ <l// max| 1,0 max>:O
two photons in model for somey; that impliesM )+ 0 for i i ’
at least one value df On the other hand, conditiofb.1a <¢Nmax_1|¢Nmax_1>:0 (Ala)
can be satisfied in this specific case if and onlyl§)+0 for ! I ’

at most one value af which we will denote byi,. Condi-  ¢an pe simultaneously satisfied if and only if the following

tion (5.189 then becomes conditions

M§=ci-MO.co=0 i#i, (5.10 <O|Q<ns)TQ(ns)|o> 0,
and Eq.(5.1b becomes equivalent to condition E§.9). In n 1)* (n 1 (Alb)
order to complete our proof it will therefore be enough to <0|Q s s 7]0)=0,

show that whatever the value of, conditions(5.10 and

(5.9 cannot be simultaneously satisfied. Suppose, in particuare simultaneously satisfied. From Hg.6) it follows that

lar, that they are not satisfied foy=1; the symmetry analy- the scalar product between thain-normalizedl states
sis carried out in the previous section immediately leads tg,,cond=Ny |¢,00nd—>N> obtained after the measurement Nf

the conclusion that they cannot be satisfied by any Othe{)hotons in mod@j is

valuei, (apart fromi,=0). We have shown that it is always

possible to build a linear operatﬁ?rI that transforms); into Np Ny 0|ON-MIFHMIFHMFHN-M gy (A2
; (i#0) and leaves the set of stafgs} globally invariant. (vi'lyp) mzm< [Qy, ™'Qa"'QE" QY I0)y (A2)
If there were a linear operatd’ such to satisfy conditions _ _

(5.10 and (5.9 for any value ofi,#0 thanU=R*-U’-R,  With ma{O,N—ng}=n,m=min{ny,N}.

would satisfy the same conditions fog=1, which contra- Let us first consider the cagé=n,+ns=Npmay:

dicts our initial assumption. The problem then reduces to the max N (ns)‘r (n) = (ny)=(ng

analysis of the case$,=0 and i,=1. Such analysis, W ) W )= <0|Q Q™ Qa* Q A 0)
straightforward but tediougsee Appendix B leads to the ()= ()= (N

result that indeed for both values iof conditions(5.10 and :<0|Q;na) Q;”a’QEEf) be”f)|0>

(5.9 are incompatible.

=3 (0Q{Y QY Iny(nfQ Qo)

VI. CONCLUSIONS {n}
In this paper we have proposed an optical realization of :<o|Q;”a”Q;”a)|o><o|'(g$s”(”g$‘_s)|o>,
stateq1.1). Bennettet al.[1] have shown that they cannot be : !
discriminated by means of local action and classical commu- (A3)

022318-5
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(g &)ty _
Above we have used the fact tk[@wi ,Q, ¥ 1=0[13]and
introduced the completeness relat®p,|n)(n|, where|n) is

a Fock state of the relevant modes. Note that only the term

corresponding t¢0)(0| survives.
Let us now evaluate EA2) whenN=N,,,—1

1
(g gimax ;z n(in), (Ad)

where
Conn(i,j) = <0|Q(¢:§ m)‘régnafu m)Tégna*lJr n)‘Q‘(L;;s* n)|0>'

It is straightforward to verifyi13] that[ﬁaux,TD},i] =0 im-
plies that

[, Q=10 Q) 1=0 vmn (A5a)
and that
[ég’lafl),ég:sfl)'r]:nansé(ana)ég:s)'r ) (Asb)

Relation (A5a), with a procedure analogous to the one

used to derive EqA3), can be used to show that
Cool 1) =(01Q” Qg™ V'R Q% 0)

~ — T~ — ~ T~
=(01Qg™ V'R P10)(01Q;”"Qy0).

(A6)
Let us now consider terms
Codi.1)=(01Qg VR TR0
= (0l R VTRLIR[E o) =i,
(A7)

which, with the help of Eq(A5a) can be expressed as
C1di,)=(01Q5" QY QG Vo)

(ORI B0 R0,
(A8)

PHYSICAL REVIEW A64 022318
C1di.) =~ nang(0]QT QYRR |0)
=~ nang(0]QY Q5™ 0)(0[ QY Q) 0)
_Cg,l(j 1) =Coa(i,]), (A9)
where again we have made use of a completeness relation.
We are left with the tern@y 4(i,j) in the sum of Eq(A4),

which can be simplified with the same procedure as in Eq.
(A3) to obtain

Coa(i.1)=(01QG= VR QURYE Vo)
<O|Q(na)TQ(na)|0><o|Q(ns l)T (ns 1)|O>

(A10)

By inserting Egs.(A6), (A9), and (A10) into (A4) we
obtain
<l/,iNmax*1| (/,]Nmax7 1> — _Ans<0|6(¢r:s)'r6§br;s)|o>
+ A -1(0[QT QY 0),
s i i
(Al11)

where, up to irrelevant multiplicative constants,

=(ng—1) 1= (n,—1 = ()T
A =(0]Q" VTR Y)0y— 2n,n(0|Q Q™| 0y,

An—1=(0]Q?Q|0), (A12)

which concludes our proof, as, from Eq#3) and (All)
follows the implication between Eq§Ala) and (Alb).

APPENDIX B

In this appendix we will prove that conditio(5.10 is
incompatible with Eq(5.9) for bothiy=0 andig=1. To this
goal it is helpful to define a matrid, linear combination of
the M:

As all the statesg); contain a definite number of photons,

M=2 M,
1

namely,N'=2, F’wi(dT,eE) is a homogeneous polynomial of so that a generic input state can be defined as

degree\ in d" ande{ and therefore the gener@}’ is a

homogeneous polynomial of degrdé—n in e} . As a con-

sequenc@ﬂ?flﬁég’_sﬂo)zo. From this follows that the
[ i

first term at the right-hand-side of EGA8) is equal to zero.
Finally, with the help of Eqs(A5b) and (A5a) we obtain

022318-6
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0 0 0 Mot iy poi— M1 Mgt g 0
0 0 0 postus 2w s 0
0 0 0 M3 M3 p_pFHy M2 0
M—i M-1— M1 M-zt U3z -3 M43 0 0 0 0
V3| poi—we N2py peotpo 0 0 0 0
Mgt s pog—pa M2~ M2 0 0 0 0
0 0 0 0 0 0 0
|
We can then write Since condition(5.4) requires that]r|?=||rs|?=1, to
_ fulfill Eq. (B4) we must imposeu;|=|u,/=0. This, how-
Moo=c5-M- o ever, would implyng=0.
B We will now show that condition£5.9) and(5.10 cannot
=Mo" Urla+{pg- Uo(Ug+Us) + p—1- Uo(U3—Uy) be simultaneously fulfilled with,=1, i.e, that the only non-
+ o Up(Ugtug)/+ pw_p-Upy(Us—us) zero coefficient oM o is the one multiplying the coefficient
/ M-
+pg-Ug(UptUz)/+ pg-Ug(Uy— Up) Along the same lines of the previous case we obtain a

+ g Us(Ug+Uy)/ + 15~ Us(Up—Up) /2. (BL) constraint on the vectax, leading to the following relation
We now impose conditiofb.10 with i;=0 on vectorc,

(_:0:(u010105u1u101 LR !OTa
0)

i.e., we impose thai (()O is the only nonzero coefficient. We and M, reduces to
have therefore to set to zero all coefficients in Bg{l) ex-
cept the one multiplyingeg. The only solution compatible M0=2‘2’3{,u1[u0(r3+r4)+r12u]+,u_1u0(r3—r4)
with this condition is - o
T (o= Ul o+ (pgt pm—g)Ugls+ pau(ri+ry)

+poau(r—ro)}. (BS)
Therefore we obtain

(g e ul? ) ? =0,

Co=(0,u,0,014,0,....0". (B2)

From the form ofM and from Eq.(B2) follows that Eqg.
(5.8 can be rewritten as follows:

> > i Uilfgtrals  pg—pg
Mo= 2, piME!= 10— Ul R U s ML TN
ot ot P From the unitarity condition(5.4) follows that [Ir 2
2 Zugr,+ 22 Sugrat =|rg|=1 and Eq(5.1a can be satisfied only if andu, are
23/2 — 23/2 — 23/2 botﬁ 7Er0.
(B3) As before this requirement leads to the trivial solution
Co=0, which is incompatible witns>0.
Condition (5.9) implies Both withiz=1 andiy=0 we find that condition$5.9)
and(5.10 lead to the trivial solutiorty=0, i.e.,n;=0.
(PP Do lug| ¥ rof2=0, (B4a) A fortiori conditions(5.9) and (S.é;_:owill_admit as a solu-
tion only the trivial one. This implies indistinguishabilit
(WMo ey 2 rg>=0. (B4b)  aiso in t);le cas@s=1. P ’ ’
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