PHYSICAL REVIEW A, VOLUME 64, 022317
Quantum template matching
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We consider the quantum analogue of the pattern-matching problem, which consists of classifying a given
unknown system according to certain predefined pattern classes. We address the problem of quantum template
matching in which each pattern clagsis represented by a known quantum sttealled a template state, and
our task is to find a template that optimally matches a given unknown quantunt st¥e set up a precise
formulation of this problem in terms of the optimal strategy for an associated quantum Bayesian inference
problem. We then investigate various examples of quantum template matching for qubit systems, considering
the effect of allowing a finite number of copies of the input stat®e compare quantum optimal matching
strategies and semiclassical strategies to demonstrate an entanglement assisted enhancement of performance in
the general quantum optimal strategy.
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[. INTRODUCTION deed we often have a functiodhand construct a compact
representation of itsexponentially manyvalues in uniform
The pattern matching problenis a fundamental task, superposition as the staté)=>|x)|f(x)). The computa-
which may be broadly defined as follows. We are given aional task then amounts to recognizing some global struc-
(generally complexpattern and we wish to classify it rela- ture of the pattern of function values. For example, in the
tive to a given set of pattern classes. The classes represdagutsch-Jozsa algorithf2],  is either a constant function or
certain distinguishedsimplified) pattern features, which are @ balanced functiorti.e., a function that takes each of two
of particular interest for a task at hand. Pattern matching/alues equally oftenand we wish to distinguish these two
problems occur in a wide variety of applications such ag*aftern structures. Shor’s algorithm for integer factorization
image recognitior(e.g., classifying a person’s picture rela- relies on periodicity determinatidi3,4]; f is a periodic func-

tive to some predefined characteristicspeech recognition, tion and we wish to determine the periodicity structure of the

and signal pattern matching, such as recognition of electro\falues' . .
ghal p 9 g The pattern matching problem may also be viewed as a

cardiograph signals, seismic waves, chemical spectra, etc.

These are examples of matching problems for classical dal%eneralization of state estimation and state discrimination
and in this paper we will consider a similar problem in aproblems as described further below. In all these examples,

. the result of pattern matching is output as classical informa-
guantum-mechanical context.

¢ lati i hat the i tion. This will also apply to the models developed in this
In our quantum formulation we will assume that the input e hyt in our final discussion we will suggest generalized

pattern is represented in the structure of amplitudes of g mulations in which the output may be quantum informa-
given quantum state. This transition immediately introducesjgn.

two fundamental features. First, because of the phenomenon Eyen in the classical context there are various possible

of quantum entanglement, the description ohaqubit quan-  approaches to the pattern matching probl&6]. Given a

tum state is generally exponentially more complex than thapattern we aim to optimize a suitable measure of matching
of an n bit classical stat¢1]. Thus a complex pattern can with the predefined set of pattern classes. This could be for-
potentially be represented very compactly as a quanturfnulated, for example, in terms of vector representations — a
state. Second, quantum measurement theory severely rgivenimage is discretized on a mesh and the contents in each
stricts the amount of information that may be obtained abOUbixe| are approximated by the value of some predetermined
the identity of a given unknown quantum state so that thentensity levels, say(i,j) for the (i,j)-th pixel of a two-
encoded pattern cannot be fully read out. Nevertheless, suiimensional mesh. Thus a pattern is represented by a vector
ably constructed quantum measurements can have a glob1aI: (F(1,1)£(1,2), ...)T. When an input sampléo is given
access to the structure of the pattern and efficiently extracj, intri,nsi’c fe’atijre is first extracted from it by remO\;ing

information which, although small in quantity, can be diffi- . d adiusting its size. Th itina d © alled
cult to obtain from any classical representation of the pattern°!S€ and adjusting its size. The resulting data, fsasalle
the feature vectaorshould be less noisy, less redundant, and

i.e., we may perform some recognition tasks far more effi- . . .
ciently on a quantum representation. From the perspective ore invariant un.dler 9°mm°”'y enco_untered variations and
istortions. Classification is then achieved by evaluating a

these intuitions, many of the most notable quantum algo=">"""" _ R _ :
rithms may be viewed as pattern recognition problems. Indiscriminant function [Xf) associated with the pattern
classe<’;, such that if the input sample is actually in the

classj, the vaIudDj(f) must be the largest. One way to make
*Email address: psasaki@crl.go.jp the problem more tractable is to represent each daby a
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typical pattern called aemplate vectorﬁgand to deal only possiple generalizations of the concept of quantum template
with this vector as the representative of the cidssThis s~ Matching.
the template matching problem.
Now consider a similar problem in the quantum- Il. BAYESIAN FORMULATION
mechanical context. We will assume that the input pattern OF TEMPLATE MATCHING

and templates are represented by quantum states. We areThe Bayesian formulation is based onampriori knowl-
given a feature statd), Wh'Ch IS u_sually unknown, and a set edge about the inputs; the input feature staie unknown
of classes{C;} and their associated template stae), it is assumed that we know tiaepriori probability dis-
known a priori. The problem ofjuantum template matching tribution P(?) for possible inputs. Each template staje

s to classify the statgf) according to the seflgy)}, that is, representing the clag$ is assumed to be completely known.

to pick up the template which best matches with This is o )
similar to quantum state discrimination and quantum statd" order to classifyf into a clas<’j, we need to introduce a

estimation. In quantum state discrimination, a discrete set o$core Cj|f), which provides a matching criterion. One rea-

states{p;} and theira priori probabilities{p;} are given. The sonable choice for the score in template matching is that
) . X . . derived from the similarity criterion
task is to decide which state is received. In quantum state

estimation, one is to reconstruct a given unknown stalbg s(¢;[)=(Tr(+ /\ﬁé \ﬁ))z 1)
i i ’

estimating certain parameters. In both scenarios, one usually

minimizes a certain Bayes cost, such as a decision or estimgsich is just the fidelity between the input statand the
tion error, by using prior knowledge about the states. In

guantum template matching, although we deal with an un'_[emplatg S_ta@" If the template states ?re pure sta]tgjs}
known input state generally specified by continuous paramihen this is just the standard overlag|f|g;). Under the
eters, the purpose is not to estimate the input state or to'"Ialty criterion, we are to choose the template for which
discriminate among the input states themselves, but to assidh State overlap witli is largest. The matching strategy is
the best matched template state from among given candrepresented by a probability operator meag@®M) {11}
dates. In this sense quantum template matching involves as-

pects of both state estimation and discrimination; the un- f[-:ﬁ-TzO, 2 =1 )
known input states are generally parametrized by continuous . . i

parameters, which we wish to characterize only up to some

approximation given by the “closest” template state. Indeed,! NiS should be designed by using tagriori knowledge on

direct state estimation or discrimination would provide athe irlput and the template states, and the conditional scores

strategy for template matchindpy comparing the classical S(Cj|f). The performange of a matching strategy is measured

information of the estimated state with the classical informaPy theaverage scorelefined as

tion of the template identitigsbut this is generally not opti-

mal — we should attempt to best match a template without S=> J df S(¢|HP(c;|HP(T), 3

necessarily obtaining any further more detailed information !

about the identity of the input state itself. . Lo . .
In this paper we will set up a precise formulation of this Where P(Gj[f)=Tr(IL;f) is the conditional probability that

problem(in Sec. 1) in terms of a suitable intuitive matching We have thgth outcome given the stafe The best strategy

criterion. The template matching problem will then appear ads the one that maximizes this average score. If we introduce

a problem of determining the optimal strategy for an associthe score operators

ated quantum Bayesian inference problgil0]. We will

then consider some examples of template matching for qubit WjEf df S(Cﬁ)P(f)f, (4)

systems(in Secs. Il and IV in particular, considering the

effect of allowing a finite number of identical copies of the

input state|f). (Of course in a classical context this makes

no difference. We will compare the optimal strategsllow- o o

ing full use of entanglement across the space of all copies Szz Tr(W,IT;). (5)

with two semiclassical strategie@) applying only separate )

measurements on each copy and processing the outcomes to ) i . .

decide the best matching; afid) applying the optimal state ~ 1hus the problem is to find the optimal PONI;} that

estimation strategjl1-13 (using a collective measurement maximizesS given the set of score operatdid/;}. This is a

on the product state of all copijeand then classically com- standard quantum Bayesian optimization problem, and nec-

paring the identity of the reconstructed state with that of theessary and sufficient conditions for optimality are well

then Eq.(3) can be rewritten as

template states. known[7-9]:
We will see that the optimaffully entangled strategy is
more efficient than either of these. Finally, in Sec. V we will (i) fEZ ijl,- is Hermitian,

summarize our results and describe some interesting further ]
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(i) T=W,=0 Vj. (6) where{|k)} is the occupation number basis of thecompo-
. nent. For example, in the case Kf=3, the basis statf)

Note that sinceS(C;|f) is always non-negative, we have reads
\7V]->0 as operators. Hence our optimal template matching
problem[of optimizing Eq.(5)] reduces to a standard quan-
tum state discrimination problem — of distinguishing the
mixed states\fvj /Tr\7vj (the normalized score operatprs
taken with prior probabilitiesp;=TrW;/=; TrW,. In gen- ~ Our score operators are then given by
eral, the optimal strategy is unknown but we will consider
examples exhibiting symmetry in which optimal strategies
can be given.

3 -1/2
|2)= 2) (TLDFLTD+ILLT). 11

W

1 (2m 2. .
Zfo dE(I((Mlg)s =01, (12

Ill. BINARY TEMPLATE MATCHING A . .
OF A TWO STATE SYSTEM where eachW; has support on thél+ 1-dimensional sub-

spaceHg and Eq.(9) can be rewritten as
We begin with the simplest case of quantum template
matching in which there are only two classes, and the feature . 1
of each class is described by the template of a two state S(N)= >, Tr(\?ijIJ-). (13
system(qubit) in a pure state. By taking an appropriate qubit =0
basis{|1),]|)}, the binary template states can be represented

in terms of real components Without loss of generality, the matching stratedo,11;} is
p p constructed orf{g. In the occupation number basis repre-
o) =cos=|1)+sin=]| 1), (78 sentayor{u_smg Eqgs.(10) and(12)], the score operators are
2 2 explicitly given as

0 0
|g1)=sinZ|T)+cosz|]), (7b) ~ooo o NYNY (k=) (2N—k—1—1)!!
l ? ? W=V )1 (2N+2)!!

with a single real parametér specifying the nonorthogonal-
ity between the templates. As for the input stgfte we will
assume that its input distribution is the uniform probability ,
density over the great circle on the Bloch sphere defined by*henk+1 is even, and
the two template states. Thus we can write

(W 1) = /(N (N (k+|)!!(2N—k—I)!!S_n9
|f(¢)>=cosf|T>+sinf|1>, ) KW=V 1y (2N+2)!! e
2 2 15

X[(N—k—1)cosé;+(N+1)], (14

where thea priori density of ¢ is uniform, P(f)=P(¢ .
=(2m L Wg now decid)é which template is (clz)sesi tg theWhenk+1 is odd, wherefo=6 and 6,=m— 6.
given |f(¢)) in the sense of the highest state overlap. We

suppose further that we are givéhidentical copies of the A. Optimal template matching
input feature statéF(¢))=|f(¢))*N and the average score

. Now we consider the optimal strategy that satisfies the
can be written as

conditions of Eq.(6). In the present case of binary classifi-
cation, the analysis is rather straightforward, as we are to

1
S(N)= EO %fz dd,Tr(ﬂjﬁ(¢))|<f(¢)|gj>|2’ (99  maximize the following quantity:
I 0

A S(N)=Tr(WoITo)+ Tr(W,IT,) (16)
whereF (¢)=|F(#))(F(¢)|. Note that our scor§(C;|f) is
still just [(f()|g;)|?, the overlap for a single copy.e., we
are establishing a relation between the input pattéfi))

and the templatel;)) but our POMﬂj operates on the full

space ofN copies. The full input system is described on the _ _ A A A .
N+1 dimensionaltotally symmetric bosonic subspacé  Where the resolution of the identifffo + 11, =1 was used in
HON, Hg [12,14, as the second equality. Since ™) =1/2, I1, should be taken

N N .- ) to maximize Tr[(Wo—W,)TIy], that is, it should be the
d\ ¢>) projection onto the subspace corresponding to the positive
= @N_ " h
[F(o)=If(#)N= 2, \/( k)(cos2 (sm2 k).

eigenvalues of the operataW,—W,. From Egs.(14) and
(10 (15 we have that

= Tr(Wy) + Tr[ (Wo— W) TT,],
(17)
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\/W 0.818
K| (Wo— W) |1y =
z ;
(k+1=1)"(2N—k—1=1)!! » 0.814
2N)! 3 Quantum optimal j
(2N) QS) 0.812 A matching ]:
(N—k—1) 2 i SHbIHHHHt
% cosd (18) o 0.81 14 eparable measuremen
(N+1) ' e /1IN +majority voting
=
o S 0.808 FHHH N T
whenk+1 is even, andk|(Wo—W,)|I)=0, otherwise. Al- < 0.806 P Qu]aml}fgloptlmlf_l eStlmathﬂ[
though we have not succeeded in deriving an explicit ana- ' ; ’Liciaissilci inilaitci RS
; i i A \\ in- 0 <0 Y1 5 A
lytic expresspn for thg e|genvaIlAJ&$< of Wy—W;, we in 0 -~ " = 0 T00
troduce the diagonalizing operatBrsuch that N

N FIG. 1. The average score in the binary template matching as a

P(Wo—W,)PT= ( > M k)YK| ) cosé, (19)  function of the available number of copies of the input. Three strat-
k=0 egies are compared. The black circles repre&pt(N) for the

R ~ optimal strategy, while the white circles repres@o,t,(N) for the
where\o>N\1>--->\y. SinceW,—W, is antisymmetric  strategy of separable measurementajority voting. The plus cor-
in the antidiagonal [i.e., (Wy—W,) =—(W, responds t@esi(N,N+1,7/M) for the strategy of the optimal state
_wl)N_k,N_l] the eigenvalues match up in pairs: \y= estimationt-classical matchingSec. 111 B).
—Xg, An—1=—\1, and so on(and whenN is even,\y, _ _ - _
=0). The optimal strategy can then be constructed from théingle copy(i.e.,N=1) Wo—W, is diagonal in the| 1), || )}
pair of projection operator§l,,[1, onto the subspaces of basis so thaP=1 and the measurement in this basis is the

nonnegative and negative eigenvalues, respectively, whicRPtimal strategy.
can be written as In a semiclassical strategy, where the separable measure-

ment {TT§"V ,ITY"} (corresponding to the optimal measure-
N N ment on each separate copy directly applied without using
2 >< 210 the transformatiorP, the attained average score becomes,
(203 instead
L~ aaya V21 /N (2k— 1)1 (2N—2k— 1)1
H1=PTH2_AVP, — _ E (2k D )
SwN)=5+ 2 || 2N)h
N 1 N
2 2

fly=PTIMVE, IM=|0)0[+- -+

. (20b) (N—2k)

+1
“INTD)

+ -+ [NXN

ﬁMVE‘

cos6. (22

where| N/2] is the integer part dl/2. The maximum average

score can be finally written as Sopr(N) andS,y (N) are compared numerically in Fig. 1 for

the case of orthogonal template#<0). The effect of® can
[N/2] be seen to reduce the required number of sample copies to
SopiN)=5+ >, A(cosf. (21)  attain a prescribed level of the average scdfghe curve
2 k=0 denoted by “+” corresponds to the strategy consisting of
quantum state estimation and classical matching, which will
The expression$20) for the POM also provide an intu- be explained in the next section
itively appealing interpretation of the matching strategy, Let us illustrate the optimal matching strategy in the case
which consists of two steps. The first step is the unitarywhere we use three sample copies. The operator to be diago-
operationP, which is applied to theN-product input state nalized is
|F(¢#)). The second step is the measurement of the trans-

formed statePF ()P by the POM{TT}Y ,ITY"}. This cor- 15 0 3 0

responds to a separate measurement |r{|_th)e_|l)} basis on Y 3 0 -3

each input copy space, followed by majority voting on the Wy—W,=—— (23
outcomes. In other words, the transformati@rprepares the 20 |3 0 -3 0

optimal entangled state for the final measurement, la}f 0 -3 0 -15

(YY) provides the projection onto thé-majority (the
| -majority) bosonic subspace. Note that for the case of arhe diagonalizing matrix is found as
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[£) sible. This idea can be naturally applied to template match-
i‘t‘eﬂ‘;‘fea‘“re(lf)zl P ing; one can first perform a quantum state estimation to es-
1) timate the input feature state, and then compare this
J—e & o), reconstrl_Jcteq state With' the_ te.mpla"(ElassicaIIy Optimal
cl a( It) & & |">x —’D’\'ID or | 1 state estimation of a qubit usifgidentically prepared states
has been recently studied in Ref$1—-13. In particular, the
|g0) |gl) discrete and finite element optimal POM’'s were found

[12,13, and they maximize the following score:
FIG. 2. A circuit realization of the optimal classifier in the case

of three input samples. The three input samples are first transformed N 5
by P, and then are processed interactively with two ancillary qubits N)= z f dqur[H f () ]|<f(¢)|f ¢m)>|
via four controllednoT gates. Finally, the second ancillary qubit (27)
|o)x is measured in the basf$!), || )}, and the two possible out-
comes imply, respectively, that the best matched templdtgjsor ~ where|f(¢.,)) is a reconstructed state after the state estima-
lg1). tion. The assignment of a guessed state:|f(¢p,,)) will
also now be optimized. This strategy was already described
Ccosvy 0 siny 0 in Ref.[12], but we rephrase it here in a slightly different and
more practical way according to the results of R&b]. For
_ (24) convenience of calculation we introduce a new basis
—siny 0 cosy O {lvo),Jv41)} for which our great circle of feature statdi§¢))
0 siny 0 cosy is the equator. We fix the basis vectors by requiring the tem-
plates to have the form

0 cosy O —siny

Ro])
I

where cosy=[(2y21+9)/4\21]*? and siny=[(2\/21-9)/

4\/2_1]1/2_ We then have 190) = i(e—i(wm— 9/2)|vo>+ei(7r/4—e/2)|vl>)’ (283
P
\/—1+3 0 0 0 9,) = \/E(ei(w/4—0/2)|vo>+e—i(wm— 02)1)), (28
V21-3 0 0
0 —21+3 0 ' and the circle of feature states may be taken to be
0 —21-3 1
f =—(e '(¥2|y )+ (¢? . 29
an where again, the parameter is uniformly distributed over
d h gain, the p e i iformly distributed
[0,27).
1 \/—10050 Let us also introduceM states equally spaced on the
SOPT(3 24 (26) Bloch great circlg(which will define our POM:

One possible circuit structure for the optimal classifier is |fm((P)>:i[e*i(<p/2+mﬂ'/M)|UO>+ei(<p/2+mﬂ'/M)|Ul>].
shown in Fig. 2. The input stal€(¢)) is first transformed

by P, and is then processed interactively with two ancillary
qubits via four controlledkoT gates (the series of these (m=0,1,...M—1). (30)

controlledNOT gates registers the number pfcomponents Here we have introduced a phase fagtomhich determines

in the three copies of the input into the ancillary quItSthe position of these symmetrical states relative to the fixed

’ i TMV MV
|o)x|o")y). The latter step is to conveflly" 117"} into  positions of the template states. The correspondiipld
the measurement of a single qubit. By measuring the secondnsor product states are

ancillary qubit|o)y in the basis{|1),|])}, we can decide

with the maximum average score that the best matched tem- |Fm((p)>E|fm((p)>®N
plate is|go) (respectively|g;)) when the output i$1) (re- N
spectively,| | )). = 2 ( )ex[:[—l(N 2K) (/2

B. Template matching by state estimation
. . . . +(mm)/M)] k), , (31)
Another possible kind of semiclassical strategy based on

the optimal state estimation of a qubit is also considered inhere{|k),} is the symmetric bosonic basis fiv),|v1)}.
Fig. 1. Quantum state estimation deals with how to evaluatét can then be shown that thequare-root measurement
unknown parameters of a quantum state as precisely as poum){um/} based on the statd$F,(¢))}, that is,
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M-1 -1/2

£ — — —
= F F F , (32 —— Opti —— Maiority—
ln(en=| 2 IFu(e)(Fu(ell | [Fule). G2 [ i
* | Transf - | Voti
and the associated gue$i,(¢))}, provides an optimal 1£) ronsorm orne

state estimation strategy when we ta¥e>N [15].

Thus, by applying the PON| ur(¢)){#m(¢)[}, the input
feature state is optimally reconstructed as one of thép)).
Then one carclassically compare this reconstructed state
with the templates and pick up the template state, which has

”)_ Circuit [
Ancilla (

D forli)
1

|2,) 18

the largest overlap with the reconstructed state. The above g 3 A scheme of the optimal classifier frinput samples,
strategy for statestimationis optimal for any choice ofp.
Indeed sSince our |nput State dIStI‘IbUtIOI’] IS Unlform, the Scorenterest would eventua”y be turned into the measurement of a

which is a generalization of Fig. 2. The binary classification of

in Eq. (27) will be independent ofp. But when we compare  single qubit in the basi§/1),] | )}.
the reconstructed state with the templates, the resulting aver-
age score of template matchingill depend onp due to the
fixed positions of the templates, i.e., different state estima-
tion strategies that each give the same best possible score,
will generally give different scores for template matching via
our classical method, and we should choose the best from
our set of optimal estimation strategies. To complete our
semiclassical template matching procedure, we categorize
the |f,(¢))’s into two classes according to the template
states, that is, condense the 8et.(¢) ){ um(¢)|} into a two
element POMTII57( ), 11557 )}, whose elements indicate

that the best matched template|gg) or |g,), respectively.
For simplicity let us assume th&t is even. Then by sym-

R NN
Wozﬁ{zkgo ( k)|k>vv<k|

N—k
m(éhﬁzi 0)|k+ 1>v v<k|

oA

+e 7 (20, (k1)) | =W]. (37)

By a straightforward calculation we obtain

metry, it_ is gnough to consider in thg range{O,Zw/M).. The coso co{ o— I) N_1
categorization boundary is determined by the condition = M N N—k
Sest(N,M )=+ - kzo Vi1
ol (D)= @l )] 33 2wsin
The values ofm with |{go|fm(¢))|=](g1|fm(¢))| are cat- (383
egorized into the class dfjy), and the others into that of
. [ aa
|g1). Noting that <SEST( N,N+ 1’@) (38b
(9ol fm(@)) 12— [{gal fm( ))|?
oM - _ 1 N cosd
=2 sir(<p+—) sin(——@), (34) 2 T
M 2 N
2N(N+1)ta NT1
the binary categorization should then be N-1
N N—k
(M—2)/2 X 2 K m (38(:)
~ k=0
M5%(e)= 2 lum(@Xpm(e)l, (353
The quantitlgEsT(N,NﬁLl,w/M) is compared with the op-
~EST Mot timal scoreSpp(N) and the oneSy,,(N) obtained by the
17 (¢)=m§m | el @))(m( @) (85D separable measurement plus majority voting scheme in Fig. 1
(for #=0). As it can be seen, the strategy using the optimal
The average score for this strategy is state estimation plus classical matching can be close to opti-
mal for the region of smalN, while asN increases, it starts
_ g EST 2 N to deviate from the optimal one and becomes closer to the
SestN,M, @) = Z ZJ do TIIL > () F () ¥ strategy of separable measurement plus majority voting.
1=0 The three strategies are schematically summarized in
X |<f(¢)|gj>|2 (363 Figs. 3—5. The quantum optimal strate@ig. 3 is realized
by a collective measurement on the stitg”N with binary
=Tr[\7V0ﬁEST(¢)] +Tf[\7V1ﬁEST(<P)], outputs. This is made by dividing the state spafespanned
0 (36h) by |f)®N into two parts according to the templates, and by

where

successfully using entanglement effectsHg. On the other
hand, the separable measurement plus majority voting

022317-6



QUANTUM TEMPLATE MATCHING PHYSICAL REVIEW A 64 022317

('f)_ — FIG. 4. Schemes of the strategy for the sepa-
If)_D“ o lg,} N inputs |f)._ Maiority | © rable measurement plus majority votirig) is the
N inputs In—[ IV"“_"“"/v 0 |f)— VO:in Y direct translation of the POM, which includés
: Voting le,) Cimﬁgt measurements. But this can be translated into a
|f)_D"“ ! Ancilla o KB measurement on a single ancillary qubit plus an
Sepmm"mmmmem [y _D\’ It or |{y additional circuit(majority voting circui} before-
[/ hand as shown ifb). The majority voting circuit
(a) (b) leo) 12,) includes a series of @oT gates just as in Fig. 2.

scheme shown in Fig. 4, does not take any advantage of the N N
entanglement, which could be drawn from the st&}é". In |Fy=[f)eN=" A /( )
the optimal state estimation plus classical matching strategy k=0 K
shown in Fig. 5, the collective measurement first performed

for estimating |f), also utilizes the entanglement effect. X
However, this is not the best way fbinary classificationin

fact, the optimal state estimation requires dividing the spacg,q generate the score operators based on this and the tem-
Hg into at leastN+1 parts. AsN increases, one has to rely qies as

much more on the classical procedure to categorize the ou?—

puts into two classes. This is the reason why this strategy. 1 (2w 71' .

becomes ineffective for largé\. Intuitively any intermediate  Wm= Efo d¢f0 d@sin6|f)(F[|(f|gm|? (429
measurement prior to the final decision tends to degrade the

total performance leading to a waste of input copies for a

given average score level, so the process for the best binary :;
classification should stay entirely in the quantum domain un- 2(N+1)
til the very final measurement.

N—k ) 0 k
(e'(‘/”z)sinz> [k), (41)

e (92 cos-
2

N INTR) (kT D)
) S

K=0 N+2

X (e M Mk + 1)(k|+e' MM k) (k+1]) |,
IV. MULTIPLE TEMPLATE MATCHING OF A TWO
STATE SYSTEM (42b)

In the previous section we have assumed a single featu®/e then seek the strategy to find the template that best
parameterd and a minimum numbeftwo) of templates. In  matches with the givefif) in such a way to maximize the
this section we extend our model to allow for multiple tem- average score

plate matching. Although binary template matching can be M—1
reduced to the diagonalization of the operalgy— W, there 5= Tr(W,I1,). (43)
is no such straightforward method to find the optimal strat- m=0

egy in general cases. To keep the model tractable, we assume
that the input feature state is a general qubit state dependir%S
now on two parameters n

noted in Sec. ll, this optimal template problem is equiva-
t to the problem of optimal discrimination of the set of

mixed statessW,,, taken with equak priori probabilities

_ a—i(el2) o i[(12) ai o Pm=1/M. .
[f)=e COS§|T> terrsing 1) (39 The score operators evidently have the same symmetry as
the templates, that is,

with a uniforma priori distribution over the whole Bloch S MGy Stm
sph W= VMV, (44)

phere. Furthermore, we suppose that only one of the param- m
eters relates to the desired feature| Bf, for example, the
angle parameteg around theo, axis, while theo, compo- |/ )_O . Reconstructed states

. . . . M— p lma

nent itself is of no interest. The template states corresponding inputs |£) — |state AL o 1) o o o [F

to this feature are assumed to Mestates, uniformly distrib- : |Estimation
uted around the great circle in thxe-y plane of the Bloch |f)_ \U/\H—/
sphere, that is, |8, |&)

1 ) ) FIG. 5. A scheme of the strategy for the optimal state estimation

|gmy = —=(e~(M™M)| 1y 4 glMaM)| | ), plus classical matching. The optimal state estimation is a collective
\/E measurement oN identical copies of the sample state. By applying

this, the input feature state is reconstructed. The output would be

(m=0,1,... M—1). (40)  one of theN+1 candidatesf,,). Then one can compare this recon-
structed state with the templatelssically This is actually a cat-
As before we haveéN copies of the input state as egorization of f,,) into two classes according to the template states.
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where 1 -
" e 2k) P = Wo=5 151 N+2)Z‘ VIN=K)(k+1)
VEKZO exx{ }|k><kl (45 X |K)(K| + [+ 1)(k+1]
= [k)(k+1|—[k+1)(K[]. (51)

is a unitary representation of the group of integers modiilo

on theN+1 dimensional bosonic subspaceMfqubits. In-  Since each X 2 matrix inside the brackefs. . . ] in Eq.(51)

deed it is just the product representatidr v N, wherev is  has the eigenvalues 0 and 2 and is non-negative definite, so
the operation of rotation of the one-qubit Bloch sphere byalso isI"—W,, and(ii’) of Eq. (46) holds. Condition(i’) of
27/M about thez axis. Now it is known[7] that for any  Eq. (46) can be checked in a straightforward manner from
group covariant set of states, the state discrimination probEgs. (49) and (51). The maximum average score does not
lem always has an optimal strategy that is similarly groupdepend orM and reads

covariant, i.e., there will be an optimal POM of the form

I1,,=V™1,V'™, and the optimality conditions reduce[tt0] _ 1 "N [(N—KR)(k+1)
SmaN) =M Tr(Wollo) =5 + Z (NTD)(NF2)'

M—1 (52
(i) T'=2, V™W,I1,V'™ is Hermitian,
m-0 We also note thalGg) is the maximum-eigenvalue eigen-
. state ofW,, whose spectral decomposition is
(i") I'=Wy=0. (46)
L k+1

We have succeeded in deriving an optimal strategy only in Wo:kZO oo (o, wk:m, (53
the case tham >N, i.e., when the number of copies is less N
than the number of templates. This is again the square-ro
measurement built from the templat&,,)=|g,,) ®", that is,

the Set{ﬁm: | em){eml} with

%at is,|Go) =|wy). This is especially interesting in view of
the following theorem proved in Ref7]:

Theorem: LetG be a group and Ieg|—>\7g be anirreduc-
M1 ible representation o on ad dimensional Hilbert spac.

lu)=6"12G,), G= > 1G )Gl (47) Let{Fg ge G} be a (T:ollectlon of Hermitian operators &t
m=0 such thatF V F V (wheree is the identity ofG). For

) _ ) any POMX {X .geG}, consider the function
In fact, by using the orthogonality relation

om QX)=TrY, FgX,.

mz=0 ex ivn)zMényo, for —M<n<M, g

(48)  LetZ=d/|G||¢){¢|, where|g) is the maximum eigenvalue
eigenstate of . (and|G| is the size ofG).

(soG like V is diagonal in thek) basis and5'? commutes ThenQ is maximized by the POMV,ZV; :ge G}.

with V), we find that Note thath|¢> is a maximum eigenvalue eigenstate of

Fg. so the theorem claims that ti@covariant POM, based
- 1 on thesd G| eigendirections, is optimal. By irreducibility of
lem) =V" o), |uo)= N kZO k). (49 the representation we havévia Schur's lemmpa that
34V,AV} is a multiple of the identity for any operatdk.
Thus the square-root measurement construction does not al-
ter these maximal eigendirections when the representation is
irreducible. In our template matching probler®, is the

group of integers modul and IA:g correspond to the score

The optimality of this POM can then be proved by checking
the conditions(i’) and (ii") directly as follows. From Eg.
(48), we obtain

A 1 [ N2 NS (ke 1) operatorshy, . H is theN+1 dimensional bosonic subspace
= m I+ T Ni2 of N qubits and the group acts vim— V™. This representa-
k=0 tion is notirreducible so the theorem does not apply. Yet we
have shown that an optimal measurement is still obtainable
X ([K)(K|+|k+1)(k+1]) (50) from the maximum eigenvalue eigenstates of the score op-
erators. In this casdof a reducible representatiprthe
square-root construction will give a nontrivial change in the
and, consequently, directions of the maximal eigenstates, necessary to obtain a
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POM from them. This suggests a possible avenue of gener-
alization for the above theorem of Réf], which we will
explore elsewhere.

In the other cas®1 <N, that is, when we can use a larger
number of copies of the input than the number of templates,
the optimal POM is more complicated. This should include
elements with rank 2 or higher because of the requirement

that=M_311,,=1 in theN+ 1 dimensional bosonic subspace.

We have not yet found a systematic way to construct such

higher rank POM'’s. Here we discuss some simple cases.
The simplest case I8 =2, that is, binary classification.

In this case, the two score operators commute and the strat-

egy of separable measurement in the binary template basis

on each copy plus majority voting turns out to be optimal.

% a c 0 — \/gc
a % b \/gc 0
I1,= c b % b c
0 \/gc b % a
- \/gc 0 c a %

PHYSICAL REVIEW A 64 022317

(Note that the binary template problem in Sec. Il had a
different distribution of input states and the two templatesyii, p=+/29+ \/201/24 c=(\/6—7— \/§)/(24\/§) and a

there were not required to be orthogonal
The next simplest case M =N=3. The optimal POM is
specified by

w| =
<8}
(@]
o

i)
o
Il
w| P

(54)

w|

o
(@]
QO
w| =

with a=(y21+5)/24, c=(/35—/3)/24, and b=6ac,
and the maximum average score is

. 5+3y3a+3b

SnadN)=TrI'= 0 (55)

=6bc. The structure of1, is again of the form

o=N 4 N O[N], (59)
with A ;=1 and\ ,=2/3,
IN;)=0.993w,)+0.115w,)+0.044wo), (60
IN_)=0.984w3)+0.178w,), (60b)
and the maximum average score is
_ 5+4a+2./6b
Snaﬂ(N)Zl—o- (61)

Generally speaking it is more difficult to find analytic
solutions for the Bayes optimal strategy for mixed states, and
one has to rely on numerical methods. The above examples
indicate that the largest eigenvalue eigenstates of the score
operator\NO should play an essential role in constructing the
optimal POM(and maximizing the scoyewhile smaller ei-
genvalue eigenstates can be regarded as perturbative correc-

This 1, is derived by solving the equations for the condition tion terms. This might be helpful for considering efficient
(46)-(i") directly and then by picking up the solution satisfy- numerical algorithms for finding the optimal POM.

ing the condition(46)-(ii"). ﬁo is a rank 2 operator

Moo= N [+ N (], (56)

with A, =0.964 and\ . =0.370 and
IN,)=0.995w3)+0.100w,), (579
IN_)=0.979w,)+0.204w,), (57h

where|wo), |®1), |®,), and|w3) are the eigenstates ¥,
corresponding to eigenvalues in increasing offday. (53)].
Thus, although the main componentIdf, comes from the
maximum-eigenvalue eigenstate;) of \7VO, the other eigen-
states are also involved with appropriate weights.

Finally we mention the case d#1=3 and N=4. The
optimal POM is specified by

V. CONCLUDING REMARKS

We have considered the problem of quantum template
matching, which is to find the template state that best
matches a given input feature state. The quality of matching
was taken to be the standard overlap of quantum states. This
question was formulated in the context of quantum Bayesian
inference and it was seen to be equivalent to the optimal
discrimination of certain mixed states, given in terms of
score operators, each defined for a specific template state and
including all thea priori information about the input.

In this paper, the simplest case of binary classification of
a two state system was extensively studied. We constructed
the optimal strategy in th&l+1 dimensional bosonic state
spaceHg spanned by the tensor produ¢ts®N of N identi-
cal copies of the input state. The optimal state estimation on
|f)©N, followed by a classical matching process, does not
provide the best strategy, and there is a different optimal use
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of entanglement for this particular binary classification prob-(i.e., the best matching templatenly as quantum informa-
lem. In the case of multiple template matching the problention. In this scenario we have a known prior distribution of
becomes more difficult, and we derived the optimal strateinputs{|f;);p;} and a known set of possible templafég;)}.
gies in a few illustrative cases. Then given onéor more copies of|f;) we want to design a

As mentioned in the Introduction, the procedure of con-quantum procesi.e., a completely positive trace preserving
ventional pattern matching consists of feature extraction, calmap acting on the inputhat outputsone copy of a quan-
culation of the discriminant function, and classification. Intum states; of the form|f;)— oi=X;p;;|g;)(g;|, such that
the quantum context, however, it is not clear how to modekome suitable average scolg;p;p;;S(j|i) is maximized.
such processes without an associated loss of useful inform@dote that the formulation in our papéof getting the best
tion. For instance, to eliminate features of no concern, ongemplate as classical informatiomould provide one pos-
might simply project the input state onto the subspacesible strategy since we can then construct the corresponding
spanned by the relevant states with the features of interesemplate state as a quantum state, but again, this would not
But we saw in Sec. lll that a quantum measurement, that ishe expected to be optimal, since we produce a great deal of
a projection of states, carried out before the final templateinwanted extra information in addition to the desired quan-
decision, is generally detrimental to optimal performance. Intum output state.
this spirit, we dealt with the problem in the original Hilbert ~ There are yet further possible avenues for generalizing the
space, without projecting the input states onto the subspadermulation of the template matching problem. One is to
for the features of interegSec. IV), and the whole process study pattern classification with other kinds of matching cri-
of quantum template matching was represented by a singleria than fidelity, which would be chosen according to some
POM. It is of course an open question to formulate quantunspecific application or purpose. For example, according to
protocols in more physically comprehensive ways, e.g., inthe quantum Sanov theoref®.g., summarized in Sec. IV of

volving a separate nontrivial feature enhancement procegsef. [16]) the quantum relative entropS(fH{:]) between two
prior to classification, and to systematically derive optimalguantum states provides an index for estimating the probabil-
strategies for them. ity that the states will not be distinguished on the basis of an
But even without such additional infrastructuieg., fea-  arpitrary measurement oN copies of the state. Thus the
ture enhancemeniour problem of template matching has relative entropy provides an alternative, operationally intui-
some interesting generalizations related to the role of classjje notion of “distance” between guantum states and we
cal versus quantum information in the formulation. In our may consider maximizing the average relative entropy as our
formulation we have assumed that the input stasesh as  similarity criterion in template matching for some purposes.
|f)) are given as quantum informati¢he., unknown quan-  The above remarks and generalizations show that the
tum statep whereas the template statdg;f’s with known  proplem of template matching, introduced in this paper, is
our goal was to obtain the best template as classical informgprmulation adopted in the paper is perhaps the simplest, in
tion (i.e., knowledge of the identity of the bef;)) via @  that it is closely related to an existing body of results on
suitable POM. The ingredients of this formulation can beguantum Bayesian estimation. But a study of possible hybrid
relaxed in a variety of potentially interesting ways and herequantum-classical generalizations along the lines suggested
we mention two such ways: _ - above, would provide a natural setting for characterizing new
(@) Instead of knowing the identities of the template properties, and a deeper understanding, of quantum informa-
states, we may merely be given only some finite nunier  tion itself, especially the ways it fails to accord with familiar
of copies of each templateso our original formulation is  properties of classical information.
equivalent toK =«). One matching strategy would then be
to apply state estimation to the setskotopies and proceed ACKNOWLEDGMENTS
as in our original formulation with the resulting estimated
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