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Quantum template matching
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We consider the quantum analogue of the pattern-matching problem, which consists of classifying a given
unknown system according to certain predefined pattern classes. We address the problem of quantum template

matching in which each pattern classCi is represented by a known quantum stateĝi called a template state, and

our task is to find a template that optimally matches a given unknown quantum statef̂ . We set up a precise
formulation of this problem in terms of the optimal strategy for an associated quantum Bayesian inference
problem. We then investigate various examples of quantum template matching for qubit systems, considering

the effect of allowing a finite number of copies of the input statef̂ . We compare quantum optimal matching
strategies and semiclassical strategies to demonstrate an entanglement assisted enhancement of performance in
the general quantum optimal strategy.
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I. INTRODUCTION

The pattern matching problemis a fundamental task
which may be broadly defined as follows. We are given
~generally complex! pattern and we wish to classify it rela
tive to a given set of pattern classes. The classes repre
certain distinguished~simplified! pattern features, which ar
of particular interest for a task at hand. Pattern match
problems occur in a wide variety of applications such
image recognition~e.g., classifying a person’s picture rel
tive to some predefined characteristics!, speech recognition
and signal pattern matching, such as recognition of elec
cardiograph signals, seismic waves, chemical spectra,
These are examples of matching problems for classical
and in this paper we will consider a similar problem in
quantum-mechanical context.

In our quantum formulation we will assume that the inp
pattern is represented in the structure of amplitudes o
given quantum state. This transition immediately introdu
two fundamental features. First, because of the phenome
of quantum entanglement, the description of ann qubit quan-
tum state is generally exponentially more complex than t
of an n bit classical state@1#. Thus a complex pattern ca
potentially be represented very compactly as a quan
state. Second, quantum measurement theory severely
stricts the amount of information that may be obtained ab
the identity of a given unknown quantum state so that
encoded pattern cannot be fully read out. Nevertheless,
ably constructed quantum measurements can have a g
access to the structure of the pattern and efficiently ext
information which, although small in quantity, can be dif
cult to obtain from any classical representation of the patte
i.e., we may perform some recognition tasks far more e
ciently on a quantum representation. From the perspectiv
these intuitions, many of the most notable quantum al
rithms may be viewed as pattern recognition problems.

*Email address: psasaki@crl.go.jp
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deed we often have a functionf and construct a compac
representation of its~exponentially many! values in uniform
superposition as the stateu f &5(ux&u f (x)&. The computa-
tional task then amounts to recognizing some global str
ture of the pattern of function values. For example, in t
Deutsch-Jozsa algorithm@2#, f is either a constant function o
a balanced function~i.e., a function that takes each of tw
values equally often! and we wish to distinguish these tw
pattern structures. Shor’s algorithm for integer factorizat
relies on periodicity determination@3,4#; f is a periodic func-
tion and we wish to determine the periodicity structure of t
values.

The pattern matching problem may also be viewed a
generalization of state estimation and state discrimina
problems as described further below. In all these examp
the result of pattern matching is output as classical inform
tion. This will also apply to the models developed in th
paper, but in our final discussion we will suggest generaliz
formulations in which the output may be quantum inform
tion.

Even in the classical context there are various poss
approaches to the pattern matching problem@5,6#. Given a
pattern we aim to optimize a suitable measure of match
with the predefined set of pattern classes. This could be
mulated, for example, in terms of vector representations —
given image is discretized on a mesh and the contents in e
pixel are approximated by the value of some predetermi
intensity levels, sayf ( i , j ) for the (i , j )-th pixel of a two-
dimensional mesh. Thus a pattern is represented by a ve
fW5„f (1,1),f (1,2), . . . …T. When an input samplefW0 is given,
an intrinsic feature is first extracted from it by removin
noise and adjusting its size. The resulting data, sayfW , called
the feature vector, should be less noisy, less redundant, a
more invariant under commonly encountered variations
distortions. Classification is then achieved by evaluating
discriminant function Di( fW) associated with the patter
classesCi , such that if the input sample is actually in th
classj, the valueD j ( fW) must be the largest. One way to mak
the problem more tractable is to represent each classCi by a
©2001 The American Physical Society17-1
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typical pattern called atemplate vector gW
i and to deal only

with this vector as the representative of the classCi . This is
the template matching problem.

Now consider a similar problem in the quantum
mechanical context. We will assume that the input patt
and templates are represented by quantum states. We
given a feature stateu f &, which is usually unknown, and a se
of classes$Ci% and their associated template statesugi&,
knowna priori. The problem ofquantum template matchin
is to classify the stateu f & according to the set$ugi&%, that is,
to pick up the template which best matches withu f &. This is
similar to quantum state discrimination and quantum s
estimation. In quantum state discrimination, a discrete se

states$r̂ i% and theira priori probabilities$pi% are given. The
task is to decide which state is received. In quantum s

estimation, one is to reconstruct a given unknown stater̂ by
estimating certain parameters. In both scenarios, one us
minimizes a certain Bayes cost, such as a decision or est
tion error, by using prior knowledge about the states.
quantum template matching, although we deal with an
known input state generally specified by continuous para
eters, the purpose is not to estimate the input state o
discriminate among the input states themselves, but to as
the best matched template state from among given ca
dates. In this sense quantum template matching involves
pects of both state estimation and discrimination; the
known input states are generally parametrized by continu
parameters, which we wish to characterize only up to so
approximation given by the ‘‘closest’’ template state. Inde
direct state estimation or discrimination would provide
strategy for template matching~by comparing the classica
information of the estimated state with the classical inform
tion of the template identities! but this is generally not opti-
mal — we should attempt to best match a template with
necessarily obtaining any further more detailed informat
about the identity of the input state itself.

In this paper we will set up a precise formulation of th
problem~in Sec. II! in terms of a suitable intuitive matchin
criterion. The template matching problem will then appear
a problem of determining the optimal strategy for an asso
ated quantum Bayesian inference problem@9,10#. We will
then consider some examples of template matching for q
systems~in Secs. III and IV! in particular, considering the
effect of allowing a finite number of identical copies of th
input stateu f &. ~Of course in a classical context this mak
no difference!. We will compare the optimal strategy~allow-
ing full use of entanglement across the space of all cop!
with two semiclassical strategies:~a! applying only separate
measurements on each copy and processing the outcom
decide the best matching; and~b! applying the optimal state
estimation strategy@11–13# ~using a collective measureme
on the product state of all copies! and then classically com
paring the identity of the reconstructed state with that of
template states.

We will see that the optimal~fully entangled! strategy is
more efficient than either of these. Finally, in Sec. V we w
summarize our results and describe some interesting fur
02231
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possible generalizations of the concept of quantum temp
matching.

II. BAYESIAN FORMULATION
OF TEMPLATE MATCHING

The Bayesian formulation is based on ana priori knowl-
edge about the inputs; the input feature statef̂ is unknown
but it is assumed that we know thea priori probability dis-
tribution P( f̂ ) for possible inputs. Each template stateĝi
representing the classCi is assumed to be completely know
In order to classifyf̂ into a classCj , we need to introduce a
score S(Cj u f̂ ), which provides a matching criterion. One re
sonable choice for the score in template matching is t
derived from the similarity criterion

S~Cj u f̂ ![„Tr~AA f̂ ĝ jA f̂ !…2, ~1!

which is just the fidelity between the input statef̂ and the
template stateĝi . If the template states are pure statesugj&
then this is just the standard overlap^gj u f̂ ugj&. Under the
similarity criterion, we are to choose the template for whi
the state overlap withf̂ is largest. The matching strategy
represented by a probability operator measure~POM! $P̂ j%:

P̂ j5P̂ j
†>0, (

j
P̂ j5 Î . ~2!

This should be designed by using thea priori knowledge on
the input and the template states, and the conditional sc
S(Cj u f̂ ). The performance of a matching strategy is measu
by theaverage scoredefined as

S̄[(
j
E d f S~Cj u f̂ !P~Cj u f̂ !P~ f̂ !, ~3!

where P(Cj u f̂ )[Tr(P̂ j f̂ ) is the conditional probability tha
we have thej th outcome given the statef̂ . The best strategy
is the one that maximizes this average score. If we introd
the score operators

Ŵj[E d f S~Cj u f̂ !P~ f̂ ! f̂ , ~4!

then Eq.~3! can be rewritten as

S̄5(
j

Tr~ŴjP̂ j !. ~5!

Thus the problem is to find the optimal POM$P̂ j% that
maximizesS̄ given the set of score operators$Ŵj%. This is a
standard quantum Bayesian optimization problem, and n
essary and sufficient conditions for optimality are w
known @7–9#:

~i! Ĝ[(
j

ŴjP̂ j is Hermitian,
7-2
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QUANTUM TEMPLATE MATCHING PHYSICAL REVIEW A 64 022317
~ii ! Ĝ2Ŵj>0 ; j . ~6!

Note that sinceS(Cj u f̂ ) is always non-negative, we hav
Ŵj>0 as operators. Hence our optimal template match
problem@of optimizing Eq.~5!# reduces to a standard qua
tum state discrimination problem — of distinguishing t
mixed statesŴj /Tr Ŵj ~the normalized score operator!

taken with prior probabilitiespj5Tr Ŵj /( j Tr Ŵj . In gen-
eral, the optimal strategy is unknown but we will consid
examples exhibiting symmetry in which optimal strateg
can be given.

III. BINARY TEMPLATE MATCHING
OF A TWO STATE SYSTEM

We begin with the simplest case of quantum templ
matching in which there are only two classes, and the fea
of each class is described by the template of a two s
system~qubit! in a pure state. By taking an appropriate qu
basis$u↑&,u↓&%, the binary template states can be represen
in terms of real components

ug0&5cos
u

2
u↑&1sin

u

2
u↓&, ~7a!

ug1&5sin
u

2
u↑&1cos

u

2
u↓&, ~7b!

with a single real parameteru specifying the nonorthogonal
ity between the templates. As for the input stateu f &, we will
assume that its input distribution is the uniform probabil
density over the great circle on the Bloch sphere defined
the two template states. Thus we can write

u f ~f!&5cos
f

2
u↑&1sin

f

2
u↓&, ~8!

where thea priori density of f is uniform, P( f )5P(f)
5(2p)21. We now decide which template is closest to t
given u f (f)& in the sense of the highest state overlap.
suppose further that we are givenN identical copies of the
input feature stateuF(f)&5u f (f)& ^ N and the average scor
can be written as

S̄~N!5(
j 50

1
1

2pE0

2p

df Tr„P̂ j F̂~f!…u^ f ~f!ugj&u2, ~9!

whereF̂(f)[uF(f)&^F(f)u. Note that our scoreS(Cj u f ) is
still just u^ f (f)ugj&u2, the overlap for a single copy~i.e., we
are establishing a relation between the input patternu f (f)&
and the templatesugj&) but our POMP̂ j operates on the ful
space ofN copies. The full input system is described on t
N11 dimensionaltotally symmetric bosonic subspaceof
H ^ N, HB @12,14#, as

uF~f!&[u f ~f!& ^ N5 (
k50

N AS N

k D S cos
f

2 D N2kS sin
f

2 D k

uk&,

~10!
02231
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where$uk&% is the occupation number basis of the↓ compo-
nent. For example, in the case ofN53, the basis stateu2&
reads

u2&[S 3

2D 21/2

~ u↑↓↓&1u↓↑↓&1u↓↓↑&). ~11!

Our score operators are then given by

Ŵj[
1

2pE0

2p

df F̂~f!u^ f ~f!ugj&u2; j 50,1, ~12!

where eachŴj has support on theN11-dimensional sub-
spaceHB and Eq.~9! can be rewritten as

S̄~N!5(
j 50

1

Tr~ŴjP̂ j !. ~13!

Without loss of generality, the matching strategy$P̂0 ,P̂1% is
constructed onHB . In the occupation number basis repr
sentation@using Eqs.~10! and ~12!#, the score operators ar
explicitly given as

^kuŴj u l &5AS N

k D S N

l D ~k1 l 21!!! ~2N2k2 l 21!!!

~2N12!!!

3@~N2k2 l !cosu j1~N11!#, ~14!

whenk1 l is even, and

^kuŴj u l &5AS N

k D S N

l D ~k1 l !!! ~2N2k2 l !!!

~2N12!!!
sinu j ,

~15!

whenk1 l is odd, whereu0[u andu1[p2u.

A. Optimal template matching

Now we consider the optimal strategy that satisfies
conditions of Eq.~6!. In the present case of binary classi
cation, the analysis is rather straightforward, as we are
maximize the following quantity:

S̄~N!5Tr~Ŵ0P̂0!1Tr~Ŵ1P̂1! ~16!

5Tr~Ŵ1!1Tr@~Ŵ02Ŵ1!P̂0#,
~17!

where the resolution of the identityP̂01P̂15 Î was used in
the second equality. Since Tr(Ŵ1)51/2, P̂0 should be taken
to maximize Tr@(Ŵ02Ŵ1)P̂0#, that is, it should be the
projection onto the subspace corresponding to the pos
eigenvalues of the operatorŴ02Ŵ1. From Eqs.~14! and
~15! we have that
7-3
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^ku~Ŵ02Ŵ1!u l &5AS N

k D S N

l D
3

~k1 l 21!!! ~2N2k2 l 21!!!

~2N!!!

3
~N2k2 l !

~N11!
cosu, ~18!

whenk1 l is even, and̂ ku(Ŵ02Ŵ1)u l &50, otherwise. Al-
though we have not succeeded in deriving an explicit a
lytic expression for the eigenvalueslk of Ŵ02Ŵ1, we in-
troduce the diagonalizing operatorP̂ such that

P̂~Ŵ02Ŵ1!P̂†5S (
k50

N

lkuk&^ku D cosu, ~19!

wherel0.l1.•••.lN . SinceŴ02Ŵ1 is antisymmetric
in the antidiagonal @i.e., (Ŵ02Ŵ1)kl52(Ŵ0

2Ŵ1)N2k,N2 l ] the eigenvalues match up in6 pairs: lN5
2l0 , lN2152l1, and so on~and whenN is even,lN/2
50). The optimal strategy can then be constructed from
pair of projection operatorsP̂0 ,P̂1 onto the subspaces o
nonnegative and negative eigenvalues, respectively, w
can be written as

P̂05 P̂†P̂0
MV P̂, P̂0

MV[u0&^0u1•••1U b N

2 c L K b N

2 cU,
~20a!

P̂15 P̂†P̂1
MV P̂,

P̂1
MV[U b N

2 c11L K b N

2 c11U1•••1uN&^Nu, ~20b!

wherebN/2c is the integer part ofN/2. The maximum average
score can be finally written as

S̄OPT~N!5
1

2
1 (

k50

b N/2 c
lk cosu. ~21!

The expressions~20! for the POM also provide an intu
itively appealing interpretation of the matching strate
which consists of two steps. The first step is the unit
operationP̂, which is applied to theN-product input state
uF(f)&. The second step is the measurement of the tra
formed stateP̂F̂(f) P̂† by the POM$P̂0

MV ,P̂1
MV%. This cor-

responds to a separate measurement in the$u↑&,u↓&% basis on
each input copy space, followed by majority voting on t
outcomes. In other words, the transformationP̂ prepares the
optimal entangled state for the final measurement, andP̂0

MV

(P̂1
MV) provides the projection onto the↑-majority ~the

↓-majority! bosonic subspace. Note that for the case o
02231
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single copy~i.e.,N51) Ŵ02Ŵ1 is diagonal in the$u↑&,u↓&%
basis so thatP5I and the measurement in this basis is t
optimal strategy.

In a semiclassical strategy, where the separable meas
ment $P̂0

MV ,P̂1
MV% ~corresponding to the optimal measur

ment on each separate copy! is directly applied without using
the transformationP̂, the attained average score becom
instead

S̄MV~N!5
1

2
1 (

k50

b N/2 c S N

k D ~2k21!!! ~2N22k21!!!

~2N!!!

3
~N22k!

~N11!
cosu. ~22!

S̄OPT(N) andS̄MV(N) are compared numerically in Fig. 1 fo
the case of orthogonal templates (u50). The effect ofP̂ can
be seen to reduce the required number of sample copie
attain a prescribed level of the average score.~The curve
denoted by ‘‘1’’ corresponds to the strategy consisting
quantum state estimation and classical matching, which
be explained in the next section!.

Let us illustrate the optimal matching strategy in the ca
where we use three sample copies. The operator to be di
nalized is

Ŵ02Ŵ15
cosu

26 S 15 0 A3 0

0 3 0 2A3

A3 0 23 0

0 2A3 0 215

D . ~23!

The diagonalizing matrix is found as

FIG. 1. The average score in the binary template matching
function of the available number of copies of the input. Three st

egies are compared. The black circles representS̄OPT(N) for the

optimal strategy, while the white circles representS̄MV(N) for the
strategy of separable measurement1 majority voting. The plus cor-

responds toS̄EST(N,N11,p/M ) for the strategy of the optimal stat
estimation1classical matching~Sec. III B!.
7-4
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P̂5S cosg 0 sing 0

0 cosg 0 2sing

2sing 0 cosg 0

0 sing 0 cosg

D , ~24!

where cosg5@(2A2119)/4A21#1/2 and sing5@(2A2129)/
4A21#1/2. We then have

P̂~Ŵ02Ŵ1!P̂†

5
cosu

26 S A2113 0 0 0

0 A2123 0 0

0 0 2A2113 0

0 0 0 2A2123

D ,

~25!

and

S̄OPT~3!5
1

2
1

A21 cosu

24
. ~26!

One possible circuit structure for the optimal classifier
shown in Fig. 2. The input stateuF(f)& is first transformed
by P̂, and is then processed interactively with two ancilla
qubits via four controlled-NOT gates ~the series of these
controlled-NOT gates registers the number of↓ components
in the three copies of the input into the ancillary qub
us&Xus8&Y). The latter step is to convert$P̂0

MV ,P̂1
MV% into

the measurement of a single qubit. By measuring the sec
ancillary qubit us&X in the basis$u↑&,u↓&%, we can decide
with the maximum average score that the best matched
plate isug0& ~respectively,ug1&) when the output isu↑& ~re-
spectively,u↓&).

B. Template matching by state estimation

Another possible kind of semiclassical strategy based
the optimal state estimation of a qubit is also considered
Fig. 1. Quantum state estimation deals with how to evalu
unknown parameters of a quantum state as precisely as

FIG. 2. A circuit realization of the optimal classifier in the ca
of three input samples. The three input samples are first transfor

by P̂, and then are processed interactively with two ancillary qub
via four controlled-NOT gates. Finally, the second ancillary qub
us&X is measured in the basis$u↑&, u↓&%, and the two possible out
comes imply, respectively, that the best matched template isug0& or
ug1&.
02231
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sible. This idea can be naturally applied to template mat
ing; one can first perform a quantum state estimation to
timate the input feature state, and then compare
reconstructed state with the templatesclassically. Optimal
state estimation of a qubit usingN identically prepared state
has been recently studied in Refs.@11–13#. In particular, the
discrete and finite element optimal POM’s were fou
@12,13#, and they maximize the following score:

S̄~N![(
m

1

2pE0

2p

df Tr@P̂mf̂ ~f! ^ N#u^ f ~f!u f ~fm!&u2,

~27!

whereu f (fm)& is a reconstructed state after the state estim
tion. The assignment of a guessed statem→u f (fm)& will
also now be optimized. This strategy was already descri
in Ref. @12#, but we rephrase it here in a slightly different an
more practical way according to the results of Ref.@15#. For
convenience of calculation we introduce a new ba
$uv0&,uv1&% for which our great circle of feature statesu f (f)&
is the equator. We fix the basis vectors by requiring the te
plates to have the form

ug0&5
1

A2
~e2 i (p/42u/2)uv0&1ei (p/42u/2)uv1&), ~28a!

ug1&5
1

A2
~ei (p/42u/2)uv0&1e2 i (p/42u/2)uv1&), ~28b!

and the circle of feature states may be taken to be

u f ~f!&[
1

A2
~e2 i ~f/2!uv0&1ei ~f/2!uv1&). ~29!

where again, the parameterf is uniformly distributed over
@0,2p).

Let us also introduceM states equally spaced on th
Bloch great circle~which will define our POM!:

u f m~w!&5
1

A2
@e2 i (w/21mp/M )uv0&1ei (w/21mp/M )uv1&];

~m50,1, . . . ,M21!. ~30!

Here we have introduced a phase factorw, which determines
the position of these symmetrical states relative to the fi
positions of the template states. The correspondingN-fold
tensor product states are

uFm~w!&[u f m~w!& ^ N

5 (
k50

N A 1

2NS N

k D exp@2 i ~N22k!~w/2

1~mp!/M !#uk&v , ~31!

where$uk&v% is the symmetric bosonic basis for$uv0&,uv1&%.
It can then be shown that thesquare-root measuremen
$umm&^mmu% based on the states$uFm(w)&%, that is,

ed

s

7-5
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umm~w!&[S (
m50

M21

uFm~w!&^Fm~w!u D 21/2

uFm~w!&, ~32!

and the associated guess$u f m(w)&%, provides an optimal
state estimation strategy when we takeM.N @15#.

Thus, by applying the POM$umm(w)&^mm(w)u%, the input
feature state is optimally reconstructed as one of theu f m(w)&.
Then one canclassically compare this reconstructed sta
with the templates and pick up the template state, which
the largest overlap with the reconstructed state. The ab
strategy for stateestimationis optimal for any choice ofw.
Indeed since our input state distribution is uniform, the sc
in Eq. ~27! will be independent ofw. But when we compare
the reconstructed state with the templates, the resulting a
age score of template matching,will depend onw due to the
fixed positions of the templates, i.e., different state estim
tion strategies that each give the same best possible s
will generally give different scores for template matching v
our classical method, and we should choose the best f
our set of optimal estimation strategies. To complete
semiclassical template matching procedure, we catego
the u f m(w)& ’s into two classes according to the templa
states, that is, condense the set$umm(w)&^mm(w)u% into a two
element POM$P̂0

EST(w),P̂1
EST(w)%, whose elements indicat

that the best matched template isug0& or ug1&, respectively.
For simplicity let us assume thatM is even. Then by sym-

metry, it is enough to considerw in the range@0,2p/M ). The
categorization boundary is determined by the condition

u^g0u f m~w!&u5u^g1u f m~w!&u ~33!

The values ofm with u^g0u f m(w)&u>u^g1u f m(w)&u are cat-
egorized into the class ofug0&, and the others into that o
ug1&. Noting that

u^g0u f m~w!&u22u^g1u f m~w!&u2

52 sinS w1
2mp

M D sinS p

2
2u D , ~34!

the binary categorization should then be

P̂0
EST~w!5 (

m50

(M22)/2

umm~w!&^mm~w!u, ~35a!

P̂1
EST~w!5 (

m5M /2

M21

umm~w!&^mm~w!u. ~35b!

The average score for this strategy is

S̄EST~N,M ,w!5(
j 50

1
1

2pE df Tr@P̂ j
EST~w! f̂ ~f! ^ N#

3u^ f ~f!ugj&u2 ~36a!

5Tr@Ŵ0P̂0
EST~w!#1Tr@Ŵ1P̂1

EST~w!#,
~36b!

where
02231
as
ve

e

er-

-
re,

m
r
ze

Ŵ05
1

2N12 F2(
k50

N S N

k D uk&v v^ku

1 (
k50

N21 S N

k DAN2k

k11
~ei (p/22u)uk11&v v^ku

1e2 i (p/22u)uk&v v^k11u!G5Ŵ1
† . ~37!

By a straightforward calculation we obtain

S̄EST~N,M ,w!5
1

2
1

cosu cosS w2
p

M D
2NM sinS p

M D (
k50

N21 S N

k DAN2k

k11

~38a!

,S̄ESTS N,N11,
p

M D ~38b!

5
1

2
1

cosu

2N~N11!tanS p

N11D
3 (

k50

N21 S N

k DAN2k

k11
. ~38c!

The quantityS̄EST(N,N11,p/M ) is compared with the op-
timal scoreS̄OPT(N) and the oneS̄MV(N) obtained by the
separable measurement plus majority voting scheme in F
~for u50). As it can be seen, the strategy using the optim
state estimation plus classical matching can be close to o
mal for the region of smallN, while asN increases, it starts
to deviate from the optimal one and becomes closer to
strategy of separable measurement plus majority voting.

The three strategies are schematically summarized
Figs. 3–5. The quantum optimal strategy~Fig. 3! is realized
by a collective measurement on the stateu f & ^ N with binary
outputs. This is made by dividing the state spaceHB spanned
by u f & ^ N into two parts according to the templates, and
successfully using entanglement effects inHB . On the other
hand, the separable measurement plus majority vo

FIG. 3. A scheme of the optimal classifier forN input samples,
which is a generalization of Fig. 2. The binary classification
interest would eventually be turned into the measurement o
single qubit in the basis$u↑&,u↓&%.
7-6
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FIG. 4. Schemes of the strategy for the sep
rable measurement plus majority voting.~a! is the
direct translation of the POM, which includesN
measurements. But this can be translated int
measurement on a single ancillary qubit plus
additional circuit~majority voting circuit! before-
hand as shown in~b!. The majority voting circuit
includes a series of C-NOT gates just as in Fig. 2.
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scheme shown in Fig. 4, does not take any advantage o
entanglement, which could be drawn from the stateu f & ^ N. In
the optimal state estimation plus classical matching strat
shown in Fig. 5, the collective measurement first perform
for estimating u f &, also utilizes the entanglement effec
However, this is not the best way forbinary classification. In
fact, the optimal state estimation requires dividing the sp
HB into at leastN11 parts. AsN increases, one has to re
much more on the classical procedure to categorize the
puts into two classes. This is the reason why this strat
becomes ineffective for largerN. Intuitively any intermediate
measurement prior to the final decision tends to degrade
total performance leading to a waste of input copies fo
given average score level, so the process for the best bi
classification should stay entirely in the quantum domain
til the very final measurement.

IV. MULTIPLE TEMPLATE MATCHING OF A TWO
STATE SYSTEM

In the previous section we have assumed a single fea
parameterf and a minimum number~two! of templates. In
this section we extend our model to allow for multiple tem
plate matching. Although binary template matching can
reduced to the diagonalization of the operatorŴ02Ŵ1, there
is no such straightforward method to find the optimal str
egy in general cases. To keep the model tractable, we ass
that the input feature state is a general qubit state depen
now on two parameters

u f &5e2 i (f/2) cos
u

2
u↑&1ei (f/2) sin

u

2
u↓& ~39!

with a uniform a priori distribution over the whole Bloch
sphere. Furthermore, we suppose that only one of the pa
eters relates to the desired feature ofu f &, for example, the
angle parameterf around theŝz axis, while theŝz compo-
nent itself is of no interest. The template states correspon
to this feature are assumed to beM states, uniformly distrib-
uted around the great circle in thex2y plane of the Bloch
sphere, that is,

ugm&5
1

A2
~e2 i (mp/M )u↑&1ei (mp/M )u↓&);

~m50,1,. . . ,M21!. ~40!

As before we haveN copies of the input state as
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uF&[u f & ^ N5 (
k50

N AS N

k D
3S e2 i (f/2) cos

u

2D N2kS ei (f/2) sin
u

2D k

uk&, ~41!

and generate the score operators based on this and the
plates as

Ŵm[
1

4pE0

2p

dfE
0

p

du sinuu f &^Fuu^ f ugm&u2 ~42a!

5
1

2~N11!F Î 1 (
k50

N21 A~N2k!~k11!

N12

3~e2 i (mp/M )uk11&^ku1ei (mp/M )uk&^k11u!G ,

~42b!

We then seek the strategy to find the template that b
matches with the givenu f & in such a way to maximize the
average score

S̄5 (
m50

M21

Tr~ŴmP̂m!. ~43!

As noted in Sec. II, this optimal template problem is equiv
lent to the problem of optimal discrimination of the set
mixed states1

2 Ŵm , taken with equala priori probabilities
pm51/M .

The score operators evidently have the same symmetr
the templates, that is,

Ŵm5V̂mŴ0V̂†m, ~44!

FIG. 5. A scheme of the strategy for the optimal state estima
plus classical matching. The optimal state estimation is a collec
measurement onN identical copies of the sample state. By applyin
this, the input feature state is reconstructed. The output would
one of theN11 candidatesu f m&. Then one can compare this reco
structed state with the templatesclassically. This is actually a cat-
egorization ofu f m& into two classes according to the template stat
7-7
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where

V̂[(
k50

N

expF2 i
~N22k!p

M G uk&^ku, ~45!

is a unitary representation of the group of integers moduloM
on theN11 dimensional bosonic subspace ofN qubits. In-
deed it is just the product representationV̂5 v̂ ^ N, wherev̂ is
the operation of rotation of the one-qubit Bloch sphere
2p/M about thez axis. Now it is known@7# that for any
group covariant set of states, the state discrimination pr
lem always has an optimal strategy that is similarly gro
covariant, i.e., there will be an optimal POM of the for
P̂m5V̂mP̂0V̂†m, and the optimality conditions reduce to@10#

~i8! Ĝ[ (
m50

M21

V̂mŴ0P̂0V̂†m is Hermitian,

~ii 8! Ĝ2Ŵ0>0. ~46!

We have succeeded in deriving an optimal strategy onl
the case thatM.N, i.e., when the number of copies is le
than the number of templates. This is again the square-
measurement built from the templatesuGm&[ugm& ^ N, that is,
the set$P̂m5umm&^mmu% with

umm&[Ĝ2 1/2uGm&, Ĝ5 (
m50

M21

uGm&^Gmu. ~47!

In fact, by using the orthogonality relation

(
m50

M21

expS i
2mp

M
nD5Mdn,0 , for 2M,n,M ,

~48!

~so Ĝ like V̂ is diagonal in theuk& basis andĜ1/2 commutes
with V̂), we find that

umm&5V̂mum0&, um0&5
1

AM
(
k50

N

uk&. ~49!

The optimality of this POM can then be proved by checki
the conditions~i8! and ~ii 8! directly as follows. From Eq.
~48!, we obtain

Ĝ5
1

2~N11!F Î 1 (
k50

N21 A~N2k!~k11!

N12

3~ uk&^ku1uk11&^k11u!G , ~50!

and, consequently,
02231
y

b-
p

n

ot

Ĝ2Ŵ05
1

2~N11!~N12! (k50

N21

A~N2k!~k11!

3@ uk&^ku1uk11&^k11u

2uk&^k11u2uk11&^ku#. ~51!

Since each 232 matrix inside the brackets@ . . . # in Eq. ~51!
has the eigenvalues 0 and 2 and is non-negative definite
also isĜ2Ŵ0, and~ii 8! of Eq. ~46! holds. Condition~i8! of
Eq. ~46! can be checked in a straightforward manner fro
Eqs. ~49! and ~51!. The maximum average score does n
depend onM and reads

S̄max~N!5M Tr~Ŵ0P̂0!5
1

2
1 (

k50

N21 A ~N2k!~k11!

~N11!~N12!
.

~52!

We also note thatuG0& is the maximum-eigenvalue eigen
state ofŴ0, whose spectral decomposition is

Ŵ05 (
k50

N

vkuvk&^vku, vk5
k11

~N11!~N12!
, ~53!

that is,uG0&5uvN&. This is especially interesting in view o
the following theorem proved in Ref.@7#:

Theorem: LetG be a group and letg→V̂g be anirreduc-
ible representation ofG on ad dimensional Hilbert spaceH.
Let $F̂g :gPG% be a collection of Hermitian operators onH
such thatF̂g5V̂gF̂eV̂g

† ~wheree is the identity ofG). For

any POMX5$X̂g :gPG%, consider the function

Q~X!5Tr(
g

F̂gX̂g .

Let Z5d/uGuuf&^fu, whereuf& is the maximum eigenvalue
eigenstate ofF̂e ~and uGu is the size ofG).

ThenQ is maximized by the POM$V̂gZV̂g
† :gPG%.

Note thatV̂guf& is a maximum eigenvalue eigenstate
F̂g , so the theorem claims that theG covariant POM, based
on theseuGu eigendirections, is optimal. By irreducibility o
the representation we have~via Schur’s lemma! that
(gV̂gÂV̂g

† is a multiple of the identity for any operatorÂ.
Thus the square-root measurement construction does no
ter these maximal eigendirections when the representatio
irreducible. In our template matching problem,G is the
group of integers moduloM and F̂g correspond to the scor
operatorsŴm . H is theN11 dimensional bosonic subspac
of N qubits and the group acts viam→V̂m. This representa-
tion is not irreducible so the theorem does not apply. Yet w
have shown that an optimal measurement is still obtaina
from the maximum eigenvalue eigenstates of the score
erators. In this case~of a reducible representation! the
square-root construction will give a nontrivial change in t
directions of the maximal eigenstates, necessary to obta
7-8
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QUANTUM TEMPLATE MATCHING PHYSICAL REVIEW A 64 022317
POM from them. This suggests a possible avenue of ge
alization for the above theorem of Ref.@7#, which we will
explore elsewhere.

In the other caseM<N, that is, when we can use a larg
number of copies of the input than the number of templa
the optimal POM is more complicated. This should inclu
elements with rank 2 or higher because of the requirem
that(m50

M21P̂m5 Î in theN11 dimensional bosonic subspac
We have not yet found a systematic way to construct s
higher rank POM’s. Here we discuss some simple cases

The simplest case isM52, that is, binary classification
In this case, the two score operators commute and the s
egy of separable measurement in the binary template b
on each copy plus majority voting turns out to be optim
~Note that the binary template problem in Sec. III had
different distribution of input states and the two templa
there were not required to be orthogonal!.

The next simplest case isM5N53. The optimal POM is
specified by

P̂05S 1

3
a c 0

a
1

3
b c

c b
1

3
a

0 c a
1

3

D , ~54!

with a5(A211A5)/24, c5(A352A3)/24, and b56ac,
and the maximum average score is

S̄max~N!5Tr Ĝ5
513A3a13b

10
. ~55!

This P̂0 is derived by solving the equations for the conditi
~46!-~i8! directly and then by picking up the solution satisf
ing the condition~46!-~ii 8!. P̂0 is a rank 2 operator

P̂05l1ul1&^l1u1l2ul2&^l2u, ~56!

with l150.964 andl150.370 and

ul1&50.995uv3&10.100uv1&, ~57a!

ul2&50.979uv2&10.204uv0&, ~57b!

whereuv0&, uv1&, uv2&, and uv3& are the eigenstates ofŴ0
corresponding to eigenvalues in increasing order@Eq. ~53!#.
Thus, although the main component ofP̂0 comes from the
maximum-eigenvalue eigenstateuv3& of Ŵ0, the other eigen-
states are also involved with appropriate weights.

Finally we mention the case ofM53 and N54. The
optimal POM is specified by
02231
r-

s,

nt

h

at-
sis
.

s

P̂051
1

3
a c 0 2A3

8
c

a
1

3
b A3

8
c 0

c b
1

3
b c

0 A3

8
c b

1

3
a

2A3

8
c 0 c a

1

3

2 ,

~58!

with b5A291A201/24, c5(A672A3)/(24A2), and a

56bc. The structure ofP̂0 is again of the form

P̂05l1ul1&^l1u1l2ul2&^l2u, ~59!

with l151 andl152/3,

ul1&50.992uv4&10.115uv2&10.044uv0&, ~60a!

ul2&50.984uv3&10.178uv1&, ~60b!

and the maximum average score is

S̄max~N!5
514a12A6b

10
. ~61!

Generally speaking it is more difficult to find analyt
solutions for the Bayes optimal strategy for mixed states,
one has to rely on numerical methods. The above exam
indicate that the largest eigenvalue eigenstates of the s
operatorŴ0 should play an essential role in constructing t
optimal POM~and maximizing the score!, while smaller ei-
genvalue eigenstates can be regarded as perturbative co
tion terms. This might be helpful for considering efficie
numerical algorithms for finding the optimal POM.

V. CONCLUDING REMARKS

We have considered the problem of quantum temp
matching, which is to find the template state that b
matches a given input feature state. The quality of match
was taken to be the standard overlap of quantum states.
question was formulated in the context of quantum Bayes
inference and it was seen to be equivalent to the opti
discrimination of certain mixed states, given in terms
score operators, each defined for a specific template state
including all thea priori information about the input.

In this paper, the simplest case of binary classification
a two state system was extensively studied. We constru
the optimal strategy in theN11 dimensional bosonic stat
spaceHB spanned by the tensor productsu f & ^ N of N identi-
cal copies of the input state. The optimal state estimation
u f & ^ N, followed by a classical matching process, does
provide the best strategy, and there is a different optimal
7-9
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of entanglement for this particular binary classification pro
lem. In the case of multiple template matching the probl
becomes more difficult, and we derived the optimal stra
gies in a few illustrative cases.

As mentioned in the Introduction, the procedure of co
ventional pattern matching consists of feature extraction,
culation of the discriminant function, and classification.
the quantum context, however, it is not clear how to mo
such processes without an associated loss of useful info
tion. For instance, to eliminate features of no concern,
might simply project the input state onto the subspa
spanned by the relevant states with the features of inte
But we saw in Sec. III that a quantum measurement, tha
a projection of states, carried out before the final temp
decision, is generally detrimental to optimal performance
this spirit, we dealt with the problem in the original Hilbe
space, without projecting the input states onto the subsp
for the features of interest~Sec. IV!, and the whole proces
of quantum template matching was represented by a si
POM. It is of course an open question to formulate quant
protocols in more physically comprehensive ways, e.g.,
volving a separate nontrivial feature enhancement proc
prior to classification, and to systematically derive optim
strategies for them.

But even without such additional infrastructure~e.g., fea-
ture enhancement! our problem of template matching ha
some interesting generalizations related to the role of cla
cal versus quantum information in the formulation. In o
formulation we have assumed that the input states~such as
u f &) are given as quantum information~i.e., unknown quan-
tum states! whereas the template states (ugi& ’s with known
identities! are given as classical information. Furthermo
our goal was to obtain the best template as classical infor
tion ~i.e., knowledge of the identity of the bestugi&) via a
suitable POM. The ingredients of this formulation can
relaxed in a variety of potentially interesting ways and h
we mention two such ways:

~a! Instead of knowing the identities of the templa
states, we may merely be given only some finite number~K!
of copies of each template~so our original formulation is
equivalent toK5`). One matching strategy would then b
to apply state estimation to the sets ofK copies and proceed
as in our original formulation with the resulting estimat
state identities. But this is unlikely to be optimal and w
should consider a more fully quantum procedure which,
any inputu f &, identifies the best template class~still here as
classical information! without attempting to obtain any fur
ther information about the identities of the template sta
themselves.

~b! A second more intrinsically quantum-mechanical fo
mulation of template matching involves obtaining the answ
02231
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~i.e., the best matching template! only as quantum informa-
tion. In this scenario we have a known prior distribution
inputs$u f i&;pi% and a known set of possible templates$ugj&%.
Then given one~or more! copies ofu f i& we want to design a
quantum process~i.e., a completely positive trace preservin
map acting on the input! that outputs~one copy of! a quan-
tum states i of the form u f i&→s i5( j pi j ugj&^gj u, such that
some suitable average score( i j pipi j S( j u i ) is maximized.
Note that the formulation in our paper~of getting the best
template as classical information! would provide one pos-
sible strategy since we can then construct the correspon
template state as a quantum state, but again, this would
be expected to be optimal, since we produce a great dea
unwanted extra information in addition to the desired qu
tum output state.

There are yet further possible avenues for generalizing
formulation of the template matching problem. One is
study pattern classification with other kinds of matching c
teria than fidelity, which would be chosen according to so
specific application or purpose. For example, according
the quantum Sanov theorem~e.g., summarized in Sec. IV o
Ref. @16#! the quantum relative entropyS( f̂ uuĝ) between two
quantum states provides an index for estimating the proba
ity that the states will not be distinguished on the basis of
arbitrary measurement onN copies of the state. Thus th
relative entropy provides an alternative, operationally int
tive, notion of ‘‘distance’’ between quantum states and
may consider maximizing the average relative entropy as
similarity criterion in template matching for some purpose

The above remarks and generalizations show that
problem of template matching, introduced in this paper,
just the beginning of a fruitful area for further study. Th
formulation adopted in the paper is perhaps the simples
that it is closely related to an existing body of results
quantum Bayesian estimation. But a study of possible hyb
quantum-classical generalizations along the lines sugge
above, would provide a natural setting for characterizing n
properties, and a deeper understanding, of quantum infor
tion itself, especially the ways it fails to accord with familia
properties of classical information.
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