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Deterministic entanglement concentration
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Deterministic extraction of Bell pairs from a finite number of partially entangled pairs is discussed. We
derive the maximum number of Bell pairs that can be obtained with probability 1 by local operations and
classical communication. It is proved that the optimal deterministic concentration needs only a two-pair
collective manipulation in each step, and that a collective manipulation of all entangled pairs is not necessary.
Finally, this scheme reveals an entanglement measure for the deterministic concentration.

DOI: 10.1103/PhysRevA.64.022316 PACS number~s!: 03.67.Hk, 03.65.Ud
s
ith

e

d
h

la
f

io
m
on

e
m
b
tu
fo
gl

ed
th

i
at

e
en
le

are
ma-
uan-
of
by
ri-

ried
nt
m

on
-
ro-
eu-
tate

of
n-
al
the
gle-
tate
ous
o-
irs.
this
ter-
d
on-
v-
ell
n-
gle-
ty,
any
irs
c-
lly
re-
ns
led

irs
ion,
pair
I. INTRODUCTION

Quantum entanglement has come to be viewed as a
nificant resource for quantum information processing w
the discoveries of quantum teleportation@1# and superdense
coding @2#. A particular entangled state called a Bell pair,

uF1&AB5
1

A2
~ u00&AB1u11&AB), ~1!

is an essential ingredient for these communications, wh
qubits A and B are possessed by Alice~sender! and Bob
~receiver!, respectively. It is thus important for Alice an
Bob to prepare Bell pairs between them in advance, whic
related to the main result in this paper.

In order to seek new applications and efficient manipu
tion of entangled states, we need a deep understanding o
nature of quantum entanglement. Most recent investigat
of entangled states have been undertaken within the fra
work of local operations and classical communicati
~LOCC! ~for a review, see Ref.@3#!. Since Alice and Bob are
supposed to be separated by a large distance, they ar
lowed to access only their own systems locally and to co
municate in a classical manner. In other words, neither glo
operations on the whole system nor transmission of quan
systems is allowed. Thus the following question is crucial
a good grasp of entanglement: What can we do on entan
states by using LOCC?

In this paper, we deal with only bipartite pure entangl
states, for which general theorems useful in answering
above question have already been proved@4–6#. Nielsen
proved the necessary and sufficient conditions for determ
istic transformations between bipartite pure entangled st
@4#. In Ref. @5#, Vidal derived the formula for the maximum
probability with which a pure entangled state is transform
into another one. Jonathan and Plenio extended Niels
theorem to the case where the final state is an ensemb
pure states@6#.

*Email address: fumiaki@will.brl.ntt.co.jp
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Transformations whose final states include Bell pairs
of special interest among possible entanglement transfor
tions, because the resultant Bell pairs can be used for q
tum communication such as teleportation. Extraction
maximally entangled states from partially entangled states
LOCC is generally called entanglement concentration. Va
ous studies on its limitations and efficiency have been car
out @5–9#. First, Bennettet al. constructed an entangleme
concentration procedure, which extracts Bell pairs fro
many identical copies of a partially entangled pair@7#. Its
efficiency in the asymptotic limit is characterized by the v
Neumann entropy of Alice’s~or Bob’s! reduced density ma
trix. This fact, together with the existence of the reverse p
cedure, called entanglement dilution, established von N
mann entropy as a unique measure of pure-s
entanglement in the asymptotic limit@10#. In Refs.@5,8#, Lo
and Popescu gave a formula for the maximum probability
obtaining a maximally entangled state from a partially e
tangled state~and Vidal later extended it for more gener
final states!. Furthermore, Jonathan and Plenio optimized
average amount of entanglement obtained in the entan
ment concentration that transforms a partially entangled s
into an ensemble of maximally entangled states in vari
dimensions@6#. All these entanglement concentration pr
cesses are probabilistic for a finite number of entangled pa

The entanglement concentration scheme presented in
paper is designed for a somewhat different purpose. It de
ministically extracts Bell pairs from two-qubit entangle
pairs. In other words, we focus on a concentration that c
verts a collection of two-qubit partially entangled pairs ha
ing different amounts of entanglement into a bunch of B
pairs with probability 1. While the above probabilistic co
centration processes run the risk of losing all the entan
ment contained in the initial states with certain probabili
our concentration scheme answers the question of how m
Bell pairs can be obtained from partially entangled pa
without gambling. On the other hand, it is probable in pra
tical applications that Alice and Bob share many partia
entangled pairs with different entanglement, and wish to p
pare Bell pairs from them. Thus we consider transformatio
whose initial states are tensor products of partially entang
pairs.

This paper derives the maximum number of Bell pa
obtained in the deterministic entanglement concentrat
and proves that the optimal procedure needs only a two-
©2001 The American Physical Society16-1
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FUMIAKI MORIKOSHI AND MASATO KOASHI PHYSICAL REVIEW A 64 022316
entanglement manipulation in each step. This contra
sharply with the fact that the probabilistic concentratio
known so far require a collective manipulation of all e
tangled pairs for optimality. Furthermore, this scheme
veals a reasonable entanglement measure for the determ
tic concentration.

This paper is organized as follows. We begin in Sec. II
introducing the main tool used in this paper, that is, Nielse
theorem. Then we review the transfer of entanglement
tween two partially entangled pairs in a slightly differe
way from Ref. @11#. The argument is essentially the dete
ministic entanglement concentration of two pairs. In Sec.
we deal with the deterministic concentration ofn pairs,
which is the main result of this work. The maximum numb
of Bell pairs is derived and proved to be attained by a se
of collective manipulations of two pairs. Section IV intro
duces an entanglement measure for the deterministic con
tration. Section V describes a schematic representation o
concentration scheme. Then we extend the entanglem
measure to general pure entangled states in Sec. VI. Fin
Sec. VII concludes the paper.

II. TRANSFER OF ENTANGLEMENT BETWEEN TWO
PAIRS

In this section, we treat the transfer of entanglement
tween two pairs, which is the basis of the entanglement c
centration ofn pairs. This subject was already examin
from a different point of view, the recovery of entangleme
in Ref. @11#. When Alice and Bob transform an entangle
state into another one by LOCC, the quantity of entang
ment generally decreases. However, the entanglement lo
the manipulation can be partially recovered by an auxili
entangled pair. Attaching an auxiliary entangled pair, Al
and Bob can partially transfer the entanglement lost in
original pair to the auxiliary one by collective manipulatio
of both pairs. In the following, the result from the recove
scheme is briefly reviewed in a useful form for entanglem
concentration.

First we introduce Nielsen’s theorem and its mathemat
basis. The theorem is described by the mathematical th
of majorization, which gives an ordering of real vectors a
cording to their degree of disorder@12#. Let x
5(x1 , . . . ,xn) and y5(y1 , . . . ,yn) be realn-dimensional
vectors. Rearranging the elements ofx in decreasing order
we obtain x↓5(x1

↓ , . . . ,xn
↓), where x1

↓>•••>xn
↓ . We say

that x is majorized byy, written asxay, if

(
j 51

k

xj
↓<(

j 51

k

yj
↓ , 1<k<n21, ~2!

for k51, . . . ,n21, with equality instead of inequality fo
k5n.

Any bipartite pure entangled states can be written in
standard form called Schmidt decomposition:uc&AB

5( iAai u i &Au i &B , where$u i &A% and $u i &B% are the orthonor-
mal bases of respective systems. The eigenvalues of th
duced density matrixrc[tr B(uc&AB AB̂ cu) area1 , . . . ,an ,
which are positive real numbers, and sum to 1. We define
02231
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vector of these eigenvalues aslc[(a1 , . . . ,an). With these
definitions and the theory of majorization, Nielsen prov
that a bipartite pure entangled stateuc&AB is transformed into
another oneuf&AB with probability 1 by LOCC, if and only
if lc is majorized bylf , i.e.,

uc&AB→uf&AB iff lcalf . ~3!

One way of quantifying entanglement is to use the v
Neumann entropy of a reduced density matrix:

E~c![2tr~rc log2 rc!. ~4!

This measure is related to the efficiency with which an in
nite number of identical copies of a partially entangled p
are concentrated@7#. It is known that entanglement general
decreases during deterministic transformations by LOC
i.e., if

uc&AB→uf&AB then E~c!>E~f!. ~5!

Therefore, when entanglement is transferred from an
tangled pair to another one, the total entanglement of
pairs generally decreases.

Next we proceed to the transfer of entanglement betw
two pairs. The process can be considered as the entangle
concentration of two pairs if the purpose is extraction o
Bell pair. Suppose Alice and Bob share two partially e
tangled pairs

uc&5Aa u00&1A12a u11&,
~6!

uf&5Ab u00&1A12b u11&.

Without loss of generality, we can set

1

2
,a<b,1. ~7!

According to Nielsen’s theorem, neither of these two pa
can be concentrated to a Bell pair with probability 1. Ho
ever, whenab< 1

2 , it is possible that Alice and Bob extract
Bell pair from the combined entangled stateuc& ^ uf& with
probability 1, as shown below.

Case~a!: 1
4 ,ab< 1

2 . In this case, Alice and Bob can ex
tract a Bell pair fromuc& ^ uf& and keep the residual en
tanglement in another entangled pairuv&. The state that
maximizes the residual entanglement is

uv&5A2ab u00&1A122ab u11&. ~8!

This concentration is proved to be possible by Nielse
theorem as follows. The vectors of eigenvalues for the ini
and the final states are
6-2
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lc ^ f5S a

12aD ^ S b

12bD 5S ab

a~12b!

~12a!b

~12a!~12b!

D ,

~9!

lF1 ^ v5S 1
2

1
2

D ^ S 2ab

122abD 5S ab

1
2 2ab

ab

1
2 2ab

D ,

respectively. In order to rearrange the elements of these
tors in decreasing order, all we have to do is just reverse
order of the second and third elements of each vector
cause of Eq.~7!. Since Eq.~7! guarantees the inequalities

b<2ab, ~12a!~12b!> 1
2 1ab, ~10!

the majorization relationlc ^ falF1 ^ v holds. Thus Alice
and Bob can perform the concentrationuc& ^ uf&→uF1&
^ uv&. If the larger amplitude ofuv&, A2ab, becomes
smaller, the first inequality forlc ^ falF1 ^ v does not hold.
Therefore, Eq.~8! is optimal in the sense that it contains
much residual entanglement as possible.

Case~b!: 1
2 ,ab,1. It is impossible for Alice and Bob to

extract a Bell pair in a deterministic way. The best they c
do is gather entanglement of two pairs into one pair to m
an entangled pair as close to a Bell pair as possible. Tha
they performuc& ^ uf&→uv& ^ u00&, where

uv&5Aab u00&1A12ab u11&. ~11!

We can prove this transformation to be possible by Nielse
theorem again. The vector of eigenvalues for the final s
becomes

lv ^ u00&5S ab

12abD ^ S 1

0D 5S ab

0

12ab

0

D . ~12!

Clearly, this vector majorizes the vector of the initial sta
lc ^ f @Eq. ~9!#. Thus Alice and Bob succeed in collecting th
entanglement ofuc& and uf& into uv&, whose entanglemen
is maximized for the same reason as the previous case.

These two cases of deterministic concentration of t
pairs are illustrated in Fig. 1. In both cases, the most imp
tant point is that the largest element of the four-dimensio
vector,ab, never changes during the concentration proce
In other words, the product of the larger amplitudes of ea
entangled pair is conserved before and after the transfor
tion, which is the crux of the optimality of the determinist
concentration presented in Sec. III.
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III. DETERMINISTIC ENTANGLEMENT
CONCENTRATION OF n PAIRS

Now we move on to the main topic of this paper: th
concentration of a finite number of partially entangled pa
Suppose Alice and Bob sharen partially entangled pairs
uc1& ^ •••^ ucn&, where

uc i&5Aai u00&1A12ai u11& ~ i 51, . . . ,n!, ~13!

with

1

2
,ai,1, ~14!

and wish to extract as many Bell pairs as possible from th
entangled pairs with probability 1. The final state
^

kuF1& ^
n2ku00& if they obtain k Bell pairs and (n2k)

disentangled pairs after the concentration. Thus the vec
corresponding to the initial and the final states are (12a1

a1 )

^ •••^ (12an

an ) and ^
n2k(0

1) ^
k(1/2

1/2), respectively.

This concentration is accomplished if the following m
jorization relation holds:

FIG. 1. Optimal deterministic concentration of two pairsuc&
5Aau00&1A12au11& and uf&5Abu00&1A12bu11&. Each pair
connected by a wavy line represents an entangled pair. The
indicates the quantity of entanglement.~a! Whenab< 1

2 , Alice and
Bob can extract a Bell pairuF1&, and keep a residual entangled pa
uv&. ~b! When ab.

1
2 , they gather all the entanglement touv&,

which is not maximally entangled.
6-3



he
th

t

s
ve

ha

ll
s

ct
ve

o
m

tra

ic
m

il
ct

a
i
e
r

ov

e
v

, i
d

r-
re-

le-

in a
is

tra
a

n-
the
oes

a
-

n
ace
a-

an

of

ise
ests
la-
n
late

eful
on
n,
act
rply

a-

irs
nal
ex-
ol-
ial

or

FUMIAKI MORIKOSHI AND MASATO KOASHI PHYSICAL REVIEW A 64 022316
S a1•••an

A

A

A

~12a1!•••~12an!

D a1
1

2k

A

1

2k

0

A

0

2 . ~15!

In the initial state, the first element of the vector is t
largest one. All the nonzero elements of the vector for
final state are equal to 22k. Therefore, if the first inequality
of majorization relation~15! holds, i.e.,

a1•••an<
1

2k
, ~16!

this concentration is successfully completed because
other inequalities for Eq.~15! are automatically satisfied.

Inequality ~16! gives the maximum number of Bell pair
that can be extracted from the partially entangled pairs gi
by Eq. ~13!,

kmax5 b2 log2~a1•••an!c, ~17!

wherebxc represents the largest integer equal to or less t
x.

Equation~17! tells us that the maximum number of Be
pairs is determined only by the product of the parameter
each pair to be concentrated, i.e.,a1•••an . This fact guar-
antees that we lose no Bell pairs as long as the produ
conserved. In Sec. II, we found that the product ne
changes during the optimal deterministic concentration
two pairs. This means that we can attain the maximum nu
ber of Bell pairs through repeated use of two-pair concen
tions.

The actual concentration procedure is as follows. Al
and Bob choose two arbitrary entangled pairs, then perfor
concentration on them. If they obtain a Bell pair@the case in
Fig. 1~a!#, it is put aside, and the residual entangled pair w
be reused in the next stage of concentration. If the sele
two pairs are not enough for a Bell pair@the case in Fig.
1~b!#, they transfer all the entanglement contained in a p
into another one to make a partially entangled pair that w
be reused in the next pairwise concentration. They rep
these operations until they achieve the maximum numbe
Bell pairs.

By repeating the two-pair concentrations as stated ab
Alice and Bob finally obtainkmax Bell pairs, one partially
entangled pair, and (n2kmax21) disentangled pairs. Th
product of the larger elements of vectors for each pair ne
changes throughout these concentration processes, i.e.
alwaysa1•••an . Therefore, the residual partially entangle
state becomes
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uv&5A2kmaxa1•••anu00&1A122kmaxa1•••anu11&,
~18!

where 1
2 ,2kmaxa1•••an<1, because there arekmax Bell

pairs and (n2kmax21) disentangled pairs besides that pa
tially entangled pair. The amount of entanglement of the
sidual pair cannot exceed that of Eq.~18! for the same reason
as stated in the proof of the two-pair concentration.

The producta1•••an is not usually equal to 22kmax. Thus
kmax Bell pairs do not represent all the available entang
ment. By preserving the residual entanglement in Eq.~18!
and conserving the quantitya1•••an , Alice and Bob do not
waste any potential entanglement that can be extracted
future concentration, which attains the true optimality in th
deterministic concentration. That is, if they obtain an ex
partially entangled pair later, they will be able to perform
pairwise concentration on the residual pairuv& and the extra
pair.

Next we consider the complexity of the deterministic co
centration. In each pairwise concentration, at least one of
pairs becomes a Bell pair or a disentangled pair, which d
not proceed to the next concentration. Thus, if we perform
pairwise concentration at mostn21 times, in a process simi
lar to elimination in a tournament, there finally remainkmax
Bell pairs, the residual pairuv&, and (n2kmax21) disen-
tangled pairs.

According to the prescription given in Ref.@4#, a trans-
formation of an entangled state with Schmidt numberm can
be performed bym21 operations, where each operatio
consists of transformations in the two-dimensional subsp
of the entire entangled state. Thus, when we collectively m
nipulaten entangled pairs consisting of two qubits, i.e.,
entangled state with Schmidt number 2n, we generally per-
form O(2n) operations. On the other hand, the number
steps in the deterministic concentration ofn pairs is reduced
to O(n) by pairwise manipulation, because each pairw
concentration needs four operations. This argument sugg
the importance of the complexity of entanglement manipu
tion. It is worth considering not only what we can do o
entangled states, but also how efficiently we can manipu
them.

The pairwise nature of this concentration scheme is us
in a practical sense too. Even if we fail in the manipulati
of two pairs, or if some error occurs in the concentratio
only the two pairs are affected. The other pairs remain int
in spite of such unexpected effects. This contrasts sha
with other concentration schemes that require collective m
nipulation of all pairs.

In general, collective manipulation of more than two pa
is necessary even for transformations whose initial and fi
states consist of tensor products of entangled pairs. For
ample, the transformation illustrated in Fig. 2 requires a c
lective manipulation of three pairs. The vectors for the init
and the final state are (0.5,0.5)^ (0.5,0.5)̂ (0.95,0.05) and
(0.9,0.1)̂ (0.9,0.1)̂ (0.9,0.1), respectively. These tens
products are calculated in decreasing order as follows:

l init ial 5~0.2375,0.2375,0.2375,0.2375,0.0125,0.0125,

0.0125,0.0125!
6-4
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DETERMINISTIC ENTANGLEMENT CONCENTRATION PHYSICAL REVIEW A64 022316
and

l f inal5~0.729,0.081,0.081,0.081,0.009,0.009,0.009,0.00!.

It is easily seen thatl init ial al f inal , and thus this transfor
mation is really possible according to Nielsen’s theore
However, it requires collective manipulation of three pa
because it was proved that two-pair manipulation cannot
crease the entanglement of the less entangled pair in the
tial state@11#. That is, any successive operations of two pa
cannot pump up the lowest state (0.95,0.05). As shown
this example, not all transformations of entangled pairs c
sist of two-pair manipulations. Therefore, it is remarkab
that two-pair manipulation is enough for the determinis
concentration.

IV. ENTANGLEMENT MEASURE FOR THE
DETERMINISTIC CONCENTRATION

The argument in Sec. III leads to an entanglement m
sure for the deterministic concentration of a finite number
pairs. First we present conditions for entanglement meas
in deterministic transformations of pure states, which is
modified version of the conditions for entanglement m
sures proposed in Refs.@13,14#. When we restrict ourselve
to manipulating entangled pure states in a deterministic m
ner, a measure of entanglementM (c) should satisfy the fol-
lowing conditions: ~i! M (c)50 iff uc& is separable.~ii !
M (c) remains unchanged under local unitary transform
tions. ~iii ! M (c) cannot be increased by determinis
LOCC. Due to the restriction of deterministic transform
tions, the third condition is weaker than the counterpart
Refs. @13,14#, which requires the nonincreasing property
the expectedvalue of the measure when the final states
not unique.

Now we derive an entanglement measure for determi
tic concentration. The formula for the maximum number
Bell pairs @Eq. ~17!# can also be written in the following
form:

kmax5F(
i 51

n

2 log2 ai G . ~19!

FIG. 2. The transformationuF1& ^ uF1& ^ uc&→uv& ^ uv&
^ uv& requires a collective manipulation of the three pairs, wh
uF1& represents a Bell pair,uc&5A0.95u00&1A0.05u11&, and uv&
5A0.9u00&1A0.1u11&. Two-pair manipulation cannot pump upuc&.
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This expression implies that the number of Bell pairs tha
partially entangled stateuc i&5Aai u00&1A12ai u11& con-
tains is

D~c i ![2 log2 ai ~ 1
2 <ai<1!. ~20!

It is easily seen that this quantity satisfies the above co
tions for entanglement measures in deterministic cases. I
allow probabilistic transformations, the expected value
our measure can be increased in some cases. Note tha
measureD(c i) does not diverge, since it is defined with th
square of the larger Schmidt coefficient ofuc i&, which ranges
from 1

2 to 1. In addition, a Bell pair corresponds to the un
of this measure, i.e.,D(uF1&)51.

Another entanglement measureE(c) defined by Eq.~4!
represents the amount of entanglement per one partially
tangled pairuc& in the asymptotic limit. This means that
we have an infinite number of identical copies ofuc&, we can
extractE(c) Bell pairs per copy. On the other hand,D(c i)
quantifies the number of Bell pairs contributed by the st
uc i& when we deterministically concentrate a finite numb
of entangled pairs that are not generally identical. For
ample, if Alice and Bob share two pairsuc1& anduc2&, where
D(c1)50.7 andD(c2)50.6, then they can obtain a Be
pair and a residual stateuv& with D(v)50.3, because 0.6
10.75110.3.

Since D(c) is smaller thanE(c), our concentration
scheme is less efficient than the original Schmidt project
method@7#, which attainsE(c) in the asymptotic limit. The
inefficiency is due to the strong restriction of determinis
transformations. Thus the quantityD(c) does not converge
on E(c) even in the asymptotic limit.

The most fascinating property of this measureD(c) is
that the maximum number of Bell pairs is determined by
addition of the contribution of each pair. This property sho
that the deterministic concentration procedure does not
pend on the way of pairing entangled pairs, because we
attain the optimality as long as the sum( iD(c i) does not
decrease. This fact assures the optimality of determini
concentration byany pairwise manipulation.

V. SCHEMATIC REPRESENTATION OF THE
DETERMINISTIC CONCENTRATION

In this section, we schematically represent our und
standing of the deterministic concentration. Figure 3 rep
sents a set of entangled states such that each elemen
tensor product of two-qubit entangled pairs, and has
same value of( iD(c i). The center of the set is the point th
represents a bunch ofkmax Bell pairs and a residual en
tangled pair. As shown in Sec. IV, all points in the set can
transformed into the center. In other words, wherever
initial state is, every path surprisingly leads to the center
long as the transformation conserves the sum ofD(c i). The
center representingkmax Bell pairs and a residual pair act
like a drain.

The advantage of the deterministic concentration is
plained schematically as follows. Since pairwise manipu
tion is enough for optimality, any point representing a c

e

6-5
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FUMIAKI MORIKOSHI AND MASATO KOASHI PHYSICAL REVIEW A 64 022316
lection of partially entangled pairs are transformed into
center along the path that changes only two pairs at a ti
Furthermore, our concentration procedure does not dep
on the way of pairing entangled pairs. This corresponds
the fact that there are many possible paths that connec
initial state and the drain.

Figure 3 is also explained in terms of the entropy of e
tanglementE(c) and the entanglement measureD(c). The
total entropy generally decreases in deterministic transfor
tions. Thus Fig. 3 means that as long as( iD(c i) is con-
served, every point in the set is always led to the center
any transformation that decreases the total entropy. The d
that representskmax Bell pairs and a residual pair is the mo
stable state under the condition that the sum ofD(c i) re-
mains unchanged. In other words, whatever entangled p
Alice and Bob share, those pairs are swept up to a bunc
Bell pairs and a bunch of disentangled pairs. All we need
the optimality of deterministic concentration is the conser
tion of ( iD(c i).

VI. EXTENSION TO GENERAL PURE ENTANGLED
STATES

The entanglement measure for the deterministic conc
trationD(c), defined in Eq.~20!, can be extended to gener
pure entangled states. Suppose Alice and Bob share a
tially entangled state whose Schmidt number ism,

uc&5(
j 51

m

Apj u j , j & ~m>2!, ~21!

where

(
j 51

m

pj51. ~22!

By the same argument as in Sec. III, we can determine
maximum number of Bell pairs extractable from this pa
tially entangled state:

kmax5 b2 log2~max
i

pi !c. ~23!

FIG. 3. The elements of this set are tensor products of two-q
entangled pairs, and have the same value of( iD(c i). The center
represents a bunch of the maximum number of Bell pairs an
residual entangled pair, i.e.,the drain. Every point~x! in this set is
led to the drain by any transformation that reduces the total am
of von Neumann entropy( iE(c i).
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Thus the contribution of the partially entangled stateuc& to
the maximum number of Bell pairs is also expressed as

D~c![2 log2~max
i

pi ! ~0,max
i

pi<1!. ~24!

Of course, Eq.~24! satisfies the conditions for the entangl
ment measure in deterministic cases, as in Sec. IV.

From Eq.~24!, it is easily seen thatD(c) is additive for a
system composed of independent subsystems, namely,

D~c ^ f!5D~c!1D~f!, ~25!

because the largest element of the vector foruc& ^ uf& is the
product of those foruc& anduf&. We also point out that both
D(c) and another additive quantityE(c) are obtained by
some limits of a quantity known as Renyi entropy of ordet,
Ht($pi%)5@1/(12t)# log2 (i51

n pi
t , which is also additive.

That is,H1($pi%)5E($pi%) and H`($pi%)5D($pi%), where
pi represents the square of each Schmidt coefficient.

Though we succeeded in extending the entanglem
measure to general cases, the actual concentration proce
are different from that of two-qubit cases in some poin
First, the residual entanglement represented by$D(c)
2kmax% cannot be always kept in a partially entangled pair
simple example is the transformation from a maximally e
tangled pair with Schmidt number three to a Bell pair. Sin
b log2 3c51, we can extract a Bell pair from (1/A3)(u00&
1u11&1u22&). If the residual entanglement represented
(log2 321) is kept in another partially entangled pair, th
Schmidt number of the final state becomes 4, which is
possible because we cannot increase the Schmidt numb
initial states. This also means the optimal concentration
tournamentlike operations is impossible in general cases,
cause it is necessary for the optimal tournamentlike conc
tration to retain the residual entanglement in the form o
partially entangled pair in each step.

Second, the schematic representation of the general
cases is slightly different from that of the two-qubit cas
When the initial state is a collection of two-qubit entangl
pairs, every state can be transformed into the state wit
bunch of Bell pairs and a residual entangled pair, as show
Sec. V. However, in general cases, not all initial states re
that state. All states with the same value ofD(c) are trans-
formed into the following state, which is similar to th
d-dimensional maximally entangled state, whered
5 b1/(maxi pi)c ~for simplicity, we use vector notation!:

~26!

This state is the drain in the generalized cases. As show
Fig. 4, the point representing a bunch of Bell pairs and
residual entangled pair is different from the drain in the ge
eral case.@When D(c) is equal to an integer, two point
coincide because there is no residual entanglement.# Of
course, we can always reach the state ofkmax Bell pairs from
the drain, though the state is not in the set shown in Fig
The deterministic concentration of two-qubit entangled pa
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is a special case, which always enables us to retain the
sidual entanglement in a compact form of a partially e
tangled pair.

With this generalization ofD(c), we can prove that en
tanglement catalysis@15# cannot enhance the efficiency o
the deterministic entanglement concentration. Since an
tached catalyst stateuf& must remain intact after the trans
formation, the termD(f) does not contribute to the numbe
of extractable Bell pairs due to the additivity ofD(c). Thus
the concentration scheme presented in this paper is the
we can do in deterministic cases.

FIG. 4. The elements of this set are general pure entan
states that have the same value ofD(c). All the elements are led to
the center,the drain, by any transformation that reduces the v
Neumann entropyE(c). The symbolO represents a bunch of th
maximum number of Bell pairs and a residual entangled pair
general, this state is different from the drain, because not all
elements are led to the state.
m
.
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VII. CONCLUSION

We have presented a deterministic entanglement con
tration scheme for a finite number of partially entangled pa
consisting of two qubits. We determined the maximum nu
ber of Bell pairs that can be extracted by LOCC, which w
proved to be attained by a series of two-pair manipulation
each step. There is no need of collective manipulation of
entangled pairs for deterministic concentration. The co
plexity of entanglement manipulation also deserves furt
investigation for a deeper understanding of quantum
sources.

Furthermore, this concentration scheme revealed an
tanglement measure for the deterministic concentration o
finite number of pairs. The measure represents the amou
entanglement that we can use without fail. In the concen
tion of two-qubit entangled pairs, we proved that all the e
tanglement quantified by the measure can be used with
loss. However, in the general cases, what kind of initial sta
can be concentrated into Bell pairs without discarding a
residual entanglement remains open.
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