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Deterministic entanglement concentration
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Deterministic extraction of Bell pairs from a finite number of partially entangled pairs is discussed. We
derive the maximum number of Bell pairs that can be obtained with probability 1 by local operations and
classical communication. It is proved that the optimal deterministic concentration needs only a two-pair
collective manipulation in each step, and that a collective manipulation of all entangled pairs is not necessary.
Finally, this scheme reveals an entanglement measure for the deterministic concentration.
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[. INTRODUCTION Transformations whose final states include Bell pairs are
of special interest among possible entanglement transforma-
Quantum entanglement has come to be viewed as a sidions, because the resultant Bell pairs can be used for quan-
nificant resource for quantum information processing withtum communication such as teleportation. Extraction of
the discoveries of quantum teleportatiti] and superdense Maximally entangled states from partially entangled states by

coding[2]. A particular entangled state called a Bell pair, LOCC is generally called entanglement concentration. Vari-
ous studies on its limitations and efficiency have been carried

out [5-9]. First, Bennettet al. constructed an entanglement
1 concentration procedure, which extracts Bell pairs from
| D) ag=—=(]00) a5+ |11 ag), (1)  many identical copies of a partially entangled pgit. Its
V2 efficiency in the asymptotic limit is characterized by the von
Neumann entropy of Alice’sor Bob’s) reduced density ma-

. - . L trix. This fact, together with the existence of the reverse pro-
is an essential ingredient for these communications, Wher@edure, called entanglement dilution, established von Neu-

qubits A and B are possessed by Alicesender and Bob  mann entropy as a unique measure of pure-state
(receivey, respectively. It is thus important for Alice and entanglement in the asymptotic linfit0]. In Refs.[5,8], Lo
Bob to prepare Bell pairs between them in advance, which ignd Popescu gave a formula for the maximum probability of
related to the main result in this paper. obtaining a maximally entangled state from a partially en-
In order to seek new applications and efficient manipulatangled statgand Vidal later extended it for more general
tion of entangled states, we need a deep understanding of tffieal states Furthermore, Jonathan and Plenio optimized the
nature of quantum entanglement. Most recent investigationaverage amount of entanglement obtained in the entangle-
of entangled states have been undertaken within the framanent concentration that transforms a partially entangled state
work of local operations and classical communicationinto an ensemble of maximally entangled states in various
(LOCC) (for a review, see Ref3]). Since Alice and Bob are dimensions[6]. All these entanglement concentration pro-
supposed to be separated by a large distance, they are &esses are probabilistic for a finite number of entangled pairs.
lowed to access only their own systems locally and to com- The entanglement concentration scheme presented in this
municate in a classical manner. In other words, neither globd?@per is designed for a somewhat different purpose. It deter-
operations on the whole system nor transmission of quantufftinistically extracts Bell pairs from two-qubit entangled
systems is allowed. Thus the following question is crucial forP&rs. In other words, we focus on a concentration that con-

a good grasp of entanglement: What can we do on entangle\ﬁerts.a collection of two-qubit partially e_ntangled pairs hav-
states by using LOCC? ing different amounts of entanglement into a bunch of Bell

X . . . pairs with probability 1. While the above probabilistic con-
¢ Itn th'fs pap;]e_r,hwe deallv;/rl]th only blpar]:utle_pure enta.ngl‘“igcentration processes run the risk of losing all the entangle-
states, for which general theoréms usetul in answerng g, . .+ contained in the initial states with certain probability,
above question have already been proyéd-6]. Nielsen

L " ._our concentration scheme answers the question of how many
prpved the necessary and sufflglent.condltlons for determingg pairs can be obtained from partially entangled pairs
istic transformations between bipartite pure entangled statggithout gambling. On the other hand, it is probable in prac-

[4]. In Ret.[5], Vidal derived the formula for the maximum ica| applications that Alice and Bob share many partially
probability with which a pure entangled state is transformecentangled pairs with different entanglement, and wish to pre-
into another one. Jonathan and Plenio extended Nielsensare Bell pairs from them. Thus we consider transformations
theorem to the case where the final state is an ensemble @fhose initial states are tensor products of partially entangled
pure state$6]. pairs.
This paper derives the maximum number of Bell pairs
obtained in the deterministic entanglement concentration,
*Email address: fumiaki@will.brl.ntt.co.jp and proves that the optimal procedure needs only a two-pair
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entanglement manipulation in each step. This contrastsector of these eigenvalues Bg=(a,, ... a,). With these
sharply with the fact that the probabilistic concentrationsdefinitions and the theory of majorization, Nielsen proved
known so far require a collective manipulation of all en- that a bipartite pure entangled sté#® »g is transformed into
tangled pairs for optimality. Furthermore, this scheme re-another onde),g with probability 1 by LOCC, if and only
veals a reasonable entanglement measure for the determinig-\ , is majorized by\ ,, i.e.,
tic concentration.

This paper is organized as follows. We begin in Sec. Il by ;
introducing the main tool used in this paper, that is, Nielsen’s D) as=das T Ny=<hy. @
theorem. Then we review the transfer of entanglement be- o )
tween two partially entangled pairs in a slightly different ~One way of quantifying entanglement is to use the von
way from Ref.[11]. The argument is essentially the deter- Néumann entropy of a reduced density matrix:
ministic entanglement concentration of two pairs. In Sec. lll,
we deal with the deterministic concentration bf pairs, E(¢y)=—tr(p,log, p,). 4
which is the main result of this work. The maximum number

of Bell pairs is derived and proved to be attained by a Serieﬁ'his measure is related to the efficiency with which an infi-

of collective manipulations of two pairs. Section IV intro- e numper of identical copies of a partially entangled pair
duces an entanglement measure for the deterministic concegz., concentratef]. It is known that entanglement generally

tration. Section V describes a schematic representation of trl?ecreases during deterministic transformations by LOCC
concentration scheme. Then we extend the entangleme if '

measure to general pure entangled states in Sec. VI. Finally,
Sec. VIl concludes the paper.

|)ae—|d)as  then E(h)=E(4). (5

Il. TRANSFER OF ENTANGLEMENT BETWEEN TWO
PAIRS Therefore, when entanglement is transferred from an en-

) ) tangled pair to another one, the total entanglement of two
In this section, we treat the transfer of entanglement bepairs generally decreases.
tween two pairs, which is the basis of the entanglement con- Next we proceed to the transfer of entanglement between
centration ofn pairs. This subject was already examinedyyg pairs. The process can be considered as the entanglement
from a different point of view, the recovery of entanglement, concentration of two pairs if the purpose is extraction of a

in Ref. [11]. When Alice and Bob transform an entangled gg|| pair. Suppose Alice and Bob share two partially en-
state into another one by LOCC, the quantity of entangletangled pairs

ment generally decreases. However, the entanglement lost in

the manipulation can be partially recovered by an auxiliary

entangled pair. Attaching an auxiliary entangled pair, Alice |¢’>:\/5 00)+V1-a |11),

and Bob can partially transfer the entanglement lost in the (6)
original pair to the auxiliary one by collective manipulation |¢)=1b [00)+\1—b |11).

of both pairs. In the following, the result from the recovery
scheme is briefly reviewed in a useful form for entanglemen
concentration.

First we introduce Nielsen’s theorem and its mathematical
basis. The theorem is described by the mathematical theory
of majorization, which gives an ordering of real vectors ac-
cording to their degree of disordef12]. Let x

R/\/ithout loss of generality, we can set

1
§<asb<1. (7

=(Xq, .- Xy) andy=(yq, ..., be realn-dimensional . . . .

ve(ctérs. Re;)rrangir)]/g t(r?el elemgg)tsxoih decreasing order According to Nielsen's theorem, _ne|t_her of the_s_e two pairs

we obtainx! = (x! X1y, where == We say’ can be concentrated to a Bell pair with probability 1. How-
- TNV X 1= crr = n-

ever, wherab<3, it is possible that Alice and Bob extract a
Bell pair from the combined entangled state) ®|¢) with

k k probability 1, as shown below.

z legz yji, 1<ks=n-—1, 2) Case(a): 3<ab=3. In this case, Alice and Bob can ex-
=1 j=1 tract a Bell pair from|¢)®|4) and keep the residual en-
tanglement in another entangled p&is). The state that

thatx is majorized byy, written asx<y, if

Lor k=1,...n—1, with equality instead of inequality for maximizes the residual entanglement is
=n.
Any bipartite pure entangled states can be written in a
standard form called Schmidt decompositiony)ag |w)=+2ab |00)+y1-2ab [11). ®)

=3Vali)ali)s, where{|i)a} and{|i)g} are the orthonor-

mal bases of respective systems. The eigenvalues of the r&his concentration is proved to be possible by Nielsen’s
duced density matrip,=trg(|#)as as(#|) areay, ... a,, theorem as follows. The vectors of eigenvalues for the initial
which are positive real numbers, and sum to 1. We define thand the final states are
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respectively. In order to rearrange the elements of these vec-
tors in decreasing order, all we have to do is just reverse the
order of the second and third elements of each vector be-
cause of Eq(7). Since Eq.(7) guarantees the inequalities |‘I’) .VV\.

b<2ab, (1—a)(1-b)=3%+ab, (10 .V““
)

the majorization relatior\ ;¢ ,<\¢+g, holds. Thus Alice 0F=========- '._ - '.
and Bob can perform the concentratips) ®|¢)—|D ")

®|w). If the larger amplitude oflw), \2ab, becomes _
smaller, the first inequality foK o s<Ag+ o, does not hold. Val00) +y1-a[11) and |¢)=vb|0O)+ V1-b|1D. Each pair
Therefore, Eq(8) is optimal in the sense that it contains as connected by a wavy line represents an entangled pair. The axis
much resiaual entanglement as possible indicates the quantity of entangleme(®) Whenabs%, Alice and

v . .
Case(b): %<ab<1. It is impossible for Alice and Bob to Bob can extract a Belll paj@*), and keep a residual entangled pair
o o o). (b) When ab>3, they gather all the entanglement fo),
extract a Bell pair in a deterministic way. The best they caA S :
. L . which is not maximally entangled.
do is gather entanglement of two pairs into one pair to make

an entangled pair as close to a Bell pair as possible. That is,

F---- e -

FIG. 1. Optimal deterministic concentration of two pajis)

they perform|#)® | ¢)— | w)®|00), where IIl. DETERMINISTIC ENTANGLEMENT
CONCENTRATION OF n PAIRS
|w)=\/ab |00)+1—ab |11). (11 Now we move on to the main topic of this paper: the

concentration of a finite number of partially entangled pairs.

We can prove this transformation to be possible by Nielsen'sUPPOse Alice and Bob share partially entangled pairs

theorem again. The vector of eigenvalues for the final stat $1)® - ®|y¢n), where
becomes
ab [ =Va; [00+V1-a [11) (i=1,...n), (13
ab 1 0
Noslog™= 1—abl®lo)= 1—ab |- (12 with
0
1
Clearly, this vector majorizes the vector of the initial state §< ai<1, (14

Ny [EQ.(9)]. Thus Alice and Bob succeed in collecting the

entanglement of) and|¢) into |w), whose entanglement

is maximized for the same reason as the previous case. and wish to extract as many Bell pairs as possible from these
These two cases of deterministic concentration of twoentangled pairs with probability 1. The final state is

pairs are illustrated in Fig. 1. In both cases, the most imporg*|® *)@"~*|00) if they obtaink Bell pairs and (—k)

tant point is that the largest element of the four-dimensionatiisentangled pairs after the concentration. Thus the vectors

vector,ab, never changes during the concentration processorresponding to the initial and the final states a?gao

In other words, the product of the larger amplitudes of each a, n—kely o koL _ !

entangled pair is conserved before and after the transform& " ®(1"5) and®" “(g)@ (172). respectively.

tion, which is the crux of the optimality of the deterministic ~ This concentration is accomplished if the following ma-

concentration presented in Sec. Ill. jorization relation holds:
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1 |w)=+/2kmasq, - - - a,|00)+ 1 —2"m>q, - - -a,|11),
oK (18)
apr - an where ;<2kmaq,...a,<1, because there ark,,, Bell
pairs and f—Kk,,ax— 1) disentangled pairs besides that par-
- i (15 tially entangled pair. The amount of entanglement of the re-
ok | sidual pair cannot exceed that of Eg8) for the same reason
: as stated in the proof of the two-pair concentration.
(1-a;)---(1—a,) 0 The product; - - - a, is not usually equal to 2max, Thus
: kmax Bell pairs do not represent all the available entangle-
0 ment. By preserving the residual entanglement in @®)

and conserving the quantigy, - - - a,, Alice and Bob do not

o . ] waste any potential entanglement that can be extracted in a
In the initial state, the first element of the vector is thefytyre concentration, which attains the true optimality in this

largest one. All the nonzero elements of the vector for thgjeterministic concentration. That is, if they obtain an extra

final state are equal to™2. Therefore, if the first inequality partially entangled pair later, they will be able to perform a

of majorization relatior(15) holds, i.e., pairwise concentration on the residual gai) and the extra
pair.
1 Next we consider the complexity of the deterministic con-
ap- - aps prt (16)  centration. In each pairwise concentration, at least one of the

pairs becomes a Bell pair or a disentangled pair, which does
not proceed to the next concentration. Thus, if we perform a
this concentration is successfully completed because thsairwise concentration at most- 1 times, in a process simi-
other inequalities for quS) are automatica“y satisfied. lar to elimination in a tournament, there f|na||y remkmax
Inequality (16) gives the maximum number of Bell pairs gg|| pairs, the residual paifw), and (1—kma—1) disen-
that can be extracted from the partially entangled pairs giveangled pairs.
by Eq. (13, According to the prescription given in Rg#], a trans-
formation of an entangled state with Schmidt numivecan
Kmax=1—10gx(a;1- - -an)], (17) be performed bym—1 operations, where each operation
consists of transformations in the two-dimensional subspace
where|x| represents the largest integer equal to or less thaff the entire entangled state. Thus, when we collectively ma-
X, nipulaten entangled pairs consisting of two qubits, i.e., an
Equation(17) tells us that the maximum number of Bell €ntangled state with Schmidt numbet, 2ve generally per-
pairs is determined only by the product of the parameters oform O(2") operations. On the other hand, the number of
each pair to be concentrated, i.e, - -a,. This fact guar- Stepsin the de.termlmstlc goncgntrat|onmpa|rs is reduc.ed.
antees that we lose no Bell pairs as long as the product & O(n) by pairwise manipulation, because each pairwise
conserved. In Sec. Il, we found that the product nevelconcentration needs four operations. This argument suggests
changes during the optimal deterministic concentration ofh€ importance of the complexity of entanglement manipula-
two pairs. This means that we can attain the maximum numton. It is worth considering not only what we can do on
ber of Bell pairs through repeated use of two-pair concentra'?hmangIEd states, but also how efficiently we can manipulate
i em.
tlor-]rsﬁe actual concentration procedure is as follows. Alice The pairwise nature of this concentration scheme is useful
and Bob choose two arbitrary entangled pairs, then perform & @ practical sense too. Even if we fail in the manipulation
concentration on them. If they obtain a Bell petine case in  Of two pairs, or if some error occurs in the concentration,
Fig. (@], it is put aside, and the residual entangled pair will @nly the two pairs are affected. The other pairs remain intact
be reused in the next stage of concentration. If the selecte SPite of such unexpected effects. This contrasts sharply
two pairs are not enough for a Bell pdithe case in Fig. vv_|th other concent_ranon schemes that require collective ma-
1(b)], they transfer all the entanglement contained in a paifiPulation of all pairs. o .
into another one to make a partially entangled pair that will !N general, collective manipulation of more than two pairs
be reused in the next pairwise concentration. They reped$ necessary even for transformations whose |n|t|a_1I and final
these operations until they achieve the maximum number oftates consist of tensor products of entangled pairs. For ex-
Bell pairs. ample, the transformation illustrated in Fig. 2 requires a col-
By repeating the two-pair concentrations as stated abovéective manipulation of three pairs. The vectors for the initial
Alice and Bob finally obtairk,,,, Bell pairs, one partially ~and the final state are (0.5,0%§0.5,0.5)2(0.95,0.05) and
entangled pair, andn(—kpya—1) disentangled pairs. The (0.9,0.1)2(0.9,0.1)2(0.9,0.1), respectively. These tensor
product of the larger elements of vectors for each pair neveProducts are calculated in decreasing order as follows:
changes throughout these concent.ration processes, i.e., itis Ninitia) = (0.2375,0.2375,0.2375,0.2375,0.0125,0.0125,
alwaysa,- - -a,. Therefore, the residual partially entangled
state becomes 0.0125,0.012p
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Entanglement This expression implies that the number of Bell pairs that a
partially entangled state);)=\a; |00)+1—a; |11) con-
1_|.~‘>|.~‘>_ ____________ tains is
@) |0
D(¢g)=—log,a; (3=<a;<1). (20
o) |} |0} i dai (78

06000 It is easily seen that this quantity satisfies the above condi-

o9 tions for entanglement measures in deterministic cases. If we
[w) allow probabilistic transformations, the expected value of
0----=--=-----==-=--- our measure can be increased in some cases. Note that the

measureD (¢;) does not diverge, since it is defined with the

FIG. 2. The transformation|®")®|®")®|¢)—|w)®|w) . . )
®|w) requires a collective manipulation of the three pairs, where>duare of the larger Schmidt coeff|C|ent|¢f>, which ranges

1 - ) .
|d*) represents a Bell paify) = 0.9500)+ y0.0§11), and|w) from 5 to 1. In addition, a Bell pair corresponds to the unit

=,/0.900) + 1/0.111). Two-pair manipulation cannot pum . of this measure, i.eD(|®7))=1.
Vo500 1 P P pump ¢e) Another entanglement measut€ ) defined by Eq(4)

represents the amount of entanglement per one partially en-
tangled pair¢) in the asymptotic limit. This means that if
we have an infinite number of identical copied ¢f, we can
Ntina1=(0.729,0.081,0.081,0.081,0.009,0.009,0.009,0.001 extractE(y) Bell pairs per copy. On the other haridl( )
quantifies the number of Bell pairs contributed by the state
It is easily seen thak,i;ia) <M\finar» and thus this transfor- |;) when we deterministically concentrate a finite number
mation is really possible according to Nielsen's theorem.of entangled pairs that are not generally identical. For ex-
However, it requires collective manipulation of three pairsample, if Alice and Bob share two pairg;) and|#,), where
because it was proved that two-pair manipulation cannot inD(¢,)=0.7 andD(y,)=0.6, then they can obtain a Bell
crease the entanglement of the less entangled pair in the inpair and a residual stafe) with D(w)=0.3, because 0.6
tial state[11]. That is, any successive operations of two pairs+0.7=1+0.3.
cannot pump up the lowest state (0.95,0.05). As shown in Since D(¢) is smaller thanE(), our concentration
this example, not all transformations of entangled pairs conscheme is less efficient than the original Schmidt projection
sist of two-pair manipulations. Therefore, it is remarkablemethod[7], which attainsE(¢) in the asymptotic limit. The
that two-pair manipulation is enough for the deterministicinefficiency is due to the strong restriction of deterministic
concentration. transformations. Thus the quanti( ) does not converge
on E(¥) even in the asymptotic limit.
The most fascinating property of this measéy) is
that the maximum number of Bell pairs is determined by the
addition of the contribution of each pair. This property shows
The argument in Sec. Il leads to an entanglement meathat the deterministic concentration procedure does not de-
sure for the deterministic concentration of a finite number ofpend on the way of pairing entangled pairs, because we can
pairs. First we present conditions for entanglement measuregtain the optimality as long as the sumD(#;) does not
in deterministic transformations of pure states, which is alecrease. This fact assures the optimality of deterministic
modified version of the conditions for entanglement mea-concentration byany pairwise manipulation.
sures proposed in Refgl3,14. When we restrict ourselves
to manipulating entangled pure states in a deterministic man-  \y SCHEMATIC REPRESENTATION OF THE
ner, a measure of entanglemdén{) should satisfy the fol- DETERMINISTIC CONCENTRATION
lowing conditions: (i) M(#)=0 iff |) is separable(ii)
M () remains unchanged under local unitary transforma- In this section, we schematically represent our under-
tions. (i) M(y) cannot be increased by deterministic standing of the deterministic concentration. Figure 3 repre-
LOCC. Due to the restriction of deterministic transforma-Sents a set of entangled states such that each element is a
tions, the third condition is weaker than the counterpart intensor product of two-qubit entangled pairs, and has the
Refs.[13,14], which requires the nonincreasing property of same value ok;D(¢;). The center of the set is the point that

the expectedvalue of the measure when the final states ardepresents a bunch df,,, Bell pairs and a residual en-
not unique. tangled pair. As shown in Sec. IV, all points in the set can be

Now we derive an entanglement measure for deterministransformed into the center. In other words, wherever the
tic concentration. The formula for the maximum number ofinitial state is, every path surprisingly leads to the center as

Bell pairs[Eq. (17)] can also be written in the following long as the transformation conserves the sur® @f;). The
form: center representing,,.x Bell pairs and a residual pair acts

like a drain.
The advantage of the deterministic concentration is ex-
_ (19) plained schematically as follows. Since pairwise manipula-
tion is enough for optimality, any point representing a col-

and

IV. ENTANGLEMENT MEASURE FOR THE
DETERMINISTIC CONCENTRATION
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Thus the contribution of the partially entangled stpt to
the maximum number of Bell pairs is also expressed as

D(y)= —Iogz(mlaxpi) (o< m’axpisl). (24

Of course, Eq(24) satisfies the conditions for the entangle-
ment measure in deterministic cases, as in Sec. IV.

From Eq.(24), it is easily seen thdD () is additive for a
system composed of independent subsystems, namely,

FIG. 3. The elements of this set are tensor products of two-qubit _
entangled pairs, and have the same valu& & (;). The center D(#®$)=D(¥)+D(4), (25)
represents a bunch of the maximum number of Bell pairs and gecause the largest element of the vector] f9r2| ¢) is the
residual entangled pair, i.e¢he draln Every point(x) in this set is product of those f0f¢> and| #). We also point out that both
led to the drain by any transformation that reduces the total amourj, () and another additive quantitg(y) are obtained by
of von Neumann entropy’; E (). some limits of a quantity known as Renyi entropy of ortler
H({pi}) =[1/(1—t)]log, = ,p!, which is also additive.

lection of partially entangled pairs are transformed into theT .

: . That is,H iND=E({pi}) andH..({p;})=D({pi}), where
center along the path that changes only two pairs at a time, represérgisplgrze sq(jg;}e) of each (églh}r)nidt ((:i)%;f?cient
Furthermore, our concentration procedure does not deper% Though we succeeded in extending the entanélement
on the way of pairing entangled pairs. This corresponds t?neasure to general cases, the actual concentration procedures

.th.e fact that there are many possible paths that connect dle different from that of two-qubit cases in some points.
initial state and the drain.

Figure 3 is also explained in terms of the entropy of en—'i'ft’ X}ti(;n;?)Stlggilwzmsrllglir?negt ;ﬁip;ﬁ SZ?:{Z?] ﬂlﬁe}é w)air A
tanglementE(y) and the entanglement measéy). The ma ys kep P y gied pair.

. A simple example is the transformation from a maximally en-
total entropy generally decreases in deterministic transformat- L . 2
) . , angled pair with Schmidt number three to a Bell pair. Since
tions. Thus Fig. 3 means that as long 29D (¢;) is con- 3=1 tract a Bell pair f 3 100
served, every point in the set is always led to the center b 09121 JJ: ézwelfc?hn ex r%c Ia te plalr rt?[m (13)( ‘ >d b
any transformation that decreases the total entropy. The drai Ic|) ?3—|1) 2 ke teinreasr:oltjk?erena?tri]glFmeenQar:e?ergsegire they
that representk,, 5, Bell pairs and a residual pair is the most % P P y 9 pair,

iy Schmidt number of the final state becomes 4, which is im-
stable state under the condition that the sumDeij;) re- ossible because we cannot increase the Schmidt number of

mains unchanged. In other words, whatever entangled pail.%. : : . .
Alice and Bob share, those pairs are swept up to a bunch ri?'t'al states. This alsq means the ‘?F’“"‘?a' concentration by
Bell pairs and a bunch of disentangled pairs. All we need fo ournamt_anthke operations Is |meSS|bIe n genera}l cases, be-
the optimality of deterministic concentration is the conserva~ause Itis necessary fo.r the optimal tournamentllke concen-
tion of 3D (). tration to retain the residual entanglement in the form of a
! partially entangled pair in each step.
Second, the schematic representation of the generalized
VI. EXTENSION TO GENERAL PURE ENTANGLED cases is slightly different from that of the two-qubit case.
STATES When the initial state is a collection of two-qubit entangled
jairs, every state can be transformed into the state with a
unch of Bell pairs and a residual entangled pair, as shown in
ec. V. However, in general cases, not all initial states reach
that state. All states with the same valueDxfi) are trans-
formed into the following state, which is similar to the

The entanglement measure for the deterministic conce
trationD (), defined in Eq(20), can be extended to general
pure entangled states. Suppose Alice and Bob share a p
tially entangled state whose Schmidt numbemis

m d-dimensional maximally entangled state, wheré
|y = > \/p—J li,jy (m=2), (21 =|1/(max p;)| (for simplicity, we use vector notatign
j=1
4
where (Maxpy, -+, maxp;, 1 —d (maxp;), 0, -+, 0).
m (26)
le p=1 22 This state is the drain in the generalized cases. As shown in

Fig. 4, the point representing a bunch of Bell pairs and a

By the same argument as in Sec. Ill, we can determine theesidual entangled pair_is different from_the drain in the_gen-
maximum number of Bell pairs extractable from this par-€ral case[When D(¢) is equal to an integer, two points

tially entangled state: coincide because there is no residual entanglefédit.
course, we can always reach the stat&pf, Bell pairs from
Kmax=| —log(maxp;). (23 the drain, though the state is not in the set shown in Fig. 4.

[ The deterministic concentration of two-qubit entangled pairs
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VII. CONCLUSION

We have presented a deterministic entanglement concen-
tration scheme for a finite number of partially entangled pairs
consisting of two qubits. We determined the maximum num-
ber of Bell pairs that can be extracted by LOCC, which was
proved to be attained by a series of two-pair manipulation in
each step. There is no need of collective manipulation of all
entangled pairs for deterministic concentration. The com-
plexity of entanglement manipulation also deserves further

_ investigation for a deeper understanding of quantum re-
FIG. 4. The elements of this set are general pure entanglegOurces

states that have the same valudbgfy). All the elements are led to Furthermore, this concentration scheme revealed an en-

E‘gufne:;ir’ghnetrgr?é? l/gy %:2’ ;ramnzggmfg'?zst:ri;rzdtl)f:cshtz? t\r']zn tanglement measure for the deterministic concentration of a
. P : Y pre . finite number of pairs. The measure represents the amount of
maximum number of Bell pairs and a residual entangled pair. In t | t that ithout fail. In th t
general, this state is different from the drain, because not all thg.n angiemen . at we can USQ without fail. In the concentra-
elements are led to the state tion of two-qubit entangled pairs, we proved that all the en-

tanglement quantified by the measure can be used without
is a special case, which always enables us to retain the réc_)ss. However, in the general cases, what kind of initial states

sidual entanglement in a compact form of a partially en-can be concentrated into Bgll pairs without discarding any
tangled pair. residual entanglement remains open.

With this generalization oD (), we can prove that en-
tanglement catalysif15] cannot enhance the efficiency of
the deterministic entanglement concentration. Since an at- We are grateful to N. Imoto for valuable discussions, and
tached catalyst stateb) must remain intact after the trans- for a careful reading of the manuscript. This work was sup-
formation, the ternD(¢) does not contribute to the number ported by a Grant-in-Aid for Encouragement of Young Sci-
of extractable Bell pairs due to the additivity D ¢). Thus  entists(Grant No. 12740243and a Grant-in-Aid for Scien-
the concentration scheme presented in this paper is the bafic Research(B) (Grant No. 12440111 by the Japan
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