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Entangled coherent states: Teleportation and decoherence
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When a superposition|¢)—|— a)) of two coherent states with opposite phase falls upon a 50-50 beam
splitter, the resulting state is entangled. Remarkably, the amount of entanglement is exactly 1 ebit, irrespective
of a, as was recently discovered by Hirota and Sa$bRINL e-print quant-ph/0101018 Here we discuss
decoherence properties of such states and give a simple protocol that teleports one qubit encoded in Schro
dinger cat states.
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[. INTRODUCTION where |a) is a coherent state. Entanglement properties of
states of this form were considered in Rd®] and[9], al-
Entangled states are useful for quantum information prothough other properties, such as nonclassical photon statis-
cessing, but are hard to produce and tend to decohere fasics and squeezing properties, were considered béfdie
For guantum communication purposes entangled states of tf&milar states but with a different relative phase factor, which
electromagnetidem) field are of particular interest. Such does make a crucial differendsee below and Ref.11])
states can be used, e.g., for quantum key distribytidmnd  were considered in Reff12] and[13] and earlier if14]. A
teleportation 2]. related family of states, includingH,), was discussed in
There are different types of entanglement for light fields.Ref. [15] in the context of ion traps. In spite of the crucial
For instance, in the teleportation experiments from the Innsdifference the phase factor makes, we denote the entangled
bruck group[3], it is the polarization directions of single states(4) as “entangled coherent states,” the term used in
photons that are entangled. An example of a polarizationRef. [14]. The normalization factoN,, is
entangled state is

N,=2-2exg —4|al?), (5
[ 1= (111l =)= 1)1l 1)2)/V2, ) .
and for later use we abbreviate
where |«<) and |]) denote single-photon states with two
orthogonal polarization directions and the subscripts 1 and 2 c.=(a|—a)=exp —2|a|?). (6)

refer to differentspatia) modes of the em field. The stat®
has one ebit of entanglemei] and consequently can be The state(4) can be expanded in the photon-number state

used to teleport one qubit encoded in polarization. basis as
In the Caltech teleportation experimdii, two em field
modes are entangled with respect to photon numbers and the 2 expd —|al?) a"tm
. . ] H)iom=————— —|N)1M)>5.
ztfattr(]aeufi)?g]for teleportation is a two-mode squeezed [@hte Ha)12 o nminon \/m| )1lm)2
%
) = 1 D (tanhr)"|n)|n) (2)  Note the difference betweenH,) and the two-mode
coshr 7=o squeezed statpy,): in particular, in the former the total

number of photons is always odd, whereas in the latter it is
where |n) denotes a state with photons andr is a real  always even. We also note that the average number of pho-
parametefgiving the amount of squeezing in the fields usedions in the statgH ) is
to produce|y,)). The state(2) possesses an amount of en-
tanglement equal tp7] 1+¢2
. . (Ny=2]a|* —,
E(r)=cosH r log(cost r)—sint? r log(sintr), (3) 1-c;

®

which can lie anywhere between zéfor r —0) and infinity ~ which reduces to 1 in the limi&—0 and to 2a|? for |«|
(for r—oc). In principle, E(r) qubits encoded in a state of —o. The statg4) can be produced from a Scluiager cat

the form=,a,|n) can be teleported withy, ). state
In this paper we discuss a third type of entangled states of
two modes of the electromagnetic field. They are param- (|V2a)—|— V2a)) /YN, 9

etrized by a complex parametet
by splitting it on a 50/50 beam splitter. Cat states of em fields
IHo)10= (@) a)o—|— a)i|—a)y)/\N,, (4 have been produced inside microcavitjés,17.

1050-2947/2001/62)/0223136)/$20.00 64 022313-1 ©2001 The American Physical Society



S. J. van ENK AND O. HIROTA PHYSICAL REVIEW A4 022313

Remarkably, for any value af the state4) has one ebit gating to Bob. Clearly, the latter mode will suffer from
of entanglemenf8,9]. Indeed, as can be easily verified, the losses, but even Alice’s system will not be lossless. For sim-
reduced density matrix TiH,)1 {H,.| has two nonzero ei- plicity we then assume that both modes are equally lossy. In
genvalues, both equal to 1/2. Alternatively we may define particular, we assume the modes 1 and 2 travel each through

a noisy channel characterized by

|a>l|o>E_’|\/;a>l|\/l_77a>E- (16)
|=)y=(la)=|—a))/IN_, (10

where the second state now refers to the “environment” and
N.=2+2¢ 7 is the noise parameter, which gives the fraction of photons
that survives the noisy channel. This noise model may look
and note that too simplistic but is in fact equivaleriafter tracing over the
environmenk to a more complicated model where the envi-
Ho)=(+) =)+ =)+ N/V2, (11)  ronment is assumed to consist of many modes and where

which manifestly has one ebit of entanglement. |a)1Hi|0>Ei—>| \/7;a>1Hi|eia>Ei, (17)
For completeness we note one can construct a whole class

of states with the same entanglement by applying local uniwith =;| ;|>+ »=1. The model16) describes realistic noise

tary transformations to modes 1 and 2. Here we are interfor optical fields. For microwave fields the influence of the

ested only in transformations that take coherent states to cokermal field may not be neglected, but for an optical field

herent states. For instance, the unitary displacement operattite temperature is effectively zero.

D(B) acts on coherents states as follwk Starting from a stat¢H ;.5 the density matrix of the
) modes 1 and 2 after traveling through the noisy channels
D(B)|a)=explig.)|a+B), (120 pecomes
with 1
N P1,2:N_[|\/7—701a\/;,3>1,2<\/;“7\/;5|
bpa=IM(Ba’). (13 &
Furthermore, we can multiply the coherent state amplitude +|\/;% \/;5>1,2< \/;%\/;fﬂ
by an arbitrary phase factor. Thus all states of the form
Y yP —sl\ma\78)1 A7y 74l
|Haﬁy§>5[|a>|B>_exq|ra,By5)|7>|5>]/ \/Nao (14) _S*|\/;)/,\/;5>112<\/;a,\/;,3|]. (18)
with Here we abbreviated
|a—y|=|B8—&]=const=2ay, |, B)=|a)| B), (19)
(15
[ opys=IM(BS* +ay™), and
can be produced from the stdtd,, ) by the two operations  s=exp(—iT 5,5 (1~ 77.V1— 73| J1- na,\V1-1B).
mentioned above, and consequently possess one ebit of en- (20
tanglement.

Since the amount of entanglement in E4) is indepen- This decqhered state obviously will have less entanglement
. ._than 1 ebit. A relevant measure of how much uséfalbe
dent of « it may seem that such states may be especiall . : . :
sed for teleportation for instancentanglement is left, is

robust against decoherence due to photon absorptio ‘e overlan of with states of the form(14), since the
Namely, although photon absorption attenuates the coherer‘[h P Olp1a W . ’ .
gtter always contain one ebit of entanglement. The maxi-

state, that by itself has no effect on the entanglement. On th ap is in f ith th ol Thi
other hand, there will be decoherence due to the inevitablg ' OVerap IS in act with the stafél e 56 57y.50)- This
entanglement with the environment. That is, although a co- efines a fidelity
herent state remains coherent, a superposition of coherent
states does not remain coherent. Precisely how much deco-
herence there is will be examined in the following section. A [1—exp(—47;a§)][1+exp( —4(1— n)agn
related issue, namely, using Schimger cat states to allow = 2[1—exp—4a2)] '

for correction of errors due to photon absorption, is dis- 0

cussed in Ref[18]. (21)

F=(H Gampmymal prAH Famsmyme)

with «( as defined in Eq(15). Since this fidelity depends

only on  and «q the whole family of states described by
We imagine a situation where a field mode 1 is “stored” Egs.(14) and (15) decoheres in the same way. In Fig. 1 we

in Alice’s lab, while mode 2 describes a light beam propa-plot the fidelity as a function od,. From that figure one sees

II. NOISE AND DECOHERENCE
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that for ¢yp— 0, F— 5. For »=1/2, the fidelity is always$- 0.9 ' ' '
=1/2, and the same fidelity is reached in the lifai{— o
(for »<1). Note that in this limit Alice and Bob actually %8 1
obtain a separable state.
For »>1/2 the fidelity decreases with increasiag. For 07
a fixed amount of noisg>1/2 the optimum states for tele- 06k |
portation are thus the family of states correspondingrgo  _
—0, for which the staté4) reduces to 205
>
6
Ho)=(0)|1)+(1)[0))/V2 (22 o4 :
in terms of photon number states. 0.3 ]
0.2t .
IIl. TELEPORTATION
Any of the family of state$14) can in principle be used to 015 1 2 " s 4 5
teleport one qubit. Indeed, as we will show now, Sclimger 0
cat states of the form FIG. 1. Overlap ofp,, with appropriately chosen fully en-
tangled state as a function aof, for various noise parameters
| oy = (€| a)+e_|—a))/\No, (23)  =0.9,0.7,0.5,0.3,0.1 for top to bottom curves.
with Only one of the two outcomes can be a nonzero number and

let us suppose thai+#0. In this case the state on Bob’s side
(24) collapses into

. ] ] Do=[er|a),—(—1)"e_|—a),]/ VN,
can be faithfully teleported usingi,). The protocol we dis- 02 +la)e =)l

cuss here; is chosen for its simplicity; it is not the optimal Nj=|e.|>+]e_|2—2(—1)"c, Ree* e, .
teleportation protocol. It does, however, lead with nonzero

probability to perfect teleportatiofif there is no noisg Itis e see that provided is odd, the teleportation works per-
straightforward to formulate the optimum teleportation pro-fectly. For n even the transformation required for perfect
tocol using the basis Eq10) but it would require measure- state transfer would be

ments that are hard to implement, see R8f. Here we let

No=|e,|?+|e_|*+2c,Ree* e, ,

(27)

Alice mix her part of the entangled stat@ode 1 with the |—a)——|—a),
state to be teleporte@n mode Q by using a beam splitter. (29)
The resulting state s |a)—|a)
_ _ _ which is not in general unitargit is unitary only in the limit
[#1)01.2= € [[N2a)ol0)al @)z~ [10)ol V2a)s| - a)2] |a|—). Although for even nonzero values otthe telepor-
—e_[|=V2a)o|0)1| — @), [|0)ol tation fidelity may still be better than can be achieved clas-
sically (i.e., without entanglementwe focus here only on
—V2a)y|a),]. (25  the casen is odd. Forn odd Eq.(26) reduces to

Subsequently Alice performs two photon number measure- [(n|2a)|? for
N,

ments on the modes 0 and 1 on her side. Denote the prob- P(n,0)= odd n. (29)
ability to find n and m photons in modes 0 and 1, respec-
tively, by P(n,m), This quantity is independent of the state to be teleported, as
is to be expected in a perfect teleportation protocol. The
P(n,m)=|o<n|1(m|¢1>o,1,2|2- (26) probability of successi.e., finding an odd number of pho-
tons in either modeis
Phase factors have been eliminated, so that instead of the stan- Podd= 2 P(n,0) + 2 P(ON). (30
dard definition of the action of a beam splitter on coherent states, n odd n odd
)| B)—|(a+iBIN2)|(ia+ B)IN2), These summations can be performed and the result turns out
we get to be independent af,
) B)=|(at B)IV2)|(a—B)/N2).
This corresponds to phase shifting the second input and the second = :} (31)
output modes by- /2. odd™ 5
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A. Noisy case 1
When the noise parameter<1, the teleportation fidelity
will drop below 1. On the other hand, as we will show, the o9} 109
probability to find an odd number of photons does not nec- '
essarily decrease below 50%. 0sl
In the presence of noise, the states we should expecttob ™
able to teleport more or less successfully are of the form
5 5 3 - g 0.7 n=0.5
| o) = (€] a)+ e[ =)/ VN, @) =
~ 0.6
with @= \/za and
No=|e.|?+]|e_|?+2c; Ree e, . (33 0.5 7=0.1
Following the same steps as before, after Alice has measure , s s . .

n+0 photons in mode 1, say, the joint entangled state of © ! 2 8 4 5
Bob’s mode and the environment is
FIG. 2. Teleportation fidelity in the noisy case as a function of

|Tp(’)>=[e+|fy>|k>—(— 1)"e_| —Zy>| - k)]/\/N_, (34) || for different values of the noise parametgr

where Suppose how we intend to teleport an arbitrary qubit in the
space spanned Hyr) and|—«). We may parametrize that
[ky=|V1— na)|V1- na), qubit as follows:
(35

=si +)+ ip)|—
Nk=|e+|2+|ef|2—(—1)”2c;cf/1—naRee’ie+. o8, #))=sin(6/2)| +) + cos 6/2)expli #)] =), (40
. ) Osf=m, 0=¢<2m,
We find again that a measurement of an odd number of pho-

tons is required for near-perfect teleportation. The probabilwith the stateg=) defined as in Eq(10) and with a prob-

ity of finding n photons is now ability distribution ¢=sinadode/(4m). This procedure
corresponds to choosing a spin-1/2 representation for the qu-
~2 N bit and choosing an arbitrary direction for its “spin.” The
P(n,0)=|(n|V2a)| NN for oddn, (36)  expectation value of the number of photdNéd, ¢) in the
0 e state(40) is
and the probability of finding an odd number of photons in N N
either mode is N(6,)=SirP(612)|a|* —+cos( 0/2)|a|2N—+. (41)
N _
Pos= 2, P(n,00+ > P(O’n)zl ~N"N:“ (37)  Averaging overé and ¢ gives the average number of pho-
n odd n odd 2 NoN,, tons
Both these quantities do depend now on the state to be tele- (N)= E| 2 &+ N_+ (42)
ported throughN, and N,. In principle there is therefore 2! N, N_/°

some information about the identity of the staf) to be

gained from the particular measurement outcome. This issuglthough in the limit of smalle: the number of photons in
is further discussed in Ref19]. Here, however, we assume both|a) and|— a) is small, a qubit40) has half a photon on
that Bob does not make any use of this extra knowledg@verage, since fax—0, (N)— 1/2. For largex (roughly for
about the identity of the state to be teleported. The fidelity of a|>1) the average number of photons is simgli)

the teleported state is then simply given by ~|al®.
We can average the results fBpyq and the teleportation
o |A|2+|B|2+c (AB* +BA*) fidelity F over 6 and ¢. Averaging Eq.(37) gives, surpris-
F=[(ol o) |*= = , (38 ingly perhaps,
NoNk
1
with (Podd = > (43
A=le [*+ete.cq, just as in the noiseless case. The average teleportation fidel-
, . (39 ity is plotted in Fig. 2. Foja|>1 the average teleportation
B=le_|*+e€le_c;. fidelity approaches 2/3 for any noise paramejer1, which
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is the value expected for “classical” teleportation, where Al-
ice performs a projective measurement in the basis,

| —), tells Bob the result, who then prepares that state. This i
because in this limit Alice and Bob share no entanglement.

B. Using different entangled states

States of the form

|G 1= (|@)1|@) ot |—a)i|—@),), (44)

as discussed in Refsl2] and[13], have less than one ebit of
entanglemenit9]. In fact, the reduced density matrix has two
nonzero eigenvalues given by

(1%c,)?

45
2+2c¢? 49

+

and its entanglement i€=—2;_ . \jIno\<1, with the
equality sign holding only in the limita|— <. We therefore
expect this type of state to be less successful in teleportin

guantum states. Indeed, using the same teleportation proc_el,-_
d

dure as before, we find that the probability to find a desire

portation fidelity still is 100% in the absence of noise. In

particular, following the same steps as before, after Alice
measures a nonzero number of photons in mode 1, Bob%§

state collapses into
|90) =[] @)yt (1) €| = a)all VNG,

No=|e|?+|e_|?+2(—1)"c,Ree* ¢, . (46)
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FIG. 3. Probability of successful teleportatid®,,e, (solid
curve with a state of the forn44) and its entanglemertt (dashed
curve as functions of «| in the absence of noise.

g

hese states can be produced from Sdimger cat states, of
the sort produced in cavity-QED experimentss,17], by
using a 50/50 beam splitter. Such states possess exactly one
ebit of entanglemen8] and can be used to teleport one qubit
ncoded in superpositions pf) and|—«). We discussed a
simple protocol that achieves this aim with a 50% probability
of success. This protocol requires beam splitters, the ability
to produce Schdinger cat states, and photon counting. A
teleportation experiment along the lines sketched here may
thus be feasible in the context of cavity QHERO].

Entangled coherent states share an advantage with two-

Hence a successful teleportation now occurs when Alicenode squeezed states over biphoton polarization entangled

measures a nonzeavennumber of photons. The probability
of succesful teleportation is

Pever= 2

n>0 even

(1-c,)?

2+2c2
(47

which is less than 1/2. For smdlk| this probability ap-

P(NO)+ >,

n>0 even

P(OnN)=

states in that they can be produced deterministically. On the
other hand, like biphoton polarization entangled states they
possess one ebit of entanglement, whereas a two-mode
squeezed state can in principle contain entanglement of more
than 1 ebit, although so much entanglement has not been
produced yef21].

Moreover, entangled coherent states are more robust
against photon absorption noise than are biphoton polariza-

proaches zero: there is indeed no entanglement in the statien entangled states. This is not only true in the limit of

|G,) for |a|—0. For|a|—=, on the other hand, the prob- small amplitudesa (for which the fidelity is of orderyn
ability of successful teleportation becomes 1/2 as before, angather thany? for the biphoton stadebut for « such that the
correspondingly the stal&,) does indeed possess one ebitaverage number of photons in the entangled states is 2. This
of entanglement in that limit. In Fig. 3 we plot both the can be understood by noting that reducing the amplitude of a
entanglement an®.,e,as functions of «|. coherent state does not by itself reduce the entanglement of
[Ha).
IV. CONCLUSIONS

We studied properties of entangled coherent states of the
form
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