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Entangled coherent states: Teleportation and decoherence
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When a superposition (ua&2u2a&) of two coherent states with opposite phase falls upon a 50-50 beam
splitter, the resulting state is entangled. Remarkably, the amount of entanglement is exactly 1 ebit, irrespective
of a, as was recently discovered by Hirota and Sasaki@LANL e-print quant-ph/0101018#. Here we discuss
decoherence properties of such states and give a simple protocol that teleports one qubit encoded in Schro¨-
dinger cat states.
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I. INTRODUCTION

Entangled states are useful for quantum information p
cessing, but are hard to produce and tend to decohere
For quantum communication purposes entangled states o
electromagnetic~em! field are of particular interest. Suc
states can be used, e.g., for quantum key distribution@1# and
teleportation@2#.

There are different types of entanglement for light field
For instance, in the teleportation experiments from the In
bruck group@3#, it is the polarization directions of singl
photons that are entangled. An example of a polarizati
entangled state is

uc&1,25~ ul&1u↔&22u↔&1ul&2)/A2, ~1!

where u↔& and ul& denote single-photon states with tw
orthogonal polarization directions and the subscripts 1 an
refer to different~spatial! modes of the em field. The state~1!
has one ebit of entanglement@4# and consequently can b
used to teleport one qubit encoded in polarization.

In the Caltech teleportation experiment@5#, two em field
modes are entangled with respect to photon numbers an
state used for teleportation is a two-mode squeezed stat@6#
of the form

uc r&5
1

coshr (
n50

`

~ tanhr !nun&un&, ~2!

where un& denotes a state withn photons andr is a real
parameter~giving the amount of squeezing in the fields us
to produceuc r&). The state~2! possesses an amount of e
tanglement equal to@7#

E~r !5cosh2 r log~cosh2 r !2sinh2 r log~sinh2 r !, ~3!

which can lie anywhere between zero~for r→0) and infinity
~for r→`). In principle, E(r ) qubits encoded in a state o
the form(nanun& can be teleported withuc r&.

In this paper we discuss a third type of entangled state
two modes of the electromagnetic field. They are para
etrized by a complex parametera,

uHa&1,25~ ua&1ua&22u2a&1u2a&2)/ANa, ~4!
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where ua& is a coherent state. Entanglement properties
states of this form were considered in Refs.@8# and @9#, al-
though other properties, such as nonclassical photon st
tics and squeezing properties, were considered before@10#.
Similar states but with a different relative phase factor, wh
does make a crucial difference~see below and Ref.@11#!
were considered in Refs.@12# and@13# and earlier in@14#. A
related family of states, includinguHa&, was discussed in
Ref. @15# in the context of ion traps. In spite of the cruci
difference the phase factor makes, we denote the entan
states~4! as ‘‘entangled coherent states,’’ the term used
Ref. @14#. The normalization factorNa is

Na5222 exp~24uau2!, ~5!

and for later use we abbreviate

ca[^au2a&5exp~22uau2!. ~6!

The state~4! can be expanded in the photon-number st
basis as

uHa&1,25
2 exp~2uau2!

ANa
(

n,mun1m odd

an1m

An!m!
un&1um&2 .

~7!

Note the difference betweenuHa& and the two-mode
squeezed stateuc r&: in particular, in the former the tota
number of photons is always odd, whereas in the latter i
always even. We also note that the average number of p
tons in the stateuHa& is

^N&52uau2
11ca

2

12ca
2

, ~8!

which reduces to 1 in the limita→0 and to 2uau2 for uau
→`. The state~4! can be produced from a Schro¨dinger cat
state

~ uA2a&2u2A2a&)/ANa, ~9!

by splitting it on a 50/50 beam splitter. Cat states of em fie
have been produced inside microcavities@16,17#.
©2001 The American Physical Society13-1
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Remarkably, for any value ofa the state~4! has one ebit
of entanglement@8,9#. Indeed, as can be easily verified, th
reduced density matrix Tr1uHa&1,2̂ Hau has two nonzero ei-
genvalues, both equal to 1/2. Alternatively we may defin

u1&5~ ua&1u2a&)/AN1,

u2&5~ ua&2u2a&)/AN2, ~10!

N65262ca ,

and note that

uHa&5~ u1&u2&1u2&u1&)/A2, ~11!

which manifestly has one ebit of entanglement.
For completeness we note one can construct a whole c

of states with the same entanglement by applying local u
tary transformations to modes 1 and 2. Here we are in
ested only in transformations that take coherent states to
herent states. For instance, the unitary displacement ope
D(b) acts on coherents states as follows@6#:

D~b!ua&5exp~ ifba!ua1b&, ~12!

with

fba5Im~ba* !. ~13!

Furthermore, we can multiply the coherent state amplitu
by an arbitrary phase factor. Thus all states of the form

uHabgd&[@ ua&ub&2exp~ iGabgd!ug&ud&]/ANa0
~14!

with

ua2gu5ub2du5const[2a0 ,
~15!

Gabgd5Im~bd* 1ag* !,

can be produced from the stateuHa0
& by the two operations

mentioned above, and consequently possess one ebit o
tanglement.

Since the amount of entanglement in Eq.~4! is indepen-
dent of a it may seem that such states may be especi
robust against decoherence due to photon absorp
Namely, although photon absorption attenuates the cohe
state, that by itself has no effect on the entanglement. On
other hand, there will be decoherence due to the inevita
entanglement with the environment. That is, although a
herent state remains coherent, a superposition of cohe
states does not remain coherent. Precisely how much d
herence there is will be examined in the following section
related issue, namely, using Schro¨dinger cat states to allow
for correction of errors due to photon absorption, is d
cussed in Ref.@18#.

II. NOISE AND DECOHERENCE

We imagine a situation where a field mode 1 is ‘‘store
in Alice’s lab, while mode 2 describes a light beam prop
02231
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gating to Bob. Clearly, the latter mode will suffer from
losses, but even Alice’s system will not be lossless. For s
plicity we then assume that both modes are equally lossy
particular, we assume the modes 1 and 2 travel each thro
a noisy channel characterized by

ua&1u0&E→uAha&1uA12ha&E , ~16!

where the second state now refers to the ‘‘environment’’ a
h is the noise parameter, which gives the fraction of photo
that survives the noisy channel. This noise model may lo
too simplistic but is in fact equivalent~after tracing over the
environment! to a more complicated model where the en
ronment is assumed to consist of many modes and whe

ua&1P i u0&Ei
→uAha&1P i ue ia&Ei

, ~17!

with ( i ue i u21h51. The model~16! describes realistic noise
for optical fields. For microwave fields the influence of th
thermal field may not be neglected, but for an optical fie
the temperature is effectively zero.

Starting from a stateuHabgd& the density matrix of the
modes 1 and 2 after traveling through the noisy chann
becomes

r1,25
1

Na0

@ uAha,Ahb&1,2̂ Aha,Ahbu

1uAhg,Ahd&1,2̂ Ahg,Ahdu

2suAha,Ahb&1,2̂ Ahg,Ahdu

2s* uAhg,Ahd&1,2̂ Aha,Ahbu#. ~18!

Here we abbreviated

ua,b&5ua&ub&, ~19!

and

s5exp~2 iGabgd!^A12hg,A12hduA12ha,A12hb&.
~20!

This decohered state obviously will have less entanglem
than 1 ebit. A relevant measure of how much useful~to be
used for teleportation for instance! entanglement is left, is
the overlap ofr1,2 with states of the form~14!, since the
latter always contain one ebit of entanglement. The ma
mum overlap is in fact with the stateuHAhaAhbAhgAhd&. This
defines a fidelity

F[^HAhaAhbAhgAhdur1,2uHAhaAhbAhgAhd&

5
@12exp~24ha0

2!#@11exp~24~12h!a0
2!#

2@12exp~24a0
2!#

,

~21!

with a0 as defined in Eq.~15!. Since this fidelity depends
only on h and a0 the whole family of states described b
Eqs.~14! and ~15! decoheres in the same way. In Fig. 1 w
plot the fidelity as a function ofa0. From that figure one see
3-2
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that for a0→0, F→h. For h51/2, the fidelity is alwaysF
51/2, and the same fidelity is reached in the limituau→`
~for h,1). Note that in this limit Alice and Bob actually
obtain a separable state.

For h.1/2 the fidelity decreases with increasinga0. For
a fixed amount of noiseh.1/2 the optimum states for tele
portation are thus the family of states corresponding toa0
→0, for which the state~4! reduces to

uH0&[~ u0&u1&1u1&u0&)/A2 ~22!

in terms of photon number states.

III. TELEPORTATION

Any of the family of states~14! can in principle be used to
teleport one qubit. Indeed, as we will show now, Schro¨dinger
cat states of the form

uc0&5~e1ua&1e2u2a&)/AN0, ~23!

with

N05ue1u21ue2u212ca Ree2* e1 , ~24!

can be faithfully teleported usinguHa&. The protocol we dis-
cuss here is chosen for its simplicity; it is not the optim
teleportation protocol. It does, however, lead with nonz
probability to perfect teleportation~if there is no noise!. It is
straightforward to formulate the optimum teleportation p
tocol using the basis Eq.~10! but it would require measure
ments that are hard to implement, see Ref.@9#. Here we let
Alice mix her part of the entangled state~mode 1! with the
state to be teleported~in mode 0! by using a beam splitter
The resulting state is1

uc1&0,1,2[e1@ uA2a&0u0&1ua&22@ u0&0uA2a&1u2a&2]

2e2@ u2A2a&0u0&1u2a&22@ u0&0u

2A2a&1ua&2]. ~25!

Subsequently Alice performs two photon number measu
ments on the modes 0 and 1 on her side. Denote the p
ability to find n and m photons in modes 0 and 1, respe
tively, by P(n,m),

P~n,m!5u0^nu1^muc1&0,1,2u2. ~26!

1Phase factorsi have been eliminated, so that instead of the st
dard definition of the action of a beam splitter on coherent stat

ua&ub&→u~a1ib!/A2&u~ ia1b!/A2&,
we get

ua&ub&→u~a1b!/A2&u~a2b!/A2&.

This corresponds to phase shifting the second input and the se
output modes by2p/2.
02231
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Only one of the two outcomes can be a nonzero number
let us suppose thatnÞ0. In this case the state on Bob’s sid
collapses into

uc08&25@e1ua&22~21!ne2u2a&2]/AN08,
~27!

N085ue1u21ue2u222~21!nca Ree2* e1 .

We see that providedn is odd, the teleportation works pe
fectly. For n even the transformation required for perfe
state transfer would be

u2a&→2u2a&,
~28!

ua&→ua&

which is not in general unitary~it is unitary only in the limit
uau→`). Although for even nonzero values ofn the telepor-
tation fidelity may still be better than can be achieved cl
sically ~i.e., without entanglement!, we focus here only on
the casen is odd. Forn odd Eq.~26! reduces to

P~n,0!5
u^nuA2a&u2

Na
for odd n. ~29!

This quantity is independent of the state to be teleported
is to be expected in a perfect teleportation protocol. T
probability of success~i.e., finding an odd number of pho
tons in either mode! is

Podd5 (
n odd

P~n,0!1 (
n odd

P~0,n!. ~30!

These summations can be performed and the result turns
to be independent ofa,

Podd5
1

2
. ~31!

-
,

nd

FIG. 1. Overlap ofr1,2 with appropriately chosen fully en
tangled state as a function ofa0 for various noise parametersh
50.9,0.7,0.5,0.3,0.1 for top to bottom curves.
3-3
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A. Noisy case

When the noise parameterh,1, the teleportation fidelity
will drop below 1. On the other hand, as we will show, t
probability to find an odd number of photons does not n
essarily decrease below 50%.

In the presence of noise, the states we should expect t
able to teleport more or less successfully are of the form

uc̃0&5~e1uã&1e2u2ã&)/AÑ0, ~32!

with ã5Aha and

Ñ05ue1u21ue2u212cã Ree2* e1 . ~33!

Following the same steps as before, after Alice has meas
nÞ0 photons in mode 1, say, the joint entangled state
Bob’s mode and the environment is

uc̃08&5@e1uã&uk&2~21!ne2u2ã&u2k&]/ANk, ~34!

where

uk&[uA12ha&uA12ha&,
~35!

Nk5ue1u21ue2u22~21!n2cãcA
2
12ha Ree2* e1 .

We find again that a measurement of an odd number of p
tons is required for near-perfect teleportation. The proba
ity of finding n photons is now

P~n,0!5u^nuA2ã&u2
Nk

Ñ0Na

for oddn, ~36!

and the probability of finding an odd number of photons
either mode is

Podd5 (
n odd

P~n,0!1 (
n odd

P~0,n!5
1

2

NkNã

Ñ0Na

. ~37!

Both these quantities do depend now on the state to be
ported throughNk and Ñ0. In principle there is therefore
some information about the identity of the stateuc0& to be
gained from the particular measurement outcome. This is
is further discussed in Ref.@19#. Here, however, we assum
that Bob does not make any use of this extra knowle
about the identity of the state to be teleported. The fidelity
the teleported state is then simply given by

F[u^c̃0uc̃08&u
25

uAu21uBu21ck~AB* 1BA* !

Ñ0Nk

, ~38!

with

A5ue1u21e2* e1cã ,
~39!

B5ue2u21e1* e2cã .
02231
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Suppose now we intend to teleport an arbitrary qubit in
space spanned byua& and u2a&. We may parametrize tha
qubit as follows:

uc0~u,f!&5sin~u/2!u1&1cos~u/2!exp~ if!u2&,
~40!

0<u<p; 0<f,2p,

with the statesu6& defined as in Eq.~10! and with a prob-
ability distribution dp5sinududf/(4p). This procedure
corresponds to choosing a spin-1/2 representation for the
bit and choosing an arbitrary direction for its ‘‘spin.’’ Th
expectation value of the number of photonsN(u,f) in the
state~40! is

N~u,f!5sin2~u/2!uau2
N2

N1
1cos2~u/2!uau2

N1

N2
. ~41!

Averaging overu and f gives the average number of pho
tons

^N&5
1

2
uau2S N2

N1
1

N1

N2
D . ~42!

Although in the limit of smalla the number of photons in
both ua& andu2a& is small, a qubit~40! has half a photon on
average, since fora→0, ^N&→1/2. For largea ~roughly for
uau.1) the average number of photons is simply^N&
'uau2.

We can average the results forPodd and the teleportation
fidelity F over u and f. Averaging Eq.~37! gives, surpris-
ingly perhaps,

^Podd&5
1

2
, ~43!

just as in the noiseless case. The average teleportation fi
ity is plotted in Fig. 2. Foruau@1 the average teleportatio
fidelity approaches 2/3 for any noise parameterh,1, which

FIG. 2. Teleportation fidelity in the noisy case as a function
uau for different values of the noise parameterh.
3-4
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is the value expected for ‘‘classical’’ teleportation, where A
ice performs a projective measurement in the basisu1&,
u2&, tells Bob the result, who then prepares that state. Th
because in this limit Alice and Bob share no entangleme

B. Using different entangled states

States of the form

uGa&1,25~ ua&1ua&21u2a&1u2a&2), ~44!

as discussed in Refs.@12# and@13#, have less than one ebit o
entanglement@9#. In fact, the reduced density matrix has tw
nonzero eigenvalues given by

l65
~16ca!2

212ca
2

~45!

and its entanglement isE52( i 56l i ln2li<1, with the
equality sign holding only in the limituau→`. We therefore
expect this type of state to be less successful in telepor
quantum states. Indeed, using the same teleportation pr
dure as before, we find that the probability to find a desi
measurement outcome is less than 1/2 now, although the
portation fidelity still is 100% in the absence of noise.
particular, following the same steps as before, after Al
measures a nonzero number of photons in mode 1, B
state collapses into

uc08&25@e1ua&21~21!ne2u2a&2]/AN08,

N085ue1u21ue2u212~21!nca Ree2* e1 . ~46!

Hence a successful teleportation now occurs when A
measures a nonzeroevennumber of photons. The probabilit
of succesful teleportation is

Peven5 (
n.0 even

P~n,0!1 (
n.0 even

P~0,n!5
~12ca!2

212ca
2

,

~47!

which is less than 1/2. For smalluau this probability ap-
proaches zero: there is indeed no entanglement in the
uGa& for uau→0. For uau→`, on the other hand, the prob
ability of successful teleportation becomes 1/2 as before,
correspondingly the stateuGa& does indeed possess one e
of entanglement in that limit. In Fig. 3 we plot both th
entanglement andPeven as functions ofuau.

IV. CONCLUSIONS

We studied properties of entangled coherent states of
form

ua&ua&2u2a&u2a&.
02231
is
.

g
ce-
d
le-

e
’s

e

ate

nd
t

he

These states can be produced from Schro¨dinger cat states, o
the sort produced in cavity-QED experiments@16,17#, by
using a 50/50 beam splitter. Such states possess exactly
ebit of entanglement@8# and can be used to teleport one qu
encoded in superpositions ofua& and u2a&. We discussed a
simple protocol that achieves this aim with a 50% probabi
of success. This protocol requires beam splitters, the ab
to produce Schro¨dinger cat states, and photon counting.
teleportation experiment along the lines sketched here m
thus be feasible in the context of cavity QED@20#.

Entangled coherent states share an advantage with
mode squeezed states over biphoton polarization entan
states in that they can be produced deterministically. On
other hand, like biphoton polarization entangled states t
possess one ebit of entanglement, whereas a two-m
squeezed state can in principle contain entanglement of m
than 1 ebit, although so much entanglement has not b
produced yet@21#.

Moreover, entangled coherent states are more rob
against photon absorption noise than are biphoton polar
tion entangled states. This is not only true in the limit
small amplitudesa ~for which the fidelity is of orderh
rather thanh2 for the biphoton state! but for a such that the
average number of photons in the entangled states is 2.
can be understood by noting that reducing the amplitude
coherent state does not by itself reduce the entangleme
uHa&.
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FIG. 3. Probability of successful teleportationPeven ~solid
curve! with a state of the form~44! and its entanglementE ~dashed
curve! as functions ofuau in the absence of noise.
3-5



re

r,

t-

.J.

K

re

g

tat

For
is
on-

.

h,

ys.

.

state

S. J. van ENK AND O. HIROTA PHYSICAL REVIEW A64 022313
@1# A. Ekert, Phys. Rev. Lett.67, 661 ~1991!.
@2# C.H. Bennett, H.G. Brassard, C. Crepeau, R. Jozsa, A. Pe

and W.K. Wootters, Phys. Rev. Lett.70, 1895~1993!.
@3# D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurte

and A. Zeilinger, Nature~London! 390, 575 ~1997!.
@4# C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Woo

ters, Phys. Rev. A54, 3824~1996!.
@5# A. Furusawa, J.L. So”rensen, S.L. Braunstein, C.A. Fuchs, H

Kimble, and E.S. Polzik, Science282, 706 ~1998!.
@6# D.F. Walls and G.J. Milburn,Quantum Optics~Springer-

Verlag, Berlin, 1994!.
@7# S.J. van Enk, Phys. Rev. A60, 5095~1999!.
@8# O. Hirota and M. Sasaki, LANL e-print quant-ph/0101018.
@9# O. Hirota, S. J. van Enk, K. Nakamura, M. Sohma, and

Kato e-print quant-ph/0101096.
@10# C.L. Chai, Phys. Rev. A46, 7187~1992!.
@11# The nontrivial character of the relative phasef in the en-

tangled state

ua&ua&1exp~if!u2a&u2a&

can be seen already by considering superpositions of cohe
states

uA2a&1exp~if!u2A2a&,

from which the entangled states can be produced by usin
50/50 beam splitter. For instance, forf50 this state is a so-
called even coherent state, containing superpositions of s
02231
s,

.

nt

a

es

with even numbers of photons. Similarly, forf5p we get the
odd coherent state, with always an odd number of photons.
f5p/2 on the other hand, the photon number distribution
Poissonian, just as for a coherent state. For a review of n
classical properties of these types of states, see V. Buzˇek and
P.L. Knight, Progress in Optics~Elsevier, Amsterdam, 1995!,
Vol. XXXIV, p. 1.

@12# J.C. Howell and J.A. Yeazell, Phys. Rev. A62, 012102~2000!.
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