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Optimum unambiguous discrimination between linearly independent nonorthogonal quantum
states and its optical realization
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Unambiguously distinguishing between nonorthogonal but linearly independent quantum states is a chal-
lenging problem in quantum information processing. In principle, the problem can be solved by mapping the
set of nonorthogonal quantum states onto a set of orthogonal ones, which then can be distinguished without
error. Such nonunitary transformations can be performed conditionally on quantum systems; a unitary trans-
formation is carried out on a larger system of which the system of interest is a subsytem, a measurement is
performed, and if the proper result is obtained the desired nonunitary transformation has been performed on the
subsystem. We show how to construct generalized interferometers~multiports!, which when combined with
measurements on some of the output ports, implement nonunitary transformations of this type. The input states
are single-photon states in which the photon is divided among several modes. A number of explicit examples
of distinguishing among three nonorthogonal states are discussed, and the networks that optimally distinguish
among these states are presented.
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I. INTRODUCTION

The time evolution of a closed quantum system is unita
hence scalar products~angles between two quantum state!
are conserved. However, when measurements are mad
the system, it is possible to perform prescribed nonunit
operations with a certain probability of success. In particu
it is possible to alter the value of scalar products and, he
the angle between state vectors. Such operations can be
to unambiguously discriminate among nonorthogonal qu
tum states. A set of nonorthogonal states is mapped onto
of orthogonal ones, and the orthogonal states can be di
guished without error. According to the quantum theory
measurement, such a nonunitary transformation will alw
have a certain probability of failure, which, for the discrim
nation of nonorthogonal states, corresponds to the proba
ity that we obtain inconclusive answers. Our aim here is
find the optimum solution that minimizes the average pr
ability of failure.

Considerable work has been done on this problem.
simplest case, distinguishing two nonorthogonal states,
first considered by Ivanovic@1#, and then subsequently b
Dieks @2# and Peres@3#. These authors found the optim
solution when the two states are being selected from an
semble in which they are equally likely. The optimal soluti
for the situation in which the states have different weig
was found by Jaeger and Shimony@4#. One can also conside
what happens if the discrimination is not completely una
biguous, i.e., if it is possible for errors to occur, and this w
done by Chefles and Barnett@5#. The case of three states wa
examined by Peres and Terno@6#. The generalN-state prob-
lem has been studied by Chefles@7#, by Chefles and Barnet
@8#, and by Duan and Guo@9#. Chefles and Barnett employe
the positive operator valued measure formalism and spe
cally solved the case in which the probability of the proc
dure succeeding is the same for each of the states. Duan
1050-2947/2001/64~2!/022311~10!/$20.00 64 0223
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Guo considered general unitary transformations and m
surements on a Hilbert space containing the states to be
tinguished and an ancilla, which would allow one to d
criminate amongN states, and derived matrix inequalitie
that must be satisfied for the desired transformations to e

For the experimental realization of quantum informati
processing, one must choose a physical system to repres
qubit. Some possibilities that have been used are energy
els of ions, the orientation of a nuclear spin, and the prese
or absence of a photon in a cavity@10–13#. Another possi-
bility, the so-called dual-rail representation of a qubit, w
proposed by Milburn@14#, and later by Chuang and Yama
moto @15,16#. A photon is split between two modes whic
represent 0 and 1. When the elementary carriers of the
formation are more than two-dimensional objects~qutrits,
. . . , qunits, in general, forn dimensions!, one needs a more
general representation. Here we will show that single-pho
states can be used to represent general nonorthogonal s
in n dimensions, and how this representation can be used
state discrimination. A photon is now divided amongn
modes that represent the numbers 0,1, . . . ,n21. The
method is a straightforward generalization of the dual-r
representation of a qubit for more than two dimensions, a
can be called the multiple-rail representation of a qunit.
optical multiport, a kind of generalized interferometer wi
more than two inputs and outputs, together with measu
ments made by the photon detectors placed at some or a
the output ports, can conditionally realize the desired n
unitary transformations of the initial, nonorthogonal sing
photon states into orthogonal states. Our previous paper@17#,
which proposed an optical realization to optimally discrim
nate between two nonorthogonal states, is a special cas
the method presented here.

Optical experiments to distinguish between two quant
states have already been carried out, first by Huttneret al.
@18# and, more recently, by Clarkeet al. @19#. Both of these
used the polarization states of photons to represent qubi
©2001 The American Physical Society11-1
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This paper is divided into six sections. In Sec. II, w
present a method for calculating the optimum probabilities
unambiguous discrimination between linearly independe
nonorthogonal states. In Sec. III, the general properties
quantum system that realizes the optimum nonunitary tra
formation are found by assuming that the optimum probab
ties are known. In Sec. IV, we show how an optical mu
port, which is designed to perform a particular unita
transformation, together with measurements at its ou
ports can realize nonunitary transformations of nonortho
nal input states represented by single-photon states. R
et al. @20# gave a method to decompose any multiport into
series of beam splitters, phase shifters, and mirrors, and
will use this method to construct the desired multiport. T
general method is then illustrated by applying it to qutrits
Sec. V. Examples are presented for the realization of tra
formations that convert three specific nonorthogonal state
orthogonal ones with a maximum probability of success
brief discussion and conclusions are given in Sec. VI.

II. OPTIMAL PROBABILITIES FOR UNAMBIGUOUS
DISCRIMINATION AMONG NONORTHOGONAL

QUANTUM STATES

Suppose we are given a quantum system prepared in
stateuc&, which is guaranteed to be a member of the se
nonorthogonal states$uc1&,uc2&, . . . ,ucn&%, but we do not
know which one. We want to find a procedure that will te
us which member of the set we were given. The proced
may fail to give us any information about the state, and i
fails it must let us know that it has, but if it succeeds
should never give us a wrong answer. We shall refer to s
a procedure as state discrimination without error@21,22#.
Note that this procedure hasn11 outcomes; it either tells u
which state we were given, or it tells us that it failed~incon-
clusive outcome!.

In order to achieve error-free discrimination, Chefles h
shown, in a very clear analysis of the problem, that the
uc1&,uc2&, . . . ,ucn& must be linearly independent@7#. If the
states are not orthogonal~which we shall assume!, they can-
not be discriminated perfectly. That means that if we
givenuc i& we will have some probabilitypi of distinguishing
it successfully and, correspondingly, some failure probabi
qi512pi of obtaining an inconclusive answer. Denote byH
the Hilbert space spanned by the initial sta
$uc1&,uc2&, . . . ,ucn&%. Since there is a chance to get an i
conclusive answer, the number of outcomes of this proce
larger than the dimension ofH; hence this process is a ‘‘gen
eralized measurement’’ which can be represented by a s
operators that form a resolution of the identity@7#

ÂI
†ÂI1(

i
Âi

†Âi51̂, ~2.1!

where Âi is the operator that corresponds to the outco
uc i&, andÂI is the operator that corresponds to the inconc
sive outcome. In more detail, ifr is the density matrix of our
given state, then the probability of obtaining thekth out-
come, wherek can be 1, . . . ,n or I, is pk5Tr(rAk

†Ak) and if
02231
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the outcome isk then the resulting density matrix i
AkrAk

†/pk . The requirement that the discrimination be erro
free implies that

^c i uAk
†Akuc i&5pid ik . ~2.2!

From this, by an application of the Schwarz inequality,
follows that

^ckuÂi
†Âi uc j&5pid j i d jk . ~2.3!

If we denote byh i thea priori probability that the system
was prepared in the stateuc i&, the average probabilities o
success and of failure to distinguish the statesuc i& are, re-
spectively,

P5(
i

h i pi ,

~2.4!

Q5(
i

h iqi .

Our objective is to find the set of$pi% that maximizes the
probability of successP, and the set of operatorsAk that
realize the corresponding generalized measurement.

Define the failure stateuf i& as

uf i&5ÂI uc i&. ~2.5!

This is the state of the system if the input state wasuc i& and
the outcome was inconclusive. Chefles@7# showed that the
states$uf i&% are linearly dependent whenP is a maximum.
The interpretation of this result is the following. Becau
only linearly independent states can be discriminated with
error, the operator corresponding to the inconclusive o
come maps the set of linearly independent states$uc i&% onto
a linearly dependent set, which then cannot be unamb
ously discriminated by any further process. As we shall s
however, this does not mean that some information can
be extracted from an inconclusive result.

Now consider the inner product^fkuf j&, and define the
matrix C by Ck j5^fkuf j&. Using Eqs.~2.1!, ~2.5!, and~2.3!,
we find

^fkuf j&5^ckuc j&2pjd jk . ~2.6!

The matrixC is positive semidefinite. This can be seen
noting that for anyn-dimensional vector, whose componen
we shall denote bybi , wherei 51, . . . ,n,

(
i , j 51

n

bi* Ci j bj5I(
i 51

n

bi uf i&I 2

>0. ~2.7!

When thepi are equal to their optimal values, i.e., the valu
that maximizeP, the linear dependence of theuf i& implies
that

det~C!50, ~2.8!
1-2
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so thatC has at least one zero eigenvalue whenP is a maxi-
mum.

In conclusion, the optimum probabilitiespi can be found
by maximizing P subject to the following constraints:~i!
det(C)50; ~ii ! C is non-negative, or, equivalently, all of th
principal minors ofC are non-negative@9#. In both of these
conditions, the matrixC is considered to be a function of th
probabilitiespi , i 51, . . . ,n, with matrix elements given ex
plicitly by Ck j5^ckuc j&2pjd jk .

When we consider the case of just two nonorthogo
states, the above result immediately gives the following
lationship between any two failure probabilities:

q1q25 z^c1uc2& z2. ~2.9!

This is the same result that was obtained in our previ
paper@19#. In particular, when the two states have equaa
priori probabilities, h15h25 1

2 , we found the maximum
probability of success to be

P512 z^c1uc2& z. ~2.10!

This is the well known Ivanovic-Dieks-Peres limit@1–3#.

III. REALIZATION OF GENERALIZED MEASUREMENT

Once we know the set of optimum discrimination pro
abilities$pi%, we would like to find a realizable experiment
procedure to achieve it. We shall do this first abstractly, a
then show how it can be realized by linear optical eleme
Let us first summarize the procedure, and subsequently fi
the details. We begin with a total Hilbert spaceK, which is
the direct sum of two subspaces,K5H% A. The spaceH is
ann-dimensional space that contains the vectorsuc i&, andA
is the space that will contain the failure vectorsuf i&. We
shall denote the dimension ofA by m. The input state of the
system is one of the vectorsuc i&, which is now a vector in
the subspaceH of the total spaceK. A unitary transforma-
tion U that acts in the entire spaceK is now applied to the
input vector, resulting in the stateuc i

K&out . A measurement is
performed on the part ofuc i

K&out in A, and, if the proper
result is obtained, the vectoruc i

K&out is projected onto the
vectoruei

H&, which lies in the subspaceH. The probability of
this occurring ispi . The vectors$uei

H&,i 51, . . . ,n% are or-
thonormal and can be distinguished perfectly. The effec
the unitary transformation on an extended space and
measurement is to map a set of nonorthogonal vectors on
set of orthogonal ones.

We now need to specifyU and the measurement, and l
us discuss the latter first. The measurement has two
comes, one of them corresponding to the operatorPH that
projects onto the subspaceH, and the other to the operato
PA5I 2PH that projects onto the subspaceA. The first out-
come corresponds to the successful transformation ofuc i

K&out

into uei
H&, and its probability of occurrence ispi . This im-

plies that

uc i
K&out5Api uei

H&1uf i
A&, ~3.1!
02231
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where uf i
A& is a failure state, and we have added a sup

script A to denote the fact that it is in the subspaceA. The
other outcome corresponds to obtaining an inconclusive
swer and transformsuc i

K&out into uf i
A&.

Equation~3.1! and the fact thatU is unitary imply that

^fk
Auf j

A&5^ck
Huc j

H&2pjd jk , ~3.2!

which is just Eq.~2.6!. If ~and only if! the matrixC is non-
negative, we can always find vectorsuf i

A& that satisfy this
equation. This follows from the fact that a non-negative m
trix can be written as the product of a matrix and its adjoi
in particular, we can expressC as

C5A†A, ~3.3!

for some matrixA. If we defineuf j&5Au j &, whereu j & is the
vector whosej th component is 1 and all of whose oth
components are zero, then we have thatCjk5^f j ufk& . Once
we have found these vectors and specified the vectorsuei

H&,
then the operatorU can be found by means of Eq.~3.1!.
These conditions may not completely determineU; if they do
not, then there is freedom in choosing it. This will be t
case if the dimension ofA is greater than 1.U maps vectors
in A to vectors in the subspaceS of K that consists of the
vectors that are orthogonal to all of the vectorsuc i

K&out . The
dimension ofS is m. The freedom in choosingU comes from
the fact that Eq.~3.1! does not specify howA is mapped into
S. If both are one dimensional, then the mapping is de
mined ~up to an overall phase!, but if their dimension is
greater than 2 it is not.

Once the measurement and the operatorU have been
specified, our realization of the generalized measuremen
completely determined. The next task is to find a physi
system with which to implement it.

IV. OPTICAL REALIZATION OF NONUNITARY
TRANSFORMATION

We now want to propose an experimental procedure
achieve our nonunitary transformation by using optical d
vices. We shall show how this can be accomplished by us
a single-photon representation of the statesuc i& and an opti-
cal multiport together with photodetectors at the output po
to carry out the desired nonunitary transformation.

Our Hilbert space will consist of a single photon, which
divided amongn1m modes. The modes themselves cou
be distinguished by having different wave vectors or th
might be modes of different optical fibers. A basis for th
space consists of the single-photon states$aj

†u0&u j
51, . . . ,n1m%, whereu0& is the vacuum state andaj

† is the
creation operator for thej th mode. The states$aj

†u0&u j
51, . . . ,n% form a basis for the spaceH, and the states
$aj

†u0&u j 5n11, . . . ,n1m% form a basis for the spaceA.
The initial statesuc i& can be represented as single-phot
states inH, which can be written as

uc i&5(
j 51

n

di j uej
H&5(

j 51

n

di j â j
†u0&, ~4.1!
1-3
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where we have chosen the statesuej
H& to be uej

H&5â j
†u0H&.

An optical 2N-port is a lossless linear device withN input
ports andN output ports. Its action on the input states can
described by a unitary operatorU2N , and physically it con-
sists of an arrangement of beam splitters, phase shifters,
mirrors. ChoosingN5n1m, we send the single-photon sta
uc i& into the firstn input ports, which correspond toH, and
the vacuum into the remainingm input ports, which corre-
spond toA. Photodetectors are placed at the lastm output
ports~the ones corresponding toA), and if there is no photon
detected the desired nonunitary transformation will ha
been carried out. In particular, withuc i

K&out5U2Nuc i&,
where uc i

K&out is given by Eq.~3.1!, the action of the mea
surement, if successful, is to project the output state o
uei

H&, and the probability of achieving this ispi .
This procedure is conceptually clear, but in practice th

are problems in requiring that a photon not be detected.
example, the photon may be incident on the detector but
be registered due to finite detection efficiency. Because
are dealing with only one photon, however, it is possible
circumvent this problem. Suppose now that our 2N-port has
detectors placed at its firstn output ports, the ones corre
sponding toH. These detectors are necessary in order to
us which output state inH we have, and this, in turn, tell
what the input state was, if the procedure is successful. N
because there is only one photon, if it emerged from one
the firstn output ports, it did not emerge from one of the la
m ports. That means we do not need detectors at the lam
ports. If the photon emerges from one of the firstn ports and
is detected, then the procedure has been successful.

If we denote the annihilation operators corresponding
the input modes of the 2N-port by aj in

, j 51,2, . . . ,N, then
the output operators are given by

aj out
5U2N

21aj in
U2N5 (

k51

N

M jkakin
, ~4.2!

whereM jk are the elements of anN3N unitary matrixM. In
the Schro¨dinger picture, the ‘‘in’’ and ‘‘out’’ states are re
lated by

ucK&out5U2NucK& in . ~4.3!

In general, for an ‘‘in’’ state that contains a single-photon

ucK& in5(
j 51

N

cjaj
†u0&, ~4.4!

where( j 51
N ucj u251, the ‘‘out’’ state is given by

ucK&out5U2NucK& in

5U2N(
j 51

N

cjaj in

† U2N
21u0&

5 (
j ,k51

N

cjM jk
T akin

† u0&. ~4.5!
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Note that we have made use of the fact that the vacuum
invariant under the transformationU2N . This implies that the
matrix elementMil is the same as the matrix element ofU2N

between the single-particle statesu i &5ai in
† u0& and u l &

5al in
† u0&. Choosingcj5d j l in the above equation and the

taking the inner product of the result withu i &, we find that

^ i uU2Nu l &5Mil . ~4.6!

The desired matrixM can be found from Eq.~3.1!, and our
next task is to decompose it in such a way that it correspo
to a linear optical network.

This problem has been solved by Recket al. @20#, and we
shall summarize their method. They gave an algorithmic p
cedure to factorize anyN3N unitary matrix into a product
of two-dimensional U~2! transformations, and it is this pro
cedure that we shall adopt here to construct our 2N-port,
which is characterized by the matrixM of Eq. ~4.2!.

It is well known that a lossless beam splitter and a ph
shifter with appropriate parameters can implement any U~2!
transformation; a beam splitter with a phase shifter at o
output port transforms the input operators into output ope
tors as

S a1

a2
D

out

5S eif sinv eif cosv

cosv 2sinv
D S a1

a2
D

in

~4.7!

wherea1 and a2 are the annihilation operators of modes
and 2 respectively. In their paper, Recket al. considered the
use of a Mach-Zehnder interferometer to simulate the ef
of a beam splitter that does not split the incoming be
equally, in which casev describes the reflectivity and trans
mittance of the effective beam splitter withAR5sinv, AT
5cosv, andf describes the effect of the phase shifter. If t
matrix describes an actual beam splitter, thenAR5cosv and
AT5sinv. Any N3N unitary matrix U(N) can be reduced
to an (N21)3(N21) unitary matrix, U(N21), by multi-
plying from the right by a succession of two-dimension
unitary matrices,

U~N!•R~1!5S eia1 0

0 U~N21!
D . ~4.8!

Here R(1)5T1,2•T1,3•••T1,N , and Tp,q is defined as an
N-dimensional identity matrix with elementsI pp , I pq , I qp ,
I qq replaced by the corresponding elements of a U~2! matrix.
It performs a unitary transformation on a two-dimension
subspace of the fullN-dimensional space, and can be impl
mented by attaching a beam splitter and a phase shifte
portsp andq.

We can repeat the above transformation, decreasing
dimension of the remaining unitary matrix by 1 at each st
Applying this procedure to the matrixM of Eq. ~4.2!, we
have that
1-4
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M•R~1!•R~2!•••R~n1m!5S eia1 0 0

0 eia2

0 0 �

0 0 eian1m

D .

~4.9!

Denoting byD(a1 ,a2 , . . . ,an) the diagonal matrix

D5S e2 ia1 0

e2 ia2

0 �

e2 ian1m

D , ~4.10!

we have

M•R~1!•R~2!•••R~n1m21!•D51, ~4.11!

i.e.,

M5D21
•R~n1m21!21

•••R~1!21. ~4.12!

Since the product of matrices is equivalent to setting
experimental devices in sequence, Eq.~4.12! implies that to
get M the actual experimental setup is made of a series
U(2) blocks to achieveR(n1m)21

•••R(1)21, and n1m
appropriate phase shifters attached to the output ports to
duceD21. Figure 1 gives a picture of the practical impl
mentation ofM.

It is possible to save some steps by modifying this pro
dure. As was mentioned earlier, the matrixM is not always
completely determined. In particular, there is freedom
choosing the matrix elementsM jk for k.n. Let us now see
what happens if we apply the procedure of Recket al. to the
transpose ofM, MT, instead ofM itself. It is now the matrix
elements (MT) jk for j .n that are not completely deter
mined, and we shall leave them that way for now. The m
trices making upR(1) are chosen to make all of the el
ments, except the first, of the the first row ofMTR(1) zero.
In finding each of the matricesT1,q , we only need to use the

FIG. 1. The implementation of an optical multiport that pe
forms the unitary transformationM (N) described in Eq.~4.12!. The
beams are straight lines, a suitable beam splitter is at each cro
point of the beams. phase shifters are at one input of each b
splitter and at the outputs of the multiport. Each diagonal line of
multiport reduces the dimension ofM (N) by 1.
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matrix elements that are completely determined~this is not
true if we start withM instead ofMT!. Now if the first row of
MTR(1) is zero except for the first element, then by unitar
the first column is also zero, except for its first eleme
Continuing in this way we have that

MT
•R~1!•R~2!•••R~n!5S eia1 0 0

0 eia2

0 0 �

0 0 Mm

D ,

~4.13!

whereMm is an m3m unitary matrix that contains the in
formation about the matrix elements inM that are not com-
pletely specified. At this point, we can chooseMm to be any
unitary matrix, and the simplest choice is them3m identity
matrix, I m . Defining

D85S e2 ia1 0 0

0 e2 ia2

0 0 �

0 0 I m

D , ~4.14!

we have that

M5@R~1!R~2!•••R~n!D8#* . ~4.15!

V. APPLICATION TO THREE STATES AND EXAMPLES

In this section we first apply the above considerations
the problem of realizing optimal discrimination among thr
nonorthogonal but linearly independent quantum states
general. Then we illustrate the method on specific examp
For simplicity, we assume that thea priori probabilities are
all equal,h15h25h351/3.

From Eq.~2.4!, the probability of failure is

Q5
1

3 (
i 51

3

qi . ~5.1!

The requirement of the linear dependence of theuf i& vectors
( i 51,2,3) leads to the constraint given by Eq.~2.8!. For the
case of three vectors it can be written as

D5det~C!

5q1q2q32q1uO23u22q2uO13u22q3uO12u2

1O12O23O13* 1O12* O23* O13

50, ~5.2!

whereOi j 5^c i uc j&.
Employing the Lagrange multiplier method, we wish

minimize the quantity

Q85
1

3 (
i

qi1lD, ~5.3!
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which immediately leads to the conditions

]Q8

]q1
5

1

3
1lD2350,

]Q8

]q2
5

1

3
1lD1350, ~5.4!

]Q8

]q3
5

1

3
1lD1250,

where l is a Lagrange multiplier, andD12, D13, D23 are
subdeterminants ofC, D125q1q22uO12u2, etc. Equation
~5.4! implies that

D125D135D2352
1

3l
. ~5.5!

This means that all three subdeterminants are equal. Ld
521/3l denote this common value and recall that all su
determinants ofC must be non-negative, so thatd>0.

From Eq.~5.5! we can solve for theqi ’s, yielding

q15A~ uO12u21d!~ uO13u21d!

~ uO23u21d!
,

q25A~ uO12u21d!~ uO23u21d!

~ uO13u21d!
, ~5.6!

q35A~ uO13u21d!~ uO23u21d!

~ uO12u21d!
.

Finally, we can substitute Eq.~5.6! into Eq.~5.2! to solve for
d and then use the above equations to find the correspon
qi values. When we solve ford, there are often a number o
different solutions. However, we need only consider so
tions that are greater than or equal to zero, and which g
values ofqi that are between 0 and 1. If there are seve
solutions that satisfy these conditions, we must determ
which one gives the actual minimum. If there are none, th
we must examine the boundary of the allowed region to fi
the minimum. The point (q1 ,q2 ,q3) lies inside or on the
surface of a unit cube whose vertices lie on the poi
( j ,k,l ), where j ,k,l 50 or 1. If the Lagrange multiplier ap
proach does not yield a valid solution the minimum ofQ
subject to the constraintD50 must lie on the surface of th
cube.

Note that if the overlaps are real and positive, a situat
we shall consider shortly, thend50 is always a solution of
Eq. ~5.2!. In this case, if all the correspondingqi for d50
are between 0 and 1, then this set of$qi% is a possible solu-
tion to our problem, i.e., a minimum ofQ that satisfiesD
50. If it is, in fact, the solution, we see thatD125D13
5D2350, which implies that each possible pair of the sta
uf i&, i 51,2,3, is linearly dependent, so that all three sta
f i are in a line, i.e., the dimensionality of the auxiliary H
bert spaceA is 1. If the solution to the problem is one fo
02231
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which d.0, no pair of failure states is linearly depende
However, the three failure states together are linearly dep
dent, so that in this case the dimensionality of the auxilia
Hilbert spaceA is 2.

Next, we shall consider specific examples involving thr
nonorthogonal but linearly independent state vectors, to
lustrate the general considerations of the previous secti
In particular we want to determine explicitly the paramete
and dimensionality for the special multiports that optima
discriminate among the three quantum states. For simplic
we shall assume that thea priori probabilities are equal in al
of our examples.

Our first case is a simple one; the overlaps of the th
states will be assumed to be real and equal

^c1uc2&5^c2uc3&5^c3uc1&5s, ~5.7!

where 0,s,1. The constraint of Eq.~2.8! is, in this case,

q1q2q32s2(
i

qi12s350, ~5.8!

and application of the the Lagrangian multiplier method i
plies thatq15q25q3, and that

qi
323s2qi12s350. ~5.9!

This equation has two solutions,qi5s,22s, of which only
qi5s is valid. This solution is a minimum and it implies tha
the optimal value of the total failure probability isQ5s.

Our next step is to find the failure vectors. For any
33 positive matrixL, we find that we can express its matr
elements asLi j 5^f i uf j& if

uf1&5~AL11,0,0!,

uf2&5S L12

AL11

,AD12

L11
,0D , ~5.10!

uf3&5S L13

AL11

,
L23L112L12* L13

AL11D12

,A D

D12
D ,

where D125L11L222uL12u2 and D5detL. Applying this to
the matrix C, with qi5s, i 51,2,3, we find that the three
failure vectors are identical; they all have magnitudeAs and
point in the same direction. Therefore, our failure spaceA is
one dimensional, the full Hilbert spaceK5H% A is four
dimensional, and we will need an eight-port to accompl
our unitary transformation.

In order to find the necessary unitary transformation,
must first specify our input states. Let us choose our th
states to be~in the full spaceK5H% A)
1-6
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uc1
K& in5S A2

3
A12s

A112s/A3

0

0

D , uc2
K& in5S 2A12s/A6

A112s/A3

A12s/A2

0

D ,

uc3
K& in5S 2A12s/A6

A112s/A3

2A12s/A2

0

D , ~5.11!

wherec i are represented by single-photon states. One
verify that ^c1uc2&5^c2uc3&5^c3uc1&5s. The output
states can be found from Eq.~3.1!, and are explicitly given
by

TABLE I. Arguments ofTp,q for case 1. The range of arccos
the interval@0,p#.

v f

T1,2 arccos@21/A5# 0
T1,3 arccos@21/A6# 0
T2,3 2arccos@2A2/5# 0
T2,4 arccos@A3s/A112s# 0
ga

w
th
la

02231
an

uc1
K&out5S A12s

0

0

As

D , uc2
K&out5S 0

A12s

0

As

D ,

~5.12!

uc3
K&out5S 0

0

A12s

As

D .

The unitary transformationU maps the input states onto th
output states, i.e,uc i

K&out5Uuc i
K& in , for i 51,2,3. In addi-

tion, it must map the vector that is orthogonal to the thr
input vectors onto the vector that is orthogonal to the th
output vectors,

1

A2s11 S As

As

As

2A12s

D 5US 0

0

0

1

D . ~5.13!

The action ofU on these four vectors completely determin
it, and we find that it is given by the matrixM (4), which is
M ~4!5S A2

3
A~12s!/3~2s11! 0 As/~2s11!

21/A6 A~12s!/3~2s11! 1/A2 As/~2s11!

21/A6 A~12s!/3~2s11! 21/A2 As/~2s11!

0 A3s/~2s11! 0 2A~12s!/~2s11!

D . ~5.14!
le

la-

and
Using the method described in Sec. IV,M (4) can be factor-
ized as

M ~4!5T1,2•T1,3•T2,3•T2,4, ~5.15!

where the parameters that determine the matricesTpq are
given in Table I~this example is referred to as case 1!. Note
that because these matrices are real the complex conju
which appears in Eq.~4.15!, is unnecessary.

Now let us consider a more general case than the one
have been studying so far. We shall assume that two of
overlaps are the same and the third is different, in particu
that

^c1uc2&5^c1uc3&5s1 ,
~5.16!

^c2uc3&5s2 ,
te,

e
e
r

where we shall assume, for simplicity, thats1 ands2 are real
and between 0 and 1. For a fixed value ofs1 there is a
restriction on how larges2 can be. The largest the ang
betweenc2 andc3 can be is twice the angle betweenc1 and
c2 ~this maximum is achieved when the vectors are cop
nar!. This implies that s2>2s1

221. Application of the
Lagrange multiplier method to the minimization ofQ8 gives
us q25q3 and

q15
q2

21s1
22s2

2

q2
. ~5.17!

Substituting these results into the constraint equation
definingy5q2 /s2 andb5s1 /s2, we have

y42~21b2!y212b2y112b250. ~5.18!
1-7
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The roots of this equation arey51,216b, and two of them,
1 andb21, yield valid solutions, the latter ifb>1. Substi-
tution of these results intoQ shows that ifb,2 then the
solution y51 gives the minimum and ifb>2 then y5b
21 gives the minimum. Summarizing, we find that ifb
,2, the minimum value ofQ is @(s1

2/s2)12s2#/3 and~solu-
tion 1!

q15
s1

2

s2
,

~5.19!
q25q35s2 ,

and if b>2, then the minimum value ofQ is 2(2s12s2)/3
and ~solution 2!

q152s1 ,
~5.20!

q25q35s12s2 .

Clearly, for these solutions to be valid, all of the probabiliti
have to be between 0 and 1.

The next step is to find the failure vectors. If solution 1
the valid one, we find from Eq.~5.10! that the failure space is
one dimensional, and ifuu1

A& is the normalized basis vecto
for this space, then

uf1
A&5

s1

As2

uu1
A&,

~5.21!
uf2

A&5uf3
A&5As2uu1

A&.

If solution 2 is the valid one, then the failure space is tw
dimensional. Ifuuj

A& where j 51,2 is an orthonormal basi
for this space we find that

uf1
A&5A2s1uu1

A&,

uf2
A&5As1

2
uu1

A&1As1

2
2s2uu2

A&, ~5.22!

uf3
A&5As1

2
uu1

A&2As1

2
2s2uu2

A&.

Let us look at an example of each solution. If we choo
our three states to bec15(1,0,0), c25(1/A3)(1,1,1), and
c35(1/A3)(1,1,21), we find thats151/A3 ands251/3, so
that solution 1 is valid. The complete treatment of this ca
~case 2! is given in Table II. We see that we need an eig
port which can be built up by two U(2) blocks. Note that
order to achieve minimum failure probabilityQ, we need to
chooseq1 to be 1, which means that we sacrifice the pos
bility of distinguishing stateuc1&.

If we choose our states to bec15(1,0,0), c25 1
3 (1,2,2),

and c35 1
3 (1,2,22), then we find that solution 2 is valid

with s151/3 ands251/9. In this case~case 3! we need a
ten-port, and the complete results are given in Table III. N
02231
e

e
-

i-

e

that, if the procedure fails, it is still possible to gain som
information about the input state, because the failure spac
two dimensional@6#. This is not possible if the failure spac
has only one dimension.

One possibility is to attach to the failure space outp
~outputs 4 and 5! a network that transforms statesuf2

A& and
uf3

A& into orthogonal states, which it will do only with a
certain probability@19#. In particular, we can construct a ne
work that implements the transformation

M ~3!5S 1

A6

1

A2
2

1

A3

1

A6
2

1

A2
2

1

A3

A2

3
0

1

A3

D , ~5.23!

where the inputs to the first two ports of this network~we
shall call these portsA andB) are the outputs of ports 4 an
5 of the original network, and the input to the third port~port
C) is the vacuum. This network has been designed so tha
no photon is detected emerging from outputC, then the input
stateuf2

A& will be transformed into a photon emerging fro
port A, and the input stateuf3

A& will be transformed into a
photon emerging from portB. If the input state isuf1

A& and
no photon is detected at outputC, the probabilities of a pho-

TABLE II. Summary of parameters and arguments ofTp,q for
case 2.

Input states c1 c2 c3

S1

0

0

0

D S1/A3

1/A3

1/A3

0

D S 1/A3

1/A3

21A3

0

D
Optimal failure q151
probability q251/3

q351/3
Output states c1 c2 c3

S0

0

0

1

D S 0

A2/3

0

1/A3

D S 0

0

A2/3

1/A3

D
M S0 0 0 1

0 1/A2 1/A2 0

0 1/A2 21/A2 0

1 0 0 0

D
Factorization ofM M5T1,4•T2,3

Arguments T1,4:v50,f50
of Tp,q T2,3:v5p/4,f50
1-8
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TABLE III. Summary of parameters and arguments ofTp,q for case 3.

Input states c1 c2 c3

S1

0

0

0

0

D S1/3

2/3

2/3

0

0

D S 1/3

2/3

22/3

0

0

D
Optimal failure q152/3
probability q252/9

q352/9
Output states c1 c2 c3

S1/A3

0

0

A2/3

0

D S 0

A7/3

0

1/A6

1/3A2

D S 0

0

A7/3

1/A6

21/3A2

D
M S1/A3 21/2A3 0 2A7/12 0

0 A7/4 A7/4 21/4 1/4

0 A7/4 2A7/4 21/4 21/4

A2/3 1/2A6 0 A7/24 0

0 0 1/2A2 0 2A7/8

D
Factorization ofM M5T1,4•T2,3•T2,4•T3,5

Arguments T1,4:v5arccos@A2/3#,f50
of Tp,q T2,3:v5

p

4
,f50

T2,4:v5arccos@21/2A2#,f50
T3,5:arccos@1/2A2#,f50
p
r
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r
1
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ton emerging from either portA or portB are the same. Note
that, as was discussed earlier, we do not actually need to
a photodetector at outputC; if the photon is detected at eithe
outputA or B, that guarantees that it would not be detected
outputC. Therefore, if the photon emerges from portA, we
can conclude the input to the entire network was eitherc1 or
c2, and if it emerges from portB then the input was eithe
c1 or c3. Summarizing, if one of the detectors in ports
through 3 clicks, we know what the input state was. If t
detector in either portA or B clicks, then we gain partia
information about the input state; the number of possibili
has been reduced from three to two. If none of these de
tors clicks, then the photon has emerged from outputC, and
we have gained no information about the input state. T
happens with a probability of 1/9 if the inputs werec2 or c3
and 4/9 if the input wasc1. The addition of the second
network to the failure outputs of the first significantly im
proves the chances of gaining some information about
input state.

VI. CONCLUSIONS

We have shown that nonorthogonal quantum states, e
realized as a photon split among several modes, can be
ditionally distinguished by means of a linear optical netwo
02231
ut

t

s
c-

is

e

ch
n-

.

For three states we have given explicit networks, which g
the maximum success probabilities for several sets of sta
In addition, it was shown that the addition of a second n
work to the outputs corresponding to a failure of the init
network to distinguish the states can sometimes provide
tial information about the input state.

We believe it should be possible to construct these n
works in the laboratory. The networks themselves consis
beam splitters and photodetectors. Producing a single-ph
is a problem, but this could perhaps be done by takin
photon pair from a parametric down-converter, detecting o
of the photons in order to determine that the pair had ind
been produced, and using the remaining photon in the
work.
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