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Unambiguously distinguishing between nonorthogonal but linearly independent quantum states is a chal-
lenging problem in quantum information processing. In principle, the problem can be solved by mapping the
set of nonorthogonal quantum states onto a set of orthogonal ones, which then can be distinguished without
error. Such nonunitary transformations can be performed conditionally on quantum systems; a unitary trans-
formation is carried out on a larger system of which the system of interest is a subsytem, a measurement is
performed, and if the proper result is obtained the desired nonunitary transformation has been performed on the
subsystem. We show how to construct generalized interferomgter$iports, which when combined with
measurements on some of the output ports, implement nonunitary transformations of this type. The input states
are single-photon states in which the photon is divided among several modes. A number of explicit examples
of distinguishing among three nonorthogonal states are discussed, and the networks that optimally distinguish
among these states are presented.
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I. INTRODUCTION Guo considered general unitary transformations and mea-
surements on a Hilbert space containing the states to be dis-
The time evolution of a closed quantum system is unitaryfinguished and an ancilla, which would allow one to dis-
hence scalar productangles between two quantum states criminate amongN states, and derived matrix inequalities
are conserved. However, when measurements are made Bt must be satisfied for the desired transformations to exist.
the system, it is possible to perform prescribed nonunitary For the experimental realization of quantum information
operations with a certain probability of success. In particularProcessing, one must choose a physical system to represent a
it is possible to alter the value of scalar products and, hencélubit. Some possibilities that have been used are energy lev-
the angle between state vectors. Such operations can be ugg Of 1ons, the orientation of a nuclear spin, and the presence

to unambiguously discriminate among nonorthogonal quan%aig/bstEZCSOOéaalllepdh%tSQI irr;i?r(é?)\;gzg;é\?ib ﬁn:ftge;ggﬁszvas
. h | i ’ e ) ’
tum states. A set of nonorthogonal states is mapped onto a s toposed by MilburL4], and later by Chuang and Yama.

of orthogonal ones, and the orthogonal states can be distiy . . .
guished without error. According to the quantum theory Ofmoto 15,16 A photon is split between two modes which

represent 0 and 1. When the elementary carriers of the in-

. - . : " aWaY35 mation are more than two-dimensional objettmitrits,
have a certain probability of failure, which, for the discrimi- ., qunits, in general, fon dimensiony one needs a more

nation of nonorthogonal states, corresponds to the probabile e ra) representation. Here we will show that single-photon
ity that we obtain inconclusive answers. Our aim here is tQtates can be used to represent general nonorthogonal states
find the optimum solution that minimizes the average prob4, n dimensions, and how this representation can be used for
ability of failure. state discrimination. A photon is now divided amomg
Considerable work has been done on this problem. Thengdes that represent the numbers,0,1 n—1. The
simplest case, distinguishing two nonorthogonal states, wagethod is a straightforward generalization of the dual-rail
first considered by Ivanovi€l], and then subsequently by representation of a qubit for more than two dimensions, and
Dieks [2] and Pereg43]. These authors found the optimal can be called the multiple-rail representation of a qunit. An
solution when the two states are being selected from an erpptical multiport, a kind of generalized interferometer with
semble in which they are equally likely. The optimal solutionmore than two inputs and outputs, together with measure-
for the situation in which the states have different weightsments made by the photon detectors placed at some or all of
was found by Jaeger and Shimd@yl. One can also consider the output ports, can conditionally realize the desired non-
what happens if the discrimination is not completely unam-unitary transformations of the initial, nonorthogonal single-
biguous, i.e., if it is possible for errors to occur, and this wasphoton states into orthogonal states. Our previous ddgr
done by Chefles and Barn¢g]. The case of three states was which proposed an optical realization to optimally discrimi-
examined by Peres and Terf®]. The generaN-state prob- nate between two nonorthogonal states, is a special case of
lem has been studied by Chef[&q, by Chefles and Barnett the method presented here.
[8], and by Duan and Gu®]. Chefles and Barnett employed  Optical experiments to distinguish between two quantum
the positive operator valued measure formalism and specifstates have already been carried out, first by Hutetel.
cally solved the case in which the probability of the proce-[18] and, more recently, by Clarket al. [19]. Both of these
dure succeeding is the same for each of the states. Duan anded the polarization states of photons to represent qubits.
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This paper is divided into six sections. In Sec. Il, wethe outcome isk then the resulting density matrix is
present a method for calculating the optimum probabilities ofA,pAl/p, . The requirement that the discrimination be error-
unambiguous discrimination between linearly independentiree implies that
nonorthogonal states. In Sec. Ill, the general properties of a
quantum system that realizes the optimum nonunitary trans- (| ALA 1) = p; S - (2.2
formation are found by assuming that the optimum probabili-
ties are known. In Sec. IV, we show how an optical multi- From this, by an application of the Schwarz inequality, it
port, which is designed to perform a particular unitaryfollows that
transformation, together with measurements at its output
ports can realize nonunitary transformations of nonorthogo- <¢k|A;‘Ai|¢j>: P&} Sik - (2.3
nal input states represented by single-photon states. Reck
et al. [20] gave a method to decompose any multiport into @  |f we denote by, thea priori probability that the system
series of beam splitters, phase shifters, and mirrors, and Wgas prepared in the state), the average probabilities of
will use this method to construct the desired multiport. Thesyccess and of failure to distinguish the stdig$ are, re-
general method is then illustrated by applying it to qutrits inspectively,

Sec. V. Examples are presented for the realization of trans-
formations that convert three specific nonorthogonal states to
orthogonal ones with a maximum probability of success. A PZZ 7iPi
brief discussion and conclusions are given in Sec. VI. ' 2.4
Il. OPTIMAL PROBABILITIES FOR UNAMBIGUOUS Q=2 74 .

DISCRIMINATION AMONG NONORTHOGONAL !

QUANTUM STATES o , o
Our objective is to find the set dfp;} that maximizes the

Suppose we are given a quantum system prepared in thgrobability of succes®, and the set of operator, that
state| ), which is guaranteed to be a member of the set otealize the corresponding generalized measurement.

nonorthogonal state§ ¢1),|#,), ... ,|¥,)}, but we do not Define the failure statpp;) as
know which one. We want to find a procedure that will tell
us which member of the set we were given. The procedure |y =A ). (2.5

may fail to give us any information about the state, and if it

fails it must let us know that it has, but if it succeeds it This is the state of the system if the input state W&$ and

should never give us a wrong answer. We shall refer to sucthe outcome was inconclusive. Chefl[@§ showed that the

a procedure as state discrimination without ef®L,22.  states{|¢;)} are linearly dependent whePis a maximum.

Note that this procedure has-1 outcomes; it either tells us  The interpretation of this result is the following. Because

which state we were given, or it tells us that it failedcon-  only linearly independent states can be discriminated without

clusive outcomg error, the operator corresponding to the inconclusive out-
In order to achieve error-free discrimination, Chefles hagome maps the set of linearly independent stétgs} onto

shown, in a very clear analysis of the problem, that the se} |inearly dependent set, which then cannot be unambigu-

|2),12), - .. |¢hn) must be linearly independefit]. If the  ously discriminated by any further process. As we shall see,

states are not orthogon@abhich we shall assumethey can-  however, this does not mean that some information cannot

not be discriminated perfectly. That means that if we areye extracted from an inconclusive result.

given|y;) we will have some probabilitp; of distinguishing Now consider the inner produ¢ipy|#;), and define the

it successfully and, correspondingly, some failure probabilitymatrix C by Cyj={l ¢;). Using Eqs(2.1), (2.5), and(2.3),
g;=1- p; of obtaining an inconclusive answer. DenoteMy e find

the Hilbert space spanned by the initial states

{l4r1).1¥2), ... |¥n)}. Since there is a chance to get an in- (bl i) =l ;) =P Six - (2.6)
conclusive answer, the number of outcomes of this process is

larger than the dimension @{; hence this process is a “gen- The matrixC is positive semidefinite. This can be seen by
eralized measurement” which can be represented by a set aibting that for anyn-dimensional vector, whose components
operators that form a resolution of the identi#} we shall denote by;, wherei=1, ... n,

n 2
ATA ATA _"
A A,+2i AlA =1, 2.1 ”_2:1 bf Cijb;= =0. 2.7

;1 bil &)

where A; is the operator that corresponds to the outcom&ynen thep; are equal to their optimal values, i.e., the values
|¢:), andA, is the operator that corresponds to the inconcluthat maximizeP, the linear dependence of the;) implies
sive outcome. In more detall, jf is the density matrix of our that

given state, then the probability of obtaining tkéh out-

come, wher& can be 1, ...n or |, is p,=Tr(pA[Ay) and if de(C)=0, (2.9
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so thatC has at least one zero eigenvalue wikeis a maxi-  where| ') is a failure state, and we have added a super-
mum. script.A to denote the fact that it is in the subspadeThe

In conclusion, the optimum probabilitigs can be found  other outcome corresponds to obtaining an inconclusive an-
by maximizing P subject to the following constraintgi) swer and transformbﬂi}C)out into |¢iA>-
det(C) =0; (i) Cis non-negative, or, equivalently, all of the  Equation(3.1) and the fact thatl is unitary imply that
principal minors ofC are non-negativé9]. In both of these

conditions, the matri is considered to be a function of the (il 67y = (vl — pj Sy (3.2
probabilitiesp; , i=1, . .. n, with matrix elements given ex- o . o
plicitly by Cy={(td ;) —P; i« - which is just Eq.(2.6). If (and only if the matrixC is non-

; . . » A . .
When we consider the case of just two nonorthogonanegative, we can always find vectdig;”) that satisfy this
states, the above result immediately gives the following re€quation. This follows from the fact that a non-negative ma-

lationship between any two failure probabilities: trix can be written as the product of a matrix and its adjoint;
in particular, we can express as
= 2, 2.9
A192= (1| ¥2)| (2.9 C=ATA, 3.3

This is the same result that was obtained in our previou
paper[19]. In particular, when the two states have egaal
priori probabilities, 7,=7,=3%, we found the maximum
probability of success to be

Yor some matrixA. If we define| ¢;)=Alj), where|j) is the
vector whosejth component is 1 and all of whose other
components are zero, then we have Bat=(¢;| ¢y) . Once
we have found these vectors and specified the ve

then the operatot can be found by means of E¢3.D.
These conditions may not completely determihef they do
not, then there is freedom in choosing it. This will be the
case if the dimension ofl is greater than 1U maps vectors
in A to vectors in the subspac®of K that consists of the
lll. REALIZATION OF GENERALIZED MEASUREMENT vectors that are orthogonal to all of the vectp§),,. The

Once we know the set of optimum discrimination prob_dimension ofSis m. The freedom in_ choosing comes fr_om
abilities{p,}, we would like to find a realizable experimental the fact that Eq(3.1) does not specify howd is mapped into

procedure to achieve it. We shall do this first abstractly, and>:, | Poth are one dimensional, then the mapping is deter-
then show how it can be realized by linear optical elementsMined (up to an overall phaggbut if their dimension is

Let us first summarize the procedure, and subsequently fill igréater than 2 itis not.

the details. We begin with a total Hilbert spake which is Or_19e the measurement and the operaﬁohave been .

the direct sum of two subspacé§=H® A. The spacéH is specified, our reah;atmn of the general;zed measurement is
ann-dimensional space that contains the vectgr$, and.A completely detgrmlneq. The nexF task is to find a physical

is the space that will contain the failure vectdis). We system with which 10 implement it.

shall denote the dimension gf by m. The input state of the
system is one of the vectofg;), which is now a vector in

the subspacé{ of the total spacdC. A unitary transforma-

tion U that acts in the entire spade is now applied to the We now want to propose an experimental procedure to
input vector, resulting in the state")o,. A measurementis achieve our nonunitary transformation by using optical de-
performed on the part ofiy ), in A, and, if the proper vices. We shall show how this can be accomplished by using
result is obtained, the vectd/ ), is projected onto the a single-photon representation of the stdte$ and an opti-
vector|el’), which lies in the subspadé. The probability of  cal multiport together with photodetectors at the output ports
this occurring isp; . The vector:{|e?‘>,i =1,...n} are or- to carry out the desired nonunitary transformation.
thonormal and can be distinguished perfectly. The effect of Our Hilbert space will consist of a single photon, which is
the unitary transformation on an extended space and th@ivided amongn+m modes. The modes themselves could
measurement is to map a set of nonorthogonal vectors ontole¢ distinguished by having different wave vectors or they
set of orthogonal ones. might be modes of different optical fibers. A basis for this
We now need to specify) and the measurement, and let space consists of the single-photon Statéa;rlo)lj
us discuss the latter first. The measurement has two out=1, ... n+mj}, where|0) is the vacuum state amj‘ is the
comes, one of them corresponding to the oper&grthat  creation operator for thgth mode. The state$aj’f|0>|j
projects onto the subspa@é, and the other to the operator =1, ... n} form a basis for the spact/, and the states
P4=1- Py that projects onto the subspade The first out-  {af|0)[j=n+1,... n+m} form a basis for the space.
come corresponds to the successful transformation{of,,,  The initial states|y;) can be represented as single-photon
into |e/*), and its probability of occurrence fs. This im-  states i, which can be written as
plies that

P=1—|(¢|¢2)]. (2.10

This is the well known Ivanovic-Dieks-Peres linfit—3].

IV. OPTICAL REALIZATION OF NONUNITARY
TRANSFORMATION

_ H\ At
) our= il +] 67, 3.1 =2, dile)=2, diallo), @3
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where we have chosen the stateg) to be|ef‘)=é}‘|0”). Note that we have made use of the fact that the vacuum is

An optical 2N-port is a lossless linear device withinput invar_iant under the_ transformatidh,y . This_implies that the
ports andN output ports. Its action on the input states can beMatrix elemenM, is the same as the matrix elementlbfy
described by a unitary operatbk,y, and physically it con- between the single-particle statds)=a/ [0) and |I)
sists of an arrangement of beam splitters, phase shifters, andal’f |0). Choosingc;= g in the above equation and then
mirrors. Choosind=n+ m, we send the single-photon state oy
|4) into the firstn input ports, which correspond #®, and
the vacuum into the remaining input ports, which corre-
spond to.A. Photodetectors are placed at the lasbutput (i[Uonlly=Mj . (4.6)
ports(the ones corresponding i), and if there is no photon

detected the desired nonunitary transformation will havel-he desired matriM can be found from Eq3.1), and our

been ca}gned_ out. In particular, W'tWiK}out: Uan|#i),  next task is to decompose it in such a way that it corresponds

where| "),y is given by Eq.(3.1), the action of the mea- g 3 Jinear optical network.

surement, if successful, is to project the output state onto Thig problem has been solved by Reatkal.[20], and we

"), and the probability of achieving this 5 . shall summarize their method. They gave an algorithmic pro-
This procedure is conceptually clear, but in practice thereedure to factorize anilx N unitary matrix into a product

are problems in requiring that a photon not be detected. Fasf two-dimensional (2) transformations, and it is this pro-

example, the photon may be incident on the detector but naiedure that we shall adopt here to construct oNrpdrt,

be registered due to finite detection efficiency. Because Wehich is characterized by the matrik of Eq. (4.2).

are dealing with only one photon, however, it is possible to |t is well known that a lossless beam splitter and a phase

circumvent this problem. Suppose now that odt-@ort has  shifter with appropriate parameters can implement afg) U

detectors placed at its first output ports, the ones corre- transformation; a beam splitter with a phase shifter at one

sponding to}. These detectors are necessary in order to telbutput port transforms the input operators into output opera-
us which output state iftt we have, and this, in turn, tells tors as

what the input state was, if the procedure is successful. Now,
because there is only one photon, if it emerged from one of
the firstn output ports, it did not emerge from one of the last
m ports. That means we do not need detectors at tharlast
ports. If the photon emerges from one of the firgtorts and
is detected, then the procedure has been successful.

If we denote the annihilation operators corresponding tovherea; anda, are the annihilation operators of modes 1

the input modes of the-port bya; , j=1,2,... N, then and 2 respectively. In their paper, Reekal. considered the
the output operators are given by " use of a Mach-Zehnder interferometer to simulate the effect

of a beam splitter that does not split the incoming beam
N equally, in which case describes the reflectivity and trans-
a_ =Unla; U= Mpay (4.2  mittance of the effective beam splitter witfR=sinw, \T
out " k=1 " =cosw, and¢ describes the effect of the phase shifter. If the

matrix describes an actual beam splitter, théh=cosw and

whereM_jk are thelelements of ad X N unitary matrixM. In JT=sino. Any Nx N unitary matrix UN) can be reduced
the Schrdinger picture, the “in” and “out” states are re- 4 (N—1)X (N—1) unitary matrix, UN—1), by multi-

lated by plying from the right by a succession of two-dimensional
unitary matrices,

taking the inner product of the result with), we find that

ai

e'’sine €e'%cosw)(a;
COSw —sinw

)_ (4.7

ay ax

out

| ‘//)C>out: U2N| l/f]c>in . (4.3

In general, for an “in” state that contains a single-photon

eial 0
-

U(N)'R(l)z( 0 U(N-1)

N
[ )in= 2 ca]]0), (4.4
=1 Here R(1)=T;» T3 --Tyn, and T, 4 is defined as an
N-dimensional identity matrix with elements,, 1,4, 14p,
I4q replaced by the corresponding elements of(2) Unatrix.
It performs a unitary transformation on a two-dimensional

whereS(L,|c;|?=1, the “out” state is given by

Ky K
[#Your=Uanl ¥ in subspace of the fulN-dimensional space, and can be imple-
N mented by attaching a beam splitter and a phase shifter to
=Uo,n > c,—ajT_ U,]0) portsp anda.
=1 n We can repeat the above transformation, decreasing the
N dimension of the remaining unitary matrix by 1 at each step.
:'2 CijTkal. |0). (4.5 Applying this procedure to the matrid of Eq. (4.2), we
ik=1 in have that
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Mirror matrix elements that are completely determirigids is not
7/////////////////////////////,'///4/////////////////////////4 true if we start withM instead oM 7). Now if the first row of
) ‘ ) MTR(1) is zero except for the first element, then by unitarity
the first column is also zero, except for its first element.
Continuing in this way we have that

glar 0 0
MT-R(1)-R(2 R 0 e
‘R(1)-R(2)---R(n)= 0 0o - ,
0 0 M
(4.13

FIG. 1. The implementation of an optical multiport that per- where M ,, is anmxm unitary matrix that contains the in-
forms the unitary transformatiod (N) described in Eq4.12. The formation about the matrix elements lih that are not com-
beams are straight lines, a suitable beam splitter is at each Cross"ﬂﬂ’etely specified. At this point, we can chodge, to be any

point of the beams. phase shifters are at one input of each beaﬁhitary matrix, and the simplest choice is tex m identity
splitter and at the outputs of the multiport. Each diagonal line of the !

multiport reduces the dimension bf(N) by 1. matrix, I . Defining

i el 0 0
e 0 0 .
. 0 e a2

0 e D'= , (4.19

M-R(1)-R(2)---R(n+m)= 0 0o - ) 0 0o .
o 0 0 I
0 0 e'%+m m
(4.9  we have that
Denoting byD(a;,a,, ... ,a,) the diagonal matrix M=[R(1)R(2)---R(n)D']*. (4.15
e*ial 0
e ia V. APPLICATION TO THREE STATES AND EXAMPLES
D= 0 ' (4.10 In this section we first apply the above considerations to

the problem of realizing optimal discrimination among three
nonorthogonal but linearly independent quantum states, in
we have general. Then we illustrate the method on specific examples.
For simplicity, we assume that tleepriori probabilities are
M-R(1)-R(2)---R(n+m—1)-D=1, (4.11)  all equal, ;= 7,=73=1/3.
From Eq.(2.4), the probability of failure is

e '%+m

3
M=D 1. R(n+m-1)"1...R(1)" L (4.12 Q== q. (5.1)
=1

W =

Since the product of matrices is equivalent to setting up
experimental devices in sequence, B412 implies that to  The requirement of the linear dependence of|th¢ vectors
get M the actual experimental setup is made of a series ofi =1,2,3) leads to the constraint given by ER.8). For the
U(2) blocks to achieveR(n+m) 1...R(1)"%, andn+m  case of three vectors it can be written as
appropriate phase shifters attached to the output ports to pro-
duceD 1. Figure 1 gives a picture of the practical imple- A=de(C)

mentation ofM. _ _ 2_ 2_ 2
It is possible to save some steps by modifying this proce- 0109203~ 01/ 023"~ A2/ O1d "~ 05| O

dure. As was mentioned earlier, the matkikis not always +01,0,4075+ 01,035,015
completely determined. In particular, there is freedom in
choosing the matrix elementd;, for k>n. Let us now see =0, (5.2

what happens if we apply the procedure of Retlal. to the

transpose oM, M7, instead ofM itself. It is now the matrix  WhereOy; = (¢ ;). o .
elements MT)jk for j>n that are not completely deter- _E_m_ploymg the Lagrange multiplier method, we wish to
mined, and we shall leave them that way for now. The maminimize the quantity

trices making upR(1) are chosen to make all of the ele-

ments, except the first, of the the first rowMf'R(1) zero. Q= E E g+ 1A (5.3

In finding each of the matriceB, 4, we only need to use the 3 ’ '
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which immediately leads to the conditions which 6>0, no pair of failure states is linearly dependent.
However, the three failure states together are linearly depen-

19_Q'_}+)\A ~0 dent, so that in this case the dimensionality of the auxiliary

49, 3 B Hilbert spaceA is 2.

Next, we shall consider specific examples involving three

Q" 1 nonorthogonal but linearly independent state vectors, to il-
a_qzzgﬂ\Als: 0, (54 |ustrate the general considerations of the previous sections.

In particular we want to determine explicitly the parameters

Q" 1 and dimensionality for the special multiports that optimally
a—q3=§+)\A12=0, discriminate among the three quantum states. For simplicity,

we shall assume that tleepriori probabilities are equal in all
of our examples.

Our first case is a simple one; the overlaps of the three
states will be assumed to be real and equal

where \ is a Lagrange multiplier, and;,, A3, A,z are
subdeterminants ofC, A;,=0;0,—|015? etc. Equation
(5.4) implies that

A12:A13:A23:—%- (5.5) (Palha) =l r3) = (sl 1) =, (5.7

This means that all three subdeterminants are equalsLet Where 0<s<1. The constraint of Eq2.8) is, in this case,
= —1/3\ denote this common value and recall that all sub-
determinants oC must be non-negative, so thé0. 5 5

From Eq.(5.5 we can solve for the)'s, yielding 410203—S EI qi+2s°=0, (5.8

_ \/(|O12|2+ 8)(|014*+ )
q.=

: and application of the the Lagrangian multiplier method im-

2
(|024°+ ) plies thatq; =q,=q3, and that
014%+ 8)(|0,9%+ 6
Qo= \/(| 12"+ 9)(1024 ), (5.6) 93— 3s%q;+253=0. (5.9
(1014%+5)
0.2+ 8) 1042+ 8 This gquat!on ha}s two tsolu-tionq-,.=-s,—2$, of \_Nhich.only
Qs= \/(| 14 )(2| 2d ), g;=s is valid. This solution is a minimum and it implies that
(|01d°+9) the optimal value of the total failure probability @=s.

) ) ) Our next step is to find the failure vectors. For any 3
Finally, we can substitute E€5.6) into Eq..(5.2) to solve for 3 hositive matrix_, we find that we can express its matrix
6 and then use the above equations to find the Correspondlr@gemems ak;i=(pi| b:) if
q; values. When we solve faf, there are often a number of . e
different solutions. However, we need only consider solu-
tions that are greater than or equal to zero, and which give |$1)=(VL11,0,0),
values ofq; that are between 0 and 1. If there are several
solutions that satisfy these conditions, we must determine
which one gives the actual minimum. If there are none, then )= i /A_lz 0 (5.10
we must examine the boundary of the allowed region to find 2 Ly, YLl )’ ’
the minimum. The pointd;,q,,q3) lies inside or on the
surface of a unit cube whose vertices lie on the points

(j,k,1), wherej,k,I=0 or 1. If the Lagrange multiplier ap- P >_( Lig Logbii—LiLis [ A )
3/ I 3
A12

proach does not yield a valid solution the minimum Q@f L Vliho
subject to the constrait =0 must lie on the surface of the 1 1712
cube.

Note that if the overlaps are real and positive, a situatiorwhere A ;,=L ;L ,,— |L1,/? and A=detL. Applying this to
we shall consider shortly, thefi=0 is always a solution of the matrix C, with g;=s, i=1,2,3, we find that the three
Eq. (5.2. In this case, if all the correspondirgy for §=0 failure vectors are identical; they all have magnituﬂ_eand
are between 0 and 1, then this sef{qf} is a possible solu- point in the same direction. Therefore, our failure spacis
tion to our problem, i.e., a minimum d® that satisfiesA one dimensional, the full Hilbert spadé=H® A is four
=0. If it is, in fact, the solution, we see tha;,=A;3  dimensional, and we will need an eight-port to accomplish
=A,3=0, which implies that each possible pair of the statesour unitary transformation.
|#i), 1=1,2,3, is linearly dependent, so that all three states In order to find the necessary unitary transformation, we
¢; are in a line, i.e., the dimensionality of the auxiliary Hil- must first specify our input states. Let us choose our three
bert spaceA is 1. If the solution to the problem is one for states to bein the full spacelC=H® A)
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TABLE I. Arguments ofT, , for case 1. The range of arccos is 1—s 0
the interval[ 0,77].
0 1-s
Ky _ Ky _
o) 10 |’p1>out_ 0 ) |¢2>out— 0 )
T arcco§—1/\/5] 0 Js Js
Tis arccof— 1/\/6] 0 (5.12
Tas —arcco§— /2/5] 0 0
Tos arcco§/3s/ 1+ 2s] 0 0
| w§>out: 1—s
2
\@@ —J1-s/\6 Vs
V1+2s/4/3
| =| V1+2s/V3 |, [¢h)in= V3 , The unitary transformatio) maps the input states onto the
0 J1-s/\2 output states, i.€ ) ou=U|¥ i, for i=1,2,3. In addi-
0 tion, it must map the vector that is orthogonal to the three
0 input vectors onto the vector that is orthogonal to the three
output vectors,
—\1-=s/ Jé
o J1+2s/4/3 5.1 Js 0
0 V2s+1 Vs 0 '
where ¢; are represented by single-photon states. One can —vl-s 1

verify that (y| o) =(a|ths) =(¥s|p1)=s. The output _ _
states can be found from E¢B.1), and are explicitly given The action ofU on these four vectors completely determines

by it, and we find that it is given by the matriM (4), which is

\E V(1—9)/3(2s+1) 0 Vs/(2s+1)

M(4)=| —1N6 J(1-s)/3(2s+1) 12 Jsl(2s+1) , (5.14)
—1\6 (1-s)/3(2s+1) —1L2 Js/(2s+1)
0 3s/(2s+1) 0 —J(1-s)/(2s+1)

Using the method described in Sec. IM(4) can be factor- where we shall assume, for simplicity, ttgtands, are real
ized as and between 0 and 1. For a fixed value %f there is a
restriction on how larges, can be. The largest the angle
M(4)=T15T13Ta3 Tou, (5.15 betweeny, and 5 can be is twice the angle betwegn and
¥, (this maximum is achieved when the vectors are copla-
where the parameters that determine the matritgsare  napn. This implies that s,=2s7—1. Application of the
given in Table I(this example is referred to as case Mote ~ Lagrange multiplier method to the minimization @Qf gives
that because these matrices are real the complex conjugates g,= s and
which appears in Eq4.15), is unnecessary.

Now let us consider a more general case than the one we 2,2 g2
QTS —S;

have been studying so far. We shall assume that two of the 1= (5.1
overlaps are the same and the third is different, in particular a2
that
Substituting these results into the constraint equation and
(| o) = (| 3y =51, definingy=q,/s, and8=s,;/s,, we have
(5.1
(Wl 3)=s2, y*=(2+B%)y*+2p%+1-p*=0. (5.18
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The roots of this equation aye=1,— 1+ 3, and two of them,
1 andB—1, yield valid solutions, the latter iB=1. Substi-
tution of these results int@ shows that if3<2 then the

PHYSICAL REVIEW A64 022311

TABLE Il. Summary of parameters and argumentsTgf, for

case 2.

solutiony=1 gives the minimum and i3=2 theny=p  Input states 4 2 3
—1 gives the minimum. Summarizing, we find that gf 1 143 143
t§2, ;?e minimum value o is [(si/sz)+232]/3 and(solu- 0 13 113
ion
0 143 -13
2 0 0 0
Q1=S_2- Optimal failure g.=1
(5.19 probability q,=1/3
02=03=Sz, ds=1/3
Output states Uy Uy s
and if =2, then the minimum value d® is 2(2s;—5,)/3 0 0 0
and (solution 2 0 J273 0
q].: 251! 0 0 \/ﬁ
(5.20 1 143 13
J2=03=81—S2. M 0 0 0 1
Clearly, for these solutions to be valid, all of the probabilities 0 12 182 0
have to be between 0 and 1. 0 12 -12 0
The next step is to find the failure vectors. If solution 1 is 1 o0 0 0
the vqlld one, we find frorE E_c(5.10) that thg failure SPace is -, torization oM M=T s Tss
one dimensional, and {iu;') is the normalized basis vector Arguments T14iw=0,4=0

for this space, then

Of prq T213:w:’77/4,¢20

St
s,
|93 = 3) = Vs uz).

A
up),

|p1)=

that, if the procedure fails, it is still possible to gain some

information about the input state, because the failure space is

two dimensiona[6]. This is not possible if the failure space

has only one dimension.

If solution 2 is the valid one, then the failure space is two One possibility is to attach to the failure space outputs

dimensional. If|u) wherej=1,2 is an orthonormal basis (outputs 4 and ba network that transforms statps;) and

for this space we find that |¢§4> into orthogonal states, which it will do only with a
certain probabilityf 19]. In particular, we can construct a net-

|1ty = \2s1|ush), work that implements the transformation

(5.2))

S1 S1
|43)= \Glua“w > -slug), (5.2 o1
V6 V2 3
A:\/iuA_ i_s LIA M(3)= i _i _i 5.2
|¢3> 2| 1> 2 2| 2> ( ) \/6 \/E \/§ ’ ( 3)
Let us look at an example of each solution. If we choose \F 0 1
our three states to bg;=(1,0,0), ,=(1/y/3)(1,1,1), and 3 73

3= (1/4/3)(1,1~1), we find thats;=1/\/3 ands,=1/3, so
that solution 1 is valid. The complete treatment of this case
(case 2is given in Table Il. We see that we need an eight-Where the inputs to the first two ports of this netwdvke
port which can be built up by two U(2) blocks. Note that in shall call these porté andB) are the outputs of ports 4 and
order to achieve minimum failure probabilify, we need to 5 of the original network, and the input to the third pguort
Chooseql to be ]_, which means that we sacrifice the possi_C) is the vacuum. This network has been deSign8d SO that, if
bility of distinguishing statey, ). no photon is detected emerging from out@ythen the input

If we choose our states to hig=(1,0,0), ¥,=%(1,2,2), state| ¢3") will be transformed into a photon emerging from
and y3=3(1,2,—2), then we find that solution 2 is valid portA, and the input statpgs') will be transformed into a
with s;=1/3 ands,=1/9. In this casgcase 3 we need a photon emerging from poiB. If the input state is#c/;{‘) and
ten-port, and the complete results are given in Table Ill. Noteno photon is detected at outp@f the probabilities of a pho-
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TABLE Ill. Summary of parameters and argumentsTgf, for case 3.

Input states U U U3
1 1/3 1/3
0 2/3 2/3
0 213 —2/3
0 0 0
0 0 0
Optimal failure q,=2/3
probability gq,=2/9
q3=2/9
Output states /2 s U3
13 0 0
0 J713 0
0 0 V713
V213 116 116
0 132 —1/3\2
M W3 —-12y3 0 712 0
0 V714 714 14 1/4

0 J714 =714 —14  —1/4
V213 1206 0 7124 0
0 0 1/2\2 0 —\J7/8

Factorization ofv M=T14 T3 TosTss
Arguments T, 4 w=arcco§\2/3],¢=0
of Ty q

Trzio= z ,¢=0
30=7
T,4:w=arcco§— 1/2,/2],¢=0
Tas:arcco§l/2y2],¢=0

ton emerging from either po& or portB are the same. Note For three states we have given explicit networks, which give
that, as was discussed earlier, we do not actually need to ptiie maximum success probabilities for several sets of states.
a photodetector at outp@, if the photon is detected at either In addition, it was shown that the addition of a second net-
outputA or B, that guarantees that it would not be detected afvork to the outputs corresponding to a failure of the initial
outputC. Therefore, if the photon emerges from péitwe  network to distinguish the states can sometimes provide par-
can conclude the input to the entire network was eithgor  tial information about the input state.

i, and if it emerges from poiB then the input was either ~ We believe it should be possible to construct these net-
Yy or 3. Summarizing, if one of the detectors in ports 1 works in the laboratory. The networks themselves consist of
through 3 clicks, we know what the input state was. If thebeam splitters and photodetectors. Producing a single-photon
detector in either porA or B clicks, then we gain partial is a problem, but this could perhaps be done by taking a
information about the input state; the number of possibilitephoton pair from a parametric down-converter, detecting one
has been reduced from three to two. If none of these detewf the photons in order to determine that the pair had indeed
tors clicks, then the photon has emerged from ou@uand  been produced, and using the remaining photon in the net-
we have gained no information about the input state. Thisvork.

happens with a probability of 1/9 if the inputs wapeg or ¢4

and 4/9 if the input wasy;. The addition of the second
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