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Enhanced estimation of a noisy quantum channel using entanglement
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We discuss the estimation of channel parameters for a noisy quantum channel—the so-called Pauli
channel—using finite resources. It turns out that prior entanglement considerably enhances the fidelity of the
estimation when we compare it to an estimation scheme based on separable quantum states.
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[. INTRODUCTION entanglement can enhance the capacity of quantum channels
to transmit classical informatiop#,10]. It is therefore justi-
In the last few years, the field of quantum information fied to consider entanglement as a fruitful resource which has

processing has made enormous progress. It has been shoW@ classical analofl1].
that the laws of quantum mechanics open completely new In the present paper we shall discuss a different applica-
Ways Of Communication and Computatib]:ﬂ_ Th|S progress tion of entanglement in the field of quantum Channelsl..l_et l:|S
has mainly been driven by understanding more and mor&uPpose that Alice and Bob are connected by a specific noisy
about the physics of entanglement. The corresponding norghannel. Both pa'rtles know about the fl_Jndamer)taI errors im-
classical correlations are central to completely new applicaP®S€d by the noise but they have no information about the
tions like quantum cryptography using entangled system§Crrésponding error strengths. Hence before Alice and Bob
[2], teleportation[3], and dense codinf4]. These are all use the channel for qommunlcanon they would like to esti-
mate the corresponding error rates. Then they can, for ex-

examples of superior information transmission with quantum . ; .
pe P q ample, decide on a suitable error correction schéh2é or
mechanical means.

c i h K has b d ¢ d th choose a suitable encoding for their informat[ds3]. In the
onsequenty, much work has been done toward e Ulkemainder of the paper we will show that prior entanglement

derstanding of quantum communication channels. In pring hciantially increases the average reliability of their estima-
ciple a quantum channel is simply a transmission line bes;y,

tween a sender, say Alice, and a receiver, say Bob, that

allows them to transfer quantum systems. The noiseless

channel leaves the quantum states of the transmitted systems Il. PAULI CHANNEL

intact. In other words, such a channel is completely isolated he channel that we will investigate in this paper is the so
from any environment. This is certainly a strong idealization..gjied Pauli channeC which causes single qubit errors.
More real;]sm.: is the ”0'5¥ (E‘uantum channel ﬂ;}at takes intorhese single qubit errors can be fully classified by the Pauli
account the interaction of the sent system with an environ_ .. S N~

. = + = —
ment: the corresponding quantum state decoheres. In eﬁeg;[:)onp_eratorarl |0><1.| I1)(0], o2 I.(|1><O| |.O><1|).'
this process can be described by a superope@ihich in a1 03=0)(0|—[1)(1] in the computational basis defined

general maps Alice’s pure stafe)( | on a density operator by [0) and|1). The application of the unitary operatoos
p=C(|)(]) on Bob’s side[5]. leads to a fundamental rotation of a qubit stide=cy|0)

The prominent topics of research in the field of quantum 1| 1) with coefficientsc; . Thebit flip error is given by,
channel theory are to understand the notion of capacity of ¢at is, o1|q)=cg|1)+c4|0). It exchanges the two basis
quantum channel and to understand the role played by ersgates. Thehase-fliperror o-5|q) = ¢|0) — ¢4|1) changes the
tanglement. The prodf6] of the quantum analog of Shan- sjgn ofc, in any coherent superposition of the basis states.
nons nqlse_less coding theorelm] was a ”_“'E‘Ston?‘ in this Finally o, generates a combination of bit and phase flip.
field indicating that a quantum theory of information trans- In a Pauli channel each of the three errors can occur with

mission is possible in parallel to its classical counterpart, , .
Consequently, much work then concentrated on the concegt certain probabiliyp; so that the superoperator reads

of capacity for a general noisy quantum charji®e9]. Hence 4

these investigations aim at quantifying the maximum rate at A 2 Ay

which information can be sent through a noisy quantum C(p)—i:1 PiTipo; (1)

channel: in analogy to the noisy-channel coding theorem of

Shannor{7]. Moreover, it was showh8] that entanglement .

can be used as a resource to quantify the noise of a quantuf¥ith o,=1 and with probabilityp,=1—p;—p,—ps that

channel. the density operator remains unchanged. Hence the Pauli
However, since a quantum channel can carry classical ghannel is completely characterized by a parameter vector

well as quantum information, several different capacities cap=(p;,p,,ps) . Thus the action of the channel on the gen-

be defined[8,9]. In particular, it is well known that prior eral density operator
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y é _'|:|_’ :i: FIG. 2. Plot of the estimation enhancement due to the use of
ﬁ__, Iy *> entangled qubit pairs. For the specific examplegpgf 0 we have
Q N & > plottedNA, Eq. (11), versus the channel probabilitips andps in

the allowed parameter range<(; +ps=<21. This quantity that is
FIG. 1. The two schemes for estimating the Pauli-channel palndependent oN is always non-negative. Fqr,=0 the maximum

rametersp; from an initial supply ofN qubits. In scheméa) Alice ~ 9ain of NAy,,=25/38~0.66 is reached fop,=p;=5/19. In the

prepares single qubits in three different quantum stategm ~ 9eneral case p=0) the maximum value OMNAyq=75/112

=N/3 qubits in each stateand sends them through the quantum ~9-67 1S found forp, = p,=p3=5/28.

channel. After receiving the qubits Bob measures the opetgtor

for each qubit. Thus he finally possesdésmeasurement results (g) p1=p[s=(1,0,0)], (b) p,=p[s=(0,1,0)], (© ps

from which he estimates the parametprs In schemeb) Alice and _tral T h tCH)sA (b)

Bob shareN’=N/2 entangled pairs of qubits prepared ifj¢a ) . pls (O’O’Al) 1 and Bob measures the operattaso,,

Bell state. Alice sends her qubit through the quantum channel t&2, and(c) o3 [14]. The corresponding expectation values

Bob who then performs a Bell measurement onto the qubit pairs. Iq&i>: 1—2P; depend on the probabilit; to measure the

this scheme Bob records only/2 measurement results. eigenvalue— 1 (spin down in each case. With the help of
5 Egs.(2) and(3) we immediately find that the parameter vec-
~ s 1. - tor

p(8)=5|1+2 sio; v

i=1
defined by the Bloch vects=(s,,s,,s3)" with s, R and 1 P3—P1tP;
|s|<1 can be described by the basic transformations p= > P,—P,+P; (4)

. . P,—P3+P
C(o1)=[1-2(p+Pp3)]os, 2o
Cloz)=[1=2(p1+P3)]oa, can be calculated from the measured probabiliBes

- - If only finite resources are available Bob just finds fre-
C(o3)=[1-2(p1+p2)]os, ©) quencies instead of probabilities. UsiNgqubits for each of

the three input states and the corresponding measurements

andC(1)=1. Our aim is to estimate the parametg;sfrom gields the estimated parameters
|

a finite amount of measurement results. Hence the gener
scenario is the following: Alice prepares qubits in well-
known reference states and sends them to Bob through the

; ig—ii+i
channel to be estimated. Bob knows those reference states ) 3oz
and performs suited measurements on the qubits he has re- peStzm Eh PRl F (5)
ceived. The statistics of his measurement results will then i,—ia+iy

allow him to estimate the parametears.

IIl. CHANNEL ESTIMATION if i; results “—1" are recorded for the measurementqu.

First, we consider the case—also depicted in Fig)d&  The reason we choose the same numbeM efubits for each
that Alice sends single qubits through the channel. In order t@f these measurements is that we assume complete ignorance
determinep Alice has to prepare three well-defined reference@Pout the probabilitiep;. .
states. For each of the states Bob then measures one operatoAS the measure of estimation quality we use a standard
so that at the end Bob has measured three independent opatistical measure, namely the quadratic devialign, (p;
erators. —p;*)? which describes the error of the estimation. With
The natural choice is that Alice prepares three pure statethis choice of cost function we find the average error
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MMM TV MY M _ The Pauli channel transforms the initipl~) state into a
fMp=2> > > (i )(, )(l )(IO2+ P3)'t mixture of all four Bell states |¢™)=1/y2(|0)|0)

170 12701570 LTI T2 0TS +|1)[1)), |¢*)=1/2(|0)|1)=|1)|0)) where each Bell

X (1= po—pa)M 1Py + pa)'2 state is generated by exactly one of the possible single qubit

) ) errorsfri . Bob now performs a Bell measurement in which
X(1=p1=ps)™'2(py+py)'s he finds each Bell state with probability
3
_ _ M—i __n&st2
X (1=pa=p2) I31'21 (P, Pi ) Pigy=P1, Plgty=pP2,  Ply+y=ps,
3
= op LP(1=P1) +P2(1=P2) +P3(1=Ps) ~PaP2 Ply-y=1=p1—p2—Ps. (8)
— PoP3— P1Ps] (6) Note that Alice and Bob can only use the same qubit re-
. _ sources as before. That is, if they have ubksingle qubits

averaged over all possible experimental outcomes. before they can now generag = N/2 ebits in the reference

Up to now we have only considered the case that Alicestate|~). Consequently Bob gets only half as many mea-
sendsN=3M single unentangled qubits through the Paulisyrement results as before: he finds four valigsi,, i3,
cha'nnel.. Howgver, one.could also think of using entangleqmdi4 with Ef=1ij=N’ for the number of occurrences of the
qubit pairs(ebit9 to estimate the channel parameters. Forgay states|¢ ), [¢*), |¢"), and|4~). From these four
this purpose we consider the following second scenariQ, es he can calculate the estimated probabilities
which is also shown in Fig.(b): Alice and Bob share an ebit
prepared in g~ )=1/y2(]0)|1)—|1)|0)) Bell state. Alice
sends her qubit through the Pauli channel whereas Bob sim- i) i iy
ply keeps his qubit. The channel causes the transformation p'iSt:W, p25‘=m, §St=m 9)
C - —1) — - -+ + 4 + +

(X0 D =pal XS 1+pal 67N &7+ palyr” )y that fully characterize the Pauli channel. The average error

+(1=p1—po—pa)| W |. (7)  for the estimation scheme with entangled qubits then reads

3
— 2 N A
GNp= X —wp'fp'zzp?(l—pl—pz—pg)"‘j; (pj—p;™)?

INEN
i +ig+igrig=N' l17127 13"

N’ N =i N —ij—ip

N'! o 3 i\?
- : 1nl2nl3 _n —p,— )N’—il—iz—i3 b
ilzo i22=o i32:o Tl (N iy ipigt PPz Ps (1P PamPs 121 (p' N’)
1
:W[pl(l_p1)+p2(1_p2)+p3(1_ps)]- (10)
|
We can now compare the average errors, Egsand(10),  is non-negative for all possible parameter valyesThis
for both estimation schemes. As emphasized above for, a fafiearly shows that we indeed get an enhancement of the es-
comparison we have to consider the same numbe2N timation quality due to the use of entangled qubit pairs. This

=3M of available qubits for both schemes. We find that theg,hancement is illustrated in Fig. 2 for the case=0 which

difference already shows the typical features®f We see that\ (N, 5)

is always positive except for the extremal poinfs

A(N,p)=Ff(M=N/3,p)~g(N"=N/2p) =(0,0,0)", p=(1,0,0)", andp=(0,0,1)" whereA vanishes.
1 Instead of comparing the errors for the same number of
= m[S(l— P1—P2—P3)(P1+ P2+ P3)+PiP2 _available gubits one could also compare t_he (_estimation qual-
ity for the same numbeK of channel applications. For the
+p1p3+ pP2p3]=0 (11)  latter case we havi=N’'=3M so that the enhancement
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Z(K,ﬁ) =f_(M _ K/3,5) —E(N' =K, 5) tion of the quantu_m channel for f|_n|te |n|t|al_resou_rces which
can be counted in terms of available qubits or in terms of

1 channel applications. In contrast to dense codilg where
- R[nl_ P17 P2~ P3)(P1t P2+ P3) +5p1p, we achieve an optimal encoding of information by entangle-
ment, we obtain an enhanced extraction of information about
+5p1P3+5p2ps] a quantum channel here. As a consequence this additional
=0 (12) information about the channel can be used in practical quan-
tum communication problems to optimize error correction
due to entanglement is even larger. scheme$12] or signal ensembldd 3].

IV. CONCLUSION
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