PHYSICAL REVIEW A, VOLUME 64, 022307
Grover algorithm with zero theoretical failure rate
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In a standard Grover’s algorithm for quantum searching, the probability of finding the marked item is not
exactly 1. In this paper we present a modified version of Grover’s algorithm that searches a marked state with
full successful rate. The modification is done by replacing the phase inversion by phase rotation through angle
¢. The rotation angle is given analytically to lge=2 arcsin(sif #/(4J+6)]/sin B), where sin3=1/\N, N is
the number of items in the database, and any integer equal to or greater than the integer paf{af2)
—B1/(2B). Upon measurement at thé- 1)th iteration, the marked state is obtained with certainty.
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Grover’'s quantum search algorithpd] is an important rithm with certainty becomes important. Meanwhile con-
development in quantum computation. It achieves squarestructing such a quantum search algorithm itself is an inter-
root speedup over classical algorithms in unsorted databassting issue. In this paper we present such a modified Grover
searching. It has extensive applications, because many problgorithm.
lems, for instance deciphering the DES encryption scheme, In fact, two such algorithms already exist. One is given by
can be reduced to this problei@]. Starting from an evenly Brassardet al. [3] where the generalized algorithm searches

distributed state, the Grover algorithm searches the databaiée databasg, iterations with the standard Grover algo-
with rithm, and then run one more iteration with a modified algo-

rithm whose step is smaller. ijer gave another generaliza-

jop=[ (72— B)I(2P)], (1)  tion [4], where certainty is achieved by modifying the

Grover algorithm and making change to the initial distribu-
or jopt+1 number of times, whichever ¢2(j,,+1)+1]8  tion. Our algorithm here complements with these algorithms.
and (J,,+1)B is closest ton/2. Here ﬁ:arcsin(u/ﬁ) In addition, the present algorithm materializes one earlier
and[ ] means taking the integer paffl is the number of anticipation[5]. It was pointed out that when the phase in-
items in the database. Maximum probability is achievedversions are replaced by arbitrary rotations in Grover’s algo-

when measurement is made at the optimal iteration step, a#hm [6], a quantum search algorithm with a smaller itera-
it is tion can be constructed. Zalka anticipated that this could be

used to achive certainty in quantum searcHiBgby running
Prax= sinz[(2j0p+ 1)B]=1. 2) a quantum searching algorithm with a smaller step so that at
an integer number of iteration, the quantum computer state
It equals 1 if (3,,+1)B=m/2. This condition is usually vector is exactly the marked state. Our algorithm here is just
approximately satisfied. This can be seen from Table | whersuch an algorithm.
values ofj,,, (2j,,11)B for N are given. The deviation The g_engralized Grover algorithm here starts from the
(2jop+1)B from @/2 is on the order of 4/N. This small ~ evenly distributed state
deviation becomes negligible when the dimension of the
guantum database becomes very large, for instance in deci- )= i Z i)
phering the DES code whemd= 2% the deviation is only YN S
3x10°°. The standard Grover algorithm has already

achieved high probability, and in most potential applications 1

it is sufficient. = \/_N(|O>+|1>+ s+ +IN=1))
However, in problems where certainty is vital, especially

when the dimension is not so big, using a searching algo- =sinB|1)+cosp|2), 3)

TABLE I. Examples ofj,, and (Z,,+1)8.

N= 2 4 8 100 1000 1% 10° 106° 10'° 256
jop 0 1 1 7 24 78 784 7853 78539 210828713
(2jopt1)B 1 1 069016 0956528  0.986617 0.99951  0.998857  0.999939  0.999996  0.999999997
T 2
2
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TABLE Il. Examples ofj,,+1 and¢.

N= 2 4 8 16 100 1000 10 10° 108 101
Jopt1 1 1 2 3 8 25 79 785 7854 78540
f E 1 0.677007 0.698709 0.748018 0.854022 0.90089 0.989752 0.992688 0.9973
T 2
and the searching operator is cess. We do this in th&0O(3) picture introduced recently
[9]. In this picture, the quantum search opera#r corre-
Q=—WIyWI, sponds to a rotation in space
—e'%(1+(e'?—1)sirPB) —(e'?—1)sinBcosp Ry Ry, Ris
—e?(e'?—1)sinBcosp —e'+(e'?—1)sirPB]’ Ro=| Ro1 Res Rosl, ®)
4 Ra1 Rs2 Ras

where the matrix expression is written in the following basis:where

11)=17), R1;=C0S¢}(coS 23 coS¢+ Sir? 2 3) + cos 28 sirt ),
1 Ri,=cos¢ sing(cos 28—1),
12)= > i) (5)
N—1i#7 . L, .
R;3= —COS¢ sin 483 S|n2§+sm 2Bsit ¢,
and
_ B . ¢ L, P
l,=1+(e?=1)|7){, R,;= — c0s 28 cos¢ sing+ co§5—cos4,85|n2§ sing,
. (6)
lo=1+(e'’—1)[0)(0], R,,= 0L ¢+ cos 28 Sirt ¢,
where é
Ry3= — C0S¢ sin 28 sin ¢ —sin 483 sinZEsin o,
) T
ARV p
=2 arcsi ng )" Rg1= —sin4p sinzi,
J=Jgp- (7) Rzo=sin 28 sin ¢,
Here the two-phase rotations are equal which is required by R33=C0S 23+ cos¢ sir? 28.

the phase-matching conditiof7,8]. Certainty quantum o _ _ .
searching is achieved by measuring the quantum computer &he above rotation is a rotation about the following axis:
J+1 iteration. In a standard Grover algorithrh= . In

Table Il we gave the anglé for some values oN. It is seen cosf
that in general the phase rotations are very close .tte 2
see that at smalN, the deviation of¢ to 7 is big, and it ) b
decreases wheN becomes large. The certainty of the algo- = sinE , 9
rithm can be examined by direct computation. We will give
the detailed derivation of this result in ti80(3) picture of ¢
cos tang

the quantum searching algorithr@]. 2
Equation(7) has a real solution fad=j,,, otherwise the
solution will be complex. An integed=j,, fixes a phase through an anglex
rotation that searches the marked state with certainty in
+1 steps. The lower boung,, tells us that it cannot be
faster than the standard Grover algorithhtan be chosen to
be j,p, Or an integer larger thap,, for convenience.
In the following part, we show the above result and giveState vectot )= (a+bi)|1) + (c+di)|2) is represented by
the expression for the probability during the searching prothe polarization vector

sinB]|. (10

a=4 arcsi+sin( ?
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2(ac+bd)
2(—bc+ad)
a’+b%—c?-d?

Fy=(¢loly)= (1)

whereg= axr+ ayf+ UZIZ, andi, f andk are the unit vec-
tors along thex, y, andz axes. The initial statg;) and the
marked statér) are represented by

sin(2)
r= 0 )
—co92p)

0
ri=| 0 (12
1

Now we want to find out the angle that we must rotate to
shift r; to r;. The equation for a line passing through the

origin and parallel to the rotational axis is

x oy z 13
cosf sinf cosf tan |
2 2 2 B

and the equation for the plane passing through (070ahy
normal to the rotational axis is
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(Fi_r)o)’(rf_ro):|

we find that

Fi— Fol|Fe— Folcosw, (16)

cosw= — co$B— Ccos¢ sirfB=cog 2 arccox), (17)

where

X= sin( ?) sinB. (18
Certainty in finding the marked state is achieved if anglis
J+1 times of the basic rotation angte

w=2 arccosx)=(J+1)a=4(J+1)arcsinx). (19

Using the trigonometric relation arcsir-arccox= m/2, we
obtain

w= 2(z - arcsinx) =4(J+1)arcsinx).

2

This gives the result of Eq.7). Equation(7) has real solu-

tions forJ=j,,. J=],, is the minimum in most cases. In

the cases oN=4 andN=1, J=j,,— 1 itself is a solution.
The probability for finding the marked state during the

xcos£+ysinf+(z— 1)cosftanﬂ=0, (14 searching can be obtained easily. In €X(3) picture, the
2 2 2 polarization vector at a given iteration is obtained by a
The intersecting point of Eq$13) with (14) is simple geometric argument,
Fij="F; cosw+ I (I F)(1—cosw) + (I, F)sinw,
ccod > |tang (20)
. [ ¢ Wherelﬁn is the rotational axi$9) normalized to unity. Using
fo=| csin 7 |cos > |tans |, (159 Eq.(11), the state vector can be determined easily. The prob-
ability for finding the marked state iz¢1)/2.
ccod| = |tar’B We can also write out the expressions in thg2) formal-
2 ism. After diagonalization, th& operator can be written as
where c=1/(1+cog¢/2tarf8). The anglew betweenr, Q=TAT,
—fp andr;—r, is the angle we have to rotate in a given
number of iterations. Using where
—i(pl2) AP , _
1 e co 5 sinB+cosp cosp
T=— ,
N7 cosf e'(#/2) cm{%) sinB+cosp’
_gi(¢+28") 0
A= 0 _gile-28) |
, Naw
B’ = ald=arcsinsin > singB],
¢ 2
Nr=cosB+ cos(E)sin[Hcos,B’ .
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Successive operations d can be written analytically is important, and in cases where preparation of the initial
through state and the change of the experimental setting during the
computation process are difficult.
Q"=TAT".
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