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Grover algorithm with zero theoretical failure rate
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In a standard Grover’s algorithm for quantum searching, the probability of finding the marked item is not
exactly 1. In this paper we present a modified version of Grover’s algorithm that searches a marked state with
full successful rate. The modification is done by replacing the phase inversion by phase rotation through angle
f. The rotation angle is given analytically to bef52 arcsin(sin@p/(4J16)#/sinb), where sinb51/AN, N is
the number of items in the database, andJ is any integer equal to or greater than the integer part of@(p/2)
2b#/(2b). Upon measurement at the (J11)th iteration, the marked state is obtained with certainty.
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Grover’s quantum search algorithm@1# is an important
development in quantum computation. It achieves squ
root speedup over classical algorithms in unsorted data
searching. It has extensive applications, because many p
lems, for instance deciphering the DES encryption sche
can be reduced to this problem@2#. Starting from an evenly
distributed state, the Grover algorithm searches the data
with

j op5@~p/22b!/~2b!#, ~1!

or j op11 number of times, whichever of@2( j op11)11#b
and (2j op11)b is closest top/2. Here b5arcsin(1/AN)
and @ # means taking the integer part.N is the number of
items in the database. Maximum probability is achiev
when measurement is made at the optimal iteration step,
it is

Pmax5sin2@~2 j op11!b#>1. ~2!

It equals 1 if (2j op11)b5p/2. This condition is usually
approximately satisfied. This can be seen from Table I wh
values of j op , (2j op11)b for N are given. The deviation
(2 j op11)b from p/2 is on the order of 1/AN. This small
deviation becomes negligible when the dimension of
quantum database becomes very large, for instance in d
phering the DES code whereN5256 the deviation is only
331029. The standard Grover algorithm has alrea
achieved high probability, and in most potential applicatio
it is sufficient.

However, in problems where certainty is vital, especia
when the dimension is not so big, using a searching a
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rithm with certainty becomes important. Meanwhile co
structing such a quantum search algorithm itself is an in
esting issue. In this paper we present such a modified Gro
algorithm.

In fact, two such algorithms already exist. One is given
Brassardet al. @3# where the generalized algorithm search
the databasej op iterations with the standard Grover algo
rithm, and then run one more iteration with a modified alg
rithm whose step is smaller. Ho”yer gave another generaliza
tion @4#, where certainty is achieved by modifying th
Grover algorithm and making change to the initial distrib
tion. Our algorithm here complements with these algorithm
In addition, the present algorithm materializes one ear
anticipation@5#. It was pointed out that when the phase i
versions are replaced by arbitrary rotations in Grover’s al
rithm @6#, a quantum search algorithm with a smaller iter
tion can be constructed. Zalka anticipated that this could
used to achive certainty in quantum searching@5# by running
a quantum searching algorithm with a smaller step so tha
an integer number of iteration, the quantum computer s
vector is exactly the marked state. Our algorithm here is
such an algorithm.

The generalized Grover algorithm here starts from
evenly distributed state
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5sinbu1&1cosbu2&, ~3!
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TABLE I. Examples ofj op and (2j op11)b.

N5 2 4 8 100 1000 104 106 108 1010 256

j op 0 1 1 7 24 78 784 7853 78539 21082871
(2 j op11)b

p

2

1
2

1 0.69016 0.956528 0.986617 0.99951 0.998857 0.999939 0.999996 0.9999
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TABLE II. Examples of j op11 andf.

N5 2 4 8 16 100 1000 104 106 108 1010

j op11 1 1 2 3 8 25 79 785 7854 78540
f

p

1
2

1 0.677007 0.698709 0.748018 0.854022 0.90089 0.989752 0.992688 0
is
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and the searching operator is

Q52WI0WIt

5F2eif~11~eif21!sin2b! 2~eif21!sinb cosb

2eif~eif21!sinb cosb 2eif1~eif21!sin2bG ,
~4!

where the matrix expression is written in the following bas

u1&5ut&,

u2&5
1

AN21
(
iÞt

u i & ~5!

and

I t5I 1~eif21!ut&^tu,
~6!

I 05I 1~eif21!u0&^0u,

where

f52 arcsinS sinS p

4J16

sinb
D ,

J>Jop . ~7!

Here the two-phase rotations are equal which is required
the phase-matching condition@7,8#. Certainty quantum
searching is achieved by measuring the quantum comput
J11 iteration. In a standard Grover algorithm,f5p. In
Table II we gave the anglef for some values ofN. It is seen
that in general the phase rotations are very close top. We
see that at smallN, the deviation off to p is big, and it
decreases whenN becomes large. The certainty of the alg
rithm can be examined by direct computation. We will gi
the detailed derivation of this result in theSO(3) picture of
the quantum searching algorithm@9#.

Equation~7! has a real solution forJ> j op , otherwise the
solution will be complex. An integerJ> j op fixes a phase
rotation that searches the marked state with certainty iJ
11 steps. The lower boundj op tells us that it cannot be
faster than the standard Grover algorithm.J can be chosen to
be j op , or an integer larger thanj op for convenience.

In the following part, we show the above result and gi
the expression for the probability during the searching p
02230
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cess. We do this in theSO(3) picture introduced recently
@9#. In this picture, the quantum search operator~4! corre-
sponds to a rotation in space

RQ5FR11 R12 R13

R21 R22 R23

R31 R32 R33

G , ~8!

where

R115cosf~cos2 2b cosf1sin2 2b!1cos 2b sin2f),

R125cosf sinf~cos 2b21!,

R1352cosf sin 4b sin2
f

2
1sin 2b sin2f,

R2152cos 2b cosf sinf1S cos2
f

2
2cos 4b sin2

f

2 D sinf,

R225cos2f1cos 2b sin2f,

R2352cosf sin 2b sinf2sin 4b sin2
f

2
sinf,

R3152sin 4b sin2
u

2
,

R325sin 2b sinf,

R335cos2 2b1cosf sin2 2b.

The above rotation is a rotation about the following axis:

lW5S cos
f

2

sin
f

2

cos
f

2
tanb

D , ~9!

through an anglea

a54 arcsinFsinS f

2 D sinbG . ~10!

State vectoruc&5(a1bi)u1&1(c1di)u2& is represented by
the polarization vector
7-2
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rWc5^cusW uc&5S 2~ac1bd!

2~2bc1ad!

a21b22c22d2
D , ~11!

wheresW 5sxiW1sy jW1szkW , and iW, jW, andkW are the unit vec-
tors along thex, y, andz axes. The initial stateuc i& and the
marked stateut& are represented by

rW i5S sin~2b!

0

2cos~2b!
D , rW f5S 0

0

1
D . ~12!

Now we want to find out the angle that we must rotate
shift rW i to rW f . The equation for a line passing through t
origin and parallel to the rotational axis is

x

cos
f

2

5
y

sin
f

2

5
z

cos
f

2
tanb

, ~13!

and the equation for the plane passing through (0,0,1)T and
normal to the rotational axis is

x cos
f

2
1y sin

f

2
1~z21!cos

f

2
tanb50. ~14!

The intersecting point of Eqs.~13! with ~14! is

rWo5S c cos2S f

2 D tanb

c sinS f

2 D cosS f

2 D tanb

c cos2S f

2 D tan2b

D , ~15!

where c51/(11cos2f/2 tan2b). The anglev betweenrW i
2rW0 and rW f2rW0 is the angle we have to rotate in a give
number of iterations. Using
02230
~rW i2rWo!•~rW f2rWo!5urW i2rW0uurW f2rW0ucosv, ~16!

we find that

cosv52cos2b2cosf sin2b5cos~2 arccosx!, ~17!

where

x5sinS f

2 D sinb. ~18!

Certainty in finding the marked state is achieved if anglev is
J11 times of the basic rotation anglea:

v52 arccos~x!5~J11!a54~J11!arcsin~x!. ~19!

Using the trigonometric relation arcsinx1arccosx5p/2, we
obtain

v52S p

2
2arcsinxD54~J11!arcsin~x!.

This gives the result of Eq.~7!. Equation~7! has real solu-
tions for J> j op . J5 j op is the minimum in most cases. I
the cases ofN54 andN51, J5 j op21 itself is a solution.

The probability for finding the marked state during th
searching can be obtained easily. In theSO(3) picture, the
polarization vector at a given iteration is obtained by
simple geometric argument,

rW j5rW i cosv1 lWn~ lWn•rW i !~12cosv!1~ lWn^ rW i !sinv,
~20!

wherelWn is the rotational axis~9! normalized to unity. Using
Eq. ~11!, the state vector can be determined easily. The pr
ability for finding the marked state is (z11)/2.

We can also write out the expressions in theU(2) formal-
ism. After diagonalization, theQ operator can be written as

Q5TLT†,

where
T5
1

ANT
S e2 i (f/2)FcosS f

2 D sinb1cosb8G 2cosb

cosb ei (f/2)FcosS f

2 D sinb1cosb8G D ,

L5S 2ei (f12b8) 0

0 2ei (f22b8)D ,

b85a/45arcsinFsinS f

2 D sinbG ,
NT5cos2b1FcosS f

2 D sinb1cosb8G2

.
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Successive operations ofQ can be written analytically
through

Qn5TLnT†.

In summary, a Grover algorithm with certainty is prese
Together with the algorithms in Refs.@3# and @4#, there are
three choices of the quantum searching algorithm for find
the marked state with certainty. Our algorithm may be app
ciated in cases where the dimension is not big and certa
t

02230
.

g
-
ty

is important, and in cases where preparation of the ini
state and the change of the experimental setting during
computation process are difficult.
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