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Communication of spin directions with product states and finite measurements
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Total spin eigenstates can be used to intrinsically encode a direction, which can later be decoded by means
of a quantum measurement. We study the optimal strategy that can be adopted if, as is likely in practical
applications, only product states Nfspins are available. We obtain the asymptotic behavior of the average
fidelity, which provides a proof that the optimal states must be entangled. We also give a prescription for
constructing finite measurements for general encoding eigenstates.
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Quantum mechanics is rapidly broadening our knowledgeo be the only ones that can be used in real deWiaksough
of the ways information can be stored, transmitted, and rethey are expected not to be optimalhere are then two
trieved. Here we address the concrete issue of communicapbvious questions one would like to answer. First, among
ing information of a direction using quantum states, whichthese states, what are the best for encoding a direction? And,
has attracted much attentidqdi—8]. Consider two parties, second, is there a quadratic improvement in the rate the MAF
Alice and Bob, and imagine that Bob is lost in space andapproaches to one? We will answer these questions in this
Alice wants to tell him the direction home. If communication paper. We show that the optimal product states are those with

by standard means is difficult, she can encode the directiohe smallestm|, wherem is the eigenvalue oh-S, and that
in a quantum system and physically send it to Bob. Alice'sthe corresponding MAF for larghl is F~1—1/(2N). This
quantum state mushtrinsically point along the direction, result proves our implicit assumption that the truly optimal
given by the unit vecton. If we assume that her system is states are entangled fbi>2. Although product states do not

made out ofN spins, then it must be an eigenstateﬁoé, exhibit the quadratic behavior in N/of the truly optimal

whereS is the total spir{9]. After he receives the state, Bob ON€S: We see that they are still much better tharNtparallel

can perform a quantum measurement and retrieve Alice’SPIN States for ccr)]mmunlcat]!ng aspin dllrect|on. .
direction with some accuracy. From each outcoftabeled To compute.t e MAF oran optimal measurement, it s
with an indexr) of the measurement, Bob will guess a di- useful to consider a positive operator valued measurement

. . . N L (POVM) with infinitely many outcomes or continuous
rection, given by a unit vecton,. We use the fidelity (1 POVM [10]. We show, however, that one can always con-

+n-n,)/2, as afigure of merit(we have also computed the stryct optimal POVM's with a finite number of outcomes.
information gain for a check of our conclusigndn average  This is an important point since these are the only measure-
f|de||ty F=1 means a perfect determination of the direction.ments that can be phys|ca||y imp|emented_ For para||e| en-
We can viewN as the size of the resources available to Alice.codingS, there are explicit realizations of optimal finite
Obviously, the average fidelity should increase as the repQvM's for arbitraryN [2], and minimal versions of these

sources increase. However, for a given number of resourcefor N<7 can be found in Ref3]. The outcomes of these
the actual value of the average fidelity and the rate it aﬁ’:POVM’s are associated with unit vectcris (directions that
proaches to one depend on the type of states being used. R

b can picture as the vertices of certain polyhedra inscribed
instance, the maximal average fideltyAF) for states oN . th it soh In thi that th
parallel spins| 1 --+1), is F= (N+ 1)/(N+2) [1], which is in the unit sphere. In this paper we prove that the very same

. o polyhedra define optimal measurements for very general en-
readily seen to approach unity linearlly~1—1/N. If the coding states and that the minimal polyhedra of &l
resources consist of only two spins, choosing them to b

femain minimal for these general states.
antiparallel, |T1),|T]), leads to a value off4] F=(3 9

M/ \ Alice’s states can be obtained by rotating a fixed eigen-
+/3)/6, which is larger thaif = 3/4 for two parallel spins.

Thus, one can improve on the communication of a direction € ofS,=2-S that we denote byA). In terms of the

without increasing the resources. In Rd#,8] we general- individual spins it is just of the form7 | |1---). Itis con-

ized these results to arbitralyand computed the MAF op- venient to write all quantum states in terms of the irreducible

timizing both Alice’s states and Bob’s measurements. wd epresentations BU(2), thus

proved that the MAF approaches unityfas 1—5.8N?, i.e., N2
there is a quadratic improvement on the quality of the com- A= > (2 A j,m;a>, (1
munication process over the parallel case. The optimal states j=m\ «a

that lead to such MAF are, in fact, a whole family of states, i
which for N>2 does not seem to include any state of thewhere the first tv!o labels are the usual quantum numbers of
form [111---1) (we will loosely refer to these states as the total spin § and its third components,, ie.,
product statés From the practical point of view, however, S?|j,m;a)=j(j+1)|j,m;a) and S)|j,m;a)=m|j,m;a).

product states are of crucial importance, since they are likelifhe third indexa labels different occurrences of the same
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TABLE I. Maximal average fidelitiesK) and information gains  encodings. Note that antiparallel product states lead to
(1) for parallel (P), antiparallel @) and optimal ©) encodings. MAF’s (F,) remarkably close to the optimal ones. More-
over, one can easily prove that antiparallel spins are better

N 2 3 4 S 6 7 than parallel ones for encoding a direction. We now show
Fs 0.75 0.8 08333 08571 0875 0.8gg this for an even number of spin§y=2n, and m=0, in

F. 07887 08444 08848 09069 09235 09342 Which case the MAF takes the simple form
Fo 07887 0.8449 0.8873 009114 09306 0.9429

1 2 n!? j
I, 06232 09180 1.1678 13827 15708 1.7376 Fa=5+ Em_,).(nﬂ)' IS ®)
I A 0.8664 1.2816 1.7077 2.0079 2.2873 2.4897

lo 0.8664 1.2925 1.7589 2.1086 2.4685 2.7548 Settingj=0 inside the square root, we obtain

n?j/(n+1) N+1

representatiorj in the Clebsch-Gordan decomposition of FA>§+ 21 (n—Hn+j)! “N+2 Fp. Q)
(1/2)®N. Also from Ref.[8], one can show that there exists ]
an optimal continuous POVM, defined by a complete set otn

We would next like to study the largd asymptotic be-
avior of F 5 to see whether it exhibits the quadratic behavior
positive projectors of the formO(nN)=UM)[|B}B o the optimal states 4 F o~ 1/N?. We just have to compute
+[B")(B'|+---]U"(n), where U(n) is the element of Eq. (5) for large n. Notice first that, using the Stirling ap-
SU(2) associated with the rotatidR:z—n, and|B), |B'),  proximation, we have the following limit:

, are fixed states given by linear combinations entirely

analogous to Eq(1). The average fidelity is n!? it 1+£_L+ B @
(n=jH(n+j)! 2n? 6nd '
f dn <A|O(”)|A> (2 Therefore, only terms witti~\n give a significant contri-

bution to the sum in Eq5). Hence, it is legitimate to expand
To compute Eq(2) one can use just the effective state the square root in Eq5) in powers ofj. The resulting ex-

|~B> EN/z \/21—“ m), instead of employing all ofB), pression can be evaluated by means of the Euler-Maclaurin
|B’>,... , i.e., O(n)—U(n)[BYB|UT(n). Similarly, for formula[11]
given quantum numbejsm, we define the effective compo- nq 1 f(l)_f(o)t f/(1)—f'(0)

nents of| A) asA;=/Z,(A)?, which contains the informa- Zl SfG/m= JO dx 1) +——, T2
tion required to compute the MAF. For afi) of the form =
[T17---) with n; spins up anc, spins down, the MAF in — ... 8

Eq. (2) can be computed using the effective stafe)

_EN/Z —n,)/2 and the coefficients where in our casé(j/n) is the product of the right-hand side

of Eq. (7) times the expansion off \(n+1)?—j2. Taking
A; are epr|C|tIy given by into account all the relevant terms, one obtains that up to

~_\/1+2j \/(J_m)!(3+m)! N order 1h,
NI+ YV (3-HE+H)Y =5 ©

We obtain the following MAF:

Fll 11 9
ATt TNt ©

Therefore, antiparallel spin states lead to a MAF that ap-

1 172 22, oo proaches unity in N, faster than it does for parallel spins,
=5+ 2, Z AT+ 7;+1 Aj_1Ajy;, (49 but only because of the smaller negative coefficient of the
B B 1/N term (1/2 compared to 1). In this sense, both types of
where([8] ;= m?/j(j+1) and =i 2_m2)/4j2—1. encodings are qualitatively similar. The quadratic behavior of

We have written equal quantum numbensfor |A) and truly optimal stateiwhlch_are enta_nglect:annot be attained
) - by any product state. It is lengthier, but straightforward, to

|B). Note that ifmg>mj, , O(n) would not be a complete set oy, te the subleading term in E@). We obtain the fol-

of projectors on the whole Hilbert space spanned byiowmg compact expression for the MAF:

U(n)|A) conversely, ifmg<<mj,, Alice’s states do not use

the full capabilities of Bob’s measuring device and the strat-

— 3
egy cannot be optimal. Fa=sng2 TON). (10
The maximal fidelity in Eq(4) is attained for the minimal
value of|m| (this ism=0 for N even andn=1/2 for N odd), To check that our results are not an artifact of our particu-

i.e., for maximal antiparallel spins. In Table | we collect the lar figure of merit, we have also computed the average infor-
values of the MAF for up tdN=7 and we compare them mation gain[12], | =[dn{A]O(n)|A}log,((A|O(n)|A)), for
with the MAF’s of parallel £p) [1] and optimal Eo) [8]  parallel, antiparallel, and optimal states. Our results are also
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collected in Table I. We see that both information gain and N(J) A, NO

fideli 4 : M_ (L)%= 77 -y

idelity exhibit the same pattern. Namely, optimén- =2 ¢, (n,)= > Y M6, b
tangled states lead to the largebtand F, but antiparallel r V2L+1

spins have values very close to the optimal ones and much . M .
larger than those of parallel spins. Now Egs. (12 S|mply _readz_L =0 for a!l L and M. I|§tgd

Up to now we have dealt with continuous POVM’s. They there. In the followingj and " are required to satisfy,}’
are useful mathematical tools that simplify the calculation of=J: The group theoretical results that will be used below are

the MAF for any optimal measurement on an isotropic dis-Mainly borrowed from Ref{13]. Note first that the product

- (i) - I
tribution of directions. The projectol®(n) satisfy the clo- 20U * in Eq. (1) can be written as a sum @V*

sure relationf dn O(n) =1 because of the orthogonality of lem—m' . Explicitly, Eq. (11) is equivalent to the set of linear
the nonequivalent irreducibBU(2) representation@fr'])m, ,  equations
under the isotropic integration over the unit sphere. How-

ever, only POVM's with a finite number of outcomes, can be 2 (21+1)
realized in nature. Unfortunately, finite POVM's are rather T

elusive because there is no clear and unique definition of

isotropy for a finite set of directionéunit vectors ﬁ,. We
provide here a functional definition, which will enable us to
give a general algorithm for constructing optimal and finite
POVM'’s. Moreover, it will become obvious that the problem Where
of discretizing a POVM is of geometrical nature. o,

In the context of this paper, we say that a finite set of unit ( o )
vectorsn, is isotropically distributed up to spid if there m m m’
exist positive weightgc,} such that the following orthogo-
nality relation holds for any,j’<J:

I I (J i’ Iszm’
m -m m-m'/lk -k 0/

C )
—(_1\m -k J m’ ojr

are the 3} symbols and the sum runs over bfiatisfying the
triangular conditior(in particularl <2J). By direct substitu-

NGD) tion, it is trivial to check that Eq(12) is a solution of Eq.

N> VA C ; (13 for all relevantj,j’ andm,m’. Therefore, Eqs(12) are
(i) (j")* _ J mr ojr )] ) , EQ
21 CrOmN) Dy (M) = 2j+1 Sm O (11) sufficient conditions. To prove that Eq4.2) are also neces-
sary, we multiply Eq(13) by
whereC,=3N¢, is the equivalent of the solid anglerin i j’ L
the continuous orthogonality relation m -m' M

rdQ ®DmoU* (R)=4m5™" 81'/(2j+1), andN(J) is

- 4 i
the number of elements ¢h,}. Here we use the shorthand and sum ovemn and m’. Next, we use the orthogonality

notation 20 =29 ($,6,0), where N condition[13]

=(sing cos¢,sind sing,cosd), and «a, B, y in it NG sl

D@, B,7), are the standard Euler angles. The main differ- D , ( B I S
ence between the continuous orthogonality relation and Eq. o \Mom kK imemtk 2l+1

(11) is that the latter can only hold fgr j' up to a maximal

value J. The largerd is, the larger theN(J) that must be where it is assumed that the triangular condition is satisfied,

to obtain
chosen.
We will now show that Eq(11) is equivalent to oL i i0
(‘ ’ )z[”=<—1>k(' J )cjéi’a‘ﬁéﬁ’ﬂ
N(J) L = 1.2,...,3, o ° 00 | (15)
\ts =0; 12
2 eV(0nd)=0 o (12

Let us consider the possible cases in this equation separately.
ForL#0, Eq.(15) is simply

whereY["(8, ¢) are the standard spherical harmonics. Equa- o

tion 12 is very appealing since one can establish a physical i’

analogy. If we viewc, as a(positive charge at the position

n,, Egs. 12 tell us that Eq11) is equivalent to the require-

ment that electrostatic multipoles of order less or equallto 2 The variablesz)! must be zero fot.=1,2,...,2, since the
vanish. Conditiong12) are exactly those given in Ref3]  3-j symbols are nonvanishing. The other case, Le=0,

for minimal and optimal POVM's in the case of a signal statedoes not give further information abog{!' , since the corre-
consisting ofN parallel spins. We see here that EGk2) are ~ sponding condition is trivially satisfied because of the prop-
actually of much greater generality. To simplify the notation,erties of the 3} symbols[13]. This completes the proof of

it is convenient to define the quantities the equivalence between Eq4l) and(12).

L
C —k O)ztﬂzo, vij,j'<J. (16)
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From Egs.(12), and working along the same lines as  Finally, we would like to note that, as far as the fidelity is
Derka et al. [2], one can produce an algorithm for finite concerned, Alice could also simulate a continuous isotropic
POVM's. Supposd is integer(if it is not, consider the near- gjstribution of directions by using a finite sf,} of isotro-
est integerJ>J). We define 3+1 angles¢,=2sm/(2J pically distributed vectors(11l) with a priori probability
+1); s=0,1,...,2. Then322,Y"(6,¢5)=0 (M>0) for  given by the weightgc, /C,}. The fidelity will not change

any 6, and we only need to solve providedJ=(2j+1)/2, whergj is the total spin of the signal
state {=N/2 for a system ofN sping. For instance, ifN
> cP (cosh)=0, L=102,...,3, (17) =2 and Alice uses unit vectors pointing to the vertices of an
K

octahedron J=3/2) with equal probability 1/6, the maximal
fidelities will be precisely those shown in Table | for a truly

where P is the Legendre polynomial of degrde We qntinyous isotropic distribution, namelyE p=3/4 andF ,
choose 0, to be the J+2 angles 6,=km/(2J+1); k =(3+3)/6.

=01,...,2+1; and defin&y=Cyy,,=1. Then, the system In summary, product states of antiparallel spins represent

(17)_ _Of linear equations fOC, Cp,..., Cpy AlWAYs has @ 5, eycellent balance between feasibility of construction and
positive solution. Actually,c,>1 for k=1.2,...,3. To  4napility to communicate spin directions. For small number
summarize, the unit vectors  n.—nNys  of spins, their maximal fidelity is remarkably close to the
= (sin 6 cosds,sin b sins,cosfy), along with the corre- maximal value that can be possibly achieved. For laxge
sponding weights, — cys=cy are isotropically distributed, these states lead to an average fidelity that approaches unity
i.e., Eq.(11) is satisfied. faster than states with parallel spins, although they do not
The above algorithm enables us to discretize any optimaéxhibit the quadratic improvement of the optimal states. We
continuous POVM. Just take the very same $&i@) used  have thus proven that the truly optimal encoding necessarily
to generate the projecto@(n) and consider the neinite) ~ requires entanglement. We have also obtained a simple set of
set O(n,)=U(n,)|B)YB|UT(n,). Modulo a trivial global conditions for constructing finite measurements. These con-

normalization factor,{O(ﬁr)} defines a finite POVM. The ditions work for any eigenstate of the total spin and, there-
fare, also hold for product states.

finite measurement thus obtained leads to the same fidelity as
the continuous one we started with. Moreover, since the con-

ditions (12) are exactly those used in R¢8] to obtain mini- The authors thank R. Tarrach and A. Brey for their col-
mal POVM's, it is clear that this construction also provideslaboration during the early stages of this work, and M.
minimal POVM's for generalB) states. For instance, the Lavelle for a careful reading of the manuscript. Financial
minimal POVM forN=2 has four outcomes pointing to the support from CICYT Contract No. AEN99-0766 and CIRIT
vertices of a tetrahedron, while fdf=3 there are six out- Contract Nos. 1998SGR-00051 and 1999SGR-00097 is ac-

comes corresponding to the vertices of an octahedron. knowledged.
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