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Communication of spin directions with product states and finite measurements

E. Bagan, M. Baig, and R. Mun˜oz-Tapia
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Spain
~Received 9 January 2001; published 5 July 2001!

Total spin eigenstates can be used to intrinsically encode a direction, which can later be decoded by means
of a quantum measurement. We study the optimal strategy that can be adopted if, as is likely in practical
applications, only product states ofN spins are available. We obtain the asymptotic behavior of the average
fidelity, which provides a proof that the optimal states must be entangled. We also give a prescription for
constructing finite measurements for general encoding eigenstates.
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Quantum mechanics is rapidly broadening our knowled
of the ways information can be stored, transmitted, and
trieved. Here we address the concrete issue of commun
ing information of a direction using quantum states, wh
has attracted much attention@1–8#. Consider two parties
Alice and Bob, and imagine that Bob is lost in space a
Alice wants to tell him the direction home. If communicatio
by standard means is difficult, she can encode the direc
in a quantum system and physically send it to Bob. Alic
quantum state mustintrinsically point along the direction,
given by the unit vectornW . If we assume that her system
made out ofN spins, then it must be an eigenstate ofnW •SW ,
whereSW is the total spin@9#. After he receives the state, Bo
can perform a quantum measurement and retrieve Ali
direction with some accuracy. From each outcome~labeled
with an indexr ) of the measurement, Bob will guess a d
rection, given by a unit vectornW r . We use the fidelity (1
1nW •nW r)/2, as afigure of merit~we have also computed th
information gain for a check of our conclusions!. An average
fidelity F51 means a perfect determination of the directio
We can viewN as the size of the resources available to Alic
Obviously, the average fidelity should increase as the
sources increase. However, for a given number of resour
the actual value of the average fidelity and the rate it
proaches to one depend on the type of states being used
instance, the maximal average fidelity~MAF! for states ofN
parallel spins,u↑↑•••↑&, is F5(N11)/(N12) @1#, which is
readily seen to approach unity linearly:F;121/N. If the
resources consist of only two spins, choosing them to
antiparallel, u↑↓&,u↑↓&, leads to a value of@4# F5(3
1A3)/6, which is larger thanF53/4 for two parallel spins.
Thus, one can improve on the communication of a direct
without increasing the resources. In Refs.@6,8# we general-
ized these results to arbitraryN and computed the MAF op
timizing both Alice’s states and Bob’s measurements.
proved that the MAF approaches unity asF;125.8/N2, i.e.,
there is a quadratic improvement on the quality of the co
munication process over the parallel case. The optimal st
that lead to such MAF are, in fact, a whole family of state
which for N.2 does not seem to include any state of t
form u↑↓↓•••↑& ~we will loosely refer to these states a
product states!. From the practical point of view, howeve
product states are of crucial importance, since they are lik
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to be the only ones that can be used in real devices~although
they are expected not to be optimal!. There are then two
obvious questions one would like to answer. First, amo
these states, what are the best for encoding a direction?
second, is there a quadratic improvement in the rate the M
approaches to one? We will answer these questions in
paper. We show that the optimal product states are those
the smallestumu, wherem is the eigenvalue ofnW •SW , and that
the corresponding MAF for largeN is F;121/(2N). This
result proves our implicit assumption that the truly optim
states are entangled forN.2. Although product states do no
exhibit the quadratic behavior in 1/N of the truly optimal
ones, we see that they are still much better than theN parallel
spin states for communicating a spin direction.

To compute the MAF of an optimal measurement, it
useful to consider a positive operator valued measurem
~POVM! with infinitely many outcomes or continuou
POVM @10#. We show, however, that one can always co
struct optimal POVM’s with a finite number of outcome
This is an important point since these are the only meas
ments that can be physically implemented. For parallel
codings, there are explicit realizations of optimal fini
POVM’s for arbitraryN @2#, and minimal versions of thes
for N<7 can be found in Ref.@3#. The outcomes of these
POVM’s are associated with unit vectorsnW r ~directions! that
we can picture as the vertices of certain polyhedra inscri
in the unit sphere. In this paper we prove that the very sa
polyhedra define optimal measurements for very general
coding states and that the minimal polyhedra of Ref.@3#
remain minimal for these general states.

Alice’s states can be obtained by rotating a fixed eig
state of Sz5zW•SW that we denote byuA&. In terms of the
individual spins it is just of the formu↑↓↓↑•••&. It is con-
venient to write all quantum states in terms of the irreduci
representations ofSU(2), thus

uA&5 (
j 5m

N/2 S (
a

Aj
aU j ,m;aL , ~1!

where the first two labels are the usual quantum number
the total spin SW 2 and its third componentSz , i.e.,
SW 2u j ,m;a&5 j ( j 11)u j ,m;a& and Szu j ,m;a&5mu j ,m;a&.
The third indexa labels different occurrences of the sam
©2001 The American Physical Society05-1
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representationj in the Clebsch-Gordan decomposition
(1/2)^ N. Also from Ref.@8#, one can show that there exis
an optimal continuous POVM, defined by a complete se
positive projectors of the form O(nW )5U(nW )@ uB&^B
1uB8&^B8u1•••#U†(nW ), where U(nW ) is the element of
SU(2) associated with the rotationR:zW°nW , and uB&, uB8&,
. . . , are fixed states given by linear combinations entir
analogous to Eq.~1!. The average fidelity is

F5E dn
11zW•nW

2
^AuO~nW !uA&. ~2!

To compute Eq.~2! one can use just the effective sta
uB̃&5( j 5m

N/2 A2 j 11u j ,m&, instead of employing all ofuB&,
uB8&, . . . , i.e., O(nW )→U(nW )uB̃&^B̃uU†(nW ). Similarly, for
given quantum numbersj, m, we define the effective compo
nents ofuA& asÃj[A(a(Aj

a)2, which contains the informa
tion required to compute the MAF. For anyuA& of the form
u↑↓↑•••& with n↑ spins up andn↓ spins down, the MAF in
Eq. ~2! can be computed using the effective stateuÃ&
5( j 5m

N/2 Ãj u j ,m&, wherem5(n↑2n↓)/2 and the coefficients

Ãj are explicitly given by

Ãj5A 112 j

J111 j
A~J2m!! ~J1m!!

~J2 j !! ~J1 j !!
, J[

N

2
. ~3!

We obtain the following MAF:

F5
1

2
1

1

2 (
j 5m

J

m j Ã j
21 (

j 5m11

J

Ãj 21Ãjn j , ~4!

where@8# m j5m2/ j ( j 11) andn j5 j ( j 22m2)/A4 j 221.
We have written equal quantum numbersm for uA& and

uB&. Note that ifmB.mA , O(nW ) would not be a complete se
of projectors on the whole Hilbert space spanned
U(nW )uA&; conversely, ifmB,mA , Alice’s states do not use
the full capabilities of Bob’s measuring device and the str
egy cannot be optimal.

The maximal fidelity in Eq.~4! is attained for the minima
value ofumu ~this ism50 for N even andm51/2 for N odd!,
i.e., for maximal antiparallel spins. In Table I we collect t
values of the MAF for up toN57 and we compare them
with the MAF’s of parallel (FP) @1# and optimal (FO) @8#

TABLE I. Maximal average fidelities (F) and information gains
(I ) for parallel (P), antiparallel (A) and optimal (O) encodings.

N 2 3 4 5 6 7

FP 0.75 0.8 0.8333 0.8571 0.875 0.888
FA 0.7887 0.8444 0.8848 0.9069 0.9235 0.934
FO 0.7887 0.8449 0.8873 0.9114 0.9306 0.942

I P 0.6232 0.9180 1.1678 1.3827 1.5708 1.737
I A 0.8664 1.2816 1.7077 2.0079 2.2873 2.489
I O 0.8664 1.2925 1.7589 2.1086 2.4685 2.754
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encodings. Note that antiparallel product states lead
MAF’s (FA) remarkably close to the optimal ones. Mor
over, one can easily prove that antiparallel spins are be
than parallel ones for encoding a direction. We now sh
this for an even number of spins,N52n, and m50, in
which case the MAF takes the simple form

FA5
1

2
1(

j 51

n
n! 2

~n2 j !! ~n1 j !!

j

A~n11!22 j 2
. ~5!

Setting j 50 inside the square root, we obtain

FA.
1

2
1(

j 51

n
n! 2 j /~n11!

~n2 j !! ~n1 j !!
5

N11

N12
5FP . ~6!

We would next like to study the largeN asymptotic be-
havior ofFA to see whether it exhibits the quadratic behav
of the optimal states 12FO;1/N2. We just have to compute
Eq. ~5! for large n. Notice first that, using the Stirling ap
proximation, we have the following limit:

n! 2

~n2 j !! ~n1 j !!
→e2 j 2/nS 11

j 2

2n2
2

j 4

6n3
1••• D . ~7!

Therefore, only terms withj ;An give a significant contri-
bution to the sum in Eq.~5!. Hence, it is legitimate to expan
the square root in Eq.~5! in powers ofj. The resulting ex-
pression can be evaluated by means of the Euler-Macla
formula @11#

(
j 51

n
1

n
f ~ j /n!5E

0

1

dx f~x!1
f ~1!2 f ~0!

2n
1

f 8~1!2 f 8~0!

12n2

2•••, ~8!

where in our casef ( j /n) is the product of the right-hand sid
of Eq. ~7! times the expansion ofj /A(n11)22 j 2. Taking
into account all the relevant terms, one obtains that up
order 1/n,

FA512
1

4n
1•••512

1

2N
1•••. ~9!

Therefore, antiparallel spin states lead to a MAF that
proaches unity in 1/N, faster than it does for parallel spin
but only because of the smaller negative coefficient of
1/N term (1/2 compared to 1). In this sense, both types
encodings are qualitatively similar. The quadratic behavio
truly optimal states~which are entangled! cannot be attained
by any product state. It is lengthier, but straightforward,
compute the subleading term in Eq.~9!. We obtain the fol-
lowing compact expression for the MAF:

FA5
2N11

2N12
1O~1/N3!. ~10!

To check that our results are not an artifact of our parti
lar figure of merit, we have also computed the average in
mation gain @12#, I 5*dn^AuO(nW )uA& log2(^AuO(nW)uA&), for
parallel, antiparallel, and optimal states. Our results are a
5-2
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collected in Table I. We see that both information gain a
fidelity exhibit the same pattern. Namely, optimal~en-
tangled! states lead to the largestI and F, but antiparallel
spins have values very close to the optimal ones and m
larger than those of parallel spins.

Up to now we have dealt with continuous POVM’s. The
are useful mathematical tools that simplify the calculation
the MAF for any optimal measurement on an isotropic d
tribution of directions. The projectorsO(nW ) satisfy the clo-
sure relation* dn O(nW )5I because of the orthogonality o
the nonequivalent irreducibleSU(2) representations,Dmm8

( j ) ,
under the isotropic integration over the unit sphere. Ho
ever, only POVM’s with a finite number of outcomes, can
realized in nature. Unfortunately, finite POVM’s are rath
elusive because there is no clear and unique definition
isotropy for a finite set of directions~unit vectors! nW r . We
provide here a functional definition, which will enable us
give a general algorithm for constructing optimal and fin
POVM’s. Moreover, it will become obvious that the proble
of discretizing a POVM is of geometrical nature.

In the context of this paper, we say that a finite set of u
vectorsnW r is isotropically distributed up to spinJ if there
exist positive weights$cr% such that the following orthogo
nality relation holds for anyj , j 8<J:

(
r 51

N(J)

crDmk
( j )~nW r !Dm8k

( j 8)* ~nW r !5
CJ

2 j 11
dm

m8d j
j8 , ~11!

whereCJ5( r 51
N(J)cr is the equivalent of the solid angle 4p in

the continuous orthogonality relatio

*dV Dmk
( j ) (nW )Dm8k

( j 8)* (nW )54pd m
m8d j

j8/(2 j 11), and N(J) is

the number of elements of$nW r%. Here we use the shorthan
notation Dmk

( j ) (nW )5Dmk
( j ) (f,u,0), where n

5(sinu cosf,sinu sinf,cosu), and a, b, g in
Dmk

( j ) (a,b,g), are the standard Euler angles. The main diff
ence between the continuous orthogonality relation and
~11! is that the latter can only hold forj, j 8 up to a maximal
value J. The largerJ is, the larger theN(J) that must be
chosen.

We will now show that Eq.~11! is equivalent to

(
r 51

N(J)

crYL
M~u r ,f r !50;

L 5 1,2, . . . ,2J,

M 5 0,1, . . . ,L,
~12!

whereYl
m(u,f) are the standard spherical harmonics. Eq

tion 12 is very appealing since one can establish a phys
analogy. If we viewcr as a~positive! charge at the position
nW r , Eqs. 12 tell us that Eq.~11! is equivalent to the require
ment that electrostatic multipoles of order less or equal toJ
vanish. Conditions~12! are exactly those given in Ref.@3#
for minimal and optimal POVM’s in the case of a signal sta
consisting ofN parallel spins. We see here that Eqs.~12! are
actually of much greater generality. To simplify the notatio
it is convenient to define the quantities
02230
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r

N(J)

crDM0
(L)* ~nW r !5

A4p

A2L11
(

r

N(J)

crYL
2M~u r ,f r !.

Now Eqs. ~12! simply readzL
M50 for all L and M listed

there. In the following,j and j 8 are required to satisfyj , j 8
<J. The group theoretical results that will be used below
mainly borrowed from Ref.@13#. Note first that the produc

Dmk
( j )Dm8k

( j 8)* in Eq. ~11! can be written as a sum ofDm2m80
( l )*

}zl
m2m8 . Explicitly, Eq. ~11! is equivalent to the set of linea

equations

(
l

~2l 11!S j j 8 l

m 2m8 m2m8
D S j j 8 l

k 2k 0D zl
m2m8

5~21!m82k
CJ

2 j 11
dm

m8d j
j8 , ~13!

where

S j j 8 j 9

m m8 m9
D

are the 3-j symbols and the sum runs over alll satisfying the
triangular condition~in particularl<2J). By direct substitu-
tion, it is trivial to check that Eq.~12! is a solution of Eq.
~13! for all relevantj , j 8 andm,m8. Therefore, Eqs.~12! are
sufficient conditions. To prove that Eqs.~12! are also neces
sary, we multiply Eq.~13! by

S j j 8 L

m 2m8 M D
and sum overm and m8. Next, we use the orthogonalit
condition @13#

(
mm8

S j j 8 l

m m8 kD S j j 8 l 8

m m8 k8
D 5

d l
l8dk

k8

2l 11
, ~14!

where it is assumed that the triangular condition is satisfi
to obtain

S j j 8 L

k 2k 0D zL
M5~21!2kS j j 8 0

0 0 0DCJd j
j8d L

0d M
0 .

~15!

Let us consider the possible cases in this equation separa
For L5” 0, Eq. ~15! is simply

S j j 8 L

k 2k 0D zL
M50, ; j , j 8<J. ~16!

The variableszL
M must be zero forL51,2, . . . ,2J, since the

3-j symbols are nonvanishing. The other case, i.e.,L50,
does not give further information aboutzL

M , since the corre-
sponding condition is trivially satisfied because of the pro
erties of the 3-j symbols@13#. This completes the proof o
the equivalence between Eqs.~11! and ~12!.
5-3
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From Eqs.~12!, and working along the same lines a
Derka et al. @2#, one can produce an algorithm for finit
POVM’s. SupposeJ is integer~if it is not, consider the near
est integerĴ.J). We define 2J11 anglesfs52sp/(2J
11); s50,1, . . . ,2J. Then (s50

2J YL
M(u,fs)50 (M.0) for

any u, and we only need to solve

(
k

ckPL~cosuk!50, L51,2, . . . ,2J, ~17!

where PL is the Legendre polynomial of degreeL. We
choose uk to be the 2J12 angles uk5kp/(2J11); k
50,1, . . . ,2J11; and definec05c2J1151. Then, the system
~17! of linear equations forc1 , c2, . . . , c2J always has a
positive solution. Actually,ck.1 for k51,2, . . . ,2J. To
summarize, the unit vectors nW r→nW ks
5(sinuk cosfs,sinuk sinfs,cosuk), along with the corre-
sponding weightscr→cks[ck are isotropically distributed
i.e., Eq.~11! is satisfied.

The above algorithm enables us to discretize any opti
continuous POVM. Just take the very same state~s! uB& used
to generate the projectorsO(nW ) and consider the new~finite!

set O(nW r)5U(nW r)uB&^BuU†(nW r). Modulo a trivial global
normalization factor,$O(nW r)% defines a finite POVM. The
finite measurement thus obtained leads to the same fideli
the continuous one we started with. Moreover, since the c
ditions ~12! are exactly those used in Ref.@3# to obtain mini-
mal POVM’s, it is clear that this construction also provid
minimal POVM’s for generaluB& states. For instance, th
minimal POVM for N52 has four outcomes pointing to th
vertices of a tetrahedron, while forN53 there are six out-
comes corresponding to the vertices of an octahedron.
02230
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Finally, we would like to note that, as far as the fidelity
concerned, Alice could also simulate a continuous isotro

distribution of directions by using a finite set$nW r% of isotro-
pically distributed vectors~11! with a priori probability
given by the weights$cr /CJ%. The fidelity will not change
providedJ>(2 j 11)/2, wherej is the total spin of the signa
state (j 5N/2 for a system ofN spins!. For instance, ifN
52 and Alice uses unit vectors pointing to the vertices of
octahedron (J53/2) with equal probability 1/6, the maxima
fidelities will be precisely those shown in Table I for a tru
~continuous! isotropic distribution, namely,FP53/4 andFA

5(31A3)/6.
In summary, product states of antiparallel spins repres

an excellent balance between feasibility of construction a
capability to communicate spin directions. For small numb
of spins, their maximal fidelity is remarkably close to th
maximal value that can be possibly achieved. For largeN
these states lead to an average fidelity that approaches
faster than states with parallel spins, although they do
exhibit the quadratic improvement of the optimal states.
have thus proven that the truly optimal encoding necessa
requires entanglement. We have also obtained a simple s
conditions for constructing finite measurements. These c
ditions work for any eigenstate of the total spin and, the
fore, also hold for product states.

The authors thank R. Tarrach and A. Brey for their c
laboration during the early stages of this work, and
Lavelle for a careful reading of the manuscript. Financ
support from CICYT Contract No. AEN99-0766 and CIRI
Contract Nos. 1998SGR-00051 and 1999SGR-00097 is
knowledged.
is-

s of
its
tes

m

s

@1# S. Massar and S. Popescu, Phys. Rev. Lett.74, 1259~1995!.
@2# R. Derka, V. Buzek, and A. K. Ekert, Phys. Rev. Lett.80, 1571

~1998!.
@3# J. I. Latorre, P. Pascual, and R. Tarrach, Phys. Rev. Lett.81,

1351 ~1998!.
@4# N. Gisin and S. Popescu, Phys. Rev. Lett.83, 432 ~1999!.
@5# S. Massar, Phys. Rev. A62, 040101~R! ~2000!.
@6# E. Baganet al., Phys. Rev. Lett.85, 5230~2000!.
@7# A. Peres and P. Scudo, Phys. Rev. Lett.86, 4160 ~2001!;

e-print quant-ph/0010085.
@8# E. Bagan et al., Phys. Rev. A63, 052309 ~2001!; e-print

quant-ph/0012006.
@9# The relevant group here isSU(2)/U(1), where U(1)

5$ein•Scu0<c,4p, nW fixed% is the set of ‘‘rotations’’ around
nW . By integrating outc, any encoding state becomes a stat

tical mixture whose density matrix commutes withnW •SW .
Hence, it is a convex sum of projectors onto the eigenspace
nW •SW . No such convex sum can lead to a larger fidelity than
optimal projector, so it is sufficient to consider only eigensta
of nW •SW .

@10# A. S. Holevo,Probabilistic and Statistical Aspects of Quantu
Theory~North Holland, Amsterdam, 1982!.

@11# Y. Ayant and M. Borg,Fonctions Speciales~Dunod, Paris,
1971!, Sect. 13.6.

@12# A. Peres,Quantum Theory: Concepts and Methods~Kluwer,
Dordrecht, 1995!, Chap. 9.

@13# A. R. Edmonds,Angular Momentum in Quantum Mechanic
~Princeton University, Princeton, NJ, 1960!.
5-4


