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We characterize and classify quantum correlations in two-fermion systems ha¢ismgle-particle states.
For pure states we introduce the Slater decomposition and (larénalogy to Schmidt decomposition and
rank); i.e., we decompose the state into a combination of elementary Slater determinants formed by pairs of
mutually orthogonal single-particle states. Mixed states can be characterized by their Slater number which is
the minimal Slater rank required to generate them.ker2 we give a necessary and sufficient condition for
a state to have a Slater number 1. We introduce a correlation measure for mixed states which can be evaluated
analytically for K=2. For higherK, we provide a method of constructing and optimizing Slater number
witnesses, i.e., operators that detect Slater numbers for some states.
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[. INTRODUCTION physical relevance: “No quantum prediction, referring to an
atom located in our laboratory, is affected by the mere pres-
In recent years a lot of effoftl,2] in quantum information ence of similar atoms in remote parts of the univerggl.
theory (QIT) has been devoted to the characterization of enThis kind of entanglement between indistinguishable par-
tanglement, which is one of the key features of quantunticles being far apart from each other is not the subject of this
mechanic$3]. The resources needed to implement a particuPaper. Our aim here is rather to classify and characterize the
lar protocol of quantum information processittsee, e.g., duantum correlations between indistinguishable partiGles
[4]) are closely linked to the entanglement properties of the?Ur case fermionsat short distances. We discuss below why
states used in the protocol. In particular, entanglement lies 4bis problem is relevant for quantum information processing
the heart of quantum computifi§]. The most fundamental N various physical systems.
question with regard to entanglement is, given a state of a For indistinguishable particles a pure quantum state must
multiparty system, is it entangled or n@te., is it separable be formulated in terms of Slater determinants or Slater per-
[5])? If the answer is yes, then the next question is hownanents for fermions and bosons, respectively. Generically, a
strong the entanglement is. For pure states in bipartite sys3later determinant contains correlations due to the exchange
tems the latter question can be answered by looking at th&tatistics of the indistinguishable fermions. As the simplest
Schmidt decompositiofi6], i.e., the decomposition of the Possible example, consider a wave function of {spinless
vector in a product basis of the Hilbert space with a minimalfermions,
number of terms. For mixed states already the first question
is notoriously hard to answer. There exist, however, many
separability criteria, such as the Peres-Horodecki criterion
[7,8] and more recent concepts such as entanglement wit-
nesses and the corresponding “entanglement revealingith two orthonormalized single-particle wave functions
positive mapg9,10]. ¢(r) and x(r). Operator matrix elements between such
While entanglement plays an essential role in quantunsingle Slater determinants contain terms due to the antisym-
communication between parties separated by macroscopiuetrization of coordinate€'exchange contributions” in the
distances, the characterization of quantum correlations danguage of Hartree-Fock thegriHowever, if the moduli of
short distances is also an open problem, which has receivefl(r) and x(r) have only vanishingly small overlap, these
much less attention so far. In this case the indistinguishablexchange correlations will also tend to zero for any physi-
character of the particles involvdeélectrons, photons, ejc. cally meaningful operator. This situation is generically real-
has to be taken into account. In his classic book, PEgs ized if the supports of the single-particle wave functions are
discussed the entanglement in elementary states of indistirssentially centered around locations being sufficiently apart
guishable particles. These are symmetrized or antisymmdrom each other or the particles are separated by a suffi-
trized product states for bosons and fermions, respectively. ttiently large energy barrier. In this case the antisymmetriza-
is easy to see that all such states of two-fermion systems, aritbn present in Eq(1) has no physical effect.
as well as such states formed by two noncollinear single- Such observations clearly justify the treatment of indistin-
particle states in two-boson systems, are necessarily emuishable particles separated by macroscopic distances as ef-
tangled in the usual sense. However, in the case of particldectively distinguishable objects. So far, research in quantum
far apart from each other, this type of entanglement is not oinformation theory has concentrated on this case, where the

1
\I,(Flvf)z):E[Qb(Fl)X(FZ)_¢(F2)X(F1)]: (1)
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exchange statistics of particles forming quantum registeranalogous quantum correlation phenomenon in nonseparated
could be neglected or was not specified at all. fermionic systems by the notions of Slater rank and Slater
The situation is different if the particles constituting, say, number to be defined below.

qubits are close together and possibly coupled in some com- We are going to formulate analogies with the theory of
putational process. This the case for all proposals of quantuf@ntanglement and translate several very recent results
information processing based on quantum dot technolog{d0.16,17 concerning standard systems of distinguishable
[11-13. Here qubits are realized by the spins of electrongarties (Alice#Bob) to the case of indistinguishable fermi-
residing in a system of quantum dots. The electrons have th@"S: In general, we will deal with a system of two fermions
possibility of tunneling eventually from one dot to the other 8ach of which live in a K-dimensional single-particle space.
with a probability which can be modified by varying external 1 he plan of the paper is as follows: In Sec. Il we discuss

parameters such as gate voltages and magnetic field. In sutBHre stgtes indsflortmuljate the an_?log of dSchrr(ld\tNdet%ompdo.sr
a situation the fermionic statistics of electrons is clearly es-10N and rank—siater decomposition and ran. yve then dis-
sential. cuss a simple operational criterion for the case of two elec-

Additional correlations in many-fermion systems arise iftrons In wo neighboring quantum dot £2) to determine
nany-ter ysiems . whether a given state is of Slater rank 1. This criterion was
more than one Slater determinant is involved, i.e., if there i

. . . . A Sirst derived in Ref[13]. In Sec. Ill we define the concept of
no'smgle-partlcl'e basis such that a given statél@fdistin- a Slater number for mixed states. =2 we present the
guishable fermions can be represented as an elementafy essary and suficient condition for a mixed state to have

Slater determin_an@j.e., fu_IIy antisymmetric combin_ation of the Slater number 1. This is an analog of the Peres-

N orthogonal single-particle stajesThese correlations are Horodecki criterior{7,8] in the Wootters formulatiofl8]. In

the analog of quantum entanglement in separated system&ec. |V we extend the results of Sec. Ill and define a Slater

and are essential for quantum information processing in norcorrelation measure which is the analog of the entanglement

separated systems. formation measurgl9]. This quantity can be calculated ana-
As an example consider a “swap” process exchanging theytically for the caseK =2, in analogy to the Wootters result

spin states of electrons on coupled quantum dots by gatingL8]. In Sec. V we turn to the cageé>2 and introduce Slater

the tunneling amplitude between thgm2,13. Before the number witnesses of canonical forfdefined in analogy to

gate is turned on, the two electrons in the neighboring quanentanglement9,16] and Schmidt numbd20,17 witnesses

tum dots are in a state represented by a simple Slater detéMe construct examples of sudtSlater witnesses, which

minant and can be regarded as distinguishable since they apgovide the necessary conditions for a given state to have a

separated by a large energy barrier. When the barrier is lowSlater number smaller thagnwe also discuss optimization of

ered, more complex correlations between the electrons due fJater witnesses. Finally, we analyze the associd2y

the dynamics arise. Interestingly, as shown in R1], positiv_e maps. We close by discussing fu_rther analogies, but

[13], during such a process the system must necessarily entglso differences, between entanglement in separated systems

a highly correlated state that cannot be represented by & distinguishable particles as opposed to quantum correla-

single Slater determinant. The final state of the gate operé'—ons in nonseparated systems of indistinguishable particles.

tion, however, is, similarly as the initial one, essentially

given by a single Slater determinant. Moreover, by adjusting Il. SLATER RANK OF PURE STATES

the gating time appropriately one can also perform a “square

root of a swap” which turns a single Slater determinant |ntoWhich resides in the single-particle Hilbert spa. This

a “maximally” correlated state in much the same wWag. situation is given, e.g., in a system of two electronsKin

At the end of such a process the electrons can again Bgaighhoring quantum dots where only the orbital ground

viewed as effectively distinguishable, but are in a maximallygate of each dot is taken into account. Alternatively, one may
entangled state in the usual sense of distinguishable sepgink of, say, two quantum dots with an appropriate number
rated particles. In this sense the highly correlated intermedipf orbital states available for the two fermions.
ate state can be viewed as a resource for the production of The stategdensity matricesin such a system are positive
entangled states. self-adjoint operators acting on the antisymmetric space
We expect that similar scenarios apply to other schemeg{(C?K® (?X). Let us first consider pure states, i.e., projec-
of quantum information processing that involve cold par-tors on a vector|¥)e A(C?*@C?). Let f,, fl, a
ticles (bosons or fermionsinteracting at microscopic dis- =1,...,2, denote the fermionic annihilation and creation
tances at which the quantum statistics becomes essential. Feperators of single-particle states forming an orthonormal
instance, it should be of relevance for quantum computingasis inC?¢, and|Q)) denotes the vacuum state. Each vector
models employing ultracold atoms in optical lattid@g] or  in the two-electron space can be represented |\H$
ultracold atoms in arrays of optical microtrajis). =3, pWapf 11| Q), wherew,,=—wy, is an antisymmetric
It is the purpose of the present paper to analyze the abov@atrix. We have the following generalization of theorem
type of quantum correlations between indistinguishable fer4.3.15 from Ref.[22], which will allow us to define the
mions in more detail. However, to avoid confusion with the fermionic analog of the Schmidt decomposition:
existing literature we shall reserve in the following the term Lemma 1 For any antisymmetricNXN matrix A#0
“entanglement” for separated systems and characterize théhere exists a unitary transformatiob’ such that A

We consider two indistinguishable fermions each of
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=U’ZU'T, where the matrixZ has blocks on the diagonal,

z=diad Zo,Z1,....Zul, Zo=0, Zi= , (2

Z
-z O

andZ, is a (N—2M) X (N—2M) null matrix.

Proof. Let A be anN XN, complex, antisymmetric matrix

acting onCN, A=—AT; hence A'=—A*. Let us defineB
:=AA*=—AA". Here B is Hermitian,B=B", and hence
diagonalizable by a unitary transformationB=UDUT,
UUT=1, D-diagonal. Now conside€:=UTAU*. It is easy
to check thatC is antisymmetric,CT=—C, and normal,
CC'=C"C. Let us decompos€ into its real and imaginary
parts: C=F+iG; F, G are realNXN matrices. Sinc& is
antisymmetric, so aré andG. SinceC is normal,F and G

commute. Thu$ andG are real, antisymmetric, commuting
matrices. Hence they can be simultaneously brought to
block-diagonal forms by a real orthogonal transformation

[22], F=0F,4,0", G=0G,40", whereO is anNxN ma-
trix, OO"=1, where

de: diag:XO,xl,...,xK],

Gpg=diad Yo,Y1,....Y ], 3
and Xg,Yy are null matrices of some dimensionsy=0,
Y,=0, whereasX;,Y; are standard antisymmetricx2

blocks:

0 X

X-:
! — X 0

(4)

V.o 0 i
R E VR

Thus C=0Z0" where Z has the form(2) and, finally A

=UCU™=U0z0"UT=(U0)Z(UO)"=U"ZU’T with U’
unitary. i

Lemma 2 Every vector

basis inC?¢ in a form of the Slater decomposition
K

V)= ! > zfl fl O 5
| >_\/2K:|z»|2i=1 zifa,)fayi) |2, 5
i=114

where the states] ;)|Q), 1 ;)|Q), i=1,... K, form an

orthonormal basis iit?K; i.e., each of these single-particle

states occurs only in one term in the summati®h The
number of nonvanishing coefficients (i.e., the number of
elementary Slater determinants required to cons{fy is
called the Slater rank.

in antisymmetric space
A(C?*®(?X) can be represented in an appropriately chose
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terminant. In general, givefW) in some basis, in order to
check the Slater rank, one has to perform the Slater decom-
position. As we know from Ref.13], the situation is simpler
for the caseK =2, where we have the following.

Lemma 3(Ref. [13]). A vector [W)=34 _ wapf1f|Q)
in A(C*®C* has Slater rank 1 iff

M%Fa;fm%MMIQ (6)

where €2°° denotes the totally antisymmetric tensor in
C*oC*eC'eC*

Remark The quantity»(|¥)) can be constructed from the
dual state

W)= 2 Waf3E10), @)
defined by the dual matrix
o 1 abcd ,,*
Wab:ECZ’d € cd- (8
With these definitions we have
7(1Q) = (W] Ww)]. 9)

The proof of this lemma was presented first in R&B]. An
alternative proof can be given using lemma 1 and observing
that
1 ~ 2
detw=(§<‘1'|\lf>> , (10)

wherew is the antisymmetric % 4 matrix defining|¥).
In the Appendix we list some further useful properties of

r{;(|\If)) and the relation of the dualization operation to an

antiunitary implementation of particle-hole transformation.
An interesting further question is possible generalizations of
the above result to the case léffermions having a single-
particle spac&?X.

Ill. SLATER NUMBER OF MIXED STATES

Let us now generalize the concepts introduced above to
the case of mixed states. To this end, we define the Slater
number of a mixed state, in analogy to the Schmidt number
for the case of distinguishable partigz0,17]

Definition 1 Consider a density matrixof a two-fermion

Proof. Let |¥)=3, ,w bfoHQ) Note that the change system and all its possible convex decompositions in terms
: a,bWabla . S Fiv/ T
of basis inC?¥ corresponds to a unitary transformation of Of Pure states, i.ep=Xipi|¢;")(¢;'|, wherer; denotes the

fermionic operatorsflebUba(f{))T, which implies that in
the new basisv’ =UwUT. From lemma 1 we may choose
such thatw’ will have the form(2), which provides the
Slater decompositiorill

From the point of view of applications in quantum dot

Slater rank off z/;i”>; the Slater number op, k, is defined as
k=min{rat, Wherer ., is the maximum Slater rank within
a decomposition, and the minimum is taken over all decom-
positions.

In other wordsk is the minimal Slater rank of the pure

computers, it is important to be able to distinguish states wittstates that are needed in order to constpiand there is a
Slater rank 1(which can be easily prepared and detegted construction ofp that uses pure states with Slater rank not
from those that involve more than one elementary Slater deexceedingk.
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Many of the results concerning Schmidt numbers can bave obtain that for eactk, »(w’(k))=0, wherew’(k),p
transferred directly to the Slater number. For instance, let us->{_ U,;wj,. The matricesJ,; must therefore fuffill, for

denote the whole space of density matricesdifC?* ® C?¥)

everyk,

by Sk and the set of density matrices that have Slater num-

berk or less by Sl. Here S} is a convex compact subset of
Sk ; a state from Slwill be called a state ofSlate) classk.

Sets of increasing Slater number are embedded into each

other, i.e., SICSLC---Sl---CSlk . In particular, S] is the

r r
> Z €ab°dW$bW{:dUkiUkj:,Z CijUyiUy;=0.
abcd j=1 i,j=1
(14)

set of states that can be written as a convex combination ddn the other hand, from E¢13) we obtain

elementary Slater determinants;, $ the set of states of

Slater number 2, i.e., those that require at least one pure state

of Slater rank 2 for their formation, etc.

r/
kgl UwUg= 8 . (15)

The determination of the Slater number of a given state is
in general a very difficult task. Similarly, however, as in the The Slater rank 1 is thus equivalent to the existence of the

case of separability of mixed states of two qultits., states
in C?®C? and one qubit and one qutrii.e., states in

r’ Xr matrix Uy; that fulfills Eqgs.(14) and(15). It is conve-
nient to represent the rows of the mattix; as vectorgRy)

C*®C°) [8], the situation is particularly simple in the case of in anr dimensional Hilbert spacg(,,,. Equations(14) and

smallK. For K= 1 there exists only one stata singlej. For

K =2 we will present below a necessary and sufficient con

1(Lfik)—>u |Ry). Such a transformation does not affect Etb)

a:fmd transform&€—UTCU. SinceC is symmetric,U can be

dition for a given mixed state to have a Slater number of
One should note, however, that in the considered case
fermionic states there exists no simple analogy of the parti

transposition, which is essential for the theory of entangleuC

states. In fact, the Peres-Horodecki criterigh8] in 2x2
and 2x< 3 spaces says that a state is separable iff its parti

transpose is positive. It is known, however, that the Peres*

Horodecki criterion is equivalent to Wootters’ res(ilt8],

(15) then reduce t&} |R)(R|=1, and(R*|C|R)=0 for

all k. One can always change the basigHy,., i.e., replace

hosen in such a way that"CU is diagonal, and Eq(14)
reads ther®!_,c;UZ,=0. In this new basis the construction

&if Uxi using the method of Woottef48] can be carried over.

One can always assume thatuﬁl is real and positive by
chosing the phases {R,). Then one observes that, provided

relating separability to a quantity called concurrence, whichEd- (14) is fulfilled,

is related to eigenvalues of a certain matrix. This latter ap-

proach can be used to characterize fermionic state$(@f
®C*%. We have the following theorem.

Theorem 1Let the mixed state acting id(C*®C*) have
a spectral decompositiop=={_,|¥;}{¥;|, wherer is the
rank of p, and the eigenvectorgl;) belonging to nonzero
eigenvalues)\; are normalized as(W;|¥;)=\;5;. Let
| W) =3, Wh,f1f]|Q) in some basis and define the com-
plex symmetricr Xr matrix C by

Cij= 2 Eabcq"’iabchd:

abcd

(11)

which can be represented using a unitary matrix Qs
=UC4UT, with Cy=diagc,;,c,,  -,¢] diagonal and|c,|
=|c,|=:--=|c,|. The statep has Slater number 1 iff

r
Icllsi:Ezlcil. (12)

Proof. Let us assume that a stageacting in A(C*®C*)
has Slater number 1, i.e.,

’

p:g’l |q,i><q}i|:k21 | i) bul (13

where all¢, have Slater rank 1, whereas can be an arbi-
trary integer=r. But |¢,) can be represented ggby)
=31 UglW) =311, UaW, fifl|Q). From lemma 3

r

'21 ciUg;

.
0 =cil|Ufl = 2 lelluil. - a8

Summing the above inequality ovieland using Eq(15), we
obtain the necessary condition

r
leal =2, ail. (17)
To show that it is also a sufficient condition, we take=2 if
r=2, r'=4 if r=3,4, r'=8 if r=5,6, and U=
+1,,exp(6)/r'. The equations in Eq(14) are then all
equivalent to

ey =22 C; exp(2i 6;), (18

and the angle®, can indeed be chosen to assure that Eq.
(18) is fulfilled, provided the conditionil7) holds. The* 1,
signs are designed in such a way that ELp) is fulfilled.
Thus forr’'=2 we take(++), (+—) for i=1,2, forr'=4
we take (++++), (++——), (+—+—), (+——+) for i
=1,...,4(or any 3 of them foi=1, . ..,3), and finally for
r'=s, (+++++++4), (++++———-),
(++——++—), (++————++), (+—+—+—+-),
(+—+——+—+). In the latter case we take again as many
vectors as we need, i.é51,...,55r<6.

The above theorem is an analog of the Peres-Horodecki-
Wootters result for two-fermion systems having a single-
particle space of dimensionk24. The situation is much
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more complicated when we go K> 2; this is similar to the We have the following theorem

case of the separability problem @'®cN with MN>6. Theorem 2. For any acting in A(C*®C%),
These issues are investigated in Sec. V. In the following sec-
tion, however, we shall concentrate on the ckse2.

!

Csi(p)=|c4 _i:22 |cil, (20
IV. SLATER CORRELATION MEASURE

The similarity of our approach to that of Woottdr&8] vagsei;etﬁaf‘ﬁ;ggngﬁi?? elements of C [Eq. (11)] in the

can be pushed further and, in particular, allows us to define Proof. The proof is essentially the same as the one in the

and CaICHI‘.’ﬂe’ for the case &=2, the “Slater _formatlon previous section. Let us consider an arbitrary expansion of a
measure” (in analogy to entanglement formation measure

[19]). given density matrix, pzzrk;1|¢k>(¢k|, where |¢,)
To this aim we first consider a pur@ormalized state :E(j;=1ukj|q,j>- Her;l*lfj% <den|0te> tge usual “lsubnrc])rr?]al-

N tet . : _ ized” eigenvectors op with (W;|¥;) being equal to thet

[ ) Eaﬂwabféfbl()) and define thélater correlation mea nonzero eigenvalue of [18]. It is easy to see that

sureof ) as in lemma 3cf. Ref.[13]),

r

DEI I (19 CSI(|¢k><¢k|):‘ijzl CijUiilyj) (21)

with [) being the dual of). Obviously, the notion of dual 4. Erk'zluakciukj: 8 . By changing the basis to the one in

states, as well as _the functiog-) in Eq.(19),. can be o_lefined which C is diagonal, we getafter choosing the phases of
also for unnormalized states. In the following we will denoteUkl such thatcluﬁl are real and positiye

such unnormalized states just as states occurring in the pre-
vious sections, i.e., without the overbar. r' r' r’

The measurgl9) has all desired properti¢49,23, such > Csl| ()= | > CJUE]‘ =|c,|— >, |cil.
that it vanishes iff ) has Slater rank 1 and it is invariant =1 k=11 =2 -
with respect to local bilateral unitary operations or, in an- (22)

other words, with respect to changes of the basis in thepis inequality becomes an equality when we use the same
single-particle space. construction ofU,; as in previous section, namelyl;=

Having defined the measure for the pure states, we can 1, exp(6)/\r’, with 6; selected in such a way thén-
consider the following definition depéndentljy ok) !

Definition 2 Consider a density matrip acting in
A(C*®C* and all its possible convex decompositions in
terms of pure states, i.ep=2;[¢i){¢hil=Zipi|i)(wil, ‘E c,—UEJ
where the unnormalized statgg )= \p;| ); the Slater cor- :
relation measure g, C(p), is defined as |

The above construction provides, to our knowledge, a rare
example of an analog of the entanglement formation measure
that can be evaluated analytically. Obviously, since we have
introduced the concept of Slater coefficients, we may define
where the infimum is taken over all decompositions. other Slater correlations measures for pure states in terms of

In other words,Cg(p) is the minimal amount of Slater appropriately designed convex functions of the Slater coeffi-
correlations of the pure states that are needed in order tdents(in analogy to entanglement monotori@sl]). For K
constructp, and there is a construction pfthat uses pure =2 and most probably only fd£ =2, all those measures are
states with “averaged” Slater correlatialy(p). equivalent and the corresponding induced measures for

Note that=;p;(|#:))==i7(|#:)). As we shall see be- mixed states can be calculated analytically.
low, the measur€g(p) can be related directly to the matrix
Cj; in Eq. (1) and to its “concurrence.” It is invariant not V. SLATER WITNESSES
only with respect to local bilateral unitary operations, but it

also cannot increasg under local bilateral operations. Thquilbert spaces of dimensionk2>4. In this case, a full and
are trace pTreseTrvmg maps  of the fo_rrp—4>M(p) explicit characterization of pure and mixed state quantum
:EiTAJ‘X’AjTPAi ®Aj, where eachAj acts in ", and  cqrrelations, such as given above for the two-fermion system
ZjAjAj®AjAj=1. Such transformations correspond to Mix- yith K =2, is apparently not possible. Therefore one has to
tures of density matrices obtained after nonunitary changegrmulate other methods to investigate the Slater number of a
of the basis in the single-particle space. It is easy to see thafiven state. We can, however, follow here the lines of the
papers that we have written on entanglement witnesses

Co(M(p))= 2 detA;|Cs(p) | <Cs(p). [10,16 and Schmidt number witnessgk?]. _
] In order to determine the Slater number of a density ma-

1 i
=—,(Icll—2 Icil). (23)

r i=2

csmp>=inf{2i pi n(l%»],

We now investigate fermion systems with single-particle
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trix p, we note that due to the fact that the se{seBé convex
and compact, any density matrix of clas<an be decom-

PHYSICAL REVIEW A64 022303

The simplest choice d? andC consists in taking projec-
tions ontoK () and the identity operator on the asymmetric

posed into a convex combination of a density matrix of classpacel,, respectively. As we will see below, this choice

k—1, and a remaindef [25].

Proposition 1 Any state of clasg, p,, can be written as
a convex combination of a density matrix of cldss1 and
a so-calleck-edge state:

pk=(1—p)px—1+pPs, 1=p>0, (24

where the edge stat®has Slater numbeek.

The decompositiofi24) is obtained by subtracting projec-

tors onto pure states of Slater rank smaller tHanP
=]~ (¢, such thatp,—\P=0. Here|y~*) stands for
pure states of Slater rank<k. Denoting byK(p), R(p),
andr(p) the kernel, range, and rank of respectively, we
observe thap’ «p—\|¢~*) (=¥ is non negative iff y=*)
eR(p) and\<{(y~Np Y y~*) "1 (see[25]). The idea be-
hind this decomposition is that the edge statehich has

generically lower rank contains all the information concer

ing the Slater numbeék of the density matrixpy .

As in the case of Schmidt number, there is an optimal

decomposition of the form{24) with p minimal. Alterna-
tively, restricting ourselves to decompositiong,

=3pil ¢i”><wi”| with all r;<k, we can always find a decom-

position of the form(24) with §e Sl,. We define below
more precisely what an edge state is.

Definition 3 A k-edge stated is a state such thab
— €|y~ (=¥ is not positive, for any>0 and|y~¥).

Criterion 1. A mixed stated is a k-edge state iff there
exists no|y=*) such thafy=*) e R(4).

Now we are in the position of defining laclass Slater
witness(k-SW, k=2):

Definition 4 A Hermitian operatoMV is a Slater witness
(SW) of classk iff Tr(Wo)=0 for all o€ Sl_; and there
exists at least ong e S, such that Tr(Vp)<O0.

It is straightforward to see that every SW that detgcts

given by Eq.(24) also detects the edge stae since if
Tr(Wp) <0, then necessarily TWs) <0, too. Thus knowl-
edge of all SW’'s ofk-edge states fully characterizes all

provides us with a canonical form oflaSW.
Proposition 2 Any Slater witness can be written it the

canonicalform
W=W- (26)

el,,

such thatR(W) =K (), whered is ak-edge state andQe

$inf|¢>esk71(zp|W|¢//).

Proof. Assume W is an arbitrary k-SW such that
Tr(Wo)=0 for all o € Sl,_, and thered at least ong such
that Tr(Wp)<0. Here W has at least one negative eigen-
value. ConstrucW+ el,=W, such thatW is a positive op-
erator on A(C?*®C?X), but does not have a full rank,

K(W)#0 (by continuity this construction is always pos-

n-Sible). But (~KW|~¥)=e>0 sinceWis ak-SW, ergono

=) eK(W). =

Definition 5 A k-class Slater witnes$V is tangentto
Sl_, atp if 3 a statep e Sl,_; such that Tr{Vp) =0.

Observation 1The statep is of Slater clask— 1 iff for
all k-SW'’s tangent to gL 4, Tr(Wp)=0.

Proof (see[10]). (only if) Suppose thap is of classk.
From the Hahn-Banach theorem it follows that thexéstsa
k-SW, W, that detects it. We can subtradf, from W, making
W-—e€l, tangent to §l.; at someo, but then Tfp(W
—€el)]<0. 1

A. Optimal Slater witnesses

We will now discuss the optimization of a Slater witness.
As proposed in[10] and [17], an entanglement witness
(Schmidt witnesgW is optimal if there exists no other wit-
ness that detects more states than it. The same definition can
be applied to Slater withesses. We say thktSater witness
W, is finer than ak-Slater witnes3VN,, if W, detects more
states thaW, . Analogously, we define &Slater withessV
to be optimal when there exists no finer witness than itself.

e Sl;. Below, we show how to construct for any edge state g ¢t s define the set dfy=%) pure states of Slater rarik

SW which detects it. Most of the technical proofs used t0_ 1 for which the expectation value of theSlater witnessV
construct and optimize Slater witnesses are very similar tQsnishes:

those presented in R€f10] for entanglement witnesses.

All  the operators we consider
A(CP*®C%K). Let 8 be ak-edge stateC an arbitrary positive
operator such that THC)>0, and P a positive operator
whose range fulfills R(P)=K(8). We define €
=infl,<q(¢ = |P|=*) and c=sug¢|C|y). Note thatc
>0 by construction and>0, becauseR(P)=K(6), and
therefore, sinceR(5) does not contain anyy~*) by the
definition of edge state (P) cannot contain anyy~¥) ei-
ther. This implies the following.

Lemma 4 Given ak-edge states, then

€
W=P-_C (25)

is ak-SW which detects.

below act in

Tw={]¢~%) such that (K W|lw=K=0}, (27

i.e., the set of pure tangent states of Slater rakkHereW

is an optimalk-SW iff W— €P is not ak-SW, for any posi-
tive operatorP. If the setT,, spans the whole Hilbert space
A(C?*2(?X), thenW is an optimalk-SW. If T\, does not
spanA(C?*® (%K), then we can optimize the witness by sub-
tracting from it a positive operatd?, such thatP T,,=0. For
example, for Slater witnesses of class 2 this is possible pro-
vided that infy . c2k[ Pg YWeP¢g %]min>0. Here for anyX
acting onA(C** &), we define

Xe=[(e,-|X|e,-)= (e, [X|-.e)=(-.elX[e,-)

+(-.e[X]-.e)], (28)
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as an operator acting /X, and[X], denotes its minimal larly to the case of separated systems, the situatiorkfor
eigenvalue(see[10]). An example of an optimal witness of >2 is more complicated. Therefore, we have also introduced
Slater numbek in A(C?*® (%) is given by witnesses of Slater numbé&rand presented the methods of
optimizing them.

Possible directions for future work include generalizations
of the present results to more than two fermions and the
development of an analogous theory for indistinguishable
whereP is a projector onto a “maximally correlated state,” hosons. For this purpose a lot of the concepts developed so
|‘1’>=(1/\/E)EiK=1f;1(i)f;2(i)|Q> [cf. EqQ. (5)]. The reader far are expected to be useful there as well. However, there
can easily check that the above witness operator has meaf€ certainly also fundamental differences between quantum

value zero in the state‘% (i)f; Q) fori=1,2, but also for correlations _in bosonic_and fermionic Systems. As an ex-
HA? ample, consider the notion of unextendible product bases in-

troduced recently for separated systdi®8]. These are sets
of product states spanning a subspace of the Hilbert space
whose orthogonal complement does not contain any product

w=1, P, (29)

k-1

all states of the fornglg;|Q), where

T_ ¢t i T i T i T i
01="Fa (1)@ 91+ fy o€ P12+ f @92+ 1, €92

(30 states. All such unextendible product bases constructed so far
gl=—f! eionifl emien_fl o-ien involve product states of the forfgh) @[ x) with [} and|x)
a(1) a,(2) a(1) being nonorthogonal. In the analogous fermionic state non-
Lt erienm 31) orthogonal contributions are obviously cancelled out by an-
a(2) ' tisymmetrization, unlike the bosonic case. In fact, all explicit

constructions of unextendible product bases known so far
[26] can be taken over directly to bosonic systems to give
“unextendible Slater permanent bases.” These are sets of
symmetrized product states spanning a subspace of the sym-
B. Slater witnesses and positive maps metrized Hilbert space, whose orthogonal complement does

It is interesting to consider linear maps associated wit'0t contain any such states.
Slater witnesses via the Jamiotkowski isomorphif?i].
Such maps employV acting in Ha® Hg=C?*®C?* and ACKNOWLEDGMENTS
transform a state acting in Ha® Hc=C?X®C?X into an-
other state acting in Hg®Hc=C*2C?, M(p)
=TrA(Wp,E). Obviously, such maps are positive on sepa-
rable states: Whep is separable, then for any¥) e Hg
®Hc, the mean value of¥|M(p)| W), becomes a convex
sum of mean values ofV in some product statefe,f)

for arbitrary ¢;; , i, j=1,2. The sefl\, spans in this case the
whole Hilbert spaced(C?*®(C?¢): ergo Wis optimal.
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—|f,e)). Such antisymmetric states have, however, Slate 36 POL 133/86/0. D.L. acknowledges partial support
rank 1, and all SW's-of clask=2 have thus positive mean ¢, the Swiss National Science Foundation.

value in those states. This class of positive maps is quite
different from the ones considered in Ref$0], [16]; they
provide thus an interesting class of necessary separability
conditions. The map associated with the witn€gs) is, We now list further properties of the correlation measure
however, decomposable; i.e., it is a sum of a completely,, o, pure statest\If):Eg b:1Wabf;fg|Q> of two fermions
positive map and another completely positive map composegh 5 four-dimensional sfngle-particle spafe3] and add
with transposition. This follows from the fact that the witness gome further remarks.

operator has a positive partial transpose; i.e., it can be pre-
sented as a partial transpose of a positive operator.

APPENDIX

The matrixw transforms under a unitary transformation of
the one-particle space,

VI. CONCLUSIONS AND OUTLOOK

flsufluf=> Upafl, (A1)
Summarizing, we have presented a general characteriza- b
tion of quantum correlated states in two-fermion systems
with a 2K-dimensional single-particle space. This goal has?S
been achieved by introducing the concepts of Slater deom- -
position and rank for pure states, and Slater number for w—UwuU’, (A2)
mixed states. In particular, for the important céée 2 the - o
quantum correlations in mixed states can be characterizefihereU " is the transposenot the adjoint of U. Under such
completely in analogy to Wootters’ result for separated qubitd transformation|W)—|d) =4[ W), scalar products of the
[18] and using the findings of Reff13] for pure states. Simi- form (¥ ,|¥,) remain unchanged up to a phase,

022303-7



SCHLIEMANN, CIRAC, KU’S LEWENSTEIN, AND LOSS PHYSICAL REVIEW A64 022303

<<T)1|®2>=detu(<5l|®2>. (A3) _ Equation (A3) imp[ies thatD is unchanged by unitary
single-particle operations,
Therefore, in particularp(|¥)) is invariant under arbitrary
single-particle transformations. UDU' =D [U,D]=0, (A8)
The dualization of a staté¥) can be identified as a

particle-hole-transformation, )
which can also be expressed as

Up-nflU n=Ta, Uy_n|Q)=1113F11110Q), (A4

T
along with a complex conjugation. In fact, the operator of Uthy—pA"=Up-n (A9)

dualizationD, |¥)—|W¥)=D|¥), can be written as _ _ _ _
for any unitary single-particle transformatioh
D=—-U, K, (A5) The dualization operatdP is the antiunitary implementa-
tion of the particle-hole transformation. We note that the

acts on a general state vector as compatible with single-particle transformatiotfs
K(ala)+b|B))=a*K|a)+b*K|B). (AB)
Its action on the single-particle basis states and the fermionic DUtIU™D = Eb Upafo=UDtID™ U (A10)

vacuum is given by

Kflk=11, Kf,K=f,, K|Q)=]Q). (A7)  Ifthe complex conjugation would be left o@t,andD would

. - not commute.
The relationgA7) are to be seen as a part of the definition of ¢ re|ation of the correlation measupdo an antiunitary
K and refer explicitly to a certain single-particle basis de-qherator is similar to Wootters' construction for a separate
fined by the operatgrf;a, _fa. However, SWI_tthng to a dif- system of two qubit{18]. The correlation measure there
ferent complex conjugation operatér’, fulfilling the rela-  (<concurrence”) relies on the time inversion operation. The
tions (A7) in a different basis, has only trivial effects without gperator of time inversion in the two-qubit system is invari-
any physical significance. In particular, as one can see fromant under local unitary transformations in each qubit space.
the properties given above, the correlation measp(te))  This property is similar to the invariance of the dualization
=|(V|W¥)|, |¥)=D|V¥), remains invariant under such an operator under unitary transformations in the single-particle
operation. space.
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