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We characterize and classify quantum correlations in two-fermion systems having 2K single-particle states.
For pure states we introduce the Slater decomposition and rank~in analogy to Schmidt decomposition and
rank!; i.e., we decompose the state into a combination of elementary Slater determinants formed by pairs of
mutually orthogonal single-particle states. Mixed states can be characterized by their Slater number which is
the minimal Slater rank required to generate them. ForK52 we give a necessary and sufficient condition for
a state to have a Slater number 1. We introduce a correlation measure for mixed states which can be evaluated
analytically for K52. For higherK, we provide a method of constructing and optimizing Slater number
witnesses, i.e., operators that detect Slater numbers for some states.
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I. INTRODUCTION

In recent years a lot of effort@1,2# in quantum information
theory~QIT! has been devoted to the characterization of
tanglement, which is one of the key features of quant
mechanics@3#. The resources needed to implement a parti
lar protocol of quantum information processing~see, e.g.,
@4#! are closely linked to the entanglement properties of
states used in the protocol. In particular, entanglement lie
the heart of quantum computing@3#. The most fundamenta
question with regard to entanglement is, given a state o
multiparty system, is it entangled or not~i.e., is it separable
@5#!? If the answer is yes, then the next question is h
strong the entanglement is. For pure states in bipartite
tems the latter question can be answered by looking at
Schmidt decomposition@6#, i.e., the decomposition of th
vector in a product basis of the Hilbert space with a minim
number of terms. For mixed states already the first ques
is notoriously hard to answer. There exist, however, ma
separability criteria, such as the Peres-Horodecki criter
@7,8# and more recent concepts such as entanglement
nesses and the corresponding ‘‘entanglement reveal
positive maps@9,10#.

While entanglement plays an essential role in quant
communication between parties separated by macrosc
distances, the characterization of quantum correlations
short distances is also an open problem, which has rece
much less attention so far. In this case the indistinguisha
character of the particles involved~electrons, photons, etc.!
has to be taken into account. In his classic book, Peres@6#
discussed the entanglement in elementary states of indi
guishable particles. These are symmetrized or antisym
trized product states for bosons and fermions, respective
is easy to see that all such states of two-fermion systems,
as well as such states formed by two noncollinear sing
particle states in two-boson systems, are necessarily
tangled in the usual sense. However, in the case of part
far apart from each other, this type of entanglement is no
1050-2947/2001/64~2!/022303~9!/$20.00 64 0223
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physical relevance: ‘‘No quantum prediction, referring to
atom located in our laboratory, is affected by the mere pr
ence of similar atoms in remote parts of the universe’’@6#.
This kind of entanglement between indistinguishable p
ticles being far apart from each other is not the subject of
paper. Our aim here is rather to classify and characterize
quantum correlations between indistinguishable particles~in
our case fermions! at short distances. We discuss below w
this problem is relevant for quantum information process
in various physical systems.

For indistinguishable particles a pure quantum state m
be formulated in terms of Slater determinants or Slater p
manents for fermions and bosons, respectively. Generical
Slater determinant contains correlations due to the excha
statistics of the indistinguishable fermions. As the simpl
possible example, consider a wave function of two~spinless!
fermions,

C~rW1 ,rW2!5
1

&
@f~rW1!x~rW2!2f~rW2!x~rW1!#, ~1!

with two orthonormalized single-particle wave function
f(rW) and x(rW). Operator matrix elements between su
single Slater determinants contain terms due to the antis
metrization of coordinates~‘‘exchange contributions’’ in the
language of Hartree-Fock theory!. However, if the moduli of
f(rW) and x(rW) have only vanishingly small overlap, thes
exchange correlations will also tend to zero for any phy
cally meaningful operator. This situation is generically re
ized if the supports of the single-particle wave functions
essentially centered around locations being sufficiently a
from each other or the particles are separated by a s
ciently large energy barrier. In this case the antisymmetri
tion present in Eq.~1! has no physical effect.

Such observations clearly justify the treatment of indist
guishable particles separated by macroscopic distances a
fectively distinguishable objects. So far, research in quan
information theory has concentrated on this case, where
©2001 The American Physical Society03-1
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exchange statistics of particles forming quantum regis
could be neglected or was not specified at all.

The situation is different if the particles constituting, sa
qubits are close together and possibly coupled in some c
putational process. This the case for all proposals of quan
information processing based on quantum dot technol
@11–13#. Here qubits are realized by the spins of electro
residing in a system of quantum dots. The electrons have
possibility of tunneling eventually from one dot to the oth
with a probability which can be modified by varying extern
parameters such as gate voltages and magnetic field. In
a situation the fermionic statistics of electrons is clearly
sential.

Additional correlations in many-fermion systems arise
more than one Slater determinant is involved, i.e., if there
no single-particle basis such that a given state ofN indistin-
guishable fermions can be represented as an eleme
Slater determinant~i.e., fully antisymmetric combination o
N orthogonal single-particle states!. These correlations ar
the analog of quantum entanglement in separated sys
and are essential for quantum information processing in n
separated systems.

As an example consider a ‘‘swap’’ process exchanging
spin states of electrons on coupled quantum dots by ga
the tunneling amplitude between them@12,13#. Before the
gate is turned on, the two electrons in the neighboring qu
tum dots are in a state represented by a simple Slater d
minant and can be regarded as distinguishable since the
separated by a large energy barrier. When the barrier is l
ered, more complex correlations between the electrons du
the dynamics arise. Interestingly, as shown in Refs.@12#,
@13#, during such a process the system must necessarily e
a highly correlated state that cannot be represented b
single Slater determinant. The final state of the gate op
tion, however, is, similarly as the initial one, essentia
given by a single Slater determinant. Moreover, by adjust
the gating time appropriately one can also perform a ‘‘squ
root of a swap’’ which turns a single Slater determinant in
a ‘‘maximally’’ correlated state in much the same way@13#.
At the end of such a process the electrons can again
viewed as effectively distinguishable, but are in a maxima
entangled state in the usual sense of distinguishable s
rated particles. In this sense the highly correlated interm
ate state can be viewed as a resource for the productio
entangled states.

We expect that similar scenarios apply to other schem
of quantum information processing that involve cold p
ticles ~bosons or fermions! interacting at microscopic dis
tances at which the quantum statistics becomes essentia
instance, it should be of relevance for quantum comput
models employing ultracold atoms in optical lattices@14# or
ultracold atoms in arrays of optical microtraps@15#.

It is the purpose of the present paper to analyze the ab
type of quantum correlations between indistinguishable
mions in more detail. However, to avoid confusion with t
existing literature we shall reserve in the following the te
‘‘entanglement’’ for separated systems and characterize
02230
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analogous quantum correlation phenomenon in nonsepar
fermionic systems by the notions of Slater rank and Sla
number to be defined below.

We are going to formulate analogies with the theory
entanglement and translate several very recent res
@10,16,17# concerning standard systems of distinguisha
parties (AliceÞBob) to the case of indistinguishable ferm
ons. In general, we will deal with a system of two fermio
each of which live in a 2K-dimensional single-particle space

The plan of the paper is as follows: In Sec. II we discu
pure states and formulate the analog of Schmidt decomp
tion and rank—Slater decomposition and rank. We then d
cuss a simple operational criterion for the case of two el
trons in two neighboring quantum dots (K52) to determine
whether a given state is of Slater rank 1. This criterion w
first derived in Ref.@13#. In Sec. III we define the concept o
a Slater number for mixed states. ForK52 we present the
necessary and suficient condition for a mixed state to h
the Slater number 1. This is an analog of the Per
Horodecki criterion@7,8# in the Wootters formulation@18#. In
Sec. IV we extend the results of Sec. III and define a Sla
correlation measure which is the analog of the entanglem
formation measure@19#. This quantity can be calculated an
lytically for the caseK52, in analogy to the Wootters resu
@18#. In Sec. V we turn to the caseK.2 and introduce Slate
number witnesses of canonical form~defined in analogy to
entanglement@9,16# and Schmidt number@20,17# witnesses!.
We construct examples of suchk-Slater witnesses, which
provide the necessary conditions for a given state to hav
Slater number smaller thank; we also discuss optimization o
Slater witnesses. Finally, we analyze the associated@21#
positive maps. We close by discussing further analogies,
also differences, between entanglement in separated sys
of distinguishable particles as opposed to quantum corr
tions in nonseparated systems of indistinguishable partic

II. SLATER RANK OF PURE STATES

We consider two indistinguishable fermions each
which resides in the single-particle Hilbert spaceC2K. This
situation is given, e.g., in a system of two electrons inK
neighboring quantum dots where only the orbital grou
state of each dot is taken into account. Alternatively, one m
think of, say, two quantum dots with an appropriate num
of orbital states available for the two fermions.

The states~density matrices! in such a system are positiv
self-adjoint operators acting on the antisymmetric sp
A(C2K

^ C2K). Let us first consider pure states, i.e., proje
tors on a vector uC&PA(C2K

^ C2K). Let f a , f a
† , a

51, . . . ,2K, denote the fermionic annihilation and creatio
operators of single-particle states forming an orthonorm
basis inC2K, and uV& denotes the vacuum state. Each vec
in the two-electron space can be represented asuC&
5(a,bwabf a

†f b
†uV&, wherewab52wba is an antisymmetric

matrix. We have the following generalization of theore
4.3.15 from Ref.@22#, which will allow us to define the
fermionic analog of the Schmidt decomposition:

Lemma 1. For any antisymmetricN3N matrix AÞ0
there exists a unitary transformationU8 such that A
3-2
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5U8ZU8T, where the matrixZ has blocks on the diagonal,

Z5diag@Z0 ,Z1 ,...,ZM#, Z050, Zi5F 0 zi

2zi 0 G , ~2!

andZ0 is a (N22M )3(N22M ) null matrix.
Proof. Let A be anN3N, complex, antisymmetric matrix

acting onCN, A52AT; hence,A†52A* . Let us defineB
ªAA* 52AA†. Here B is Hermitian, B5B†, and hence
diagonalizable by a unitary transformation:B5UDU†,
UU†51, D-diagonal. Now considerCªU†AU* . It is easy
to check thatC is antisymmetric,CT52C, and normal,
CC†5C†C. Let us decomposeC into its real and imaginary
parts: C5F1 iG; F, G are realN3N matrices. SinceC is
antisymmetric, so areF andG. SinceC is normal,F andG
commute. ThusF andG are real, antisymmetric, commutin
matrices. Hence they can be simultaneously brought
block-diagonal forms by a real orthogonal transformat
@22#, F5OFbdO

T, G5OGbdO
T, whereO is anN3N ma-

trix, OOT5I , where

Fbd5diag@X0 ,X1 ,...,XK#,

Gbd5diag@Y0 ,Y1 ,...,YL#, ~3!

and X0 ,Y0 are null matrices of some dimensions,X050,
Y050, whereasXi ,Yi are standard antisymmetric 232
blocks:

Xi5F 0 xi

2xi 0 G , Yi5F 0 yi

2yi 0 G . ~4!

Thus C5OZOT where Z has the form~2! and, finally A
5UCUT5UOZOTUT5(UO)Z(UO)T5U8ZU8T with U8
unitary. j

Lemma 2. Every vector in antisymmetric spac
A(C2K

^ C2K) can be represented in an appropriately cho
basis inC2K in a form of the Slater decomposition

uC&5
1

A( i 51
K uzi u2 (

i 51

K

zi f a1~ i !
† f a2~ i !

† uV&, ~5!

where the statesf a1( i )
† uV&, f a2( i )

† uV&, i 51, . . . ,K, form an

orthonormal basis inC2K; i.e., each of these single-partic
states occurs only in one term in the summation~5!. The
number of nonvanishing coefficientszi ~i.e., the number of
elementary Slater determinants required to constructuC&! is
called the Slater rank.

Proof. Let uC&5(a,bwabf a
†f b

†uV&. Note that the change
of basis inC2K corresponds to a unitary transformation
fermionic operators,f a

†5(bUba( f b8)
†, which implies that in

the new basisw85UwUT. From lemma 1 we may chooseU
such thatw8 will have the form ~2!, which provides the
Slater decomposition.j

From the point of view of applications in quantum d
computers, it is important to be able to distinguish states w
Slater rank 1~which can be easily prepared and detect!
from those that involve more than one elementary Slater
02230
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terminant. In general, givenuC& in some basis, in order to
check the Slater rank, one has to perform the Slater dec
position. As we know from Ref.@13#, the situation is simpler
for the caseK52, where we have the following.

Lemma 3~Ref. @13#!. A vector uC&5(a,b51
4 wabf a

†f b
†uV&

in A(C4
^ C4) has Slater rank 1 iff

h~ uC&)5U (
a,b,c,d

eabcdwabwcdU50, ~6!

where eabcd denotes the totally antisymmetric tensor
C4

^ C4
^ C4

^ C4.
Remark. The quantityh~uC&! can be constructed from th

dual state

uC̃&5(
a,b

w̃abf a
†f b

†uV&, ~7!

defined by the dual matrix

w̃ab5
1

2 (
c,d

eabcdwcd* . ~8!

With these definitions we have

h~ uV&)5u^C̃uC&u. ~9!

The proof of this lemma was presented first in Ref.@13#. An
alternative proof can be given using lemma 1 and observ
that

detw5S 1

8
^C̃uC& D 2

, ~10!

wherew is the antisymmetric 434 matrix defininguC&.
In the Appendix we list some further useful properties

h~uC&! and the relation of the dualization operation to
antiunitary implementation of particle-hole transformatio
An interesting further question is possible generalizations
the above result to the case ofK fermions having a single-
particle spaceC2K.

III. SLATER NUMBER OF MIXED STATES

Let us now generalize the concepts introduced above
the case of mixed states. To this end, we define the Sl
number of a mixed state, in analogy to the Schmidt num
for the case of distinguishable parties@20,17#

Definition 1. Consider a density matrixr of a two-fermion
system and all its possible convex decompositions in te
of pure states, i.e.,r5( i pi uc i

r i&^c i
r iu, wherer i denotes the

Slater rank ofuc i
r i&; the Slater number ofr, k, is defined as

k5min$rmax%, wherer max is the maximum Slater rank within
a decomposition, and the minimum is taken over all deco
positions.

In other words,k is the minimal Slater rank of the pur
states that are needed in order to constructr, and there is a
construction ofr that uses pure states with Slater rank n
exceedingk.
3-3
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Many of the results concerning Schmidt numbers can
transferred directly to the Slater number. For instance, le
denote the whole space of density matrices inA(C2K

^ C2K)
by SlK and the set of density matrices that have Slater nu
ber k or less by Slk . Here Slk is a convex compact subset o
SlK ; a state from Slk will be called a state of~Slater! classk.
Sets of increasing Slater number are embedded into e
other, i.e., Sl1,Sl2,¯Slk¯,SlK . In particular, Sl1 is the
set of states that can be written as a convex combinatio
elementary Slater determinants; Sl2 is the set of states o
Slater number 2, i.e., those that require at least one pure
of Slater rank 2 for their formation, etc.

The determination of the Slater number of a given stat
in general a very difficult task. Similarly, however, as in t
case of separability of mixed states of two qubits~i.e., states
in C2

^ C2! and one qubit and one qutrit~i.e., states in
C2

^ C3! @8#, the situation is particularly simple in the case
smallK. For K51 there exists only one state~a singlet!. For
K52 we will present below a necessary and sufficient c
dition for a given mixed state to have a Slater number o
One should note, however, that in the considered cas
fermionic states there exists no simple analogy of the pa
transposition, which is essential for the theory of entang
states. In fact, the Peres-Horodecki criterion@7,8# in 232
and 233 spaces says that a state is separable iff its pa
transpose is positive. It is known, however, that the Pe
Horodecki criterion is equivalent to Wootters’ result@18#,
relating separability to a quantity called concurrence, wh
is related to eigenvalues of a certain matrix. This latter
proach can be used to characterize fermionic states inA(C4

^ C4). We have the following theorem.
Theorem 1. Let the mixed state acting inA(C4

^ C4) have
a spectral decompositionr5( i 51

r uC i&^C i u, wherer is the
rank of r, and the eigenvectorsuC i& belonging to nonzero
eigenvaluesl i are normalized aŝ C i uC j&5l id i j . Let
uC i&5(a,bwab

i f a
†f b

†uV& in some basis and define the com
plex symmetricr 3r matrix C by

Ci j 5 (
abcd

eabcdwab
i wcd

j , ~11!

which can be represented using a unitary matrix asC
5UCdUT, with Cd5diag@c1,c2,¯ ,cr# diagonal anduc1u
>uc2u>¯>ucr u. The stater has Slater number 1 iff

uc1u<(
i 52

r

uci u. ~12!

Proof. Let us assume that a stater acting in A(C4
^ C4)

has Slater number 1, i.e.,

r5(
i 51

r

uC i&^C i u5 (
k51

r 8

ufk&^fku, ~13!

where allfk have Slater rank 1, whereasr 8 can be an arbi-
trary integer >r . But ufk& can be represented asufk&
5( i 51

r UkiuC i&5( i 51
r (a,bUkiwab

i f a
†f b

†uV&. From lemma 3
02230
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we obtain that for eachk, h„w8(k)…50, where w8(k)ab

5( i 51
r Ukiwab

i . The matricesUki must therefore fulfill, for
everyk,

(
abcd

(
j 51

r

eabcdwab
i wcd

j UkiUk j5 (
i , j 51

r

Ci j UkiUk j50.

~14!

On the other hand, from Eq.~13! we obtain

(
k51

r 8

UkiUk j* 5d i j . ~15!

The Slater rank 1 is thus equivalent to the existence of
r 83r matrix Uki that fulfills Eqs.~14! and~15!. It is conve-
nient to represent the rows of the matrixUki as vectorsuRk&
in an r dimensional Hilbert spaceHaux. Equations~14! and

~15! then reduce to(k
r 8uRk&^Rku51, and ^Rk* uCuRk&50 for

all k. One can always change the basis inHaux, i.e., replace
uRk&→UuRk&. Such a transformation does not affect Eq.~15!
and transformsC→UTCU. SinceC is symmetric,U can be
chosen in such a way thatUTCU is diagonal, and Eq.~14!
reads then( i 51

r ciUki
2 50. In this new basis the constructio

of Uki using the method of Wootters@18# can be carried over
One can always assume thatc1Uk1

2 is real and positive by
chosing the phases ofuRk&. Then one observes that, provide
Eq. ~14! is fulfilled,

05U(
i 51

r

ciUki
2 U>uci uuUk1

2 u2(
i 52

r

uci uuUki
2 u. ~16!

Summing the above inequality overk and using Eq.~15!, we
obtain the necessary condition

uc1u<(
i 52

r

uci u. ~17!

To show that it is also a sufficient condition, we taker 852 if
r 52, r 854 if r 53,4, r 858 if r 55,6, and Uki5
61ki exp(iui)/Ar 8. The equations in Eq.~14! are then all
equivalent to

uc1u5(
i 52

r

ci exp~2iu i !, ~18!

and the anglesu i can indeed be chosen to assure that E
~18! is fulfilled, provided the condition~17! holds. The61ki
signs are designed in such a way that Eq.~15! is fulfilled.
Thus for r 852 we take~11!, ~12! for i 51,2, for r 854
we take ~1111!, ~1122!, ~1212!, ~1221! for i
51, . . . ,4 ~or any 3 of them fori 51, . . . ,3!, and finally for
r 858, ~11111111!, ~11112222!,
~11221122!, ~11222211!, ~12121212!,
~12122121!. In the latter case we take again as ma
vectors as we need, i.e.,i 51, . . . ,5<r<6.

The above theorem is an analog of the Peres-Horode
Wootters result for two-fermion systems having a sing
particle space of dimension 2K<4. The situation is much
3-4
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more complicated when we go toK.2; this is similar to the
case of the separability problem inCM

^ CN with MN.6.
These issues are investigated in Sec. V. In the following s
tion, however, we shall concentrate on the caseK52.

IV. SLATER CORRELATION MEASURE

The similarity of our approach to that of Wootters@18#
can be pushed further and, in particular, allows us to de
and calculate, for the case ofK52, the ‘‘Slater formation
measure’’~in analogy to entanglement formation measu
@19#!.

To this aim we first consider a pure~normalized! state

uc̄&5(a,bwabf a
†f b

†uV& and define theSlater correlation mea-

sureof uc̄& as in lemma 3~cf. Ref. @13#!,

h~ uc̄&)5u^c! uc̄&u, ~19!

with uc! & being the dual ofuc̄&. Obviously, the notion of dua
states, as well as the functionh~•! in Eq. ~19!, can be defined
also for unnormalized states. In the following we will deno
such unnormalized states just as states occurring in the
vious sections, i.e., without the overbar.

The measure~19! has all desired properties@19,23#, such

that it vanishes iffuc̄& has Slater rank 1 and it is invarian
with respect to local bilateral unitary operations or, in a
other words, with respect to changes of the basis in
single-particle space.

Having defined the measure for the pure states, we
consider the following definition

Definition 2. Consider a density matrixr acting in
A(C4

^ C4) and all its possible convex decompositions

terms of pure states, i.e.,r5( i uc i&^c i u5( i pi uc̄ i&^c̄ i u,
where the unnormalized statesuc i&5Api uc̄ i&; the Slater cor-
relation measure ofr, CSl(r), is defined as

CSl~r!5 infH(
i

pih~ uc̄ i&)J ,

where the infimum is taken over all decompositions.
In other words,CSl(r) is the minimal amount of Slate

correlations of the pure states that are needed in orde
constructr, and there is a construction ofr that uses pure
states with ‘‘averaged’’ Slater correlationCSl(r).

Note that( i pih(uc̄ i&)5( ih(uc i&). As we shall see be
low, the measureCSl(r) can be related directly to the matri
Ci j in Eq. ~11! and to its ‘‘concurrence.’’ It is invariant no
only with respect to local bilateral unitary operations, bu
also cannot increase under local bilateral operations. Th
are trace preserving maps of the formr→M (r)
5( jAj ^ AjrAj

†
^ Aj

† , where eachAj acts in C4, and
( jAj

†Aj ^ Aj
†Aj51. Such transformations correspond to mi

tures of density matrices obtained after nonunitary chan
of the basis in the single-particle space. It is easy to see

CSl„M ~r!…5S (
j

udetAi uCSl~r! D<CSl~r!.
02230
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We have the following theorem
Theorem 2. For anyr acting in A(C4

^ C4),

CSl~r!5uc1u2(
i 52

r 8

uci u, ~20!

where ci are the diagonal elements of C [Eq. (11)] in th
basis that diagonalizes it.

Proof. The proof is essentially the same as the one in
previous section. Let us consider an arbitrary expansion

given density matrix, r5(k51
r 8 ufk&^fku, where ufk&

5( j 51
r Uk juC j&. Here uC j& denote the usual ‘‘subnormal

ized’’ eigenvectors ofr with ^C j uC j& being equal to thej th
nonzero eigenvalue ofr @18#. It is easy to see that

CSl~ ufk&^fku!5U (
i , j 51

r

Ci j UkiUk jU, ~21!

and (k51
r 8 Uki* Uk j5d i j . By changing the basis to the one

which C is diagonal, we get~after choosing the phases o
Uk1 such thatc1Uk1

2 are real and positive!

(
k51

r 8

CSl~ ufk&^fku!5 (
k51

r 8 U(
j

cjUk j
2 U>uc1u2(

i 52

r 8

uci u.

~22!

This inequality becomes an equality when we use the sa
construction ofUk j as in previous section, namely,Uk j5
61k j exp(iuj)/Ar 8, with u j selected in such a way that~in-
dependently ofk!

U(
j

cjUk j
2 U5 1

r 8
S uc1u2(

i 52

r 8

uci u D . ~23!

j
The above construction provides, to our knowledge, a r

example of an analog of the entanglement formation mea
that can be evaluated analytically. Obviously, since we h
introduced the concept of Slater coefficients, we may de
other Slater correlations measures for pure states in term
appropriately designed convex functions of the Slater coe
cients ~in analogy to entanglement monotones@24#!. For K
52 and most probably only forK52, all those measures ar
equivalent and the corresponding induced measures
mixed states can be calculated analytically.

V. SLATER WITNESSES

We now investigate fermion systems with single-partic
Hilbert spaces of dimension 2K.4. In this case, a full and
explicit characterization of pure and mixed state quant
correlations, such as given above for the two-fermion sys
with K52, is apparently not possible. Therefore one has
formulate other methods to investigate the Slater number
given state. We can, however, follow here the lines of
papers that we have written on entanglement witnes
@10,16# and Schmidt number witnesses@17#.

In order to determine the Slater number of a density m
3-5
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trix r, we note that due to the fact that the sets Slk are convex
and compact, any density matrix of classk can be decom-
posed into a convex combination of a density matrix of cl
k21, and a remainderd @25#.

Proposition 1. Any state of classk, rk , can be written as
a convex combination of a density matrix of classk21 and
a so-calledk-edge stated:

rk5~12p!rk211pd, 1>p.0, ~24!

where the edge stated has Slater number>k.
The decomposition~24! is obtained by subtracting projec

tors onto pure states of Slater rank smaller thank, P
5uc,k&^c,ku, such thatrk2lP>0. Hereuc,k& stands for
pure states of Slater rankr ,k. Denoting byK(r), R(r),
and r (r) the kernel, range, and rank ofr, respectively, we
observe thatr8}r2luc,k&^c,ku is non negative iffuc,k&
PR(r) and l<^c,kur21uc,k&21 ~see@25#!. The idea be-
hind this decomposition is that the edge stated which has
generically lower rank contains all the information conce
ing the Slater numberk of the density matrixrk .

As in the case of Schmidt number, there is an optim
decomposition of the form~24! with p minimal. Alterna-
tively, restricting ourselves to decompositionsrk

5( i pi uc i
r i&^c i

r iu with all r i<k, we can always find a decom
position of the form~24! with dPSlk . We define below
more precisely what an edge state is.

Definition 3. A k-edge stated is a state such thatd
2euc,k&^c,ku is not positive, for anye.0 anduc,k&.

Criterion 1. A mixed stated is a k-edge state iff there
exists nouc,k& such thatuc,k&PR(d).

Now we are in the position of defining ak-class Slater
witness~k-SW, k>2!:

Definition 4. A Hermitian operatorW is a Slater witness
~SW! of classk iff Tr( Ws)>0 for all sPSlk21 and there
exists at least onerPSlk such that Tr(Wr),0.

It is straightforward to see that every SW that detectr
given by Eq. ~24! also detects the edge stated, since if
Tr(Wr),0, then necessarily Tr(Wd),0, too. Thus knowl-
edge of all SW’s ofk-edge states fully characterizes allr
PSlk . Below, we show how to construct for any edge stat
SW which detects it. Most of the technical proofs used
construct and optimize Slater witnesses are very simila
those presented in Ref.@10# for entanglement witnesses.

All the operators we consider below act
A(C2K

^ C2K). Let d be ak-edge state,C an arbitrary positive
operator such that Tr(dC).0, and P a positive operator
whose range fulfills R(P)5K(d). We define e
[ infuc,k&^c

,kuPuc,k& and c[sup̂ cuCuc&. Note that c
.0 by construction ande.0, becauseR(P)5K(d), and
therefore, sinceR(d) does not contain anyuc,k& by the
definition of edge state,K(P) cannot contain anyuc,k& ei-
ther. This implies the following.

Lemma 4. Given ak-edge stated, then

W5P2
e

c
C ~25!

is a k-SW which detectsd.
02230
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The simplest choice ofP andC consists in taking projec-
tions ontoK(d) and the identity operator on the asymmet
space1a , respectively. As we will see below, this choic
provides us with a canonical form of ak-SW.

Proposition 2. Any Slater witness can be written it th
canonicalform

W5W̃2e1a , ~26!

such thatR(W̃)5K(d), whered is a k-edge state and 0,e

< infuc&PSk21
^cuW̃uc&.

Proof. Assume W is an arbitrary k-SW such that
Tr(Ws)>0 for all sPSlk21 and there' at least oner such
that Tr(Wr),0. Here W has at least one negative eige
value. ConstructW1e1a5W̃, such thatW̃ is a positive op-
erator on A(C2K

^ C2K), but does not have a full rank
K(W̃)Þ0 ~by continuity this construction is always pos
sible!. But ^c,kuW̃uc,k&>e.0 sinceW is ak-SW, ergono
uc,k&PK(W̃). j

Definition 5. A k-class Slater witnessW is tangent to
Slk21 at r if ' a staterPSlk21 such that Tr(Wr)50.

Observation 1. The stater is of Slater classk21 iff for
all k-SW’s tangent to Slk21 , Tr(Wr)>0.

Proof ~see@10#!. ~only if! Suppose thatr is of classk.
From the Hahn-Banach theorem it follows that thereexistsa
k-SW,W, that detects it. We can subtracte1a from W, making
W2e1a tangent to Slk21 at some s, but then Tr@r(W
2e1)#,0. j

A. Optimal Slater witnesses

We will now discuss the optimization of a Slater witnes
As proposed in@10# and @17#, an entanglement witnes
~Schmidt witness! W is optimal if there exists no other wit
ness that detects more states than it. The same definition
be applied to Slater witnesses. We say that ak-Slater witness
W2 is finer than ak-Slater witnessW1 , if W2 detects more
states thanW1 . Analogously, we define ak-Slater witnessW
to be optimal when there exists no finer witness than its
Let us define the set ofuc,k& pure states of Slater rankk
21 for which the expectation value of thek-Slater witnessW
vanishes:

TW5$uc,k& such that ^c,kuWuv,k&50%, ~27!

i.e., the set of pure tangent states of Slater rank,k. HereW
is an optimalk-SW iff W2eP is not ak-SW, for any posi-
tive operatorP. If the setTW spans the whole Hilbert spac
A(C2K

^ C2K), thenW is an optimalk-SW. If TW does not
spanA(C2K

^ C2K), then we can optimize the witness by su
tracting from it a positive operatorP, such thatPTW50. For
example, for Slater witnesses of class 2 this is possible p
vided that infue&PC2K@Pe

21/2WePe
21/2#min.0. Here for anyX

acting onA(C2K
^ C2K), we define

Xe5@^e,•uXue,•&2^e,•uXu•,e&2^•,euXue,•&

1^•,euXu•,e&#, ~28!
3-6
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as an operator acting inC2K, and@X#min denotes its minimal
eigenvalue~see@10#!. An example of an optimal witness o
Slater numberk in A(C2K

^ C2K) is given by

W51a2
K

k21
P, ~29!

whereP is a projector onto a ‘‘maximally correlated state
uC&5(1/AK)( i 51

K f a1( i )
† f a2( i )

† uV& @cf. Eq. ~5!#. The reader

can easily check that the above witness operator has m
value zero in the statesf a1( i )

† f a2( i )
† uV& for i 51,2, but also for

all states of the formg1
†g2

†uV&, where

g1
†5 f a1~1!

† eiw111 f a1~2!
† eiw121 f a2~1!

† eiw211 f a2~2!
† eiw22,

~30!

g2
†52 f a2~1!

† e2 iw121 f a1~2!
† e2 iw112 f a2~1!

† e2 iw22

1 f a2~2!
† e2 iw21, ~31!

for arbitraryw i j , i, j 51,2. The setTW spans in this case th
whole Hilbert spaceA(C2K

^ C2K): ergo Wis optimal.

B. Slater witnesses and positive maps

It is interesting to consider linear maps associated w
Slater witnesses via the Jamiołkowski isomorphism@21#.
Such maps employW acting in HA^ HB5C2K

^ C2K and
transform a stater acting in HA^ HC5C2K

^ C2K into an-
other state acting in HB^ HC5C2K

^ C2K, M (r)
5TrA(WrA

T). Obviously, such maps are positive on sep
rable states: Whenr is separable, then for anyuC&PHB
^ HC , the mean value of̂CuM (r)uC&, becomes a convex
sum of mean values ofW in some product statesue, f &
PHA^ HB . SinceW acts in fact in the antisymmetric spac
we can antisymmetrize these states, i.e.,ue, f &→(ue, f &
2u f ,e&). Such antisymmetric states have, however, Sla
rank 1, and all SW’s-of classk>2 have thus positive mea
value in those states. This class of positive maps is q
different from the ones considered in Refs.@10#, @16#; they
provide thus an interesting class of necessary separab
conditions. The map associated with the witness~29! is,
however, decomposable; i.e., it is a sum of a comple
positive map and another completely positive map compo
with transposition. This follows from the fact that the witne
operator has a positive partial transpose; i.e., it can be
sented as a partial transpose of a positive operator.

VI. CONCLUSIONS AND OUTLOOK

Summarizing, we have presented a general characte
tion of quantum correlated states in two-fermion syste
with a 2K-dimensional single-particle space. This goal h
been achieved by introducing the concepts of Slater de
position and rank for pure states, and Slater number
mixed states. In particular, for the important caseK52 the
quantum correlations in mixed states can be character
completely in analogy to Wootters’ result for separated qu
@18# and using the findings of Ref.@13# for pure states. Simi-
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larly to the case of separated systems, the situation foK
.2 is more complicated. Therefore, we have also introdu
witnesses of Slater numberk and presented the methods
optimizing them.

Possible directions for future work include generalizatio
of the present results to more than two fermions and
development of an analogous theory for indistinguisha
bosons. For this purpose a lot of the concepts develope
far are expected to be useful there as well. However, th
are certainly also fundamental differences between quan
correlations in bosonic and fermionic systems. As an
ample, consider the notion of unextendible product bases
troduced recently for separated systems@26#. These are sets
of product states spanning a subspace of the Hilbert sp
whose orthogonal complement does not contain any prod
states. All such unextendible product bases constructed s
involve product states of the formuc& ^ ux& with uc& and ux&
being nonorthogonal. In the analogous fermionic state n
orthogonal contributions are obviously cancelled out by
tisymmetrization, unlike the bosonic case. In fact, all expli
constructions of unextendible product bases known so
@26# can be taken over directly to bosonic systems to g
‘‘unextendible Slater permanent bases.’’ These are set
symmetrized product states spanning a subspace of the
metrized Hilbert space, whose orthogonal complement d
not contain any such states.
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APPENDIX

We now list further properties of the correlation measu
h for pure statesuC&5(a,b51

4 wabf a
†f b

†uV& of two fermions
in a four-dimensional single-particle space@13# and add
some further remarks.

The matrixw transforms under a unitary transformation
the one-particle space,

f a
†°Uf a

†U†5(
b

Ubaf b
† , ~A1!

as

w°UwUT, ~A2!

whereUT is the transpose~not the adjoint! of U. Under such
a transformation,uC&°uF&5UuC&, scalar products of the

form ^C̃1uC2& remain unchanged up to a phase,
3-7
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^F̃1uF2&5detU^F̃1uF2&. ~A3!

Therefore, in particular,h(uC&) is invariant under arbitrary
single-particle transformations.

The dualization of a stateuC& can be identified as a
particle-hole-transformation,

Up2hf a
†Up2h

† 5 f a , Up2huV&5 f 1
†f 2

†f 3
†f 4

†uV&, ~A4!

along with a complex conjugation. In fact, the operator

dualizationD, uC&°uC̃&5DuC&, can be written as

D52Up2hK, ~A5!

whereK is the usual operator of complex conjugation whi
acts on a general state vector as

K~aua&1bub&)5a* Kua&1b* Kub&. ~A6!

Its action on the single-particle basis states and the fermi
vacuum is given by

Kf a
†K5 f a

† , Kf aK5 f a , KuV&5uV&. ~A7!

The relations~A7! are to be seen as a part of the definition
K and refer explicitly to a certain single-particle basis d
fined by the operatorsf a , f a

† . However, switching to a dif-
ferent complex conjugation operatorK8, fulfilling the rela-
tions~A7! in a different basis, has only trivial effects withou
any physical significance. In particular, as one can see f
the properties given above, the correlation measureh(uC&)

5u^C̃uC&u, uC̃&5DuC&, remains invariant under such a
operation.
ro
ri

s

.

A

ys
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Equation ~A3! implies thatD is unchanged by unitary
single-particle operations,

UDU†5D⇔@U,D#50, ~A8!

which can also be expressed as

UUp2hUT5Up-h ~A9!

for any unitary single-particle transformationU.
The dualization operatorD is the antiunitary implementa

tion of the particle-hole transformation. We note that t
complex conjugation involved there is necessary forD being
compatible with single-particle transformationsU,

DUf a
†U†D215(

b
Uba* f b5UDf a

†D21U†. ~A10!

If the complex conjugation would be left out,U andD would
not commute.

The relation of the correlation measureh to an antiunitary
operator is similar to Wootters’ construction for a separ
system of two qubits@18#. The correlation measure ther
~‘‘concurrence’’! relies on the time inversion operation. Th
operator of time inversion in the two-qubit system is inva
ant under local unitary transformations in each qubit spa
This property is similar to the invariance of the dualizati
operator under unitary transformations in the single-part
space.
. B
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