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Quantum teleportation of entangled coherent states
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We propose a simple scheme for the quantum teleportation of both bipartite and multipartite entangled
coherent states with the success probability 1/2. The scheme is based only on linear optical devices such as
beam splitters and phase shifters, and two-mode photon number measurements. The quantum channels de-
scribed by the multipartite maximally entangled coherent states, are readily made by the beam splitters and
phase shifters.
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Quantum teleportation, first proposed by Benretal. |a)ca= MeL|a)+e_|—a)),
[1], is a disembodied transport of quantum states between (4)
subsystems through a classical communication channel re- N=[|e+|2+|e,|2+2e*2|“‘2 Re(e, €¥)] 12

quiring a shared entangled state. Several experiments were
implemented to demonstrate the teleportatidh Most of  through a quantum channel described by the MESY) 1,
the studies were confined to the teleportation of single-bodyyheree. are complex numbers. Inspired by their teleporta-

quantum states: quantum teleportation of two-level sdtes  tion scheme, we consider the teleportation of the following
N -dimensional statef3], and continuous variabldd]. Re- ECS:

cently Lee and Kim considered the teleportation of bipartite

entangled states through noisy quantum chaniglskram | DY 1o=Nop(€,|a)i|a),+ e | —a)|—a),),

et al. [6] and Shiet al. [7] proposed schemes for the quan- (5)

tum teleportation of a two-qubit entangled state. Teleporta- No=[les|2+|e_|2+2e 4 Re(e, e*)] 2

tion of some pure entangled states of both discrete and con-

tinuous variables was considered by Gorbaceesl. [8]. A In the teleportation of entangled states, particularly two-
possibility to copy pure entangled states was studied by Kogubit pure states, one can use two EPR pairs: a four-qubit
ashi and Imotd9]. guantum channel, or a less expensive three-qubit GHZ state

In teleportation schemes we need certain types of maxit8]. If we want to teleport the ECRD)4,, we need at least a
mally entangled state@VIES’s). We consider the following tripartite entangled state as the quantum channel. In a recent
entangled coherent staECS [10]: paper[12], we considered the following tripartite entangled

states:

1
;@) 1= ——————=(|a) 1| @)% |~ a)| — @),), 1
2(1+e el V2a; ) a)3, =————(|V2a)3|@)4|a
V2(1*xe ) W | )345 ,—2(lie*8‘“‘) [V2a)s| a)ala)s

where|a); (i=1 and 3 is the coherent state of systénit is == \2a)s| - a)q — a)s). (6)
interesting to see that the EC&; a) 1, is a MES, irrespective

of the parameter [11]. The ECS|a; )3, can be rewritten The bipartite entanglement of the tripartite states can be

characterized by one measure of entanglement, the concur-

in the f .
N the form rence[13]. The concurrence of the statg2a;a;a)s,s be-
1 tween systemi and systemg,k (i#j#ke{3,4,5) is de-
|a;a>1*2:T(|a>1+|a>2*+|a>1*|a>2*) (2)  noted byCj;, . The concurrences are obtained[ 8]
2
, Caus=tant(4]al?), Cyus=1,
in terms of the even and odd coherent states: 7
.. Na-e Py 1-e 12
C4(35): 05(34): lie‘s‘“‘z

. 1
l@); =———=(|a)ix|—a)). €
V2(1xe 2l
We see that system 3 with systems 4 and 5 is always maxi-

Equation(2) shows that the stafer; a);, manifestly has one mally entangled in the state/2e;a;a)ss. This tripartite
ebit of entanglement. In the limjite] -0, the ECS reduces to state may be considered as a tripartite extension of the bipar-
the singlet-like state|W*);,=(]0),]|1),+|1),/0),)/\2, tite MES|«;a);,, and will act as a quantum channel in the
where|0); and|1); are photon number statéBock states following discussions. Now having the state);, to be tele-

van Enk and Hirota[11] discussed how to teleport a ported and the MES$\2a;a;a),s as a quantum channel,
Schralinger cat state of the form we begin to discuss our teleportation scheme.
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We first briefly review the action of a beam splitter on For the cases=0 andm+0 , the state on Bob’s side col-
coherent states. The lossless symmetric 50/50 beam splittexpses into

: tooLT
is described byB,,= e'("#@13273:31) \which transforms the ,
coherent statebal>21|ﬁ>2 as (@) ss= €|~ a)al —a)s—e_(—1)"a)sla)s. (15

By )il B)a=|(a+iB) N2 l(B+ia) D).  (8) Now Alice sends a classm:.;\I mfom:atlorfl to Bob., and Bob
makes a local transformation—(1)224"2s% on his state
Here a; and a] are the bosonic annihilation and creation |®")ss. The local transformation is a multiplication of two
Operators of System respective|y_ By equ|pp|ng the beam phase shifters of modes 4 and 5, and the resultant state after
splitter by a pair of— /2 phase shifters described by the the transformation is just the stai@"),s. _
unitary operatorP :e*iwazaz/Z we can have the operator We see that provided is odd, the teleportation scheme
Bio=P.B. P whif:h transform,s the stafer)| 8), as works perfectly. However, for evem the transformation for
1212 P72 perfect teleportation is

B a1l BY2=(a+B)I\2)1|(a— B)I\2),. ©) |@) 4| a)s—|a)sla)s, (16a
This transformation plays a key role in our teleportation
scheme. e g P |—a)al— a@)s— —|—a)s| — a)s, (16b)

Now Alice wishes to teleport the .EC.:|Q>)_12 toaremote \hich is in general not a unitary transformation except the
partner Bob by sharing the MES2a; ;@) 345. Systems 1, jimit case|a|—o. From Eqs(12) and(13), the probabilities
2 and 3 are at Alice’s side, and systems 4 and 5 are at Bob’p(o n) and P(n,0) for oddn are obtained as
side. The initial state of the whole system is then given by = ’

e—4‘a|2|2a|2n

W) 12305 | ) 1 V20; s ) 3. (10) P(On)=P(n,0)= 2ni(1—e 87

17
We first apply the transformatioi$,,=P.B,,P; to the . o

initial state. From Eq(9), the state after the transformation Then the probability of success is given by

becomes a direct product of the vacuum stétg with the

. 1
unnormalized state Pog=2 > P(n,0)= 5 (18
oddn

W) 2305 €1 (|N2a) 5| N2a)3 @) 4@ @)s—|\2a),|
As seen from Eq(18), the success probability is indepen-
—\2a)3| - @)4®| - a)s) dent on botha and e. . One restriction to the ECS to be
teleportated is that the mean photon number of the coherent
e (|=\2a)l\2a) a)se|a)s state|a)(]a|?) in system 1(2) is the same as that in system
—|=2a),| —V2a)s|—a)s®| —a)s). (11) 4 (5. In other words the state to be teleportated is strongly
correlated in photon number to the quantum channel. Actu-

Now system 1 is separated from the remain systems. The@lly the scheme is used to teleport a qubit encoded in the

by applying the second transformatiti;, we obtain ECS|®)4,. The teleportation scheme is not optimal; how-
ever, it indeed gives the nonzero probability 1/2 independent
|1p">2345:[323|qﬂ>2345: e+(|2a>2|0>3|a>4®|a>5 of a. ) .
There is another problem left that if we can produce the
—0)212a)s| — @)4®|—a)s) —€-(|=2a)2|0)3  tripartite maximally entangled coherent state which plays the

role of the quantum channel. If we cannot, the scheme does
X |— —a)s— - . C X

|~ @)4®] = a)s=10)] ~2a)s a)s& | a)s) not work. Fortunately we can create this MES in an easy
(12 way. We first prepare systems 3, 4, and 5 in the state

2a)5|0)4]0)s. Then by applying the transformation
After these two transformations, Alice performsatwo—mode'B )310)4/0)s Y. appying

, we obtain
number measurement on modes 2 and 3. The probability of45834

finding n andm photons in modes 2 and 3 is given by 845834|2a>§|0)4|0)5=845(|\/§a>3| \/§a>4®|0>5
P(n,m) =|o(n|s(m|P")234d”. (13 —|=V2a)s|—V2a),
The probability is zero if botlm andm are nonzero, i.e., one ®|0>5)/\/2(1_e*8la|2)
of the two integers must be zero in order to have nonzero
probability. =|\2a;a;a) s, (19
Let us suppos@#0 andm=0. In this case the state on
Bob’s side collapses into which is just the tripartite MES in the teleportation scheme.

In a short summary we can let the initial state of the whole
| P Yss= €. |a)s|a)s—e_(—1)"|—a)s|—a)s, (14  composite system bjgb),)|2a)5|0)4|0)s. We then apply a
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transformations,;3,1845834 t0 the initial state, and make the [2a; Va:a: 2a) 1567= Be7BseBas( | 2 \/§a> 4
two-mode number measurement to implement the teleporta-
tion. —~|=2124)4)|0)5/0)6|0)-.
We would like to investigate further what the success (25)

probability is if we use a nonmaximally entangled state as

the quantum channel in the teleportation scheme. We chooseis straightforward to generalize the teleportation scheme to

the state a$\/§a;a;a>§45 (6). From Eq.(7), we see that the teleport the multipartitémore than threeentangled ECS of

state|2a;a; @)1, is not maximally entangled except the the form|®),,;.

limit case|a| —o. The entangled stat2«; a; @) 3,5 can be _ In the telepqrtation scheme described abovg t_he' probabil-

generated similarly as the stdt€2a; e; ) 5. ity pf success is 1/2, a.nd independentaafThe it is inter-
Following the same steps as before, after Alice measuresting to consider the limjte|—0. The staté\2a; ;) g5

n photons in mode 2 and zero photons in mode 3, Bob’s statgan be rewritten as

collapses into the state

1
- V2a;a;0)306= = (IV2a)z | i) ist N2a)§ | a)gg),
| ) gs= € |a)sa)st+ e (—1)"—a)s|—a)s. (20) V2
(26)
The pe'rfect' telgportatlon is obtained for evernThe success which directly leads to
probability is given by
2 : - - 1 +
(1—e 4?2 |¥)zas= lim |\2a; ;@) 345= —=(11)3]00) 45+ [0)3| ¥ ) 4.
Peser=_ > [POOM)+P(N0)]=————7, ol V2
evenn>0 2(1+e |a] ) (27)

21
& Here the staté00),5=|0),4|0)5. We use the statfy)ss to
which is independent on the parameters. However, it teleport the state
depends on the parameter]. In the limit |a|—«, the suc-
cess probability becomes 1/2. In this limit case, the amount _ 1
of entanglement in the stale/2«; «; )4, is one ebit and |#)12= [a]2+ ]
the probability can be 1/2. Except this case, the success prob-
ability is always less than 1/2 as the corresponding quanturiithen the initial state of the whole system is given by
channel is not a MES.
Our teleportation scheme can be generalized to the multi- |40 ) 12345= | )12 ) 345 (29
artite cases. For the sake of simplicity, we study only the . .
Fripartite case. We consider a tripaﬁcite ECS: Yo It is straightforward to check that

(a]00) 15+ b[¥ ™) 1)). (28)

B1y10)1,= ¥ ") 15, B1d0D) 1=V 7)1, (308
|CI>)123=6+|\/Ea)1|a>2|a)3+e_|—\/§a>1|—a)2|—a>3.
(22 B ¥ )12=]10)15, B ¥ )1,=|01)1,, (300

To teleport|®),,3, we may need the four-particle entangled where| W *),,=(]10)+|01))/2. We have used the identity
state B2,=1. Then by applying the operatdt;55;, to the initial
state, we obtain
|2ai\/§a§a§2a>1567=|204>4|\/§a>5|a>6|a>7—|_2a>4|

1
— — — B ! =——————-0),[|10),15(a|00
V2a)s|— ayel—a)7, (23) 13814 ¢ >1234r2 |a|2+|b|2| )2[110)15(a|00)45
which is maximally entangled between the system 4 and sys- +b| W) 40) +]01) 15— @ 00) 45
tems 5, 6, and T12]. First we disentangle system 3 from . .
systems 1 and 2 by applying the operalfai/3;, to the state +b|W )45 +2[00)1g W )45

|P)1,3. We obtain

b
+—(|20)15-102)19|00.d.  (31)
B31B3y| @)125=[0)1|0) (€ |2a) 3+ €| —2a)3). (24) \/§| )13710213]00)d

Then we make the transformatidhy,, the two-mode num- Here we have used Eq0a and(30b). We see that system
ber measurement on modes 3 and 4, and a classical commg- decouples from the other systems. The teleportation
nication from Alice to Bob to finish the teleportation process.Scheme works perfectly if the resultant state of the two-mode
The success probability is also 1/2. The quantum channj]“mber measurement il0);3. If the resultant state is
described by the four-particle entangled state can be obtainedl 13, then Alice needs to communicate classically with

. T T
as Bob, and Bob makes a local transformation X)224" 253
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to finish the teleportation. Again the probability of success is In conclusion we have proposed a simple scheme to tele-
1/2. A setup similar to this teleportation scheme was projport both the bipartite and multipartite ECS with the success
posed to perform optical state truncatidi®], optical simu-  probability 1/2, independent af. As a crucial ingredient in
lation of quantum logi¢15], and quantum teleportatiqd6].  the scheme, the quantum channel described by the multipar-
The measurement we have used in our t6|ep0rti0n SChen”[ﬁe ECS can be read”y made On|y from linear 0ptica| de-
is a two-mode number measurement which must be sensit?v\;;:k:eS such as beam splitters and phase shifters. Thus we
enough to measure the number of photons and determingqgyige a way to achieve all linear optical teleportation of

whether thg number is even or odd. In practice t_his i§ qiﬁi‘quantum state§15,16. The probability of success in our
cult, especially for large numbers of photons, but in principle

this can be done. Here we propose one method to distinguisigheme is 1/2 due to the use of only linear operations and the
7 . ; sence of photon-photon interacti . Both the mea-
even and odah in the Fock statén) by coupling the field to P P ! 1bt6]

; = : surement and preparation of the quantum channel can be
a twp-leyel atom through dlsEr)erswe mteracp{m?]. The implemented in the experiments by the present techniques.
Hamiltonian is given byH=ga'ao,, whereg is the cou-

pling constant ang 5 8=x.y.2) are the Pauli operators de- We expect that the present scheme can be used in the experi-
scribing the peudogpin of the two-level atom. This Hamil-MeNts to demonstrate the quantum teleportation of the en-

tonian can be realized in both cavity-QED and trapped-iontangled states.

systems[17]. At time t=/(2g), the evolution operator
exp(—iHt) becomesU =exp(—ima'ac,/2). Initially let the . . .
atom be in the ground state and the field be in the Fock state The author acknowledges helpful discussions with Klau.s
In). After applying the unitary operatdy, we know that the Mdlmer, Anders SS[en.sen, Barry C. Sar?ders, Paolo Zanardi,

photon number is evefodd) if the atom is found to be in the Serge Massar, and Nicolas J. Cerf. This work was supported
ground(excited state. By this technique, we can distinguish by the Information Society Technologies Program IST-1999-

even and odd photon numbers. 11053, EQUIP, action line 6-2-1.
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