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Quantum teleportation of entangled coherent states

Xiaoguang Wang
Institute of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark

~Received 12 February 2001; published 3 July 2001!

We propose a simple scheme for the quantum teleportation of both bipartite and multipartite entangled
coherent states with the success probability 1/2. The scheme is based only on linear optical devices such as
beam splitters and phase shifters, and two-mode photon number measurements. The quantum channels de-
scribed by the multipartite maximally entangled coherent states, are readily made by the beam splitters and
phase shifters.
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Quantum teleportation, first proposed by Bennettet al.
@1#, is a disembodied transport of quantum states betw
subsystems through a classical communication channe
quiring a shared entangled state. Several experiments
implemented to demonstrate the teleportation@2#. Most of
the studies were confined to the teleportation of single-b
quantum states: quantum teleportation of two-level states@1#,
N -dimensional states@3#, and continuous variables@4#. Re-
cently Lee and Kim considered the teleportation of bipar
entangled states through noisy quantum channels@5#. Ikram
et al. @6# and Shiet al. @7# proposed schemes for the qua
tum teleportation of a two-qubit entangled state. Telepo
tion of some pure entangled states of both discrete and
tinuous variables was considered by Gorbachevet al. @8#. A
possibility to copy pure entangled states was studied by
ashi and Imoto@9#.

In teleportation schemes we need certain types of m
mally entangled states~MES’s!. We consider the following
entangled coherent state~ECS! @10#:

ua;a&12
6 5

1

A2~16e24uau2!
~ ua&1ua&26u2a&1u2a&2),

~1!

whereua& i ( i 51 and 2! is the coherent state of systemi. It is
interesting to see that the ECSua;a&12

2 is a MES, irrespective
of the parametera @11#. The ECSua;a&12

2 can be rewritten
in the form

ua;a&12
2 5

1

A2
~ ua&1

1ua&2
21ua&1

2ua&2
1) ~2!

in terms of the even and odd coherent states:

ua& i
65

1

A2~16e22uau2!
~ ua& i6u2a& i). ~3!

Equation~2! shows that the stateua;a&12
2 manifestly has one

ebit of entanglement. In the limituau→0, the ECS reduces to
the singlet-like state uC1&125(u0&1u1&21u1&1u0&2)/A2,
whereu0& i and u1& i are photon number states~Fock states!.

van Enk and Hirota@11# discussed how to teleport
Schrödinger cat state of the form
1050-2947/2001/64~2!/022302~4!/$20.00 64 0223
en
e-
re

y

e

-
n-

-

i-

ua&cat5N~e1ua&1e2u2a&),
~4!

N5@ ue1u21ue2u212e22uau2 Re~e1e2* !#21/2,

through a quantum channel described by the MESua;a&12
2 ,

wheree6 are complex numbers. Inspired by their telepor
tion scheme, we consider the teleportation of the followi
ECS:

uF&125NF~e1ua&1ua&21e2u2a&1u2a&2),
~5!

NF5@ ue1u21ue2u212e24uau2 Re~e1e2* !#21/2.

In the teleportation of entangled states, particularly tw
qubit pure states, one can use two EPR pairs: a four-q
quantum channel, or a less expensive three-qubit GHZ s
@8#. If we want to teleport the ECSuF&12, we need at least a
tripartite entangled state as the quantum channel. In a re
paper@12#, we considered the following tripartite entangle
states:

uA2a;a;a&345
6 5

1

A2~16e28uau2!
~ uA2a&3ua&4ua&5

6u2A2a&3u2a&4u2a&5). ~6!

The bipartite entanglement of the tripartite states can
characterized by one measure of entanglement, the con
rence@13#. The concurrence of the stateuA2a;a;a&345

6 be-
tween systemi and systemsj ,k ( iÞ j ÞkP$3,4,5%) is de-
noted byCi ( jk)

6 . The concurrences are obtained as@12#

C3(45)
1 5tanh~4uau2!, C3(45)

2 51,
~7!

C4(35)
6 5C5(34)

6 5
A~12e24uau2!~12e212uau2!

16e28uau2
.

We see that system 3 with systems 4 and 5 is always m
mally entangled in the stateuA2a;a;a&345

2 . This tripartite
state may be considered as a tripartite extension of the bi
tite MES ua;a&12

2 , and will act as a quantum channel in th
following discussions. Now having the stateuF&12 to be tele-
ported and the MESuA2a;a;a&345

2 as a quantum channe
we begin to discuss our teleportation scheme.
©2001 The American Physical Society02-1
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We first briefly review the action of a beam splitter o
coherent states. The lossless symmetric 50/50 beam sp

is described byB125ei (p/4)(a1
†a21a2

†a1), which transforms the
coherent statesua&1ub&2 as

B12ua&1ub&25u~a1 ib!/A2&1u~b1 ia!/A2&2 . ~8!

Here ai and ai
† are the bosonic annihilation and creatio

operators of systemi, respectively. By equipping the bea
splitter by a pair of2p/2 phase shifters described by th

unitary operatorP25e2 ipa2
†a2/2 , we can have the operato

B125P2B12P2 which transforms the stateua&1ub&2 as

B12ua&1ub&25u~a1b!/A2&1u~a2b!/A2&2 . ~9!

This transformation plays a key role in our teleportati
scheme.

Now Alice wishes to teleport the ECSuF&12 to a remote
partner Bob by sharing the MESuA2a;a;a&345

2 . Systems 1,
2 and 3 are at Alice’s side, and systems 4 and 5 are at B
side. The initial state of the whole system is then given b

uC&123455uF&12uA2a;a;a&345
2 . ~10!

We first apply the transformationB215P1B21P1 to the
initial state. From Eq.~9!, the state after the transformatio
becomes a direct product of the vacuum stateu0&1 with the
unnormalized state

uC8&23455e1~ uA2a&2uA2a&3ua&4^ ua&52uA2a&2u

2A2a&3u2a&4^ u2a&5)

1e2~ u2A2a&2uA2a&3ua&4^ ua&5

2u2A2a&2u2A2a&3u2a&4^ u2a&5). ~11!

Now system 1 is separated from the remain systems. T
by applying the second transformationB23, we obtain

uC9&23455B 23uC8&23455e1~ u2a&2u0&3ua&4^ ua&5

2u0&2u2a&3u2a&4^ u2a&5)2e2~ u22a&2u0&3

3u2a&4^ u2a&52u0&2u22a&3ua&4^ ua&5).

~12!

After these two transformations, Alice performs a two-mo
number measurement on modes 2 and 3. The probabilit
finding n andm photons in modes 2 and 3 is given by

P~n,m!5 z2^nu3^muC9&2345z2. ~13!

The probability is zero if bothn andm are nonzero, i.e., one
of the two integers must be zero in order to have nonz
probability.

Let us supposenÞ0 andm50. In this case the state o
Bob’s side collapses into

uF8&455e1ua&4ua&52e2~21!nu2a&4u2a&5 , ~14!
02230
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For the casesn50 andmÞ0 , the state on Bob’s side col
lapses into

uF9&455e1u2a&4u2a&52e2~21!mua&4ua&5 . ~15!

Now Alice sends a classical information to Bob, and B

makes a local transformation (21)a4
†a41a5

†a5 on his state
uF9&45. The local transformation is a multiplication of twop
phase shifters of modes 4 and 5, and the resultant state
the transformation is just the stateuF8&45.

We see that providedn is odd, the teleportation schem
works perfectly. However, for evenn, the transformation for
perfect teleportation is

ua&4ua&5→ua&4ua&5 , ~16a!

u2a&4u2a&5→2u2a&4u2a&5 , ~16b!

which is in general not a unitary transformation except
limit caseuau→`. From Eqs.~12! and~13!, the probabilities
P(0,n) andP(n,0) for oddn are obtained as

P~0,n!5P~n,0!5
e24uau2u2au2n

2n! ~12e28uau2!
. ~17!

Then the probability of success is given by

Podd52 (
oddn

P~n,0!5
1

2
. ~18!

As seen from Eq.~18!, the success probability is indepen
dent on botha and e6 . One restriction to the ECS to b
teleportated is that the mean photon number of the cohe
stateua&(uau2) in system 1~2! is the same as that in syste
4 ~5!. In other words the state to be teleportated is stron
correlated in photon number to the quantum channel. Ac
ally the scheme is used to teleport a qubit encoded in
ECS uF&12. The teleportation scheme is not optimal; how
ever, it indeed gives the nonzero probability 1/2 independ
of a.

There is another problem left that if we can produce
tripartite maximally entangled coherent state which plays
role of the quantum channel. If we cannot, the scheme d
not work. Fortunately we can create this MES in an ea
way. We first prepare systems 3, 4, and 5 in the st
u2a&3

2u0&4u0&5. Then by applying the transformatio
B45B34, we obtain

B45B34u2a&3
2u0&4u0&55B45~ uA2a&3uA2a&4^ u0&5

2u2A2a&3u2A2a&4

^ u0&5)/A2~12e28uau2!

5uA2a;a;a&345
2 , ~19!

which is just the tripartite MES in the teleportation schem
In a short summary we can let the initial state of the wh
composite system beuF&12u2a&3

2u0&4u0&5. We then apply a
2-2
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transformationB23B21B45B34 to the initial state, and make th
two-mode number measurement to implement the telepo
tion.

We would like to investigate further what the succe
probability is if we use a nonmaximally entangled state
the quantum channel in the teleportation scheme. We cho
the state asuA2a;a;a&345

1 ~6!. From Eq.~7!, we see that the
state uA2a;a;a&345

1 is not maximally entangled except th
limit caseuau→`. The entangled stateuA2a;a;a&345

1 can be
generated similarly as the stateuA2a;a;a&345

2 .
Following the same steps as before, after Alice measu

n photons in mode 2 and zero photons in mode 3, Bob’s s
collapses into the state

uF̃8&455e1ua&4ua&51e2~21!nu2a&4u2a&5 . ~20!

The perfect teleportation is obtained for evenn. The success
probability is given by

Peven5 (
evenn.0

@P~0,n!1P~n,0!#5
~12e24uau2!2

2~11e28uau2!
,

~21!

which is independent on the parameterse6 . However, it
depends on the parameteruau. In the limit uau→`, the suc-
cess probability becomes 1/2. In this limit case, the amo
of entanglement in the stateuA2a;a;a&345

1 is one ebit and
the probability can be 1/2. Except this case, the success p
ability is always less than 1/2 as the corresponding quan
channel is not a MES.

Our teleportation scheme can be generalized to the m
partite cases. For the sake of simplicity, we study only
tripartite case. We consider a tripartite ECS:

uF&1235e1uA2a&1ua&2ua&31e2u2A2a&1u2a&2u2a&3 .
~22!

To teleportuF&123, we may need the four-particle entangle
state

u2a;A2a;a;2a&4567
2 5u2a&4uA2a&5ua&6ua&72u22a&4u

2A2a&5u2a&6u2a&7 , ~23!

which is maximally entangled between the system 4 and
tems 5, 6, and 7@12#. First we disentangle system 3 from
systems 1 and 2 by applying the operatorB31B32 to the state
uF&123. We obtain

B31B32uF&1235u0&1u0&2~e1u2a&31e2u22a&3). ~24!

Then we make the transformationB34, the two-mode num-
ber measurement on modes 3 and 4, and a classical com
nication from Alice to Bob to finish the teleportation proces
The success probability is also 1/2. The quantum chan
described by the four-particle entangled state can be obta
as
02230
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u2a;A2a;a;2a&4567
2 5B67B56B45~ u2A2a&4

2u22A2a&4)u0&5u0&6u0&7 .

~25!

It is straightforward to generalize the teleportation scheme
teleport the multipartite~more than three! entangled ECS of
the form uF&123.

In the teleportation scheme described above the proba
ity of success is 1/2, and independent ofa. The it is inter-
esting to consider the limituau→0. The stateuA2a;a;a&345

2

can be rewritten as

uA2a;a;a&345
2 5

1

A2
~ uA2a&3

2ua;a&45
1 1uA2a&3

1ua;a&45
2 ),

~26!

which directly leads to

uc&3455 lim
uau→0

uA2a;a;a&345
2 5

1

A2
~ u1&3u00&451u0&3uC1&45).

~27!

Here the stateu00&45[u0&4u0&5. We use the stateuc&345 to
teleport the state

uf&125
1

Auau21ubu2
~au00&121buC1&12). ~28!

Then the initial state of the whole system is given by

uc8&123455uf&12uc&345. ~29!

It is straightforward to check that

B12u10&125uC1&12, B12u01&125uC2&12, ~30a!

B 12uC1&125u10&12, B 12uC2&125u01&12, ~30b!

whereuC6&125(u10&6u01&)/A2. We have used the identit
B 12

2 51. Then by applying the operatorB13B12 to the initial
state, we obtain

B13B 12uc8&123455
1

2Auau21ubu2
u0&2@ u10&13~au00&45

1buC1&45)1u01&13~2au00&45

1buC1&45)1au00&13uC1&45

1
b

A2
~ u20&132u02&13)u00&45]. ~31!

Here we have used Eqs.~30a! and~30b!. We see that system
2 decouples from the other systems. The teleporta
scheme works perfectly if the resultant state of the two-mo
number measurement isu10&13. If the resultant state is
u01&13, then Alice needs to communicate classically w

Bob, and Bob makes a local transformation (21)a4
†a41a5

†a5
2-3
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to finish the teleportation. Again the probability of success
1/2. A setup similar to this teleportation scheme was p
posed to perform optical state truncation@14#, optical simu-
lation of quantum logic@15#, and quantum teleportation@16#.

The measurement we have used in our teleportion sch
is a two-mode number measurement which must be sens
enough to measure the number of photons and determ
whether the number is even or odd. In practice this is di
cult, especially for large numbers of photons, but in princi
this can be done. Here we propose one method to disting
even and oddn in the Fock stateun& by coupling the field to
a two-level atom through dispersive interaction@17#. The
Hamiltonian is given byH5ga†asx , whereg is the cou-
pling constant andsb(b5x,y,z) are the Pauli operators de
scribing the peudospin of the two-level atom. This Ham
tonian can be realized in both cavity-QED and trapped-
systems@17#. At time t5p/(2g), the evolution operator
exp(2iHt) becomesU5exp(2ipa†asx/2). Initially let the
atom be in the ground state and the field be in the Fock s
un&. After applying the unitary operatorU, we know that the
photon number is even~odd! if the atom is found to be in the
ground~excited! state. By this technique, we can distingui
even and odd photon numbers.
, a

r,

e

t
u-
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In conclusion we have proposed a simple scheme to t
port both the bipartite and multipartite ECS with the succ
probability 1/2, independent ofa. As a crucial ingredient in
the scheme, the quantum channel described by the mult
tite ECS can be readily made only from linear optical d
vices such as beam splitters and phase shifters. Thus
provide a way to achieve all linear optical teleportation
quantum states@15,16#. The probability of success in ou
scheme is 1/2 due to the use of only linear operations and
absence of photon-photon interaction@18#. Both the mea-
surement and preparation of the quantum channel can
implemented in the experiments by the present techniq
We expect that the present scheme can be used in the ex
ments to demonstrate the quantum teleportation of the
tangled states.
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