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Tunneling time through a barrier using the local value of a “time” operator
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A time for a quantum particle to traverse a barrier is obtained for stationary states by setting the local value
of a “time” operator equal to a constant. This time operator, calledt&nepusoperator because it is distinct
from the time of evolution, is defined as the operator canonically conjugate to the energy operator. The local
value of thetempusoperator gives a complex time for a particle to traverse a barrier. The method is applied to
a particle with a semiclassical wave function, which gives, in the classical limit, the correct classical traversal
time. It is also applied to a quantum particle tunneling through a rectangular barrier. The resulting complex
tunneling time is compared with complex tunneling times from other methods.
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[. INTRODUCTION tunneling times. The procedure uses a quantum-mechanical
operator, called théempusoperatorT [19-21, that is ca-
Quantum mechanics has answered many questions aboyénically conjugate to the energy operafar Sincetempus
the microscopic world, but some questions still remain. Ongs different conceptually from the timeof evolution of the
such question, addressed in this paper, is how long does dstem, we distinguish the two by using the Latin term for
take for a quantum particle to tunnel through a classical fortime, tempus In the title, however, we have chosen to use
bidden region? Two related questions &tghow long does  “time” instead of tempusoperator for the sake of clarity,
a quantum particle spend in a classically forbidden regionsince thetempusoperator is not well known. Together the
and (2) how long does it take for a quantum particle to be energy operator and thempusoperator satisfy the canonical
reflected from a classically forbidden region? Although therecommutation relation. The time of evolution in quantum
has been intense interest in answering these questions beechanics remains a parameter.
cause of the need to design nanoscale electronic devices us-\We use the simplest local value of ttempusoperator in
ing semiconductor heterostructures, no consensus has ygliantum mechanics to obtain a traversal or a tunneling time.
emerged1-7]. In the classical limit, the quantum traversal time reduces to
In classical mechanics, a traversal time between twats classical value. A local value of an operator is the operator
points in one dimension can easily be calculated. The trajecacting on a wave function at a point in space and time, di-
tory of a particle in one dimensiox=x(t), is calculated vided by the same wave functidi22,23. For thetempus
from Newton’s second law and initial conditions. Assuming operator the classical limit of this local value gives a con-
that we can solve the trajectory for the tirtret(x), which  stant, which is the classical value given by the Hamiltonian-
we call the “inverse trajectory,” we find that the traversal Jacobi theory8,24]. Our procedure postulates that even in
time At=t(x,)—t(x;) is the time it takes for a classical the quantum case, a local value of tieenpusoperator is a
particle to travel fronx; to X, . constant and formulates this as a “principle of constant local
In the usual interpretation of quantum mechanics, there isempus’ Using this principle, we obtain an “inverse quasi-
no particle trajectory, so the classical procedure cannot bgajectory” t(x) that is the inverted “quasitrajectoryX(t)
applied directly. However, the de Broglie-Bohm causal inter-for a quantum-mechanical particle in one dimension. From
pretation of quantum mechani¢8] does give trajectories, the inverse quasitrajectoryx) for a particle we can calcu-
and this point of view has been used by Leavens and cdate a traversal time=At=t(x,) —t(x,) between the points
workers[9-14] to address the tunneling time problem. Thex, to x,. A traversal time for a particle in the classically
Feynman path-integral formulation of quantum mechanicsorbidden region of a barrier is calledtannelingtime. Our
has also been used to obtain tunneling tiffes-18. method gives a complex tunneling time in which the real part
In this paper we propose another procedure for relating is called aphase timeand the imaginary part is called a
to t in quantum mechanics and hence obtaining traversal afansmission timeThis complex tunneling time is similar to
one obtained by Pollak and Millgi25] using a flux-flux
correlation function. An experiment on frustrated total inter-
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most likely a multiplicity of tunneling times in nature, each  To quantize a classical system, we assume Dj&&j

one describing a different type of experiment. Tunnelingquantization in which classical variables are replaced by op-
time experiments that use some type of clock may depend oerators and Poisson brackets are replaced by commutator
the type of clock usedl16,27,28. The calculated tunneling brackets divided by# (see, however, Ref40]). Therefore,

time that applles toa glven experlmental Setup is a quesnoenergyE is rep]aced by an energy operaﬁ)andtempus Tis

that can only be answered by more experim¢2e;30. replaced by @empusoperatorT on an appropriate domain.

S Intlrllllstr;])aptlar th@erpFugxt)p?r?htor“s d||scu|ssedf|r1”;<‘,ec Il In Together the two operators satisfy the standard canonical
ec € classical imit of the focal value of empus. -, ,mytation relation of quantum mechanjeq]
operator is shown to be constant. Section IV generalizes this

result to the quantum case and postulates a “principle of Aal @)
constant localtempus$ for stationary state wave functions

that gives a complex traversal time. We apply this principle orresponding to the classical Poisson bracket in(EqAn

'r\}vﬁgc' V 1o c.alcullatefa traver;a: tlmghln a Sem'dellss'cagrbltrary function of the energy operator may be added to the
( ) apprOX|mat|o.n or a partic e with an energy large tempusoperator, but for simplicity it is taken to be zero.
compared to the height of the barrier that agrees with th arious realizations of the energy atempusoperators that

classical traversal time. In Sec. VI we apply this principle toSatlsfy Eq.(2) are possiblé21], but the realization used here
a rectangular barrier to calculate a tunneling time and com- h h th &—E and th

pare it with the Pollak-Miller timd25] and the Larmor time 'S the oné with the energy operatér=E and the corre-
[31,32. The conclusion is given in Sec. VII. spondingtempusoperator T=i%a/JE. Some of the other

realizations of the energy anémpusoperators in specific
cases act directly on the coordinate of the wave function
[21], and thus open the possibility of applying our method to
The concept ofempusis defined in classical Hamiltonian a wave packet.
mechanicg19,2( as the variable, with dimensions of time, = Razavy[41-43 has used a similar approach based on a
that is canonically conjugate to the energy. In classicaltime function” in classical mechanics that is canonically
Hamiltonian mechanics a canonical transformation can beonjugate to the Hamiltonian. He used it to calculate the time
made from old canonical variabldg, p) to new canonical delay in scattering, but did not use it to calculate a tunneling
variables (1’,p’), whereq(q’) andp(p’) are the oldnew)  time. Quantum canonical transformations have been used by
generalized coordinate and the canonical momentum conju-eon et al. [44].
gate to it, respectively. If we now choose the new canonical The approach of Recaneit al. [45—4§ is to introduce a
momentunp’ to be the energ¥, the generalized coordinate “time operator” t,;= —i%d/JE and to calculate its expecta-
q’ conjugate to it is calledempus denoted byT [19,20.  tion value with respect to a wave packé,E), where the
Because energy arteémpusare canonically conjugate vari- integration is with respect to thenergy E>0. This expecta-
ables, they satisfy the same Poisson bracketasdp satisfy  tion value is equal to the expectation valuetafalculated
with respect to the Fourier transformed wave padket,t),
{T.E}=1. (1) where the integration is with respect to timfrom —oo to .
Although this expectation value appears to be outside the
Since the Poisson bracket is a canonical invarfidd}, it can  ysual Hilbert space interpretation of quantum mechanics in
be calculated with respect to any set of canonically conjugat@hich time t is considered a parameter and quantum-
coordinates and momenta. In geneteinpus FT(q,E,t) is  mechanical expectation values are calculated by integrating
a function of the old generalized coordinaiethe new ca-  over all space, Egusquiza and Muggb] have nevertheless
nonical momentunp’=E, and the time of evolutiot. An shown that it can be written in standard quantum-mechanical
arbitrary function of the energy can be addedempusso it form. Recamit al.[45—48 use their time operator to derive
is not unique, but for simplicity we take this arbitrary func- the energy-time uncertainty relation, time delay due to scat-
tion to be zero. In a conservative systéampusis numeri-  tering, and decay from a metastable state.
cally equal to the time of evolutioh plus a constant, but
conceptually they are different. When the system is quan:
tized we also quantizempug 21], but not the time of evo-
lution t that parametrizes the wave function. The distinction-
betweentempus Tand the time of evolutiont provides a

basis for an operatof in quantum mechanics that is differ-

ent from the usual “time operatord” that quantize the time

of evolution. Pauli33] has objected to a time operator and
has given a “proof” that it does not exist. Recent work un-
covers some implicit assumptions made by Pauli and shows
that a self-adjoint time operator can eXi84]. General time We first examine docal valueof the momentum operator
operators and time of arrival operators have also been reand show that in the classical limit it is the classical momen-
cently discussefi35]. In some cases a time operator can betum. We next consider a local value of tlempusoperator
constructed that is not self-adjoif26—38. and show that in the classical limit it is a constant. A local

II. TEMPUS OPERATOR

The difficulty with using a time operatdr is that timet
must also be a parameter in quantum mechanics to give the
time evolution of the system. The use of tleenpusoperator

T avoids this dual use of time, since it is conceptually dif-
ferent from the time of evolutioty which remains a param-
eter.

Ill. CLASSICAL LIMIT OF LOCAL MOMENTUM AND
TEMPUS
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value of an operator is the operator acting on a wave functiop,, .=E (a constant parameeis the new conjugate coordi-
at a point in space and time divided by the same wave funcnateq,,; (another constant parameter

tion[22,23. o For a plane waves=—Et+px and ¢ is a constant. If
A wave functiony= ¢(x,t) can always be written in po- we set the local value of theempusin Eq. (6) equal to a
lar form constant in this case, we obtain
= pexpiS/t), (3) FIS ap
— —=t— ——=x=const. (8)

where p is the probability density an®/% is the phase. oE JE

When this expression is substituted into the time-depende
Schralinger equation, the functior5(x,t) satisfies the
Hamilton-Jacobi equation with a quantum potential added t
the potential energy8]. In the limit asz— 0, the quantum
potential vanishes and the functiéhbecomes Hamilton’s
principal functionSy;.

rginceaE/ap= p/m=v is the velocity of the particle, Eq8)
Ogives the classical trajectory for a free partigle x(t) =Xq
+vt, where the constant is chosen such thais the initial
position att=0. The timet,,=t,—t,; for the free quantum-
mechanical particle of enerdy to traverse the distance;
=X,—X; from Xy to X,, is thereforet,;=X,,/v, the time it
takes for a classical free particle of the same energy to
A. Local value of the momentum operator traverse the same distance. This example shows that the pos-
In order to gain more familiarity with local values, we tulate of a constant locaémpusin Eg. (6) gives a meaning-
first consider the local value of the momentum operatorful result from which to calculate a traversal time.
Since the momentum operator in the coordinate representa-
tion is p= —ihdldx, its local value at the spatial poimtat IV. TRAVERSAL TIMES USING TEMPUS OPERATOR
timetis
A. Constant local value oftempus
py_os_ . 1dlnp @ A natural generalization of the classical limit of E@)
o oX 2 9x '’ gives a procedure for relatingto t in quantum mechanics.
We generalize the classical result in the simplest way and
where Eq.(3) is used. The limit a% —0 on the right-hand postulate that in quantum mechanics a local value of the
side of Eq.(4), becomes the classical momentpm tempusoperator T=i%a/JE, calculated from a stationary
state wave function/(x,t), is still constant,

N
—~=p, (5) -
IX Ti(x,1) .
T(x,t)= D const (stationary state 9
from Hamilton-Jacobi theorj24]. Px.)

For a plane wave with energy and momentunp, the R
wave function isyg= i, exfi(—Et+px)/f], where y, is a Where the energy operatoE and tempus operator T
constant amplitude. From E¢g), we obtain, in this cases =7/ JE satisfy the commutation relation in E®) and the
— —Et+px. The local value of the momentum in Ef)  constantis, in general, complex. We call E§) the “prin-

givesaS/ax=p, the same as the classical momentum in EqCiPIe Of constant locatempus’ It is a new principle for
(5). obtaining a quasitrajectory=x(t) in quantum mechanics

and consequently an inverse quasitrajectoryt(x) from

which a traversal time can be calculated. There are many

o possible local values that have the correct classical limit. We
In & similar way, a local value of tlempusoperator may  se the simplest one involving thempusoperatorT, even

be calculated when the wave functiak(x,t) describes a though the result is a complex constant. If a symmetrized

stationary state depending on enefgyVhen Eq.(3) is used  form of thetempusoperator were used, a real constant would

for the wave function, the local value of thempusoperator g obtained23]. Equation(9) is independent of the normal-

B. Local value of thetempusoperator

T=ihdlJE is ization of the wave function and is even valid for wave func-
. tions that are not normalizable, as for barrier problems. The
Ty 9S ix 13dInp 5 local value oftempusZ(x,t) is also invariant under a gauge
o E "o E ®  transformation on the wave function P (X,1)

=exdiA(xt)]¥(x,t), since an arbitrary gauge function
In the limit asz— 0, the right-hand side of E¢6) becomes A(x,t) is independent of the energy.

a constant, since The principle of constant localempusis applicable to
stationary-state solutions of the Sctiimger equation. In
S dSy; ISy analogy with the classical case, we can calculate a tunneling

JE  9E &ijquJ,a constant, @) time through a barrier from an “inverse quasitrajectory”
=t(x). For a particle with a potential enery}(x), the time-
from Hamilton-Jacobi theory [24]. The derivative dependent Schdinger equation has stationary-state solu-

dSn3/ Ipny, with respect to the new canonical momentumtions
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P(x,t)=(x) exp( —iEt/h), (10 from the Feynman path-integral point of vig@w5-18. Br-
ouard, et al. [28] discuss different definitions of tunneling
where the energy eigenvalueksand the energy eigenfunc- times and their interpretation.
tion is (x) = ¥e(X). We shall consider a particle with posi-
tive energies in the continuum and eigenfunctions that are V. TRAVERSAL TIME IN A SEMICLASSICAL
not normalizable. APPROXIMATION
When the stationary-state solution in EqO) is substi-
tuted into Eq.(9), we obtain an explicit expression for the ~ As an example of the method in Sec. IV, we use a semi-

inverse quasitrajectoryf(x,t)=t+ 7(x) = const, or classical wave function to obtain the local momentum and
the localtempusA traversal time is calculated for a quantum
T(x particle with an energy greater than the barrier.

t(x)=— ) ———+const (stationary state (11

‘/’( ) A. Local momentum
Therefore, the time for the particle to traverse from a point  The \WKB approximation gives a wave function that is

X, t0 a pointx; is valid in a semiclassical approximation. For a particle with an
R energy above the barrier,(annormalized WKB wave func-
= _ —At— — Ty tion is
T=t(Xy) —t(X1)=At= A?' (12
X
_ 1/2 H ’ o
whereA denotes the difference in valuesxgtandx;. The Y=k(x) exp{| f dx'fik(x’) Et}/hl’ 17)

time 7 is independent of the constant in EG1) and is also .
independent of any arbitrary energy-dependent function mulwhere the local wave number at the poinis
tiplying the wave function. If the particle has an energy less

— /
than the top of a barrier, the traversal timés a tunneling k(x)={2m[E=V(x)}**/#. (18)
;usmtﬁév(v;)](ﬁre the poirx, is the entrance to the barrier argl The wave function in Eq(17) describes propagation, with-

out reflection, to larger values ofas time increases and is
valid for energies large compared to the height of the barrier.

B. Traversal time Using this wave function, we find that the local value of

SinceT=i%4lJE, the traversal time in Eq. (12) is the momentum operatop= —i#d/dx, is
alny py i V'(x)
—_j —=pX)— =, 19

which is in general complex. We can write tifenergy- Where the local momentum {%(x) =7%k(x). In the classical

dependent stationary-state wave function in terms of its limit #—0 (or in the limit of largeE) only the real parp(x)
modulus and phase of Eq. (19 contributes, which is the classical momentum as

a function of the positiorx.

P(x)=|yp(x)| exdip(x)], (14
B. Local t
and substitute it into Eq(13). The real part ofr is a phase ocaltempus _
time [49-51] The local value of theempusoperator is
IA 'T'zpﬁltJ’dlihl_t
Tphasé™ 1 = (15 LT ny= X' )~ 4 E=voo - eomst

(20
whereA ¢= ¢(X,) — d(X4) is the difference in the phase of _ o _ _
the total wave function atx, and atx,. The imaginary part In the classical limit: —0, the imaginary part goes to zero.

of ris called[25] a transmissiortime, The local velocityv (x) in Eq. (20) is
-1
W x2) _[ap(X) |77 p(X)
7'transz_ ’ (16) v(X)= IE —_m s (21

where the absolute value is the ratio of tiéal wave func-  Where the classical local momentyp(x) =7k(x) is defined

tion atx, to its value atx; . by Eqg. (18). This local velocityv(x) is the same as the
For tunneling, Eq(13) is similar to a complex time ob- “hydrodynamic” velocity defined as the ratio of the prob-

tained by Pollak and Millef25] on the basis of a flux-flux ability current densityj (x) to the probability density(x)

correlation function. The Larmor time obtained by tiker ) 5

and Landaue[31] can also be written in a similar complex D(x)= jx) 1 Rey*+ l!f— p(x) 22

form [32]. Complex tunneling times have been obtained '

p() Py m
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Using the principle of constant loc&mpusin Eq. (20),  The choice of coefficient for the incident wave is irrelevant,

we obtain the relation since only theatio of the other coefficients to the coefficient
1 " 1 of the incident wave can be calculated from the boundary
X i o : .
t(x):j dX——— 4 +const. (23 conditions. Without loss of generality, we therefore choose
v(x") 4 E-V(X) the coefficient of the incident wave exgX) in Eq. (26) to be

) o unity. For energies greater than the height of the bartier (
The real part of Eq(23) gives the phase time in E¢L5) for >V,), « in Eq. (28) is pure imaginaryx=ik’, wherek’
a quantum particle with an energy above the barrier to:[Zm(E—VO)]l’Zlh is a real wave number.

traverse fromx; to x,, The boundary conditions that the wave function and its
% 1 derivative are continuous at points 0 amdare used to obtain
TphaseZl:j dx'——, (24) thg coefflplents in Eq(26). The complex transmission am-
x,  v(X') plitude D is
which is the traversal time for a classical particle. This result D=2xkN lexp—i(a+ka—m/2)}, (30)

might have been expected, since we are using a semiclassical
WKB wave function. The WKB approximation is valid if the where the unit of length ikgl, the anglex is
energy of the particle is much greater than the height of the

barrier. The transmission time for the traversal of the quan- a=arctaficoth(xa) tan(26)], (3D

tum particle with an energy much larger than the top of the . .

barrier is of no significance. and the angle=arctan{/k). The complex reflection ampli-
tudeA is

VI. TUNNELING THROUGH A RECTANGULAR BARRIER A=Sinf(Ka)N_l exp(—ia), (32)

As another example of the principle of constant Ideah-  where the functiorN in Egs.(30) and(32) is
pus we calculate the tunneling time for a rectangular barrier.
Then we compare it with other complex tunneling times. N=[sint?(ka) + (2xk)?]"2. (33

A. Solution of the Schridinger equation Equations(30) and (32) are used to calculate the phase and

: . oy ) transmission times.
The potential energy in the Schilinger equation for a

rectangular barrier of height, and widtha is B. Phase time

Vo, if 0=x=a The phase time in Eq15) requires the difference in the
0 otherwise. (25 phase between wave function in E&6) at the exitx,=a
and the entrance; =0, which is

V(X)=

For this potential, the solution of the Sckinger equation
for the energy less than the barrier heigB<(V,) is the A¢=(—a+7r/2)—arcta76 Ai )

wave function 1+A
i —i 2kk
expikx)+Aexp —ikx), for x<0, ——arcta+k f coth xa) +g
y(x)=14 Bexpkx)+Cexp —«x), for O=x=a, K
D expikx), for x>a. +arct kksinh(2ka) »
(26) S T o) || O

The wave numbek for the incident and reflected wave func-

tions (x<0), and the transmitted wave functior>*a) is whereA, andA, are the real and imaginary parts din Eg.

(32), respectively. The phase time calculated from @&) is

k= (2mE)l’2/h, (27) therefore
the imaginary wave number in the forbidden region<(0 S 2k?ka—sinh(2«a) (35
<a) is phase™ 4« k[k?—cosH(ka)]"

k=[2m(Vo—E)]"%4, (28)  In Eq. (35 and throughout the rest of this paper, the unit of
. 71 . . . .
and a characteristic wave numbeyis defined as ::nTgtE ;3'\‘/0 » the unit of energy %/, and the unit of time
0~ 0-
ko= (2mVy) Y%/, (29 Equation(35) for 7pasiS plotted as the solid curve in Fig.

1 as a function of the enerdy, and in Fig. 2 as a function of
such thatk?+ k?=k3. The wave function in Eq(26) is not  barrier widtha. The peaks in Fig. 1 have no simple relation-
normalizable when integrated over the whole real axis, buship with the corresponding wavelength. Figure 2 shows that
this poses no difficulty in determining the tunneling time. the tunneling time saturates for values of the wiety>5,
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Tphase (UNits of T)

FIG. 1. Phase timep,,se(Units of 7o) for the rectangular barrier
as a function of energ¥ (units of V) for a barrier widtha=5
(units ofky 1). The solid line is our result in E¢35) and the dashed

10

[e2]

a=>5 (unitsof kz)l)

]

IN

E (unitsof \j)

line is the result of Pollak and Miller in Ed38).

called the “Hartman effect[52]. From Eq.(35), the phase
time saturates at a valuephase=(2Kk)‘1, asakg—o. For
the value of the energlg=0.5 given in Fig. 2, the saturation
value is 1. The phase time in Fig. 2 as a functioradfas an
initial slope of (X) %, which for the value of the energy

E=0.5 given in Fig. 2, is 2.

The imaginary part ofr in Eq. (13) is the transmission
time 7yansin EQ. (16). Substituting Eq(26) into Eq.(16), we

C. Transmission time

obtain

When Eqgs.(30) and (32) are substituted into Eq36), the

1&‘D2

Ttrans—~ E E n m (36)

transmission time is

FIG. 2. Phase timep,se(Units of 7o) for the rectangular barrier

3
’\o .
Z 2 E = 0.5 (unitsof )
@]
2
E 2 .
2 ,
g 1.5f
5 ,
[

10 15 20

a (unitsof k;')

as a function of barrier widtla (units of kg 1y for an energy off
=0.5 (units of Vy). The solid line is our result in Eq35) and the
dashed line is the result of Pollak and Miller in H88).
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N

o

1
N

Tirans (UNits Of Tp)
N

0 i 2 3 i 5
E (unitsof V)

FIG. 3. Transmission timey,asc(units of 7,) for the rectangular
barrier as a function of enerdy (units of V) for a barrier width
a=>5 (units ofkgl). The solid line is our result in Eq37) and the
dashed line is the result of Pollak and Miller in E§9).

B sinh(ka)[ ka cosh ka) — sinh( xa) ]
Ttrans™ 2k’[k’—cosH(ka)]

(37

Equation(37) for 7,4nsiS plotted as the solid curve in Fig.
3 as a function of the enerdy, and in Fig. 4 as a function of
the barrier widtha. The negative values fot, s Seem to be
unphysical. Equatiort37) shows thatr,,,s is linear with a

slope of—(2«) ~* for widthsaky> 1, which is shown in Fig.
4.

D. Other tunneling times
1. Pollak-Miller time

The Pollak-Miller time[25] is a complex tunneling time
that was calculated from a flux-flux correlation function. The
same tunneling time was obtained more simply by Leavens
and Aers[32] by generalizing the method of the “energy
sensitivity of the transmission amplitude” due to tBker
and Landauef53], and analyzed further by Martin and Lan-

E = 0.5 (unitsof \j,)

Tyrans (UNitsof T))

a (unitsof k3')

FIG. 4. Transmission time,,,s (units of 7,) for the rectangular
barrier as a function of barrier width (units of kal) for an energy
of E=0.5 (units of V). The solid line is our result in Eq37) and
the dashed line is the result of Pollak and Miller in E&9).
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dauer{54]. The Pollak-Miller time is similar to the complex where it is necessary to use the negative of the real part, and

time in Eq. (13), obtained from the principle of constant the z component is

local tempus except that it uses thecomingwave function

at the entrance instead of thatal wave function. Therefore, AonT

it can be obtained by merely setting the reflection amplitude T,=Imr =— CREVAR

A equal to zero in Eqg34) and(36). 0
The Pollak-Miller phase time is calculated from the phase

differenceA ¢, in Eq. (34) whenA is set equal to zero. From Leavens and Aerg32] compare the Pollak-Millef25] phase

Eq. (15), the Pollak-Miller phase time for the rectangular and transmission times with the corresponding Larmor times

(42)

barrier is[32] [31] for the rectangular barrier, so this is not done here.
. 2kak?(k?>—k?) +sinh(2xa) 39 E. Numerical example
phase ™ 2 k[ (2kk)?+sintf(ka)]

A simple numerical application can be made using the
heterostructure  potential barrier  parameters  in
The Pollak-Miller phase tlmephasels plotted as the dashed GaAs/Al $Ga, As/GaAs[55]. The height isV,=0.3 eV and
curve in Fig. 1 as a function of the enerByand in Fig. 2as 5 typical width isa=50A. The effective mass ratio of the
a function of barrier widthe. Figure 2 shows the “Hartman glectron in GaAs iSMe/Me=0.067. For these values, the
effect” [52] in the saturation of the tunneling time fak,  gimensionless width of the potential &=3.63 in units of
>5, with a Va|UeTphase (k)" from Eq. (38). Therefore, 1-1377A and the characteristic time isy=#/V,

the ratIOTphaséTphase 2 in Fig. 2 forako>5 from Eq.(35). ~2.19fs.

From Eq.(38), the initial slope Oprhaseln Fig. 2 |s[k2(;<

—k?) +1](4«%k3) ~L. The ratio of the initial slopes for hase VIl. CONCLUSION

and Tphase gives 7'phaséTphase [kZ(K _k2)+1](2K2k23 . . . .

for aky<1. For the value of the energg=0.5 used in Fig. We give a formulation of a traversal time in quantum

2, the initial slope Oprhase'S V2 and the ratiOTSr':gséTphase mechanics using a prlnc!ple of constant lotampus The
=2 for aky<1. tempusoperator is canonically conjugate to the energy op-

erator[21], and has its roots in classical Hamiltonian theory
[19,20. Together theéempusoperator and the energy opera-
tor satisfy the canonical commutation relation. In the repre-

sentation in which the energy operatorfis-E, the tempus

The Pollak-Miller transmission time is obtained from Eg.
(36) by settingA equal to zero. Therefore the Pollak-Miller
time for the rectangular barrier [82]

o kak? sinh(2ka) + 2(k?>—k?) sink?(ka) operator isT=i#%a/JE, which acts only on the energy pa-
Ttrans— (21K [ (2xK) 2+ sinf(ka) ] . rametelE in a stationary-state wave function. In the classical
(39) limit, the “principle of constant localempus gives the clas-

sical result obtained from Hamilton-Jacobi the@8y24]. For
The Pollak-Miller transmission tlmephasels plotted as the a stationary-state wave functiof that depends on the en-

dashed curve in Fig. 3, as a function of the endEgwand in ~ €rgy, the local value of théeempusoperator isTy/y. The
Fig. 4 as a function of barrier width. The negative values principle gives directly an “inverse quasitrajectory{x),

for 7hmeeSeem to be unphysical. Equati¢89) shows that from which a traversal time=At=t(x;) ~t(x,) is defined
;mse is linear in a with a slope of—(2«)~! for widths @S the difference in time at, and atx;. For an energy

beneath the top of a barrier, this method gives a complex
aky>1. Therefore and are parallel, as shown in A ' :
F|kgo 4 Tirans Tphase P tunneling time that has a real part equal to a phase time and

an imaginary part equal to a transmission time.
Our method gives a result similar to the complex tunnel-
ing time obtained by Pollak and Milld25] from a flux-flux
The Larmor tunneling timg31] for a spin-1/2 particle correlation function. The Pollak-Miller time was also derived
propagating in they direction, with spin polarized in the by Leavens and Aer32] from the energy sensitivity of the
direction, in an infinitesimal magnetic field in teirection,  transmission amplitude, a method suggested biilgr and
can be written in a complex forfi82] for a rectangular bar- Landauef53] and further analyzed by Martin and Landauer

2. Larmor time

rier of heightV, as [54]. Recently, an experiment on frustrated total internal re-
flection of light [26] used the complex Pollak-Miller time

. dInD and showed how its real and imaginary parts could be inter-

L=—ih Ny (40) preted[3]. The difference between our tunneling time and

the Pollak-Miller tunneling tim¢25] is that, in our approach,
the total wave function at the entrange of the barrier is
used, whereas Pollak and Miller use only the incoming wave
function. Only further experiments to measure tunneling
A ¢ . . . : .
r,=—Rer =—# , (41  times can show whether our tunneling time will be appli-
Y Vo cable[29,30.

They component of the Larmor transmission time is
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