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Tunneling time through a barrier using the local value of a ‘‘time’’ operator
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A time for a quantum particle to traverse a barrier is obtained for stationary states by setting the local value
of a ‘‘time’’ operator equal to a constant. This time operator, called thetempusoperator because it is distinct
from the time of evolution, is defined as the operator canonically conjugate to the energy operator. The local
value of thetempusoperator gives a complex time for a particle to traverse a barrier. The method is applied to
a particle with a semiclassical wave function, which gives, in the classical limit, the correct classical traversal
time. It is also applied to a quantum particle tunneling through a rectangular barrier. The resulting complex
tunneling time is compared with complex tunneling times from other methods.
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I. INTRODUCTION

Quantum mechanics has answered many questions a
the microscopic world, but some questions still remain. O
such question, addressed in this paper, is how long do
take for a quantum particle to tunnel through a classical
bidden region? Two related questions are~1! how long does
a quantum particle spend in a classically forbidden regi
and ~2! how long does it take for a quantum particle to
reflected from a classically forbidden region? Although th
has been intense interest in answering these questions
cause of the need to design nanoscale electronic device
ing semiconductor heterostructures, no consensus has
emerged@1–7#.

In classical mechanics, a traversal time between
points in one dimension can easily be calculated. The tra
tory of a particle in one dimension,x5x(t), is calculated
from Newton’s second law and initial conditions. Assumi
that we can solve the trajectory for the timet5t(x), which
we call the ‘‘inverse trajectory,’’ we find that the travers
time Dt5t(x2)2t(x1) is the time it takes for a classica
particle to travel fromx1 to x2 .

In the usual interpretation of quantum mechanics, ther
no particle trajectory, so the classical procedure canno
applied directly. However, the de Broglie-Bohm causal int
pretation of quantum mechanics@8# does give trajectories
and this point of view has been used by Leavens and
workers@9–14# to address the tunneling time problem. T
Feynman path-integral formulation of quantum mechan
has also been used to obtain tunneling times@15–18#.

In this paper we propose another procedure for relatinx
to t in quantum mechanics and hence obtaining traversa
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tunneling times. The procedure uses a quantum-mechan
operator, called thetempusoperatorT̂ @19–21#, that is ca-
nonically conjugate to the energy operatorÊ. Sincetempus
is different conceptually from the timet of evolution of the
system, we distinguish the two by using the Latin term
time, tempus. In the title, however, we have chosen to u
‘‘time’’ instead of tempusoperator for the sake of clarity
since thetempusoperator is not well known. Together th
energy operator and thetempusoperator satisfy the canonica
commutation relation. The timet of evolution in quantum
mechanics remains a parameter.

We use the simplest local value of thetempusoperator in
quantum mechanics to obtain a traversal or a tunneling ti
In the classical limit, the quantum traversal time reduces
its classical value. A local value of an operator is the opera
acting on a wave function at a point in space and time,
vided by the same wave function@22,23#. For the tempus
operator the classical limit of this local value gives a co
stant, which is the classical value given by the Hamiltonia
Jacobi theory@8,24#. Our procedure postulates that even
the quantum case, a local value of thetempusoperator is a
constant and formulates this as a ‘‘principle of constant lo
tempus.’’ Using this principle, we obtain an ‘‘inverse quas
trajectory’’ t(x) that is the inverted ‘‘quasitrajectory’’x(t)
for a quantum-mechanical particle in one dimension. Fr
the inverse quasitrajectoryt(x) for a particle we can calcu
late a traversal timet5Dt5t(x2)2t(x1) between the points
x1 to x2 . A traversal time for a particle in the classical
forbidden region of a barrier is called atunnelingtime. Our
method gives a complex tunneling time in which the real p
is called aphase timeand the imaginary part is called
transmission time. This complex tunneling time is similar to
one obtained by Pollak and Miller@25# using a flux-flux
correlation function. An experiment on frustrated total inte
nal reflection of light used the complex Pollak-Miller tim
and interpreted its real and imaginary parts@26#.

The tunneling time proposed here is only one contribut
to a long list of proposals for calculating a tunneling tim
through a barrier@1–7#. In quantum mechanics there may b
several versions of a quantity that in classical mechanic
unique, and these different versions may be realized in
ferent experiments. A universal intrinsic tunneling time th
is valid for all experiments probably does not exist. There
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most likely a multiplicity of tunneling times in nature, eac
one describing a different type of experiment. Tunneli
time experiments that use some type of clock may depen
the type of clock used@16,27,28#. The calculated tunneling
time that applies to a given experimental setup is a ques
that can only be answered by more experiments@29,30#.

In this paper thetempusoperator is discussed in Sec. II. I
Sec. III the classical limit of the local value of thetempus
operator is shown to be constant. Section IV generalizes
result to the quantum case and postulates a ‘‘principle
constant localtempus’’ for stationary state wave function
that gives a complex traversal time. We apply this princi
in Sec. V to calculate a traversal time in a semiclass
~WKB! approximation for a particle with an energy larg
compared to the height of the barrier that agrees with
classical traversal time. In Sec. VI we apply this principle
a rectangular barrier to calculate a tunneling time and co
pare it with the Pollak-Miller time@25# and the Larmor time
@31,32#. The conclusion is given in Sec. VII.

II. TEMPUS OPERATOR

The concept oftempusis defined in classical Hamiltonia
mechanics@19,20# as the variable, with dimensions of tim
that is canonically conjugate to the energy. In classi
Hamiltonian mechanics a canonical transformation can
made from old canonical variables~q, p! to new canonical
variables (q8,p8), whereq(q8) andp(p8) are the old~new!
generalized coordinate and the canonical momentum co
gate to it, respectively. If we now choose the new canon
momentump8 to be the energyE, the generalized coordinat
q8 conjugate to it is calledtempus, denoted byT @19,20#.
Because energy andtempusare canonically conjugate var
ables, they satisfy the same Poisson bracket asq andp satisfy

$T,E%51. ~1!

Since the Poisson bracket is a canonical invariant@24#, it can
be calculated with respect to any set of canonically conjug
coordinates and momenta. In general,tempus T5T(q,E,t) is
a function of the old generalized coordinateq, the new ca-
nonical momentump85E, and the time of evolutiont. An
arbitrary function of the energy can be added totempusso it
is not unique, but for simplicity we take this arbitrary fun
tion to be zero. In a conservative systemtempusis numeri-
cally equal to the time of evolutiont plus a constant, bu
conceptually they are different. When the system is qu
tized we also quantizetempus@21#, but not the time of evo-
lution t that parametrizes the wave function. The distincti
betweentempus Tand the time of evolutiont provides a
basis for an operatorT̂ in quantum mechanics that is diffe
ent from the usual ‘‘time operators’’t̂ that quantize the time
of evolution. Pauli@33# has objected to a time operator an
has given a ‘‘proof’’ that it does not exist. Recent work u
covers some implicit assumptions made by Pauli and sh
that a self-adjoint time operator can exist@34#. General time
operators and time of arrival operators have also been
cently discussed@35#. In some cases a time operator can
constructed that is not self-adjoint@36–38#.
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To quantize a classical system, we assume Dirac@39#
quantization in which classical variables are replaced by
erators and Poisson brackets are replaced by commu
brackets divided byi\ ~see, however, Ref.@40#!. Therefore,
energyE is replaced by an energy operatorÊ andtempus Tis
replaced by atempusoperatorT̂ on an appropriate domain
Together the two operators satisfy the standard canon
commutation relation of quantum mechanics@21#

@ T̂,Ê#5 i\, ~2!

corresponding to the classical Poisson bracket in Eq.~1!. An
arbitrary function of the energy operator may be added to
tempusoperator, but for simplicity it is taken to be zero
Various realizations of the energy andtempusoperators that
satisfy Eq.~2! are possible@21#, but the realization used her
is the one with the energy operatorÊ5E and the corre-
sponding tempusoperator T̂5 i\]/]E. Some of the other
realizations of the energy andtempusoperators in specific
cases act directly on the coordinate of the wave funct
@21#, and thus open the possibility of applying our method
a wave packet.

Razavy@41–43# has used a similar approach based on
‘‘time function’’ in classical mechanics that is canonical
conjugate to the Hamiltonian. He used it to calculate the ti
delay in scattering, but did not use it to calculate a tunnel
time. Quantum canonical transformations have been use
León et al. @44#.

The approach of Recamiet al. @45–48# is to introduce a
‘‘time operator’’ t̂152 i\]/]E and to calculate its expecta
tion value with respect to a wave packetf (x,E), where the
integration is with respect to theenergy E.0. This expecta-
tion value is equal to the expectation value oft calculated
with respect to the Fourier transformed wave packetF(x,t),
where the integration is with respect to timet from 2` to `.
Although this expectation value appears to be outside
usual Hilbert space interpretation of quantum mechanics
which time t is considered a parameter and quantu
mechanical expectation values are calculated by integra
over all space, Egusquiza and Muga@35# have nevertheless
shown that it can be written in standard quantum-mechan
form. Recamiet al. @45–48# use their time operator to deriv
the energy-time uncertainty relation, time delay due to sc
tering, and decay from a metastable state.

The difficulty with using a time operatort̂ is that timet
must also be a parameter in quantum mechanics to give
time evolution of the system. The use of thetempusoperator
T̂ avoids this dual use of time, since it is conceptually d
ferent from the time of evolutiont, which remains a param
eter.

III. CLASSICAL LIMIT OF LOCAL MOMENTUM AND
TEMPUS

We first examine alocal valueof the momentum operato
and show that in the classical limit it is the classical mome
tum. We next consider a local value of thetempusoperator
and show that in the classical limit it is a constant. A loc
4-2
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TUNNELING TIME THROUGH A BARRIER USING THE . . . PHYSICAL REVIEW A 64 022104
value of an operator is the operator acting on a wave func
at a point in space and time divided by the same wave fu
tion @22,23#.

A wave functionc5c(x,t) can always be written in po
lar form

c5r1/2exp~ iS/\!, ~3!

where r is the probability density andS/\ is the phase.
When this expression is substituted into the time-depend
Schrödinger equation, the functionS(x,t) satisfies the
Hamilton-Jacobi equation with a quantum potential added
the potential energy@8#. In the limit as\→0, the quantum
potential vanishes and the functionS becomes Hamilton’s
principal functionSHJ.

A. Local value of the momentum operator

In order to gain more familiarity with local values, w
first consider the local value of the momentum opera
Since the momentum operator in the coordinate represe
tion is p̂52 i\]/]x, its local value at the spatial pointx at
time t is

p̂c

c
5

]S

]x
2 i\

1

2

] ln r

]x
, ~4!

where Eq.~3! is used. The limit as\→0 on the right-hand
side of Eq.~4!, becomes the classical momentump

]SHJ

]x
5p, ~5!

from Hamilton-Jacobi theory@24#.
For a plane wave with energyE and momentump, the

wave function isc5c0 exp@i(2Et1px)/\#, where c0 is a
constant amplitude. From Eq.~3!, we obtain, in this case,S
52Et1px. The local value of the momentum in Eq.~4!
gives]S/]x5p, the same as the classical momentum in E
~5!.

B. Local value of the tempusoperator

In a similar way, a local value of thetempusoperator may
be calculated when the wave functionc(x,t) describes a
stationary state depending on energyE. When Eq.~3! is used
for the wave function, the local value of thetempusoperator
T̂5 i\]/]E is

T̂c

c
52

]S

]E
1 i\

1

2

] ln r

]E
. ~6!

In the limit as\→0, the right-hand side of Eq.~6! becomes
a constant, since

]S

]E
→ ]SHJ

]E
5

]SHJ

]pHJ
5qHJ,a constant, ~7!

from Hamilton-Jacobi theory @24#. The derivative
]SHJ/]pHJ, with respect to the new canonical momentu
02210
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pHJ5E ~a constant parameter! is the new conjugate coordi
nateqHJ ~another constant parameter!.

For a plane waveS52Et1px and c0 is a constant. If
we set the local value of thetempusin Eq. ~6! equal to a
constant in this case, we obtain

2
]S

]E
5t2

]p

]E
x5const. ~8!

Since]E/]p5p/m5v is the velocity of the particle, Eq.~8!
gives the classical trajectory for a free particlex5x(t)5x0
1vt, where the constant is chosen such thatx0 is the initial
position att50. The timet215t22t1 for the free quantum-
mechanical particle of energyE to traverse the distancex21
5x22x1 from x1 to x2 , is thereforet215x21/v, the time it
takes for a classical free particle of the same energy
traverse the same distance. This example shows that the
tulate of a constant localtempusin Eq. ~6! gives a meaning-
ful result from which to calculate a traversal time.

IV. TRAVERSAL TIMES USING TEMPUS OPERATOR

A. Constant local value oftempus

A natural generalization of the classical limit of Eq.~6!
gives a procedure for relatingx to t in quantum mechanics
We generalize the classical result in the simplest way
postulate that in quantum mechanics a local value of
tempusoperator T̂5 i\]/]E, calculated from a stationary
state wave functionc(x,t), is still constant,

T ~x,t ![
T̂c~x,t !

c~x,t !
5const ~stationary state!, ~9!

where the energy operatorE and tempus operator T̂
5 i\]/]E satisfy the commutation relation in Eq.~2! and the
constant is, in general, complex. We call Eq.~9! the ‘‘prin-
ciple of constant localtempus.’’ It is a new principle for
obtaining a quasitrajectoryx5x(t) in quantum mechanics
and consequently an inverse quasitrajectoryt5t(x) from
which a traversal time can be calculated. There are m
possible local values that have the correct classical limit.
use the simplest one involving thetempusoperatorT̂, even
though the result is a complex constant. If a symmetriz
form of thetempusoperator were used, a real constant wou
be obtained@23#. Equation~9! is independent of the normal
ization of the wave function and is even valid for wave fun
tions that are not normalizable, as for barrier problems. T
local value oftempusT(x,t) is also invariant under a gaug
transformation on the wave function c8(x,t)
5exp@iL(x,t)#c(x,t), since an arbitrary gauge functio
L(x,t) is independent of the energy.

The principle of constant localtempusis applicable to
stationary-state solutions of the Schro¨dinger equation. In
analogy with the classical case, we can calculate a tunne
time through a barrier from an ‘‘inverse quasitrajectory’’t
5t(x). For a particle with a potential energyV(x), the time-
dependent Schro¨dinger equation has stationary-state so
tions
4-3
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c~x,t !5c~x! exp~2 iEt/\!, ~10!

where the energy eigenvalue isE and the energy eigenfunc
tion is c(x)5cE(x). We shall consider a particle with pos
tive energies in the continuum and eigenfunctions that
not normalizable.

When the stationary-state solution in Eq.~10! is substi-
tuted into Eq.~9!, we obtain an explicit expression for th
inverse quasitrajectory,T(x,t)[t1T(x)5const, or

t~x!52
T̂c~x!

c~x!
1const ~stationary state!. ~11!

Therefore, the time for the particle to traverse from a po
x1 to a pointx2 is

t[t~x2!2t~x1!5Dt52D
T̂c

c
, ~12!

whereD denotes the difference in values atx2 andx1 . The
time t is independent of the constant in Eq.~11! and is also
independent of any arbitrary energy-dependent function m
tiplying the wave function. If the particle has an energy le
than the top of a barrier, the traversal timet is a tunneling
time, where the pointx1 is the entrance to the barrier andx2
is the exit.

B. Traversal time

SinceT̂5 i\]/]E, the traversal timet in Eq. ~12! is

t52 i\D
] ln c

]E
, ~13!

which is in general complex. We can write the~energy-
dependent! stationary-state wave function in terms of i
modulus and phase

c~x!5uc~x!u exp@ if~x!#, ~14!

and substitute it into Eq.~13!. The real part oft is a phase
time @49–51#

tphase5\
]Df

]E
, ~15!

whereDf5f(x2)2f(x1) is the difference in the phase o
the total wave function atx2 and atx1 . The imaginary part
of t is called@25# a transmissiontime,

t trans52\
]

]E
lnUc~x2!

c~x1!
U, ~16!

where the absolute value is the ratio of thetotal wave func-
tion at x2 to its value atx1 .

For tunneling, Eq.~13! is similar to a complex time ob
tained by Pollak and Miller@25# on the basis of a flux-flux
correlation function. The Larmor time obtained by Bu¨ttiker
and Landauer@31# can also be written in a similar comple
form @32#. Complex tunneling times have been obtain
02210
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from the Feynman path-integral point of view@15–18#. Br-
ouard, et al. @28# discuss different definitions of tunnelin
times and their interpretation.

V. TRAVERSAL TIME IN A SEMICLASSICAL
APPROXIMATION

As an example of the method in Sec. IV, we use a se
classical wave function to obtain the local momentum a
the localtempus. A traversal time is calculated for a quantu
particle with an energy greater than the barrier.

A. Local momentum

The WKB approximation gives a wave function that
valid in a semiclassical approximation. For a particle with
energy above the barrier, a~unnormalized! WKB wave func-
tion is

c5k~x!21/2expH i F Ex

dx8\k~x8!2EtG /\J , ~17!

where the local wave number at the pointx is

k~x!5$2m@E2V~x!#%1/2/\. ~18!

The wave function in Eq.~17! describes propagation, with
out reflection, to larger values ofx as time increases and i
valid for energies large compared to the height of the barr

Using this wave function, we find that the local value
the momentum operator,p̂52 i\]/]x, is

p̂c

c
5p~x!2

i\

4

V8~x!

@E2V~x!#
, ~19!

where the local momentum isp(x)5\k(x). In the classical
limit \→0 ~or in the limit of largeE! only the real partp(x)
of Eq. ~19! contributes, which is the classical momentum
a function of the positionx.

B. Local tempus

The local value of thetempusoperator is

T̂c

c
5 i\

]

]E
ln c5t2Ex

dx8
1

v~x8!
2

i\

4

1

E2V~x!
5const.

~20!

In the classical limit\→0, the imaginary part goes to zero
The local velocityv(x) in Eq. ~20! is

v~x!5F]p~x!

]E G21

5
p~x!

m
, ~21!

where the classical local momentump(x)5\k(x) is defined
by Eq. ~18!. This local velocityv(x) is the same as the
‘‘hydrodynamic’’ velocity defined as the ratio of the prob
ability current densityj (x) to the probability densityr(x)

v~x!5
j ~x!

r~x!
5

1

c* c
Rec*

p̂

m
c5

p~x!

m
. ~22!
4-4
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Using the principle of constant localtempusin Eq. ~20!,
we obtain the relation

t~x!5Ex

dx8
1

v~x8!
1

i\

4

1

E2V~x!
1const . ~23!

The real part of Eq.~23! gives the phase time in Eq.~15! for
a quantum particle with an energy above the barrier
traverse fromx1 to x2 ,

tphase215E
x1

x2
dx8

1

v~x8!
, ~24!

which is the traversal time for a classical particle. This res
might have been expected, since we are using a semiclas
WKB wave function. The WKB approximation is valid if th
energy of the particle is much greater than the height of
barrier. The transmission time for the traversal of the qu
tum particle with an energy much larger than the top of
barrier is of no significance.

VI. TUNNELING THROUGH A RECTANGULAR BARRIER

As another example of the principle of constant localtem-
pus, we calculate the tunneling time for a rectangular barr
Then we compare it with other complex tunneling times.

A. Solution of the Schrödinger equation

The potential energy in the Schro¨dinger equation for a
rectangular barrier of heightV0 and widtha is

V~x!5H V0 , if 0<x<a

0, otherwise.
~25!

For this potential, the solution of the Schro¨dinger equation
for the energy less than the barrier height (E,V0) is the
wave function

c~x!5H exp~ ikx!1A exp~2 ikx!, for x,0,

B exp~kx!1C exp~2kx!, for 0<x<a,

D exp~ ikx!, for x.a.
~26!

The wave numberk for the incident and reflected wave fun
tions (x,0), and the transmitted wave function (x.a) is

k5~2mE!1/2/\, ~27!

the imaginary wave number in the forbidden region (0<x
<a) is

k5@2m~V02E!#1/2/\, ~28!

and a characteristic wave numberk0 is defined as

k05~2mV0!1/2/\, ~29!

such thatk21k25k0
2. The wave function in Eq.~26! is not

normalizable when integrated over the whole real axis,
this poses no difficulty in determining the tunneling tim
02210
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The choice of coefficient for the incident wave is irreleva
since only theratio of the other coefficients to the coefficien
of the incident wave can be calculated from the bound
conditions. Without loss of generality, we therefore choo
the coefficient of the incident wave exp(ikx) in Eq. ~26! to be
unity. For energies greater than the height of the barrierE
.V0), k in Eq. ~28! is pure imaginaryk5 ik8, wherek8
5@2m(E2V0)#1/2/\ is a real wave number.

The boundary conditions that the wave function and
derivative are continuous at points 0 anda, are used to obtain
the coefficients in Eq.~26!. The complex transmission am
plitude D is

D52kkN21 exp$2 i ~a1ka2p/2!%, ~30!

where the unit of length isk0
21, the anglea is

a5arctan@coth~ka! tan~2u!#, ~31!

and the angleu5arctan(k/k). The complex reflection ampli-
tudeA is

A5sinh~ka!N21 exp~2 ia!, ~32!

where the functionN in Eqs.~30! and ~32! is

N5@sinh2~ka!1~2kk!2#1/2. ~33!

Equations~30! and ~32! are used to calculate the phase a
transmission times.

B. Phase time

The phase time in Eq.~15! requires the difference in the
phase between wave function in Eq.~26! at the exitx25a
and the entrancex150, which is

Df5~2a1p/2!2arctanS Ai

11Ar
D

52arctanF 2kk

k22k2 coth~ka!G1
p

2

1arctanF kk sinh~2ka!

~2kk!212k2 sinh2~ka!G , ~34!

whereAr andAi are the real and imaginary parts ofA in Eq.
~32!, respectively. The phase time calculated from Eq.~15! is
therefore

tphase5
2k2ka2sinh~2ka!

4kk@k22cosh2~ka!#
. ~35!

In Eq. ~35! and throughout the rest of this paper, the unit
length isk0

21, the unit of energy isV0 , and the unit of time
is t05\/V0 .

Equation~35! for tphaseis plotted as the solid curve in Fig
1 as a function of the energyE, and in Fig. 2 as a function o
barrier widtha. The peaks in Fig. 1 have no simple relatio
ship with the corresponding wavelength. Figure 2 shows t
the tunneling time saturates for values of the widthak0.5,
4-5
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called the ‘‘Hartman effect’’@52#. From Eq.~35!, the phase
time saturates at a valuetphase5(2kk)21, as ak0→`. For
the value of the energyE50.5 given in Fig. 2, the saturatio
value is 1. The phase time in Fig. 2 as a function ofa has an
initial slope of (2k)21, which for the value of the energ
E50.5 given in Fig. 2, is 1/&.

C. Transmission time

The imaginary part oft in Eq. ~13! is the transmission
time t transin Eq. ~16!. Substituting Eq.~26! into Eq.~16!, we
obtain

t trans52
1

2

]

]E
lnU D

11AU
2

. ~36!

When Eqs.~30! and ~32! are substituted into Eq.~36!, the
transmission time is
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FIG. 1. Phase timetphase~units oft0! for the rectangular barrie
as a function of energyE ~units of V0! for a barrier widtha55
~units ofk0

21!. The solid line is our result in Eq.~35! and the dashed
line is the result of Pollak and Miller in Eq.~38!.
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FIG. 2. Phase timetphase~units oft0! for the rectangular barrie
as a function of barrier widtha ~units of k0

21! for an energy ofE
50.5 ~units of V0!. The solid line is our result in Eq.~35! and the
dashed line is the result of Pollak and Miller in Eq.~38!.
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t trans5
sinh~ka!@ka cosh~ka!2sinh~ka!#

2k2@k22cosh2~ka!#
. ~37!

Equation~37! for t transis plotted as the solid curve in Fig
3 as a function of the energyE, and in Fig. 4 as a function o
the barrier widtha. The negative values fort transseem to be
unphysical. Equation~37! shows thatt trans is linear with a
slope of2(2k)21 for widthsak0@1, which is shown in Fig.
4.

D. Other tunneling times

1. Pollak-Miller time

The Pollak-Miller time@25# is a complex tunneling time
that was calculated from a flux-flux correlation function. T
same tunneling time was obtained more simply by Leav
and Aers@32# by generalizing the method of the ‘‘energ
sensitivity of the transmission amplitude’’ due to Bu¨ttiker
and Landauer@53#, and analyzed further by Martin and Lan
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FIG. 3. Transmission timetphase~units oft0! for the rectangular
barrier as a function of energyE ~units of V0! for a barrier width
a55 ~units of k0

21!. The solid line is our result in Eq.~37! and the
dashed line is the result of Pollak and Miller in Eq.~39!.
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FIG. 4. Transmission timet trans ~units of t0! for the rectangular
barrier as a function of barrier widtha ~units ofk0

21! for an energy
of E50.5 ~units of V0!. The solid line is our result in Eq.~37! and
the dashed line is the result of Pollak and Miller in Eq.~39!.
4-6



x
t

,
d

s

ar

d

q.
r

and

es

the
in

e
e

m

p-
ry

a-
re-

-
al

-

lex
and

el-

d

er
re-

ter-
nd
,

ve
ng
li-

TUNNELING TIME THROUGH A BARRIER USING THE . . . PHYSICAL REVIEW A 64 022104
dauer@54#. The Pollak-Miller time is similar to the comple
time in Eq. ~13!, obtained from the principle of constan
local tempus, except that it uses theincomingwave function
at the entrance instead of thetotal wave function. Therefore
it can be obtained by merely setting the reflection amplitu
A equal to zero in Eqs.~34! and ~36!.

The Pollak-Miller phase time is calculated from the pha
differenceDf0 in Eq. ~34! whenA is set equal to zero. From
Eq. ~15!, the Pollak-Miller phase time for the rectangul
barrier is@32#

tphase
PM 5

2kak2~k22k2!1sinh~2ka!

2kk@~2kk!21sinh2~ka!#
. ~38!

The Pollak-Miller phase timetphase
PM is plotted as the dashe

curve in Fig. 1 as a function of the energyE, and in Fig. 2 as
a function of barrier widtha. Figure 2 shows the ‘‘Hartman
effect’’ @52# in the saturation of the tunneling time forak0

.5, with a valuetphase
PM 5(kk)21 from Eq. ~38!. Therefore,

the ratiotphase
PM /tphase52 in Fig. 2 forak0.5 from Eq.~35!.

From Eq.~38!, the initial slope oftphase
PM in Fig. 2 is @k2(k2

2k2)11#(4k2k3)21. The ratio of the initial slopes fortphase
PM

and tphase gives tphase
PM /tphase5@k2(k22k2)11#(2k2k2)21

for ak0!1. For the value of the energyE50.5 used in Fig.
2, the initial slope oftphase

PM is & and the ratiotphase
PM /tphase

52 for ak0!1.
The Pollak-Miller transmission time is obtained from E

~36! by settingA equal to zero. Therefore the Pollak-Mille
time for the rectangular barrier is@32#

t trans
PM 52

kak2 sinh~2ka!12~k22k2! sinh2~ka!

~2kk!2@~2kk!21sinh2~ka!#
.

~39!

The Pollak-Miller transmission timetphase
PM is plotted as the

dashed curve in Fig. 3, as a function of the energyE, and in
Fig. 4 as a function of barrier widtha. The negative values
for tphase

PM seem to be unphysical. Equation~39! shows that
tphase

PM is linear in a with a slope of2(2k)21 for widths
ak0@1. Therefore,t trans andtphase

PM are parallel, as shown in
Fig. 4.

2. Larmor time

The Larmor tunneling time@31# for a spin-1/2 particle
propagating in they direction, with spin polarized in thex
direction, in an infinitesimal magnetic field in thez direction,
can be written in a complex form@32# for a rectangular bar-
rier of heightV0 as

tL52 i\
] ln D

]V0
. ~40!

The y component of the Larmor transmission time is

ty52RetL52\
]Df0

]V0
, ~41!
02210
e

e

where it is necessary to use the negative of the real part,
the z component is

tz5ImtL52
\

2

] ln T

]V0
. ~42!

Leavens and Aers@32# compare the Pollak-Miller@25# phase
and transmission times with the corresponding Larmor tim
@31# for the rectangular barrier, so this is not done here.

E. Numerical example

A simple numerical application can be made using
heterostructure potential barrier parameters
GaAs/Al0.3Ga0.7As/GaAs@55#. The height isV0.0.3 eV and
a typical width isa.50 Å. The effective mass ratio of th
electron in GaAs ismeff /me.0.067. For these values, th
dimensionless width of the potential isa.3.63 in units of
k0

21513.77 Å and the characteristic time ist05\/V0

.2.19 fs.

VII. CONCLUSION

We give a formulation of a traversal time in quantu
mechanics using a principle of constant localtempus. The
tempusoperator is canonically conjugate to the energy o
erator@21#, and has its roots in classical Hamiltonian theo
@19,20#. Together thetempusoperator and the energy oper
tor satisfy the canonical commutation relation. In the rep
sentation in which the energy operator isÊ5E, the tempus

operator isT̂5 i\]/]E, which acts only on the energy pa
rameterE in a stationary-state wave function. In the classic
limit, the ‘‘principle of constant localtempus’’ gives the clas-
sical result obtained from Hamilton-Jacobi theory@8,24#. For
a stationary-state wave functionc that depends on the en
ergy, the local value of thetempusoperator isT̂c/c. The
principle gives directly an ‘‘inverse quasitrajectory’’t(x),
from which a traversal timet5Dt5t(x2)2t(x1) is defined
as the difference in time atx2 and at x1 . For an energy
beneath the top of a barrier, this method gives a comp
tunneling time that has a real part equal to a phase time
an imaginary part equal to a transmission time.

Our method gives a result similar to the complex tunn
ing time obtained by Pollak and Miller@25# from a flux-flux
correlation function. The Pollak-Miller time was also derive
by Leavens and Aers@32# from the energy sensitivity of the
transmission amplitude, a method suggested by Bu¨ttiker and
Landauer@53# and further analyzed by Martin and Landau
@54#. Recently, an experiment on frustrated total internal
flection of light @26# used the complex Pollak-Miller time
and showed how its real and imaginary parts could be in
preted@3#. The difference between our tunneling time a
the Pollak-Miller tunneling time@25# is that, in our approach
the total wave function at the entrancex1 of the barrier is
used, whereas Pollak and Miller use only the incoming wa
function. Only further experiments to measure tunneli
times can show whether our tunneling time will be app
cable@29,30#.
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@53# M. Büttiker and R. Landauer, Phys. Scr.32, 429 ~1985!.
@54# Th. Martin and R. Landauer, Phys. Rev. A47, 2023~1993!.
@55# B. Lee, Superlattices Microstruct.14, 295 ~1993!.
4-8


