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Comment on “Kinetic energy in density-functional theory”
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In a recent paper, R. K. NesbgPhys. Rev. A58, R12 (1998] has compared the single-particle kinetic
energy from the Kohn-Sham reference state theory with that of the Thomas-Fermi-like form of the density-
functional theory. We argue that, contrary to his opinion, both theories should give the same results for
N-electron ground-state density. We show also that there is no inconsistency between the kinetic-energy forms
of the two theories, and no need to extend the definition of functional derivatives.
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I INTRODUCTION Egs= min{ min(¥|T+V+0|¥)}, (2.2
p—N ¥—p

R. K. Nesbet, has in a recent pap#f, performed a com-
parison between two approaches to the density-functional€., outer minimization over densities that lead to the given
theory (DFT) of an N-electron system: the Thomas-Fermi- number of particlesp— N, namely,
like (TF) representatior{fformulated solely in terms of the
electron de.nsity of the systemand the Kohn—ShanQKS)_ f d3rp(r)=N, p(N=0, 2.3
representatior{fformulated in terms olN one-electron spin
orbitalg. His conclusions seem to undermine the foundations
of the DFT. Because there is no published reaction to th
Nesbet's paper till novito our best knowledgewe decided
to clarify in our Comment the issues discussed by him, in
order to assure all users of the DFT that this theory is fun- ND, | d*, - d*y| P (Xq, ... x0)[2=p(ry). (2.9
damentally correct. As it will be shown, by using rigorous s
notation and precise definitions, and also clarifying seman
tics, all worrisome findings in Refl] can be overcome.

nd the internal one over the wave functions that lead to the
given density,¥ — p, namely,

Here [d*x; meansZ [d®r;. Using the property that foW

—p the expectation valu¢W|V|¥) can be expressed in

terms of the density a¥[p]=[d®r v(r)p(r), Eq. (2.2 can
IIl. THOMAS-FERMI-LIKE EQUATION be rewritten in afo)r/m Lel=fd T v(n)e(r), Eq.(2.2

Similarly as in Nesbet's papefl], we consider an
N-electron systen(llke an atom, a molecujedescribed by
the Hamiltonian H=T+V+U, where T= 2 1t(r ), V
=Ei=lv(ri), and U—Elsiqs,\,u(ri ;). Here xi—{Ari ,Si}
denotes the space-spin coordinate itif electron,t(r)=

2 . . . . . . ~ ~

(r) |sth_e I§|ne_t|c enernglfferentla_D operatorp (r) is Flpl=min(¥|T+0[¥)=(.. My_v_ b (2.6
the local (multiplicative) external potentialdue to clamped Vop min
nucle), andu(r;,r;)=1/r;—r;| is the local electron-electron
interaction potential. Atomic units are used throughout. TheThus V¥ [ pas] is the system GS functioW s seen in Eq.

ground-statgGS) energyEgsg of this system can be deter- (2.1). The condition for the minimum in Eq2.5), 6E[p]
mined from the variational principle =0, can be achieved by solving a TF-like equation

Egs=minE[p]=min{F[p]+V[p]}=E[pcs], (2.5
p—N p—N

where the Hohenberg-KohitiK) [5] functional[2—4] is de-
fined here by the internal minimization in E®.2)

+o(r)=pu. 2.7

EGs:ndin<‘P||:||‘I’>:<‘l’Gs|H|‘I’Gs>a (2.9 op(r)

Here SF[p]/ 8p(r) is the functional derivative oF[p], i.e.,
where minimization goes in the Hilbert spaceMglectron, the function satisfying
antisymmetric, normalized,¥|¥)=1, wave functions¥

=P(Xyq, ... Xy). Following Levy’s constrained-search for- _ f 3 oF[p] 2
mulation[2] (see also Refd.3] and[4]) the above minimi- Flpte sp]=Flpl+e | d r5,[)(r) op(r)+0(&%).
zation can be done in two steps, namely, (2.9
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It should be noted that the definitid@.6) holds for an inte- 5Tdp]
gral, fixedN (which is involved in the definition of, U and Sp(n) |
). Thus alloweddp(r), used in Eg.2.8), cannot change P=Pas
the number of electrons in EQ.3), [d> 8p(r)=0. There-
fore, with w an arbitrary constant, the function @ s
(SF[p]/8p(r)— u) also represents the functional derivative — minl PGs]-
of F[p] because it satisfies E¢2.8) when inserted in the

place of SF[ p]/dp(r). In this way, the presence of the pa-

rametery in Eq.(2.7) reflects the fact, that for variations that e KS[6] representation of the density-functional theory
conserveN, functional derivatives are known with accuracy is formulated in terms of the exchange-correlation energy

to an additive constant. Solving E@.7) means thap(r) is  fynctional E,J p] defined by the relation
varied until the sum on the left-hand side will become inde-

pendent ofr. The value ofu has no physical meaning — it Flpl=Tdpl+EedpltExdp]. (3.7
is connected with a particular numerical proced{geme

implementation of the definition2.6) and (2.8)] used to  in which Ee{p]=73/d% d3,u(ry,ry)p(ry)p(ry) is the
evaluatesF[ p]/ 5p(r). With some procedure chosem,hap-  classical electrostatic energy of the system, whkile | and
pens to be a sensitivity parameter of E2.7) — its concrete T4 p] are defined by the means of E¢8.6) and(2.9). After
value as well as values of the functipgg(r) for anyr, are  insertingF[p] in the form(3.1) into Eq. (2.5 we obtain
determined by solving this equation. Howevegg(r) of this

todr)=pus. (2.11

The GS function of the noninteracting system d&gg

I1l. KOHN-SHAM EQUATIONS

solution is unique(independent of the choice of the proce- Egs= miE{Ts[P]JFVKs[P]}:{"'}|p:pes' (3.23
dure and it leads, via Eq(2.5), to the GS energy from P
Ecs=Elpasl- _ where Vg p]=V[p]+Eclpl+E,dp] is the KS effective

There are known generalizations of the DESBe, e.9., in potential-energy functional, and, next, a TF-like equation
Refs.[3] and[4]) which allow for arbitrary, nonintegral in

Eq. (2.5), but they involve an ensemble of systethaving 5T p]
different integral numbers of electron® defineF[p] more Sp(r) +oks(r;Le]) = JKS (3.2b
general than that in Eq2.6). In such case, the constgatin P=pGs

Eq. (2.7 with the generalizedr[p], may be interpreted as _ _ _ _
the chemical potential of the ensemble. But such a general¥nereé  vks(rilpl)=oVkd pl/op(r) =v(r) +vedrilp])
zation will not be considered in our paper. tox(rilp]) is thg KS  potential, with vedr:[p])

We are ready now to comment on the Nesbet's statements Eed p1/dp(r)=Jd>r"u(r,r')p(r’) and v,(rilp])
in the paragraph surrounding Eq$) and(2) of Ref.[1]. His  — 5E><_0[P]/5,P(r)- For the reasons discussed earlier,
supposition that the function&[ p] can be defined for arbi- Vks(F;Lp]) is known with the accuracy to an additive con-
trary variations ofp(r) that do not conservl, was shown to ~ Stant, which is represented in E@.2b by p.«s — a sensi-
be inconsistent with his earlier assumption about considerin§Vity parameter of this equation. _ ,
systems for integral. Without this suppositiony is not the By comparing the TF-like equation for the noninteracting
chemical potential. We see also in B8.7) that, contrary to  SyStém(2.11) and the KS TF-like equation for the interacting
Nesbet's opinion, the parameter does not drop out of the SYStemM(3.2, we see that the interacting GS dengifys can
TF-like equation for variations that conserie be det.ermlned by splvmg the equivalent nomnteractmg prob-

All considerations can be repeated for a systeriian- €M With the potentiab(r) =vks(r;[pesl). However, since
interacting electrons, moving in the external potentigr).  PcsiS not known in advance, an iterative method of solution,
The corresponding Hamiltonian isl.—=T+V. where V which leads to self-consistency, is to be applied, starting
_sN 1v (rA)p Nowg'][he role ofF[p] Esq_ 2.6 Si’s played bi/ from some guessed initial approximatipp,; for the density

N odr). , Eq.(2.6),

. ) o . to evaluate the initiab  asv kg pini]. Equation(3.2) tells us
the noninteracting kinetic-energy functional that, provided the exact exchange-correlation energy func-

~ tional E,[p] and its functional derivative,(r;[p]) are
Tdpl=min(®[T|®)=(.. )o-0_ [, (29 available ¥[p] and E{p], and their derivatives are
P=p known), the model noninteractiny-electron system can be
introduced, which leads to the true correlated GS density
where the trial function® belong to the same Hilbert space pgg(r). Various approximate forms of,. and v,((r), as
as defined previously for function¥ [below Eq. (2.1)]. explicit functionals of the density, are known(e.g., in the

Equation(2.5) is replaced now by so-called generalized gradient approximati@GA) of Per-
dew and Wand7]) with accuracy sufficient for many appli-

ESc=minEJ p]=min{Tdp]+VJpl}=EJpid, cations(note that the dor.nilnant t\(vo remaining terms\@{s

p—N p—N andv kg areexactandexplicit functionals ofp). But, in order

(2.10  to exploit Eq.(3.2) for a numerical determination @fg«(r)
and Egg, one also needs reliable approximations for
where V{ p]=[d% v(r)p(r), which leads to the TF-like &TJ{p]/dp(r) and T{p]. Known in the literature, various
equation explicit forms of these functionalglike in GGA) are not
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accurate enough to produce reasonable results for systems <(I)D|-’I\-|(DD>::|’-[¢1! T
where p(r) is far from homogeneous, although the corre-
sponding calculational schemes are highly efficient. Besides
approximate forms for these functionals, there are available
procedures calculating them accurately for an arbitrary input
p(r), e.g., one developed by Zhao, Morrison, and R&ir (3.9
However, these procedures are so “expensive” computa-
tionally, that it would be impractical to solve E(B.2D for  for the noninteracting kinetic enerdly, in the KS approach,
pas(r) with their help[see also comments below Ed-3)].  while using Eq.(2.9) in the TF-like approach, and, in prac-
This difficulty can be circumvented, because the GS probtice, applying some approximation fdg,Jp]. Thus the
lem of a noninteracting system can be addressed alternguestion raised in the Abstract of Rét], whether the solu-

N
21 f d*x () (— 2V2(r)) (%)

tively by solving the Schrdinger equation tion of the KS equations and the solution of the TF-like
N s equation should give the same results for the(®&8oth are
Ho®gs=EgsPes. (333 pased on the same universal functional defined by the HK

theory) is seen to be answered in the positive.

We can comment now on E¢3) in Ref.[1], named by
Nesbet the KS equations. When his explanation, written just
below the mentioned equation, is taken into account, and for

N w(r) we understandys(r), his equation coincides with our
A= [Er)+ovgri], (3.3h  E0s.(3.4 with (3.6). But we disagree with denoting the sum
=1 t(r)+ovks(r)=v(r)+w(r) by SE[p]/dp(r). The object

Since theN-electron Hamiltonian is a sum of one-electron
Hamiltonians, each depending on the coordimatef a sepa-
rate electron

SOE[p]/ 6p(r) enters the KS TF-like equatig8.2b, because
is equation can be written equivalently as
SE[p]/ 3p(r)|,—p.=1ks by noting that E[p]=Tdp]
+Vikd p] [see Egs.(2.5 and (3.23]. The first term of
[—3V2(r)+vdr)]ei(r,s)=€ ¢i(r,s), i=12,..., SE[p]/ Sp(r), namely,8TJ p]/ Sp(r) [denoted aw +(r) by
Nesbet is a local potential, therefore the sum of it and an-
(3.9 ’ S
. ) ) ] _other local potentialvks(r;[p]) may be required in Eq.
with €; being the separation constants. It will be convenien{3 2y to be a constantat the solutionp=pgg). Thus the
to choose real orbitalgh” = ¢; , which is possible due to the jnconsistency of Eqg5) and(4) in Ref.[1], pointed out by

real n.ature<of<the H<amil<tonian.< After %rdering I_th_e otrrt])ital Nesbet, is only apparent; his E) contains, in fact{i(r)
energiese, =e,=---=ey=enc1=-- and normalzing the ., (ry1, although denoted@ncorrectly, in our opinion,as
orbitals, (¢i[ ¢;)=1, the Slater determinaiib) SE[p]/ 8p(r). Additional arguments in favor of this opinion

D[ by, ... ,¢N]E(N!)_llzdei{fﬁi(xj)}i,j:l .... . can be found in the next section.

3.5

is the N-electron GS eigenfunctio® sg, while Egq= €+ -

- -+ €y is the eigenenergyfor simplicity, a nondegenerate To address the problem, raised by Nesbet, whether func-
GS is assumed, otherwis®gs may be a linear combination tional derivatives should be understood as linear operators,
of a few Slater determinantsWhenuv «s(r) is substituted for let us apply the Hartree-FodkF) approach to the solution
v(r), then Eq.(3.4) represents the system of KS equationsof the GS problem for aoninteractingsystem. Because the

the method of separation of variables can be applied. Thu
the eigenfunction® g can be written as a product of one-
electron functiongspin orbitalg ¢;(x), the solutions of

IV. HARTREE-FOCK-LIKE APPROACH

[6] for the KS spin orbitals and orbital energies. GS function of such system is a Slater determinant, this ap-
For the densityp(r) which is necessary to evaluate proach gives the exact GS energy rather than the upper
bound:
vy(r)=vks(r:[p]), (3.6)
one uses the density derived from the functidngg Egs= min  (dp/H{Pp)

=®p[ ¢y, ... ,pN], Nnamely[compare Eq(2.4)] ®p.(®p|Pp)=1

- N = min {7’[¢,...,¢]
PN=p(rlds, ... o)=2 T #Ar9). (3.7 bttt
At self-consistency, this density is the true correlated GS +f dProdr)p(riles, ... =¢N])}1 (4.1

density, because the two alternative methods that solve the

GSdensity problenof the N-noninteracting-electron system, -

via Eq.(3.4) with Egs.(3.6) and(3.7), or via Eq.(3.2b, must ~ see Egs(3.9), (3.8), and(3.7) for the definitions ofdp, T,
give the same result. The interacting electron energy is caland p. The Euler-Lagrange equations, which correspond to
culated aEgs=E[ pgg] in Eq. (3.29, using the minimization(4.1
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1
2 5¢5(r,s)

To facilitate the interpretation, we distinguished here two

functionals, T{p] andT[ ¢, . .. ,.¢n], in the place of one
functional F in Nesbet's Eq(6). By direct functional differ-
entiation in the definition3.8), one verifies that the expres-
sion (4.49 is equal to the expressiof#.4g9. On the other
hand, the expressia@.4b can be obtained directly from the

[Twl, o]

+f B ol VP [, - )

—ei( f d*x’ d;iz(x’)—l)] =0, i=1,...N, expression
(4.2
N . 1 8Tdpl b1, - hnl]
lead immediately to Eq(3.4). Now, ¢; plays the role of the 2 z ¢i(F,S)§ 5 (1.5) , (440

Lagrange multiplier connected with the normalization con-
straint for the orbitalg;(x) [there is no need to impose the
orthogonality constraints, because the Hermicity of the re-

sulting one-electron Hamiltonian in E@3.4) leads to or-
thogonal eigenfunctions

When the minimization4.1) is performed in two steps,
similarly as in Eq(2.2), it leads to Eq(2.10 again, but with
T4 p] defined now by

Tdpl= min(®p|T|dp)

dpy—p

= min Tl ....on]

{1, -+, ONF— P

=Tl p], - .. .oN" P11, (4.3

where{ ¢4, . ..,pn}—p denotes a set dfl spin orbitals that
satisfy the constraintd(¢;|¢;)=1 for i=1,... N and

p(r;lé1, .., dn])=p(r)}. For densitiesp(r), which are
noninteractingy representable, the definitiqd.3) of T p]

is equivalent 4] to the more general definitio(2.9). Zhao
et al.[8] have used the definitio®.3) to construct an algo-
rithm that gives the value of{ p] and 6T{ p]/Sp(r) for an
arbitrary noninteracting -representable(r) as an input; in
an intermediate step\ orbitals are to be determined self-
consistently. The present authors have shown edfithat

{it is only similar to(4.4a, becausd is replaced byr{p]}
by applying to it the chain rule for the functional differentia-
tion

8Tdp] op(r';[ b1, ..
Sp(r') o¢i(r,9)

. vd)N])

=2

i=1

g d)i(r,s)%J d3r’
(4.4¢

and the resultSp(r’)/5¢(r,s)=2¢;i(r,s)8(r’ —r) of the
functional differentiation in Eq(3.7). So, in order to have
the expressioni4.4b equal to the expressiof.40, the re-

lation T{p(1, . . .. dn)1=T[ b1, ... ,¢n] should hold for
an arbitrary set of orthonormal spin orbitalsp,, . . . ,én}-
But, it is not true. As we see from E¢4.3), this relation is
satisfied only by a special p-dependent set
{$Tp], ... .dN"p]}, determined in the process of the
minimization with constraints. Therefore, E(d$), (7), and
(11) in Ref. [1] are not true; the kinetic-energy operator
t(r)=—1V2(r)=v+is involved in Eq.(4.3) in T during the
minimization[see also Eq(3.8)], while the local potential

the same definition can be used to construct a different algd2T(") = 9Td p]/dp(r), arises from the functional differentia-

rithm for the same purpose, in which a system bf<{(1)

tion of T{ p], which is theresult ofthe minimization in Eq.

second-order differential coupled equations must be solve64-3); ) )
in an intermediate step. Therefore, such algorithms remain Similarly, the relation between the nonlocal operator

rather impractical for application in E43.2).

Nevertheless, Eq4.3) will be helpful in discussing Eq.
(6) of Nesbet's papefl]. We rewrite his equation in appli-
cation toF=TJ p], using our notation and the convention
about real orbitals:

N 18Ty, .- b

;1 ; O e Ty s (4.49
! 5Tdp]

=2 X (1) 5 TS (4.4D

=§1 2 bi(r,9)(r) ¢i(r,s). (4.49

vyl b1, - .. ,¢n] Of the HF theory and the local exchange
potentialv,(r;[p])= SE, p]/ Sp(r) of the DFT, cannot be
written in the form of Nesbet's Eq10) in Ref.[1]. More-
over, this locab, involves, besides the Slater potential, also
other terms. The detailed discussion of these problems can
be found in our papergl0,11].

Our next comment concerns the last paragraph of Sec. IV
of Ref.[1]. The expressioff = [v1 p d°r represents the glo-
bal kinetic energy in terms of the local kinetic-energy density

v1(r) p(r)==,34i(r,5)t(r) ¢;(r,s) [the right-hand side of

Eqg. (11) of Ref.[1], rewritten in our convention, see also Eq.
(3.8 herd. SinceT is a universal functional gb, this prop-
erty is conveyed tat, sovr=uv1(r;[p]). Considering an
atom of the nuclear chargé the dependence ahenters its
GS kinetic energy via the GS densigy depending onZ.
Therefore, for theZ derivative we have
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T
[p] Jdr {T(r:Lp]) p(1)}

:str[

du(r;[p]) p( )

77 p(r)+o(r [p]) .
(4.9
where
dur(rilp)) _ [ 5 évr(ri[p]) dp(r)

07 —fd r So(t) 07 (4.6)

or, alternatively to Eq(4.5),

aTlp] 8TLp] dp(r)

7 _fd S5p(r) 97 (4.9

Sincev+(r) # 8T/ 8p(r) [as we have shown, E¢L1) in Ref.

[1] is incorrect, we see from the comparison of E@L.5
with Eq. (4.7) that there is no reason for the first term on the
right-hand side of Eq(4.5 — the quantity

QT:f d’r

Eq. (16) of Ref. [1]—to be zero. Thus, Nesbet's numerical
results, showing finite values @J for a few atoms, confirm

du1(r;[p])

i 4.9

p(r),

our conclusion that the local kinetic energy per particle{¢,, ...

v+(r) is not the functional derivativéT[ p]/Sp(r)=v(r).
Commenting on Sec. V of Refl] we agree with Nes-
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of the exchange-correlation energy functionélsome algo-
rithm that implements the definitiofd.3 of Tdp] (e.g.,
from Ref.[8]) was used in Eq(3.2b, the TF-like method
should give the atomic shell structure, because, as it was
shown, it leads to the exact GS density, the same as one
obtained in an alternative way by solving the KS equations.

V. CONCLUSIONS

We have shown that two DFT approaches to the GS den-
sity problem, namely, via the solution of the TF-like equa-
tion (3.2b) or the self-consistent solution of the KS equations
(3.4 with (3.6) and (3.7), should lead to the same results,
because they represent two equivalent quantum-mechanical
methods to solve the GS problem of the reference noninter-
acting system, either by applying the variational principle,
Eg. (4.1), or by solving the Schidinger equation(3.33.
Therefore the corresponding kinetic-energy contributions are
represented in twadifferent forms: as a local potential
vi(r)=6Td pl/6p(r), in Eqg. (3.2b, and as a differential
operatorot(r)=—3V?(r) in Eq. (3.4). The Nesbet's argu-
mentation in Eq(6) of Ref.[1] that these two forms may be
identical[his Eq.(11)] is incorrect, because he does not take

into account that the equality T{p[¢1, ... .on]]
=T[¢1,....6n] holds only for the  set
{6, . ... &N ]} [the result of minimization(4.3)]

rather than for an arbitrary set of orthonormal spin orbitals

N} -

ACKNOWLEDGMENTS

bet's statement about the well-known failure of the genuine

TF theory to describe the atomic shell structure. This fact We thank Professor Yu Lu and his colleagues for the
indicates thafT{ p]~cfd%r p®2 — the local density ap- stimulating environment of ICTP, Trieste, in which much of
proximation(LDA) for the kinetic energy — is too crude an the present work was carried out, as well as for their hospi-

approximation(although LDA is quite reasonable in the case

tality in Trieste.

[1] R.K. Nesbet, Phys. Rev. B8, R12(1998.

[2] M. Levy, Proc. Natl. Acad. Sci. U.S.A76, 6062(1979.

[3] R.G. Parr and W. Yan@ensity-Functional Theory of Atoms
and MoleculegOxford University, New York, 198P

[4] R.M. Dreizler and E.K.U. GrosdDensity Functional Theory
(Springer-Verlag, Berlin, 1990

[5] P. Hohenberg and W. Kohn, Phys. R&&6, B864 (1964).

[6] W. Kohn and L.J. Sham, Phys. Rel40, A1133(1965.

[7] J.P. Perdew and Y. Yang, Phys. Rev3B 8800(1986.
[8] Q. Zhao, R.C. Morrison, and R.G. Parr, Phys. Re\a072138
(1994).
[9] A. Holas and N.H. March, Phys. Rev. 4, 5521(1991).
[10] A. Holas and N.H. March, Phys. Rev. &5, 1295(1997.
[11] A. Holas, N.H. March, Y. Takahashi, and C. Zhang, Phys.
Rev. A48, 2708(1993.

016501-5



