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In a recent paper, R. K. Nesbet@Phys. Rev. A58, R12 ~1998!# has compared the single-particle kinetic
energy from the Kohn-Sham reference state theory with that of the Thomas-Fermi-like form of the density-
functional theory. We argue that, contrary to his opinion, both theories should give the same results for
N-electron ground-state density. We show also that there is no inconsistency between the kinetic-energy forms
of the two theories, and no need to extend the definition of functional derivatives.
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I. INTRODUCTION

R. K. Nesbet, has in a recent paper@1#, performed a com-
parison between two approaches to the density-functio
theory ~DFT! of an N-electron system: the Thomas-Ferm
like ~TF! representation~formulated solely in terms of the
electron density of the system!, and the Kohn-Sham~KS!
representation~formulated in terms ofN one-electron spin
orbitals!. His conclusions seem to undermine the foundatio
of the DFT. Because there is no published reaction to
Nesbet’s paper till now~to our best knowledge!, we decided
to clarify in our Comment the issues discussed by him,
order to assure all users of the DFT that this theory is f
damentally correct. As it will be shown, by using rigoro
notation and precise definitions, and also clarifying sem
tics, all worrisome findings in Ref.@1# can be overcome.

II. THOMAS-FERMI-LIKE EQUATION

Similarly as in Nesbet’s paper@1#, we consider an
N-electron system~like an atom, a molecule! described by
the Hamiltonian Ĥ5T̂1V̂1Û, where T̂5( i 51

N t̂ (r i), V̂

5( i 51
N v(r i), and Û5(1< i , j <Nu(r i ,r j ). Here xi[$r i ,si%

denotes the space-spin coordinate ofi th electron, t̂ (r )5
2 1

2“
2(r ) is the kinetic energy~differential! operator,v(r ) is

the local~multiplicative! external potential~due to clamped
nuclei!, andu(r i ,r j )51/ur i2r j u is the local electron-electron
interaction potential. Atomic units are used throughout. T
ground-state~GS! energyEGS of this system can be dete
mined from the variational principle

EGS5min
C

^CuĤuC&5^CGSuĤuCGS& , ~2.1!

where minimization goes in the Hilbert space ofN-electron,
antisymmetric, normalized,̂CuC&51, wave functionsC
5C(x1 , . . . ,xN). Following Levy’s constrained-search fo
mulation @2# ~see also Refs.@3# and @4#! the above minimi-
zation can be done in two steps, namely,
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EGS5 min
r→N

$ min
C→r

^CuT̂1V̂1ÛuC&%, ~2.2!

i.e., outer minimization over densities that lead to the giv
number of particles,r→N, namely,

E d3rr~r !5N, r~r !>0 , ~2.3!

and the internal one over the wave functions that lead to
given density,C→r, namely,

N(
s1

E d4x2•••d4xNuC~x1 , . . . ,xN!u25r~r1!. ~2.4!

Here*d4xi means(si
*d3r i . Using the property that forC

→r the expectation valuêCuV̂uC& can be expressed in
terms of the density asV@r#5*d3r v(r )r(r ), Eq. ~2.2! can
be rewritten in a form

EGS5 min
r→N

E@r#5 min
r→N

$F@r#1V@r#%5E@rGS#, ~2.5!

where the Hohenberg-Kohn~HK! @5# functional@2–4# is de-
fined here by the internal minimization in Eq.~2.2!

F@r#5 min
C→r

^CuT̂1ÛuC&5^ . . . &uC5Cmin[r] . ~2.6!

ThusCmin@rGS# is the system GS functionCGS seen in Eq.
~2.1!. The condition for the minimum in Eq.~2.5!, dE@r#
50, can be achieved by solving a TF-like equation

dF@r#

dr~r !
U

r5rGS

1v~r !5m. ~2.7!

HeredF@r#/dr(r ) is the functional derivative ofF@r#, i.e.,
the function satisfying

F@r1« dr#5F@r#1«E d3r
dF@r#

dr~r !
dr~r !1O~«2!.

~2.8!
©2001 The American Physical Society01-1
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It should be noted that the definition~2.6! holds for an inte-
gral, fixedN ~which is involved in the definition ofT̂, Û and
C). Thus alloweddr(r ), used in Eq.~2.8!, cannot change
the number of electrons in Eq.~2.3!, *d3r dr(r )50. There-
fore, with m an arbitrary constant, the functio
(dF@r#/dr(r )2m) also represents the functional derivati
of F@r# because it satisfies Eq.~2.8! when inserted in the
place ofdF@r#/dr(r ). In this way, the presence of the p
rameterm in Eq. ~2.7! reflects the fact, that for variations tha
conserveN, functional derivatives are known with accurac
to an additive constant. Solving Eq.~2.7! means thatr(r ) is
varied until the sum on the left-hand side will become ind
pendent ofr . The value ofm has no physical meaning —
is connected with a particular numerical procedure@some
implementation of the definitions~2.6! and ~2.8!# used to
evaluatedF@r#/dr(r ). With some procedure chosen,m hap-
pens to be a sensitivity parameter of Eq.~2.7! — its concrete
value as well as values of the functionrGS(r ) for any r , are
determined by solving this equation. However,rGS(r ) of this
solution is unique~independent of the choice of the proc
dure! and it leads, via Eq.~2.5!, to the GS energy from
EGS5E@rGS#.

There are known generalizations of the DFT~see, e.g., in
Refs.@3# and@4#! which allow for arbitrary, nonintegralN in
Eq. ~2.5!, but they involve an ensemble of systems~having
different integral numbers of electrons! to defineF@r# more
general than that in Eq.~2.6!. In such case, the constantm in
Eq. ~2.7! with the generalizedF@r#, may be interpreted a
the chemical potential of the ensemble. But such a gene
zation will not be considered in our paper.

We are ready now to comment on the Nesbet’s statem
in the paragraph surrounding Eqs.~1! and~2! of Ref. @1#. His
supposition that the functionalE@r# can be defined for arbi
trary variations ofr(r ) that do not conserveN, was shown to
be inconsistent with his earlier assumption about conside
systems for integralN. Without this supposition,m is not the
chemical potential. We see also in Eq.~2.7! that, contrary to
Nesbet’s opinion, the parameterm does not drop out of the
TF-like equation for variations that conserveN.

All considerations can be repeated for a system ofN non-
interacting electrons, moving in the external potentialvs(r ).
The corresponding Hamiltonian isĤs5T̂1V̂s, where V̂s

5( i 51
N vs(r i). Now the role ofF@r#, Eq. ~2.6!, is played by

the noninteracting kinetic-energy functional

Ts@r#5 min
F→r

^FuT̂uF&5^ . . . &uF5Fmin[r] , ~2.9!

where the trial functionsF belong to the same Hilbert spac
as defined previously for functionsC @below Eq. ~2.1!#.
Equation~2.5! is replaced now by

EGS
s 5 min

r→N
Es@r#5 min

r→N
$Ts@r#1Vs@r#%5Es@rGS

s #,

~2.10!

where Vs@r#5*d3r vs(r )r(r ), which leads to the TF-like
equation
01650
-
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dTs@r#

dr~r !
U

r5r
GS
s

1vs~r !5ms. ~2.11!

The GS function of the noninteracting system isFGS

5Fmin@rGS
s #.

III. KOHN-SHAM EQUATIONS

The KS@6# representation of the density-functional theo
is formulated in terms of the exchange-correlation ene
functionalExc@r# defined by the relation

F@r#5Ts@r#1Ees@r#1Exc@r#, ~3.1!

in which Ees@r#5 1
2 *d3r 1 d3r 2 u(r1 ,r2)r(r1)r(r2) is the

classical electrostatic energy of the system, whileF@r# and
Ts@r# are defined by the means of Eqs.~2.6! and~2.9!. After
insertingF@r# in the form ~3.1! into Eq. ~2.5! we obtain

EGS5 min
r→N

$Ts@r#1VKS@r#%5$•••%ur5rGS
, ~3.2a!

where VKS@r#5V@r#1Ees@r#1Exc@r# is the KS effective
potential-energy functional, and, next, a TF-like equation

H dTs@r#

dr~r !
1vKS~r ;@r#!J

r5rGS

5mKS, ~3.2b!

where vKS(r ;@r#)5dVKS@r#/dr(r )5v(r )1ves(r ;@r#)
1vxc(r ;@r#) is the KS potential, with ves(r ;@r#)
5dEes@r#/dr(r )5*d3r 8 u(r ,r 8)r(r 8) and vxc(r ;@r#)
5dExc@r#/dr(r ). For the reasons discussed earli
vKS(r ;@r#) is known with the accuracy to an additive co
stant, which is represented in Eq.~3.2b! by mKS — a sensi-
tivity parameter of this equation.

By comparing the TF-like equation for the noninteracti
system~2.11! and the KS TF-like equation for the interactin
system~3.2b!, we see that the interacting GS densityrGS can
be determined by solving the equivalent noninteracting pr
lem with the potentialvs(r )5vKS(r ;@rGS#). However, since
rGS is not known in advance, an iterative method of solutio
which leads to self-consistency, is to be applied, start
from some guessed initial approximationr ini for the density
to evaluate the initialvs asvKS@r ini#. Equation~3.2! tells us
that, provided the exact exchange-correlation energy fu
tional Exc@r# and its functional derivativevxc(r ;@r#) are
available (V@r# and Ees@r#, and their derivatives are
known!, the model noninteractingN-electron system can b
introduced, which leads to the true correlated GS den
rGS(r ). Various approximate forms ofExc and vxc(r ), as
explicit functionals of the densityr, are known~e.g., in the
so-called generalized gradient approximation~GGA! of Per-
dew and Wang@7#! with accuracy sufficient for many appli
cations~note that the dominant two remaining terms ofVKS
andvKS areexactandexplicit functionals ofr). But, in order
to exploit Eq.~3.2! for a numerical determination ofrGS(r )
and EGS, one also needs reliable approximations f
dTs@r#/dr(r ) and Ts@r#. Known in the literature, various
explicit forms of these functionals~like in GGA! are not
1-2
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accurate enough to produce reasonable results for sys
where r(r ) is far from homogeneous, although the corr
sponding calculational schemes are highly efficient. Besi
approximate forms for these functionals, there are availa
procedures calculating them accurately for an arbitrary in
r(r ), e.g., one developed by Zhao, Morrison, and Parr@8#.
However, these procedures are so ‘‘expensive’’ compu
tionally, that it would be impractical to solve Eq.~3.2b! for
rGS(r ) with their help@see also comments below Eq.~4.3!#.

This difficulty can be circumvented, because the GS pr
lem of a noninteracting system can be addressed alte
tively by solving the Schro¨dinger equation

ĤsFGS5EGS
s FGS. ~3.3a!

Since theN-electron Hamiltonian is a sum of one-electro
Hamiltonians, each depending on the coordinater i of a sepa-
rate electron

Ĥs5(
i 51

N

@ t̂~r i !1vs~r i #, ~3.3b!

the method of separation of variables can be applied. T
the eigenfunctionFGS can be written as a product of one
electron functions~spin orbitals! f i(x), the solutions of

@2 1
2“

2~r !1vs~r !#f i~r ,s!5e i f i~r ,s!, i 51,2, . . . ,
~3.4!

with e i being the separation constants. It will be conveni
to choose real orbitals,f i* 5f i , which is possible due to the
real nature of the Hamiltonian. After ordering the orbit
energiese1<e2<•••<eN,eN11<••• and normalizing the
orbitals,^f i uf i&51, the Slater determinant~D!

FD@f1 , . . . ,fN#[~N! !21/2det$f i~xj !% i , j 51, . . . ,N
~3.5!

is theN-electron GS eigenfunctionFGS, while EGS
s 5e11•

••1eN is the eigenenergy~for simplicity, a nondegenerat
GS is assumed, otherwise,FGS may be a linear combination
of a few Slater determinants!. WhenvKS(r ) is substituted for
vs(r ), then Eq.~3.4! represents the system of KS equatio
@6# for the KS spin orbitals and orbital energies.

For the densityr(r ) which is necessary to evaluate

vs~r !5vKS~r ;@r#!, ~3.6!

one uses the density derived from the functionFGS
5FD@f1 , . . . ,fN#, namely@compare Eq.~2.4!#

r~r !5 r̃~r ;@f1 , . . . ,fN# ![(
i 51

N

(
s

f i
2~r ,s!. ~3.7!

At self-consistency, this density is the true correlated
density, because the two alternative methods that solve
GSdensity problemof theN-noninteracting-electron system
via Eq.~3.4! with Eqs.~3.6! and~3.7!, or via Eq.~3.2b!, must
give the same result. The interacting electron energy is
culated asEGS5E@rGS# in Eq. ~3.2a!, using
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^FDuT̂uFD&5T̃@f1 , . . . ,fN#

[(
i 51

N E d4x f i~x!~2 1
2“

2~r !!f i~x!

~3.8!

for the noninteracting kinetic energyTs in the KS approach,
while using Eq.~2.9! in the TF-like approach, and, in prac
tice, applying some approximation forExc@r#. Thus the
question raised in the Abstract of Ref.@1#, whether the solu-
tion of the KS equations and the solution of the TF-li
equation should give the same results for the GS~if both are
based on the same universal functional defined by the
theory! is seen to be answered in the positive.

We can comment now on Eq.~3! in Ref. @1#, named by
Nesbet the KS equations. When his explanation, written
below the mentioned equation, is taken into account, and
w(r ) we understandvKS(r ), his equation coincides with ou
Eqs.~3.4! with ~3.6!. But we disagree with denoting the su
t̂ (r )1vKS(r )[ v̂T(r )1w(r ) by dE@r#/dr(r ). The object
dE@r#/dr(r ) enters the KS TF-like equation~3.2b!, because
this equation can be written equivalently a
dE@r#/dr(r )ur5rGS

5mKS by noting that E@r#5Ts@r#

1VKS@r# @see Eqs.~2.5! and ~3.2a!#. The first term of
dE@r#/dr(r ), namely,dTs@r#/dr(r ) @denoted asvT(r ) by
Nesbet# is a local potential, therefore the sum of it and a
other local potentialvKS(r ;@r#) may be required in Eq.
~3.2b! to be a constant~at the solutionr5rGS). Thus the
inconsistency of Eqs.~5! and ~4! in Ref. @1#, pointed out by
Nesbet, is only apparent; his Eq.~5! contains, in fact,$ t̂ (r )
1vKS(r )%, although denoted~incorrectly, in our opinion,! as
dE@r#/dr(r ). Additional arguments in favor of this opinion
can be found in the next section.

IV. HARTREE-FOCK-LIKE APPROACH

To address the problem, raised by Nesbet, whether fu
tional derivatives should be understood as linear operat
let us apply the Hartree-Fock~HF! approach to the solution
of the GS problem for anoninteractingsystem. Because th
GS function of such system is a Slater determinant, this
proach gives the exact GS energy rather than the up
bound:

EGS
s 5 min

FD ,^FDuFD&51
^FDuĤsuFD&

5 min
f1 , . . . ,fN ,^f i uf i &51

H T̃@f1 , . . . ,fN#

1E d3r vs~r !r̃~r ;@f1 , . . . ,fN# !J , ~4.1!

see Eqs.~3.5!, ~3.8!, and~3.7! for the definitions ofFD , T̃,
and r̃. The Euler-Lagrange equations, which correspond
the minimization~4.1!
1-3
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1

2

d

df i~r ,s!
H T̃@f1 , . . . ,fN#

1E d3r 8 vs~r 8!r̃~r 8;@f1 , . . . ,fN# !

2e i S E d4x8 f i
2~x8!21D J 50, i 51, . . . ,N,

~4.2!

lead immediately to Eq.~3.4!. Now, e i plays the role of the
Lagrange multiplier connected with the normalization co
straint for the orbitalf i(x) @there is no need to impose th
orthogonality constraints, because the Hermicity of the
sulting one-electron Hamiltonian in Eq.~3.4! leads to or-
thogonal eigenfunctions#.

When the minimization~4.1! is performed in two steps
similarly as in Eq.~2.2!, it leads to Eq.~2.10! again, but with
Ts@r# defined now by

Ts@r#5 min
FD→r

^FDuT̂uFD&

5 min
$f1 , . . . ,fN%→r

T̃@f1 , . . . ,fN#

5T̃†f1
min@r#, . . . ,fN

min@r#‡, ~4.3!

where$f1 , . . . ,fN%→r denotes a set ofN spin orbitals that
satisfy the constraints$^f i uf i&51 for i 51, . . . ,N and
r̃(r ;@f1 , . . . ,fN#)5r(r )%. For densitiesr(r ), which are
noninteractingv representable, the definition~4.3! of Ts@r#
is equivalent@4# to the more general definition~2.9!. Zhao
et al. @8# have used the definition~4.3! to construct an algo-
rithm that gives the value ofTs@r# anddTs@r#/dr(r ) for an
arbitrary noninteractingv-representabler(r ) as an input; in
an intermediate step,N orbitals are to be determined sel
consistently. The present authors have shown earlier@9# that
the same definition can be used to construct a different a
rithm for the same purpose, in which a system of (N21)
second-order differential coupled equations must be so
in an intermediate step. Therefore, such algorithms rem
rather impractical for application in Eq.~3.2!.

Nevertheless, Eq.~4.3! will be helpful in discussing Eq.
~6! of Nesbet’s paper@1#. We rewrite his equation in appli
cation toF5Ts@r#, using our notation and the conventio
about real orbitals:

(
i 51

N

(
s

f i~r ,s!
1

2

dT̃@f1 , . . . ,fN#

df i~r ,s!
~4.4a!

5(
i 51

N

(
s

f i~r ,s!
dTs@r#

dr~r !
f i~r ,s! ~4.4b!

5(
i 51

N

(
s

f i~r ,s! t̂~r !f i~r ,s!. ~4.4c!
01650
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To facilitate the interpretation, we distinguished here tw

functionals,Ts@r# and T̃@f1 , . . . ,fN#, in the place of one
functionalF in Nesbet’s Eq.~6!. By direct functional differ-
entiation in the definition~3.8!, one verifies that the expres
sion ~4.4c! is equal to the expression~4.4a!. On the other
hand, the expression~4.4b! can be obtained directly from th
expression

(
i 51

N

(
s

f i~r ,s!
1

2

dTs†r̃@f1 , . . . ,fN#‡

df i~r ,s!
, ~4.4d!

$it is only similar to~4.4a!, becauseT̃ is replaced byTs@ r̃#%
by applying to it the chain rule for the functional differentia
tion

5(
i 51

N

(
s

f i~r ,s!
1

2E d3r 8
dTs@r#

dr~r 8!

dr̃~r 8;@f1 , . . . ,fN# !

df i~r ,s!

~4.4e!

and the resultdr̃(r 8)/df i(r ,s)52f i(r ,s)d(r 82r ) of the
functional differentiation in Eq.~3.7!. So, in order to have
the expression~4.4b! equal to the expression~4.4c!, the re-

lation Ts@ r̃(f1 , . . . ,fN)#5T̃@f1 , . . . ,fN# should hold for
an arbitrary set of orthonormal spin orbitals$f1 , . . . ,fN%.
But, it is not true. As we see from Eq.~4.3!, this relation is
satisfied only by a special r-dependent se
$f1

min@r#, . . . ,fN
min@r#%, determined in the process of th

minimization with constraints. Therefore, Eqs.~6!, ~7!, and
~11! in Ref. @1# are not true; the kinetic-energy operat
t̂ (r )[2 1

2“
2(r )[ v̂T is involved in Eq.~4.3! in T̃ during the

minimization @see also Eq.~3.8!#, while the local potential
vT(r )[dTs@r#/dr(r ), arises from the functional differentia
tion of Ts@r#, which is theresult of the minimization in Eq.
~4.3!.

Similarly, the relation between the nonlocal opera

v̂x@f1 , . . . ,fN# of the HF theory and the local exchang
potential vx(r ;@r#)5dEx@r#/dr(r ) of the DFT, cannot be
written in the form of Nesbet’s Eq.~10! in Ref. @1#. More-
over, this localvx involves, besides the Slater potential, al
other terms. The detailed discussion of these problems
be found in our papers@10,11#.

Our next comment concerns the last paragraph of Sec
of Ref. @1#. The expressionT5* ṽT r d3r represents the glo
bal kinetic energy in terms of the local kinetic-energy dens

ṽT(r ) r(r )[( i(sf i(r ,s) t̂ (r )f i(r ,s) @the right-hand side of
Eq. ~11! of Ref. @1#, rewritten in our convention, see also E
~3.8! here#. SinceT is a universal functional ofr, this prop-
erty is conveyed toṽT , so ṽT5 ṽT(r ;@r#). Considering an
atom of the nuclear chargeZ, the dependence onZ enters its
GS kinetic energy via the GS densityr depending onZ.
Therefore, for theZ derivative we have
1-4
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]T@r#

]Z
5E d3r

]

]Z
$ṽT~r ;@r#! r~r !%

5E d3r H ] ṽT~r ;@r#!

]Z
r~r !1 ṽT~r ;@r#!

]r~r !

]Z J ,

~4.5!

where

] ṽT~r ;@r#!

]Z
5E d3r 8

d ṽT~r ;@r#!

dr~r 8!

]r~r 8!

]Z
, ~4.6!

or, alternatively to Eq.~4.5!,

]T@r#

]Z
5E d3r

dT@r#

dr~r !

]r~r !

]Z
. ~4.7!

SinceṽT(r )ÞdT/dr(r ) @as we have shown, Eq.~11! in Ref.
@1# is incorrect#, we see from the comparison of Eq.~4.5!
with Eq. ~4.7! that there is no reason for the first term on t
right-hand side of Eq.~4.5! — the quantity

QT 5E d3r
] ṽT~r ;@r#!

]Z
r~r !, ~4.8!

Eq. ~16! of Ref. @1#—to be zero. Thus, Nesbet’s numeric
results, showing finite values ofQT for a few atoms, confirm
our conclusion that the local kinetic energy per parti

ṽT(r ) is not the functional derivativedT@r#/dr(r )[vT(r ).
Commenting on Sec. V of Ref.@1# we agree with Nes-

bet’s statement about the well-known failure of the genu
TF theory to describe the atomic shell structure. This f
indicates thatTs@r#'cTF*d3r r5/3 — the local density ap-
proximation~LDA ! for the kinetic energy — is too crude a
approximation~although LDA is quite reasonable in the ca
s

01650
e
t

of the exchange-correlation energy functional!. If some algo-
rithm that implements the definition~4.3! of Ts@r# ~e.g.,
from Ref. @8#! was used in Eq.~3.2b!, the TF-like method
should give the atomic shell structure, because, as it
shown, it leads to the exact GS density, the same as
obtained in an alternative way by solving the KS equatio

V. CONCLUSIONS

We have shown that two DFT approaches to the GS d
sity problem, namely, via the solution of the TF-like equ
tion ~3.2b! or the self-consistent solution of the KS equatio
~3.4! with ~3.6! and ~3.7!, should lead to the same result
because they represent two equivalent quantum-mecha
methods to solve the GS problem of the reference nonin
acting system, either by applying the variational princip
Eq. ~4.1!, or by solving the Schro¨dinger equation~3.3a!.
Therefore the corresponding kinetic-energy contributions
represented in twodifferent forms: as a local potentia
vT(r )[dTs@r#/dr(r ), in Eq. ~3.2b!, and as a differential
operatorv̂T(r )[2 1

2“
2(r ) in Eq. ~3.4!. The Nesbet’s argu-

mentation in Eq.~6! of Ref. @1# that these two forms may b
identical@his Eq.~11!# is incorrect, because he does not ta
into account that the equality Ts†r̃@f1 , . . . ,fN#‡

5T̃@f1 , . . . ,fN# holds only for the set
$f1

min@r#, . . . ,fN
min@r#% @the result of minimization~4.3!#

rather than for an arbitrary set of orthonormal spin orbit
$f1 , . . . ,fN%.
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