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Quantum Bayes rule
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We state a quantum version of the Bayes rule for statistical inference and give a simple general derivation
within the framework of generalized measurements. The rule can be applied to measurements onN copies of
a system if the initial state of theN copies isexchangeable. As an illustration, we apply the rule toN qubits.
Finally, we show that quantum state estimates derived via the principle of maximum entropy are fundamentally
different from those obtained via the quantum Bayes rule.
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During the last decade, interest in Bayesian methods
statistical inference has increased considerably@1,2#. At the
heart of the Bayesian approach is Bayes’s rule, which in
cates how to update a state of knowledge in the light of n
data. The simplest form of the rule is

p~HuD !5
p~DuH !p~H !

p~D !
, ~1!

wherep(DuH) is the probability for the dataD given a hy-
pothesisH, p(H) is theprior probability that the hypothesi
is true,p(HuD) is theposteriorprobability that the hypoth-
esis is true given the data, andp(D)5(Hp(DuH)p(H) is
the probability for the data averaged over all hypotheses.
conceptual simplicity of the Bayes rule is a major strength
the Bayesian approach.

The Bayes rule relies, however, on the classical assu
tion that acquiring dataD does not alter the probability dis
tribution in any way other than eliminating contrary hypot
eses. In quantum mechanics this need not be true
Heisenberg’s famous uncertainty principle illustrates.

Problems of statistical inference and state estimation
of central importance in quantum information theory. Aft
the early pioneering work on quantum inference@3–6# and
quantum state tomography@7–9#, a large amount of work
has been done on the subject~see, e.g., Refs.@10–19#!. In
many of the cited papers, a quantum version of the Ba
rule is used either implicitly or explicitly, yet these pape
also illustrate that there remains considerable confus
about the exact circumstances in which the Bayes rule
plies to quantum systems. Jones@6# has derived a quantum
Bayes rule for pure states only. In this paper, we deriv
general rule, valid both for pure and mixed states, and giv
precise condition for its validity.

We consider the following general inference problem. L
H be the Hilbert space of a quantum system. The Hilb
space ofN copies of the system is given by theN-fold tensor
productH ^ N. Suppose one is given a~prior! stater̂ (M1N) on
H ^ (M1N) and the results of measurements onM subsystems.
The task is to find the~posterior! state of the remainingN
subsystems conditioned on the measurement results.
problem is, in principle, completely solved by the theory
generalized measurements@20#, which prescribes the state o
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the total system after the measurement. There is no room
quantum theory for an additional independent inference p
ciple; any inference rule must be derivable from the ba
theory.

The rule for assigning a post-measurement state is
vided by the formalism of generalized measurements@20#.
An arbitrary measurement onM subsystems is described by
set of completely positive, trace-decreasing operations,$Fk%,
which act on the selectedM subsystems. The action of suc
a set of operations on a system in stater̂5 r̂ (M1N) can be
written as

Fk~ r̂ !5(
l

Âklr̂Âkl
† , ~2!

where the operatorsÂkl obey

(
kl

Âkl
† Âkl51̂. ~3!

Defining Êk5( l Âkl
† Âkl , condition ~3! takes the form(kÊk

51̂, which implies that the set$Êk% forms a positive opera-
tor valued measure~POVM!.

If the measurement result isk, the~normalized! state of all
M1N systems after the measurement is

r̂k
(M1N)5

1

pk
Fk~ r̂ (M1N)!, ~4!

where Fk( r̂
(M1N)), given in Eq. ~2!, is the unnormalized

state conditioned on measurement outcomek, and the nor-
malization is provided by the probability for outcomek,

pk5Tr@Fk~ r̂ (M1N)!#5Tr~Êkr̂
(M1N)!. ~5!

Since we are assuming that only the firstM systems are
measured, the operators in Eq.~2! take the formÂkl ^ 1̂,
where theÂkl are arbitrary operators acting on the selectedM

subsystems and the 1ˆ is the identity on the remainingN. The
probabilities pk can thus be rewritten aspk5Tr@(Êk

^ 1̂) r̂ (M1N)#5TrM(Êkr̂
(M )), where r̂ (M ) is the prior mar-
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ginal density operator of the measured subsystems andM
denotes a trace over the measured subsystems.

Performing a partial trace over the selectedM subsystems
yields the posterior state of the remainingN subsystems,

r̂k
(N)5TrM~ r̂k

(M1N)!. ~6!

An exact quantum analogue of the classical Bayes
would write this posterior state as a mixture in which t
updating as a consequence of obtaining resultk ~the ‘‘data’’!
would appear in the probabilities in the mixture, but not
the density operators that contribute to the mixture. Cla
cally it is possible to obtain information about a system wi
out disturbing it, while quantum mechanically it is no
hence, Eq.~6! generally includes both updating due to t
information acquired and due to the disturbing effects of
measurement. The quantum updating takes the form of
classical Bayes rule only if the measured and unmeas
systems in Eqs.~5! and~6! are initially unentangled, so that
the measurement does not disturb the unmeasured syst

Notice also that for a product prior,

r̂ (M1N)5 r̂0
^ (M1N)[r̂0^ •••^ r̂0 , ~7!

wherer̂0 is some state onH and the tensor product contain
M1N terms, the posterior state isr̂k

(N)5 r̂0
^ N , irrespective of

the measurement result. No learning from data is possible
product priors. This shows in particular that the totally mix
state forM1N subsystems, which is both a product state a
the state of maximum entropy onH ^ (M1N), does not allow
learning from measured data.

In many practical situations, one can restrict attention
prior states of the form

r̂ (N)5E dr̂p~ r̂ !r̂ ^ N, ~8!

wheredr̂ is a measure on density operator space andp( r̂) is
a normalized generating function,*dr̂p( r̂)51. Prior states
of the form ~8! arise, e.g., if each subsystem is prepared
the same, unknown way, as in quantum state tomograph
state ofN subsystems,r̂ (N), can be expressed in the form~8!,
if and only if it is exchangeable, i.e., if ~i! it is invariant
under permutations of the subsystems and~ii ! for any M

.0, there is a stater̂ (N1M ) of N1M subsystems that is
invariant under permutations of the subsystems and that
isfies r̂ (N)5TrM( r̂ (N1M )) @21,22#. The expansion~8! is then
unique. This is the quantum version of the fundamental r
resentation theorem due to de Finetti@23#; for an elementary
proof of the quantum theorem, see Ref.@24#.

The significance of part~ii ! of the definition of exchange
ability given above is illustrated by the GHZ stater̂GHZ

5ucGHZ&^cGHZu, where ucGHZ&5(u000&1u111&)/A2. This
three-particle state is invariant under permutations of
three subsystems, but it cannot be obtained by a partial t
from a four-particle state that is invariant under permutatio
01430
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of all four particles. The GHZ state is thus not exchangea
in accordance with the fact that it cannot be written in t
form ~8!.

If the condition of exchangeability is fulfilled, the ques
tion of finding a suitable prior state reduces to finding
suitable prior measurep( r̂)dr in the expansion~8!. Much
work has been done on suitable prior measures on den
operator space~see, e.g., Refs.@12,25–27#!. As in the clas-
sical theory of inference@1#, there exists no unique choice o
prior measure; different kinds of prior information lead
different prior measures.

The rule of inference, however, becomes extrem
simple if the prior state is of the form~8!. In this case, we
show below that if a measurement performed on the fi
subsystem yields resultk, the posterior state of the remainin
N21 subsystems is given by

r̂k
(N21)5E dr̂p~ r̂uk!r̂ ^ (N21), ~9!

where

p~ r̂uk!5
p~kur̂ !p~ r̂ !

pk
. ~10!

Here p(kur̂)5Tr(Êkr̂) is the probability of obtaining the
measurement resultk for a single subsystem, given that th
state of the single subsystem isr̂, andpk5*dr̂p(kur̂)p( r̂)
is the average probability of obtainingk. This is the quantum
Bayes rule; it is completely analogous to the classical r
~1!.

In the case that the integration in Eq.~8! is restricted to
pure states, the rule~10! has been derived by Jones@6# and
applied to purifications of mixed states by Buzˇek et al. @14#.
Tarrach and Vidal@15# have used Eq.~10! to find optimal
measurements onN copies of system, identically prepared
an unknown mixed state by some preparation device. To
knowledge, Eq.~10! has not been derived in the general co
text considered here.

If measurements are performed on several subsystem
dividually, the rule~10! can be simply iterated. The situatio
considered here, where measurements are done one
system at a time, is in practice the most important, but i
straightforward to generalize the rule to the case of collec
measurements on several subsystems.

Strictly speaking, the generating functionp( r̂) should not
be called a probability—after all, a mixed stater̂ is itself a
summary of incomplete knowledge about a subsystem. N
ertheless, the content of the quantum Bayes rule~10! is that
the functionsp( r̂) andp( r̂uk) can be used as if they were
prior probability and a conditional posterior probability fo
density operators. This interpretation is obviously approp
ate in the case that the exchangeable state~8! is known to
have arisen from an experiment in which each subsystem
prepared in the same unknown state, withp( r̂) being the
probability that this unknown state isr̂.

To derive the rule~10!, we denote by$Fk% the set of
completely positive, trace-decreasing operations, which
5-2
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scribe the measurement on the first subsystem. The resu
the measurement isk with probability

pk5Tr@Fk~ r̂ (N)!#5E dr̂p~kur̂ !p~ r̂ !. ~11!

If the measurement result isk, the state of allN subsystems
after the measurement is

r̂k
(N)5

1

pk
E dr̂p~ r̂ !Fk~ r̂ ! ^ r̂ ^ (N21), ~12!

where, by a slight abuse of notation, we denote byFk( r̂) the
unrenormalized state of a single subsystem with premeas
ment stater̂ conditioned on the measurement resultk. A
partial trace over the first subsystem gives the state of
remainingN21 subsystems

r̂k
(N21)5Tr1~ r̂k

(N)!

5
1

pk
E dr̂p~ r̂ !Tr@Fk~ r̂ !#r̂ ^ (N21)

5
1

pk
E dr̂p~ r̂ !Tr~Êkr̂ !r̂ ^ (N21)

5E dr̂
p~ r̂ !p~kur̂ !

pk
r̂ ^ (N21)

5E dr̂p~ r̂uk!r̂ ^ (N21). ~13!

In the last line we have substitutedp( r̂uk) for the right-hand
side of Eq.~10!. This completes the derivation.

We now illustrate the quantum Bayes rule for a system
M1N qubits, for which the Hilbert spaceH of each sub-
system is two dimensional. An arbitrary exchangeable s
of M1N qubits can be written in the form

r̂ (M1N)5E dx dy dz p~x,y,z!r̂x,y,z
^ (M1N) , ~14!

wherer̂x,y,z5
1
2 (1̂1xŝx1yŝy1zŝz) and the integrals rang

over the volume of the sphere of radius 1. Hereŝx , ŝy , and
ŝz are the Pauli operators, and 1ˆ denotes the unit operator

Now assume thatŝz measurements are performed onM
qubits. The probability of obtaining result61, given state
r̂x,y,z , in a ŝz measurement on a single qubit, is

p~61ur̂x,y,z!5
1

2
~16z!. ~15!

If the M measurements ofŝz yield M 1 results of11 and
M 2 results of21, whereM 11M 25M , then the state of
the remainingN qubits is

r̂M1 ,M2

(N) 5E dx dy dz p~x,y,zuM 1 ,M 2!r̂x,y,z
^ N , ~16!
01430
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p~x,y,zuM 1 ,M 2!5Np~x,y,z!S 11z

2 D M1S 12z

2 D M2

,

~17!

N being a normalization factor. In the limitM→`, assum-
ing (M 12M 2)/M→Ez , we obtain

p~x,y,zuM 1 ,M 2!→p~x,yuEz!d~z2Ez!, ~18!

wherep(x,yuEz)5p(x,y,Ez)/*dx dy p(x,y,Ez) is the prior
conditional probability forx andy, given thatz5Ez . Equa-
tion ~18! expresses clearly the gain in information aboutz.

Consider, for example, a reflection-invariant prior, i.e.
prior satisfying p(x,y,z)5p(2x,y,z)5p(x,2y,z)
5p(x,y,2z). An isotropic prior, for which p(x,y,z)

5p(Ax21y21z2), is a special case of this sort of prior. Fo
a reflection-invariant prior, the marginal state for a sing
subsystem before any measurements is the maximally m
state r̂ (1)5 1

2 1̂. After M measurements ofŝz , in the limit
M→`, the posterior state for a single additional subsyst
is

r̂Ez

(1)5
1

2
~ 1̂1Ezŝz!, ~19!

which is the state obtained in Ref.@14# for the case of an
isotropic prior. Our analysis puts this in a clear perspecti
the data dictate the expectation value^ŝz&5Ez for the state
~19!; for a reflection-invariant prior, theŝz measurements
tell one nothing about the direction of the spin in thex-y
plane, soŝx and ŝy retain the zero expectation values th
apply to the prior marginal state of a single subsystem.

It is important to note that the stater̂Ez

(1) does not allow

one to make predictions about frequencies in future repe
measurements of, e.g., the observableŝx . Although
Tr( r̂Ez

(1)ŝx)50, it would be wrong to predict that the fre

quency of the outcome11 in a large number of futureŝx
measurements will be close to 1/2. The correct prediction
future ŝx measurements follows from the full stater̂ (N) with
the limiting posterior~18!; for the probability of obtaining
N1 results of11 andN2 results of21 in N measurements
of ŝx , we get

p~N1 ,N2uEz!5
N!

N1!N2! E dx dy p~x,yuEz!

3S 11x

2 D N1S 12x

2 D N2

. ~20!

Only in the extreme case that the prior has the special fo
p(x,y,z)5p(y,z)d(x) does the probability~20! become
identical to the predictionP(N1 ,N2)522NN!/N1!N2!
that would follow from assigning the product stater̂Ez

(1)^ N to
5-3
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BRIEF REPORTS PHYSICAL REVIEW A 64 014305
the N subsystems. It is clear that this prediction is not i
plied by theŝz measurement data and is therefore unw
ranted unless there is additional prior information.

The marginal stater̂Ez

(1) of Eq. ~19! can also be derived

from the principle of maximum entropy@28,29#. If all that is
known about the stater̂ of some system is the expectatio
value of one or several observables, the maximum-entr
principle assigns the stater̂ that maximizes the von Neu
mann entropy subject to the constraints given by the exp
tation values~see Ref.@30# for a derivation of the maximum
entropy principle in the quantum case!.

In the example above, the maximum-entropy assignm
following from the constraint̂ ŝz&5Ez for a single sub-
system, is identical to the marginal state~19!. This identity
has also been noted by Buzˇek et al. @14#, who state that
‘‘ . . . as soon as the number of measurements becomes l
then @the# Bayesian inference scheme becomes equal to
reconstruction scheme based on the Jaynes principle
maximum entropy. . . .’’ This statement is misleading, how
ever, since the equality holds only for the marginal state o
single subsystem~and even then only for special priors, su
as a reflection-invariant prior!. Unlike the full stater̂M1 ,M2

(N)

in Eq. ~16!, found via the Bayes rule, the single-subsyst
state r̂Ez

(1) derived via the maximum-entropy principle do

not allow one to make predictions for measurements on m
than one subsystem.
ry

m

s
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On the other hand, applying the maximum-entropy pr
ciple directly toN subsystems, fails for the following reaso
well known from classical probability theory@31,32#. Maxi-
mizing the von Neumann entropy ofr̂ (N) subject to the con-
straint that̂ ŝz&5Ez for each subsystem, yields the produ
state r̂MAXENT

(N) 5 r̂Ez

(1)^ N . As discussed above, this state a
signment is unwarranted because it leads to predictions
say, futureŝx measurements, which are in no way implie
by the constraint on̂ ŝz&. Furthermore, any product stat
assignment precludes learning from subsequent meas
ments, even though that should be possible, as was discu
in the paragraph after Eq.~7!.

If the measurements on individual subsystems corresp
to an informationally complete POVM@20# or if they contain
sequences of measurements of a tomographically comp
set of observables@14#, the posterior probability on densit
operators approaches ad function in the limit of many mea-
surements. This is the case of quantum state tomogra
@7–9#, which can thus be viewed as a special case of qu
tum Bayesian inference. In this limit, the exact form of t
prior probability on density operators becomes irrelevant
all other situations, however, there will be some depende
on this prior.
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