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Quantum Bayes rule
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We state a quantum version of the Bayes rule for statistical inference and give a simple general derivation
within the framework of generalized measurements. The rule can be applied to measurem¢ictspas of
a system if the initial state of thid copies isexchangeableAs an illustration, we apply the rule 1§ qubits.
Finally, we show that quantum state estimates derived via the principle of maximum entropy are fundamentally
different from those obtained via the quantum Bayes rule.
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During the last decade, interest in Bayesian methods dthe total system after the measurement. There is no room in
statistical inference has increased consider@bg]. At the  quantum theory for an additional independent inference prin-
heart of the Bayesian approach is Bayes’s rule, which indiciple; any inference rule must be derivable from the basic
cates how to update a state of knowledge in the light of nevtheory.

data. The simplest form of the rule is The rule for assigning a post-measurement state is pro-
vided by the formalism of generalized measuremgaty.
o(H|D) = p(D[H)p(H) D An arbitrary measurement dvi subsystems is described by a
p(D) ' set of completely positive, trace-decreasing operatiffg,,

which act on the selected subsystems. The action of such

wherep(D|H) is the probability for the dat® given a hy- 5 get of operations on a system in statep™*N) can be
pothesisH, p(H) is theprior probability that the hypothesis \yritten as
is true,p(H|D) is the posterior probability that the hypoth-
esis is true given the data, apdD)=3,p(D|H)p(H) is . PP
the probability for the data averaged over all hypotheses. The Fulp)= 2| AxipAy @)
conceptual simplicity of the Bayes rule is a major strength of
the Bayesian approach. A

The Bayes rule relies, however, on the classical assumryyhere the operatordy, obey
tion that acquiring dat® does not alter the probability dis- L
tribution in any way other than eliminating contrary hypoth- 2 ALAM: 1. 3
eses. In quantum mechanics this need not be true, as kI
Heisenberg’s famous uncertainty principle illustrates. . Ata . A

Problems of statistical inference and state estimation ar®€fining Ex=2A;Ay, condition(3) takes the formsEy
of central importance in quantum information theory. After =1, which implies that the s€tE,} forms a positive opera-
the early pioneering work on quantum infererj@e-6] and  tor valued measuréPOVM).
guantum state tomography—9], a large amount of work If the measurement resultksthe (normalized state of all
has been done on the subjdste, e.g., Ref4.10-19). In M+ N systems after the measurement is
many of the cited papers, a quantum version of the Bayes
rule is used either implicitly or explicitly, yet these papers "(M+N)_i]_- (pM+N)
also illustrate that there remains considerable confusion K P p ),
about the exact circumstances in which the Bayes rule ap-
plies to quantum systems. Jorl€d has derived a quantum \here £ (pM*N)), given in Eq.(2), is the unnormalized
Bayes rule for pure states only. In this paper, we derive &tate conditioned on measurement outcdmand the nor-

general rule, valid both for pure and mixed states, and give gnalization is provided by the probability for outcorke
precise condition for its validity.

We consider the following general inference problem. Let Pe=TH F(pMN)]=Tr(EpM*N). (5)
‘H be the Hilbert space of a quantum system. The Hilbert
space ol copies of the system is given by thefold tensor  Since we are assuming that only the fildt systems are
productH ®N. Suppose one is given(arior) statep™*N on  measured, the operators in EQ) take the formA,®1,
H *MN and the results of measurementsMrsubsystems. \yhere theA,, are arbitrary operators acting on the seledted

The task is to find théposterioj state of the remaining\ - . . -
subsystems conditioned on the measurement results. Tr?éJbSyStemS and theig the identity on the remaininty. The

problem is, in principle, completely solved by the theory of Probabilities p, can thus be rewritten apy=Tr[ (Ex
generalized measuremefi9d], which prescribes the state of ®1)p™*N]=Try,(Ep™), where p™ is the prior mar-
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ginal density operator of the measured subsystems agd Trof all four particles. The GHZ state is thus not exchangeable,

denotes a trace over the measured subsystems. in accordance with the fact that it cannot be written in the
Performing a partial trace over the selecdaubsystems form (8). N o .
yields the posterior state of the remainiNgsubsystems, If the condition of exchangeability is fulfilled, the ques-
tion of finding a suitable prior state reduces to finding a
;,(kN):TrM(,‘)(kWN)). (6) suitable prior measurp(p)dp in the expansion(8). Much

work has been done on suitable prior measures on density
Qperator spacésee, e.g., Ref§12,25-21). As in the clas-
sical theory of inferencgl], there exists no unique choice of
prior measure; different kinds of prior information lead to
different prior measures.

_ The rule of inference, however, becomes extremely
simple if the prior state is of the forrt8). In this case, we
show below that if a measurement performed on the first
subsystem yields resutf the posterior state of the remaining

1 subsystems is given by

An exact quantum analogue of the classical Bayes rul
would write this posterior state as a mixture in which the
updating as a consequence of obtaining rds(ilhe “data”)
would appear in the probabilities in the mixture, but not in
the density operators that contribute to the mixture. Classi
cally it is possible to obtain information about a system with-
out disturbing it, while quantum mechanically it is not;
hence, Eq(6) generally includes both updating due to the
information acquired and due to the disturbing effects of thdV ~
measurement. The quantum updating takes the form of the
classical Bayes rule only if the measured and unmeasured f)(kN’l):f dpp(p|k)p&N-1), 9
systems in EqS(5) and(6) are initially unentangledso that
the measurement does not disturb the unmeasured systemgnere

Notice also that for a product prior,

p(k|p)p(p)
Pk '

p (10

M+N) — SOMENZ S o @ 5o, (7) Pplk)=

wherep, is some state ofi and the tensor product contains Here p(k|p) =Tr(Eyp) is the probability of obtaining the
M + N terms, the posterior State%r\l):;)gw irrespective of measurement resukt for a single subsystem, given that the

the measurement result. No learning from data is possible fo¥tate of the single subsystemgds andp,=fdpp(k|p)p(p)
product priors. This shows in particular that the totally mixedS the average probability of obtaining This is the quantum
state forM + N subsystems, which is both a product state and3aYes rule; it is completely analogous to the classical rule
the state of maximum entropy dd ®™*N) does not allow

learning from measured data. In the case that the integration in E@) is restricted to
In many practical situations, one can restrict attention td°ure states, the rule0) has been derived by Jong3] and
prior states of the form applied to purifications of mixed states by Rikzet al.[14].

Tarrach and Vida[15] have used Eq(10) to find optimal
measurements dN copies of system, identically prepared in
,3(N)=f dpp(p)p®N, (8)  an unknown mixed state by some preparation device. To our
knowledge, Eq(10) has not been derived in the general con-
. R text considered here.
wheredp is a measure on density operator space@id is If measurements are performed on several subsystems in-
a normalized generating functiofidpp(p) =1. Prior states dividually, the rule(10) can be simply iterated. The situation
of the form (8) arise, e.g., if each subsystem is prepared irconsidered here, where measurements are done one sub-
the same, unknown way, as in quantum state tomography. Aystem at a time, is in practice the most important, but it is
state ofN subsystems;™, can be expressed in the for#), straightforward to generalize the rule to the case of collective

if and only if it is exchangeablei.e., if (i) it is invariant measgrements on several subsystems. o
under permutations of the subsystems &iayl for any M Strictly speaking, the generating functipp) should not

>0, there is a staté;(N+M) of N+M subsystems that is be called a probability—after all, a mixed stafte's itself a
invariant under permutations of the subsystems and that sagummary of incomplete knowledge about a subsystem. Nev-
isﬁesl‘)(N):TrM(;)(MM)) [21,29. The expansior8) is then ertheless, the content of the quantum Bayes (L is that

unique. This is the quantum version of the fundamental repthe functionsp(p) andp(p|k) can be used as if they were a
resentation theorem due to de Fing®8]; for an elementary ~prior probability and a conditional posterior probability for
proof of the quantum theorem, see Rg¥4]. density operators. This interpretation is obviously appropri-
The significance of pafii) of the definition of exchange- ate in the case that the exchangeable s@fés known to
ability given above is illustrated by the GHZ StaE%Hz have arisen from an experiment in which each subsystem is

=|ouz){¥onzl, where |gonz)=(]000+|111))/\2. This prepared in the same unknown st?te, witfp) being the
three-particle state is invariant under permutations of therobability that this unknown state js

three subsystems, but it cannot be obtained by a partial trace To derive the rule(10), we denote by{F,} the set of
from a four-particle state that is invariant under permutationsompletely positive, trace-decreasing operations, which de-
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scribe the measurement on the first subsystem. The result afhere
the measurement iswith probability

1+z
p(X,y,Z|M+ !M _):Np(X,y,Z)(T

PTHAG™)= [ dopkippG). @

If the measurement result is the state of alN subsystems

. N being a normalization factor. In the limi — oo, assum-
after the measurement is

ing(M,—M_)/M—E,, we obtain

~(N) 1 (5 N®p®(N-1)

P o dpp(p) F(p)@p : (12 P(x,y,z[M . ,M_)—p(x,y|E;) 8(z— E,), (18)
wherep(x,Y|E,) =p(x,y,E,)/[dx dy gx,y,E,) is the prior

conditional probability forx andy, given thatz=E,. Equa-
fion (18) expresses clearly the gain in information abaut

where, by a slight abuse of notation, we denoteffp) the
unrenormalized state of a single subsystem with premeasur

ment statep conditioned on the measurement reskiltA Consider, for example, a reflection-invariant prior, i.e., a
partial trace over the first subsystem gives the state of thgyjor satisfying  p(x,y,2)=p(—X,Y,2)=p(X,—Y,2)
remainingN—1 subsystems =p(x,y,—2). An isotropic prior, for which p(x,y,z)

=p(Vx?+y?+7?), is a special case of this sort of prior. For

a reflection-invariant prior, the marginal state for a single
1 subsystem before any measurements is the maximally mixed

_ ~ - N1 A®(N—1 ~ 2 Vi i imi

_p_J dpp(p) T Fi(p)1p®N"V) statepM=11. After M measurements of,, in the limit

M —oo, the posterior state for a single additional subsystem

is

pV=Tr,(pM)

1 -~ A P
:EJ dpp(p) Tr(Eyp)p® N1
- - ﬁ(l)=1(i+E a,) (19
:J' d;)p(p)p(k|p)[3®(Nil) E, 2 zezh

Pk
which is the state obtained in R¢gfl4] for the case of an
:f df)p(;;|k)[)®(’\“1)_ (13) isotropic prior. Our analysis puts this in a clear perspective:
the data dictate the expectation valiie,)=E, for the state
In the last line we have substitutq&xﬂﬂk) for the right-hand (19); for a re_flection-invarian_t pri_or, ther, megsu_rements
side of Eq.(10). This completes the derivation. tell one nothing about the direction of the spin in the

We now illustrate the quantum Bayes rule for a system oplane, soo, and oy retain the zero expectation values that
M+N qubits, for which the Hilbert spacé of each sub- apply to the prior marginal state of a single subsystem.
system is two dimensional. An arbitrary exchangeable state It is important to note that the stafé”) does not allow

r4

of M+N qubits can be written in the form one to make predictions about frequencies in future repeated
. A measurements of, e.g., the observahlg. Although
p(M*N)zf dx dy dz gx,y,2)py oa ™, 14 Tr(pf)a,)=0, it would be wrong to predict that the fre-

R R R R . quency of the outcome-1 in a large number of futurer,
wherep, , ,= (1+xoy+ yoy+2zo,) and the integrals range measurements will be close to 1/2. The correct prediction for

over the volume of the sphere of radius 1. Hete oy, and  future o, measurements follows from the full stai€" with
o, are the Pauli operators, anddenotes the unit operator. the limiting posterior(18); for the probability of obtaining

Now assume thafrz measurements are performed i N, results of+1 andN_ results of—1 in N measurements
qubits. The probability of obtaining resutt 1, given state of o,, we get

Pxy.z» IN @0, measurement on a single qubit, is NI
P(N, ,N_|E,)= WJ dx dy ax,y|E,)

N, 1_X N_
E

- 1
p(il|px,y,z): E(liz)- (15
1+x

2

If the M measurements of, yield M, results of+1 and

M_ results of—1, whereM ,+ M _=M, then the state of . ] ]
the remainingN qubits is Only in the extreme case that the prior has the special form
p(x,y,z)=p(y,z) 8(x) does the probability(20) become
Ny ~on identical to the predictionP(N, ,N_)=2"NNI/N,IN_!
Py, m_= f dxdydzgx,y,zZ[M. . M_)pyy,. (16) i vould follow from assigning the product statg’“" to
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the N subsystems. It is clear that this prediction is not im- On the other hand, applying the maximum-entropy prin-
ranted unless there is additional prior information. well known from classical probability theof{1,32. Maxi-

~ ] ~ (N .
The marginal StateJ(Elz) of Eq. (19) can also be derived Mizing the von Neumann entropy pf") subject to the con-

from the principle of maximum entrog28,29. If all that is straint that(z}z):EZ for each subsystem, yields the product

. ~(N) _ 2 (1)®N ; ; )
known about the statp of some system is the expectation St3€Puaxent=pe, . As discussed above, this state as
value of one or several observables, the maximum-entrop§ignment is unwarranted because it leads to predictions for,
principle assigns the sta& that maximizes the von Neu- SaY, futures, measurements, which are in no way implied

mann entropy subject to the constraints given by the expedy the constraint on(). Furthermore, any product state
tation valuegsee Ref[30] for a derivation of the maximum- assignment precludes learning from subsequent measure-
entropy principle in the quantum case ments, even though that should be possible, as was discussed
In the example above, the maximum-entropy assignmerif the paragraph after Eq7).
following from the constraint(é-)=E, for a single sub If the measurements on individual subsystems correspond
z/— =z -

L ) z oo X to an informationally complete POV20] or if they contain
system, is identical to the marginal stdf). This identity sequences of mea)s/;urem%nts of a I%rr}ographigally complete
‘has also been noted by Bekeetal. [14], who state that gop of observablegl4], the posterior probability on density

. assoon as thelnumber of measurements becomes 'argf'perators approachessgfunction in the limit of many mea-
then[the] Bayesian inference scheme becomes equal to thg rements. This is the case of guantum state tomography
reconstruction scheme based on the Jaynes principle 9%_g] which can thus be viewed as a special case of quan-
maximum entropy. .. ." This statement is misleading, how- tym Bayesian inference. In this limit, the exact form of the
ever, since the equality holds only for the marginal state of gyjor probability on density operators becomes irrelevant. In
single subsystertand even then only for special priors, such g|| other situations, however, there will be some dependence
as a reflection-invariant priprUnlike the full statq)(MNi M_on this prior.

in Eq. (16), found via the Bayes rule, the single-subsystem T.A.B. thanks Bob Griffiths and Oliver Cohen for helpful

state,}(Elz) derived via the maximum-entropy principle does gjscussions. T.A.B. was supported in part by NSF Grant No.
not allow one to make predictions for measurements on moreHY-9900755, and C.M.C. received partial support from
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