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Efficient scheme for initializing a quantum register with an arbitrary superposed state
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Preparation of a quantum register is an important step in quantum computation and quantum information
processing. It is straightforward to build a simple quantum state sufihigs -i,) with i} being either 0 or 1,
but it is a nontrivial task to construct arbitrary superposed quantum state. We present a scheme that can
most generally initialize a quantum register with an arbitrary superposition of basis states. Implementation of
this scheme require®(Nn?) standard 1- and 2-bit gate operatiomsthout introducing additional quantum
bits. Application of the scheme in some special cases is discussed.
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Research on quantum computers and quantum informaNormalization of this state vector is assumed. The coeffi-
tion processing has been a fast developing interdisciplinargientsa; are in general complex numbers with the require-
field over the past years. As a new branch of science ovement|a;|<1. Herei is a short notation for a set of indices
lapping quantum physics and classical information theory, ifiji, --i;---i,}, with n=log,N being the total number of
resembles in some ways both subfields, but differs from eachubits in the register, and denotes the two possible states
of them in many other respects. In quantum computation an¢d or 1) of the jth qubit. To be concrete, our notation implies
guantum information processing, the concept of quantum su-
perposition of basis statgs;i, --i,) is used and massive 0—{00- -- 00}
parallelism is achievefil]. For instance, a significant speed 1-{00- - 01}’
up over classical computers, at least theoretically, has been ) '
gained in prime factorizatiof2] and quantum searchifg]. i={ 2-—{00---10},
Nevertheless, some simple operations for a classical com- :
puter cannot be easily implemented in a quantum computer. N—1—-{11--11}.
A vivid example is the need of introducing the quantum error

correction scheme to overcome the decoherence problem irhus|y) in Eq. (1) is a general quantum superpositionf
quantum computers. This has been obtained with admirablgasis states, and each of the basis states is a product state of
genius [4] whereas the corresponding classical codingn qubits.

scheme is straightforward. Our scheme involves only two kinds of elementary uni-

~ Quantum computing is realized by quantum gate operatary transformations or gate operations. The first kind of gate
tions. It has been shown that a finite set of basic gate operaperation is a single-bit rotatiod ,:

tions can be used to construct any quantum computation gate

operation5]. This universality of quantum computation has

been studied by many authof6—8]. A quantum circuit, U({

which is a network of gate operations for a certain purpose,

has been constructed, for example, for basic arithné&fic

and efficient factorizatioi10]. An efficient scheme for ini- 1t giffers slightly from an ordinary rotation because it is an

tializing a quantum register for a known function of ampli- ordinary rotation for thd0) part only, but has a minus sign

tude distribution was given by Ventura and Martin®M)  for the |1) part. Upon operation, a qubit in the std6 is

with n+1 additional quantum bitégubits [11]. transformed into a superposition in the two state:
In this Brief Report, we present a general scheme thatcosg,sing). Similarly, a qubit in the statf) is transformed

initializes a quantum register without introducing additionaljntg (sing,—cosé). It is useful to identify some special cases

qubits. For some quantum computing tasks, the introductiofy gq. (2). When #=0, it does not chang®), but converts

of additional qubits is not permitted. Thus our scheme maype sign of the statfl). When = /4, U, is reduced to the

be appreciated by these circumstances. Furthermore, qubits;qamard-Walsh transformatiofil2]. Finally, when @

are a preciqug resource in practice, _and any saving is agreat. /> it serves as theoT operation: it changel©) to |1),
relief for existing technology, especially at the present t'm%nd|1> to |0).

when researchers are striving to make more qubits available. The second kind of gate operation is the contrdileg-

Starting with the stat0---0), we want to transform this  grations. As illustrated below, it is an operation that has a
state to a general superposed state having the form string ofk controlling qubits:

h=3 al) &
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The squares represent the controlling qubits, and the circle is |a10” +]a1?

a unitary operation on the target qubit. The operation is a a=arcta m,

conditional one that is activated only when the controlling 00 o1

qubits hold the respective values indicated in the squares. - a a .

Controlled operations can be constructed ®yk?) standard 0 o

1- and 2-bit gate operationg]. \/|aoo|2+ ENE \/|aoo|2+ ENE
With these basic gate operations at our disposal, we now Ug, o= '

* *
proceed from simple examples to the most general case. For o1 _ Aoo
a 2-qubit system, the transformation can be expressed as | Vlagd?+lagd?  V|aod?+|aodl? ]
i a0 an 1
100)— V]agd * + 201 *|00) + v]agel *+ a4 *[10) 2 2 2 2
U Vlagd*+[ay] Vlag*+ay
—[0)[aggl0) +agy|1)] +|1)[a10/0) +a34|1)] @1 a* a*
11 _ 10
:aoo| OO>+a01|01>+alo| 1O>+a11|11), i \/|a10|2+ |a11|2 \/|a10|2+ |a11|2-

_ _ _ _ _ The quantum circuit of a 3-qubit system transforms the state
which involves one single-bit rotationa; and two 000 to an arbitrary superposed state with=23=8 basis
controlled operationsuct2i (i=0,1) states. Starting from th@00), a rotation with an angle

arcta (|azod*+ @101 * +az1d* + @111 %)/ (|agod * + [2001 * + 201 * + [@021?) ]

is operated on the first qubit, and this rotation transforms the

a a
state to VIaood + 2001 * +[@01d“+ 2011|000 J 2110 N 2111 5
+ asd?+azf?+and?+ 27100  Then  two _| VIand*Hland®  Vland*+lan
controlled rotations with angles 3,11 at, a’y,
arctan/(|ao:d*+ [a11]%)/(|200d “ + 2001 ?) and > 5 > 5
arctan/(Jay;d%+]agd?)/(Jaed?+|ae?) are appli Vlawid®+lag Vlawid®+lag
110 111 100 101 pplied to

the second qubit. The state vector becomes are operated on the third qubit to acquire the general super-

— 7 N PP LT posed state a000|000)+a00ﬂ00]>+a01(J|010>+q01]J01]>

|200d“+ 1200471000 + V]201d*+ {2014 010) +a309 100 +a401101) +a;10110) +a;514/111). This quan-

+V[a10d2+ 210121100 + \[a12d >+ 21142/ 110). tum circuit is illustrated in Fig. 1.

For brevity in notation, we use an “angle” to label a
Finally four controlled unitary transformations controlled operation. If the involved coefficients are all real,
it reduces to an ordinary rotation angle. In the above notation
for angles of the controllédrotations and in similar notation

3000 001
> > > > hereatfter, the first subscrifor example, 3 inx; o) refers to
_ Vlapod*+aod Vlapod*+[agod the target qubit order number and the following subscripts
43,00 aly, EYI ’ (01 in a3py indicate the quantum states of the controlling
- qubits.
L VIaood*+/agod? VIaood*+ a1 |
[ Ao10 Qo011 1
U - VIaoid®+laol®  Vlaoid®+aoil®
a - ’
ot a1 B a510
L VIaoid®+laol® Vlaoid*+ag®
[ 100 a101 ]
B Vlaled®+laold®  Vlaiod®+aiod®
@310 a* a* ’
101 — 100 FIG. 1. Quantum circuit for initializing an arbitrary superposed
| Vlaied?+as01? Vlaied?+|as01? ] state of Eq(1) for a 3-qubit register.
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In the initialization, operations for the first—1 qubits
are controlled rotations where each rotation depends only
a single real parameter. The rotation angles take the follow
ing general expressions. In the first qubit, there is a 1-qubi
rotation. The rotation angle is

S| @i i |?
2'3 'n 2'3 'n
011=aI’Ctah\/2i i loii i |2' (3) FIG. 2. Example of combining controlled rotations to simplify
23 momEse the circuit.
In the second qubit, there are two controfiedtations
O(m?) to O(m). According to this, the number would in-
h\/2i3i4...in|aoﬁ3i4...in|2 crease fromO(Nn) to O(Nn""2) if we want to saven+ 1
apg=arcta qubits. It is surprisingly seen that the actual number required
in our protocol is much less than the estimation.

B |00, i |

In many practical cases, the number of controlled gate
Siii g i |? . L . :
— arct igiginl FLhigig iy 4 operations can be reduced and the circuit is accordingly sim-
@z = arcta Eisu'“i |al(]'3i4-~~i |2 4) plified. Figure 2 shows an example for part of a circuit where
n n

the rotation angles are the same. In this case, one can com-
In general, in thgth qubit, there are 2% controlled % ro-  bine the|0)-controlled Hadamard-Walsh transformation and
tations, with each of them having—1 controlling qubits the |1)-controlled Hadamard-Walsh transformation as one

labeled asi;i, --ij_;. The rotation angle in thgth qubit ~ operation, which is equivalent to one Hadamard-Walsh
(j#n) is given by transformation on the target qubit. Consequently, the four
controlled operations are reduced to a single-qubit rotation.
Siilaii i il? If desired superposition has a special form, the quantum
j+1 n 1'2 j—-1+j+1 n . . . . . .
A iyiy i, = ArCEAM\ [ 5 AE N circuit can likely be further simplified. Next, we discuss
fea Tl Faly g0l gy three well-known cases. Starting witl --0), we initialize

(5) quantum superpositions @f) the evenly distributed state,

The fraction in Eq(5) can be 0/0, and the rotation angle in (2) the GHZ state, and3) the state vectofy) =sin6|7)
this case is undetermined. If this should happen, a simpld €0Sflc), which is used in Grover's quantum search algo-

analysis is sufficient for us to determine which gate operatiofhithm- o L
should be adopted. Examples will be given later. ~ (1) The evenly distributed stafey)=X.i[i) is widely used
For the last qubit withj =n, we have 2~ controlled ! in quantum computation. The Hadamard—WaIsh gate opera-
unitary transformations tion on each qubit generates this form of superposition frpm
the state|O---0). This is also true for our scheme. In this
Ao A, special case, all rotation angles in E¢3)—(8) are #/4, and
> > > 5 all gate operations are therefore the Hadamard-Walsh trans-
3 VIR +[A] ViAo +[A formation. In each qubit, the controlling qubits exhaust all
nigigin g A% A% ' possible combinations, and hence thé %2 controlled

— Hadamard-Walsh gate operations can be reduced to a single
VIR HALZ VAP + A Hadamard-Walsh transformation in tjiéa qubit.
(6) (2) The GHZ statd13] is the maximally entangled state
with with the form of superposition (#2)(|0---0)*|1---1)). An
Ao=aii i o Ar=aii i 1 (7)  example that transforn6000 to (1#2)(]0000 +|1111)) is
given in Fig. 3. It can be seen that the circuit is much sim-
If the numbers in Eq(7) are real, the operation is just a usual plified from the most general one in Fig. 1. According to

rotation, and the angle is given by Egs. (3)—(8), the simplification is achieved through the fol-
lowing steps. The rotation in the first qubit is the Hadamard-
An,ijiy i, —arctama i ..i 1/aii,.i 0. (8  Walsh transformation. For the two controlled rotations in the

Our scheme requires only— 1 gate operations to initial-
ize a quantum register. In terms of the standard 1- and 2-bit
gate operations, the total number of operation®{&n?),
which is still polynomial inN. It is more than the number of
steps[ O(Nn)] in the VM protocol[11]. This is the price to
be paid for savinghr+1 qubits in the register. The present
scheme use® qubits, whereas the VM protocol requires
2n+1 qubits to perform a same task. Barenebal. [7] FIG. 3. Quantum circuit for implementing the GHZ state. The

pointed out that introduction of one more qubit to workspacecircled H represents the Hadamard-Walsh transformatiorzatie
will reduce the number of controll8egate operations from controllednoT gate.
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second qubit,e, ;=0 means the identity operation which
does nothing for the qubit, ang, ;= 7/2 corresponds to the
controlledNOT operation. So, effectively, there is only one
controlledNOT gate in the second qubit. There are originally
four gate operations in the third qubits ;= /2 is the|11)-
controlledNOT gate, andx; o is the identity operationws o,

and a3 ;9 are undetermined angles with 0/0. By analyzing
this problem, it is easy to see that the angles should be 0,
which corresponds to the identity operation. Therefore, there
is only one gate operation in the third qudit1)-controlled
NOT. Similarly, there is only d111)-controlledNOT opera-
tion in the fourth qubit. If the circuit consists of more than
four qubits, the same analysis applies until the last but 1
qubit. In the last qubit, the rotation is eithet/2 for
(1V2)(|0---0)+|1---1)) or —m/2 for (1M2)(|O---0)
_|1. 1>)

(3) In Grover's quantum search algoritHi8] and its gen-
eralizations [14], the state vector is built in a two-
dimensional space spanned by the marked s$tatand the
“rest” state |c)=3;.,|i). At any search step, the state vec- \/

FIG. 4. Quantum circuit for implementing the state vedtof
=sin g 7)+cosdc). In the figure, a letter with a bar indicates its

NOT value, i.e., =0 and 0=1.

(N—2%cos 6+ 2X(N—1)sir? ¢

tor has the form|¢)=sin6|7)+cosé|c). We now give the Q,= 2
N cos ¢

guantum circuit for initializing such a superposed state. Let
|7)=|i1i,---in) be the marked state, and we now construc
|¢) from |0---0). The amplitudes of the basis states in Ex.
are a.=sin# and a;=cos#/{N—1 for i# . According to
Eq. (3), the rotation angle in the first qubit is

*The other rotation angles in theh qubit are all equal ter/4,
corresponding to the Hadamard-Walsh transformation. Thus,
the 2 1—1 controlled gate operations are reducedtol
controlled Hadamard-Walsh transformations. In Fig. 4, we
show an example with the marked stét¢=|iqiisi) in a
4-qubit system. In this example, césind sind are all real
ay= r and positive.

arctanﬂ—l it i,=0, To summarize, we have presented a general scheme for

initializing a quantum register to an arbitrary superposed

state. The quantum circuits utilize only single-qubit rotations
and controlled qubit rotations. General expressions for rota-
tion angles have been derived explicitly, and the possibility
for simplifying the circuits has been discussed in terms of
three well-known superposed states.
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arctanQ), if i;=1,

with

(N—2)cos 6+2(N—1)sir? 6
2= \/ N co< 6 :

In the kth qubit, the angle fotii,--i,_,)-controlled rota-
tion is

arctanQ), if i,=1,

Ak,iqgig i1~
vz kel | arctans—

0 if i,=0,

with
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