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Efficient scheme for initializing a quantum register with an arbitrary superposed state
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Preparation of a quantum register is an important step in quantum computation and quantum information
processing. It is straightforward to build a simple quantum state such asu i 1i 2¯ i n& with i j being either 0 or 1,
but it is a nontrivial task to construct anarbitrary superposed quantum state. We present a scheme that can
most generally initialize a quantum register with an arbitrary superposition of basis states. Implementation of
this scheme requiresO(Nn2) standard 1- and 2-bit gate operations,without introducing additional quantum
bits. Application of the scheme in some special cases is discussed.
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Research on quantum computers and quantum infor
tion processing has been a fast developing interdisciplin
field over the past years. As a new branch of science o
lapping quantum physics and classical information theory
resembles in some ways both subfields, but differs from e
of them in many other respects. In quantum computation
quantum information processing, the concept of quantum
perposition of basis statesu i 1i 2¯ i n& is used and massiv
parallelism is achieved@1#. For instance, a significant spee
up over classical computers, at least theoretically, has b
gained in prime factorization@2# and quantum searching@3#.
Nevertheless, some simple operations for a classical c
puter cannot be easily implemented in a quantum compu
A vivid example is the need of introducing the quantum er
correction scheme to overcome the decoherence proble
quantum computers. This has been obtained with admir
genius @4# whereas the corresponding classical cod
scheme is straightforward.

Quantum computing is realized by quantum gate ope
tions. It has been shown that a finite set of basic gate op
tions can be used to construct any quantum computation
operation@5#. This universality of quantum computation ha
been studied by many authors@6–8#. A quantum circuit,
which is a network of gate operations for a certain purpo
has been constructed, for example, for basic arithmetic@9#
and efficient factorization@10#. An efficient scheme for ini-
tializing a quantum register for a known function of amp
tude distribution was given by Ventura and Martinez~VM !
with n11 additional quantum bits~qubits! @11#.

In this Brief Report, we present a general scheme t
initializes a quantum register without introducing addition
qubits. For some quantum computing tasks, the introduc
of additional qubits is not permitted. Thus our scheme m
be appreciated by these circumstances. Furthermore, q
are a precious resource in practice, and any saving is a g
relief for existing technology, especially at the present ti
when researchers are striving to make more qubits availa

Starting with the stateu0¯ 0&, we want to transform this
state to a general superposed state having the form

uc&5 (
i 50

N21

ai u i &. ~1!
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Normalization of this state vector is assumed. The coe
cientsai are in general complex numbers with the requi
ment uai u<1. Here i is a short notation for a set of indice
$ i 1i 2¯ i j¯ i n%, with n5 log2 N being the total number o
qubits in the register, andi j denotes the two possible state
~0 or 1! of the j th qubit. To be concrete, our notation implie

i 55
0→$00¯ 00%,
1→$00¯ 01%,
2→$00¯ 10%,

]

N21→$11̄ 11%.

Thus uc& in Eq. ~1! is a general quantum superposition ofN
basis states, and each of the basis states is a product st
n qubits.

Our scheme involves only two kinds of elementary u
tary transformations or gate operations. The first kind of g
operation is a single-bit rotationUu :

UuF01G5Fcosu sinu

sinu 2cosuG F01G . ~2!

It differs slightly from an ordinary rotation because it is a
ordinary rotation for theu0& part only, but has a minus sig
for the u1& part. Upon operation, a qubit in the stateu0& is
transformed into a superposition in the two sta
(cosu,sinu). Similarly, a qubit in the stateu1& is transformed
into (sinu,2cosu). It is useful to identify some special case
in Eq. ~2!. Whenu50, it does not changeu0&, but converts
the sign of the stateu1&. Whenu5p/4, Uu is reduced to the
Hadamard-Walsh transformation@12#. Finally, when u
5p/2, it serves as theNOT operation: it changesu0& to u1&,
and u1& to u0&.

The second kind of gate operation is the controlledk op-
erations. As illustrated below, it is an operation that ha
string of k controlling qubits:
©2001 The American Physical Society03-1
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The squares represent the controlling qubits, and the circ
a unitary operation on the target qubit. The operation i
conditional one that is activated only when the controlli
qubits hold the respective values indicated in the squa
Controlledk operations can be constructed byO(k2) standard
1- and 2-bit gate operations@7#.

With these basic gate operations at our disposal, we n
proceed from simple examples to the most general case
a 2-qubit system, the transformation can be expressed a

u00&→Aua00u21ua01u2u00&1Aua10u21ua11u2u10&

→u0&@a00u0&1a01u1&] 1u1&@a10u0&1a11u1&]

5a00u00&1a01u01&1a10u10&1a11u11&,

which involves one single-bit rotationa1 and two
controlled1 operationsUa2,i

( i 50,1)
th

01430
is
a

s.

w
or

a15arctanAua10u21ua11u2

ua00u21ua01u2,

Ua2.0
5F a00

Aua00u21ua01u2

a01

Aua00u21ua01u2

a01*

Aua00u21ua01u2
2

a00*

Aua00u21ua01u2
G ,

Ua2.1
5F a10

Aua10u21ua11u2

a11

Aua10u21ua11u2

a11*

Aua10u21ua11u2
2

a10*

Aua10u21ua11u2
G .

The quantum circuit of a 3-qubit system transforms the s
u000& to an arbitrary superposed state withN52358 basis
states. Starting from theu000&, a rotation with an angle
arctan@A~ ua100u21ua101u21a110u21ua111u2!/~ ua000u21ua001u21ua010u21ua011u2!#
per-

a
l,

tion

pts
g

ed
is operated on the first qubit, and this rotation transforms
state to Aua000u21ua001u21ua010u21ua011u2u000&
1Aua100u21ua101u21ua110u21ua111u2u100&. Then two
controlled1 rotations with angles
arctanA(ua010u21ua011u2)/(ua000u21ua001u2) and
arctanA(ua110u21ua111u2)/(ua100u21ua101u2) are applied to
the second qubit. The state vector becomes

Aua000u21ua001u2u000&1Aua010u21ua011u2u010&

1Aua100u21ua101u2u100&1Aua110u21ua111u2u110&.

Finally four controlled2 unitary transformations

Ua3,00
5F a000

Aua000u21ua001u2
a001

Aua000u21ua001u2

a001*

Aua000u21ua001u2
2

a000*

Aua000u21ua001u2
G ,

Ua3,01
5F a010

Aua010u21ua011u2
a011

Aua010u21ua011u2

a011*

Aua010u21ua011u2
2

a010*

Aua010u21ua011u2
G ,

Ua3,10
5F a100

Aua100u21ua101u2
a101

Aua100u21ua101u2

a101*

Aua100u21ua101u2
2

a100*

Aua100u21ua101u2
G ,
e

Ua3,11
5F a110

Aua110u21ua111u2
a111

Aua110u21ua111u2

a111*

Aua110u21ua111u2
2

a110*

Aua110u21ua111u2
G

are operated on the third qubit to acquire the general su
posed state a000u000&1a001u001&1a010u010&1a011u011&
1a100u100&1a101u101&1a110u110&1a111u111&. This quan-
tum circuit is illustrated in Fig. 1.

For brevity in notation, we use an ‘‘angle’’ to label
controlledk operation. If the involved coefficients are all rea
it reduces to an ordinary rotation angle. In the above nota
for angles of the controlledk rotations and in similar notation
hereafter, the first subscript~for example, 3 ina3,01! refers to
the target qubit order number and the following subscri
~01 in a3,01! indicate the quantum states of the controllin
qubits.

FIG. 1. Quantum circuit for initializing an arbitrary superpos
state of Eq.~1! for a 3-qubit register.
3-2
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In the initialization, operations for the firstn21 qubits
are controlled rotations where each rotation depends onl
a single real parameter. The rotation angles take the foll
ing general expressions. In the first qubit, there is a 1-q
rotation. The rotation angle is

a15arctanA( i 2i 3¯ i n
ua1i 2i 3¯ i n

u2

( i 2i 3¯ i n
ua0i 2i 3¯ i n

u2. ~3!

In the second qubit, there are two controlled1 rotations

a2,05arctanA( i 3i 4¯ i n
ua01i 3i 4¯ i n

u2

( i 3i 4¯ i n
ua00i 3i 4¯ i n

u2
.

a2,15arctanA( i 3i 4¯ i n
ua11i 3i 4¯ i n

u2

( i 3i 4¯ i n
ua10i 3i 4¯ i n

u2
. ~4!

In general, in thej th qubit, there are 2j 21 controlledj 21 ro-
tations, with each of them havingj 21 controlling qubits
labeled asi 1i 2¯ i j 21 . The rotation angle in thej th qubit
( j Þn) is given by

a j ,i 1i 2¯ i j 21
5arctanA( i j 11¯ i n

uai 1i 2¯ i j 211i j 11¯ i n
u2

( i j 11¯ i n
uai 1i 2¯ i j 210i j 11¯ i n

u2
.

~5!

The fraction in Eq.~5! can be 0/0, and the rotation angle
this case is undetermined. If this should happen, a sim
analysis is sufficient for us to determine which gate opera
should be adopted. Examples will be given later.

For the last qubit withj 5n, we have 2n21 controlledn21

unitary transformations

Uan,i 1i 2¯ i n21
5F A0

AuA0u21uA1u2

A1

AuA0u21uA1u2

A1*

AuA0u21uA1u2
2

A0*

AuA0u21uA1u2
G ,

~6!

with
A05ai 1i 2¯ i n210, A15ai 1i 2¯ i n211. ~7!

If the numbers in Eq.~7! are real, the operation is just a usu
rotation, and the angle is given by

an,i 1i 2¯ i n21
5arctan~ai 1i 2¯ i n211/ai 1i 2¯ i n210! . ~8!

Our scheme requires onlyN21 gate operations to initial
ize a quantum register. In terms of the standard 1- and 2
gate operations, the total number of operations isO(Nn2),
which is still polynomial inN. It is more than the number o
steps@O(Nn)# in the VM protocol@11#. This is the price to
be paid for savingn11 qubits in the register. The prese
scheme usesn qubits, whereas the VM protocol require
2n11 qubits to perform a same task. Barencoet al. @7#
pointed out that introduction of one more qubit to workspa
will reduce the number of controlledm-gate operations from
01430
n
-
it

le
n

l

it

e

O(m2) to O(m). According to this, the number would in
crease fromO(Nn) to O(Nnn12) if we want to saven11
qubits. It is surprisingly seen that the actual number requi
in our protocol is much less than the estimation.

In many practical cases, the number of controlled g
operations can be reduced and the circuit is accordingly s
plified. Figure 2 shows an example for part of a circuit whe
the rotation angles are the same. In this case, one can c
bine theu0&-controlled Hadamard-Walsh transformation a
the u1&-controlled Hadamard-Walsh transformation as o
operation, which is equivalent to one Hadamard-Wa
transformation on the target qubit. Consequently, the f
controlled operations are reduced to a single-qubit rotatio

If desired superposition has a special form, the quant
circuit can likely be further simplified. Next, we discus
three well-known cases. Starting withu0¯0&, we initialize
quantum superpositions of~1! the evenly distributed state
~2! the GHZ state, and~3! the state vectoruc&5sinuut&
1cosuuc&, which is used in Grover’s quantum search alg
rithm.

~1! The evenly distributed stateuc&5S i u i & is widely used
in quantum computation. The Hadamard-Walsh gate op
tion on each qubit generates this form of superposition fr
the stateu0¯0&. This is also true for our scheme. In th
special case, all rotation angles in Eqs.~3!–~8! arep/4, and
all gate operations are therefore the Hadamard-Walsh tr
formation. In each qubit, the controlling qubits exhaust
possible combinations, and hence the 2j 21 controlled
Hadamard-Walsh gate operations can be reduced to a s
Hadamard-Walsh transformation in thej th qubit.

~2! The GHZ state@13# is the maximally entangled stat
with the form of superposition (1/&)(u0¯0&6u1¯1&). An
example that transformsu0000& to (1/&)(u0000&1u1111&) is
given in Fig. 3. It can be seen that the circuit is much si
plified from the most general one in Fig. 1. According
Eqs. ~3!–~8!, the simplification is achieved through the fo
lowing steps. The rotation in the first qubit is the Hadama
Walsh transformation. For the two controlled rotations in t

FIG. 2. Example of combining controlled rotations to simpli
the circuit.

FIG. 3. Quantum circuit for implementing the GHZ state. T
circled H represents the Hadamard-Walsh transformation and% the
controlled-NOT gate.
3-3



h

e
lly

ng
e
e

n
t

-

c-

Le
uc

us,

we

for
ed
ns
ta-

lity
of

ni-
or
or
No.
tion
da-
of

ts

BRIEF REPORTS PHYSICAL REVIEW A 64 014303
second qubit,a2,050 means the identity operation whic
does nothing for the qubit, anda2,15p/2 corresponds to the
controlledNOT operation. So, effectively, there is only on
controlledNOT gate in the second qubit. There are origina
four gate operations in the third qubit.a3,115p/2 is theu11&-
controlledNOT gate, anda3,00 is the identity operation.a3,01
and a3,10 are undetermined angles with 0/0. By analyzi
this problem, it is easy to see that the angles should b
which corresponds to the identity operation. Therefore, th
is only one gate operation in the third qubit:u11&-controlled
NOT. Similarly, there is only au111&-controlledNOT opera-
tion in the fourth qubit. If the circuit consists of more tha
four qubits, the same analysis applies until the last bu
qubit. In the last qubit, the rotation is eitherp/2 for
(1/&)(u0¯0&1u1¯1&) or 2p/2 for (1/&)(u0¯0&
2u1¯1&).

~3! In Grover’s quantum search algorithm@3# and its gen-
eralizations @14#, the state vector is built in a two
dimensional space spanned by the marked stateut& and the
‘‘rest’’ state uc&5S iÞr u i &. At any search step, the state ve
tor has the formuc&5sinuut&1cosuuc&. We now give the
quantum circuit for initializing such a superposed state.
ut&5u i 1i 2 ••• i n& be the marked state, and we now constr
uc& from u0•••0&. The amplitudes of the basis states in Eq.~1!
are at5sinu and ai5cosu/AN21 for iÞt. According to
Eq. ~3!, the rotation angle in the first qubit is

a15H arctanV1 if i 151,

arctan
1

V1
if i 150,

with

V15A~N22!cos2 u12~N21!sin2 u

N cos2 u
.

In the kth qubit, the angle foru i 1i 2¯ i k21&-controlled rota-
tion is

ak,i 1i 2¯ i k21
5H arctanVk if i k51,

arctan
1

Vk
if i k50,

with
th
r

01430
0,
re

1

t
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V15A~N22k!cos2 u12k~N21!sin2 u

N cos2 u
.

The other rotation angles in thekth qubit are all equal top/4,
corresponding to the Hadamard-Walsh transformation. Th
the 2k2121 controlled gate operations are reduced tok21
controlled Hadamard-Walsh transformations. In Fig. 4,
show an example with the marked stateut&5u i 1i 2i 3i 4& in a
4-qubit system. In this example, cosu and sinu are all real
and positive.

To summarize, we have presented a general scheme
initializing a quantum register to an arbitrary superpos
state. The quantum circuits utilize only single-qubit rotatio
and controlled qubit rotations. General expressions for ro
tion angles have been derived explicitly, and the possibi
for simplifying the circuits has been discussed in terms
three well-known superposed states.
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FIG. 4. Quantum circuit for implementing the state vectoruc&
5sinuut&1cosuuc&. In the figure, a letter with a bar indicates i

NOT value, i.e., 1̄50 and 0̄51.
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