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Discrete time in quantum mechanics
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The possibility that time can be regarded as a discrete dynamical variable is reexamined. We study the
dynamics of the free particle and find in some cases superluminal propagation.
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[. INTRODUCTION tinuous parameter. By setting the variational derivative, we
obtain the usual Lagrange equation of motion, whose solu-
The purpose of any physical theory, such as the one undéion gives the classical path. In relativistic quantum field
discussion in this paper, is to set up a mathematical modeheory, space and time have to be treated symmetrically due
that enables us to correlate some empirical phenomena. & Lorentz invariance. The usual approach is to reggrahd
physical theory is considered satisfactory if we can make all as parameters; the operators are then field variables.
quantitative predictions of physical data. Such data usually The purpose here is not to replace a continuous dynamical
involve the measurements of certain quantities that are exyolution parameter with a discrete parameter. Our interest is
pressed in a system of fundamental units. The choice of thesg the construct of a self-consistent discrete complex-time
units is to some extent arbitrary with respect to magnitude a§,,antum mechanics with well-specified equations of motion.
well as with respect to kind. Such a choice of units will 1 js motivated by the notion that at some small scale, time
therefore be guided primarily by considerations of convess really discrete. This has echoes in theories such as relativ-
nience. L . istic quantum mechanics with a time associated to the elec-
A great simplification is introduced in quantum mechan—tron,S Compton wavelength (162 s) and string theory,

ics if we use as the fundamental units certain physical quan- . 3 .
tities that are constants of nature. Two constants of this Sowhere the Planck time (10° s) sets a scale at which con-

are ¢, the speed of light in vacuum, and, Planck’s bar ventional notions_of space and time b_reak do_vvn. -
constant. We usually choose these constants as two of the 1Here are various circumstances in physics where it is
fundamental units of our systems. As the third unit, we usé@nvenient or necessary to replace the continuous (tieme-

the second or centimeter as the conventional and arbitralﬁOral evolution parameter with a discrete parameter. There
unit of time or length. Here we shall mention that this choiceNave been various attempts to construct classical and
is guided by the fact that the theory under discussion ariseguantum-mechanical theories based on this notion, such as
from an intimate relation of special relativity characterizedthe work of Caldirola[1] and Lee[2]. The work of Yama-

by the constant and quantum mechanics characterized bymoto et al. [3], Hashimotoet al. [4], Klimek [5], Jaroszk-

#. To our knowledge, at present there exists no theory thaewicz and Nortor{6], and Milburn[7,8] show that the sub-
involves in its fundamental laws either a universal time or agject continues to receive attention.

universal length, which would make a natural choice of the The underlying postulate is that on sufficiently short time
third basic unit. The need for such a theory involving a fun-steps, the system does not develop continuously under a mix-
damental timglength has been the subject of much specu-ture of unitary and nonunitary evolution but rather in a se-
lation in the past and present, but it seems safe to say that wpience ofidentical transformations. The inverse of this time
are far from understanding the role of such a unit in existingstep is the mean frequency of the stefis,which turns into
theories. an expansion parameter. If the time step is large enough, the

Throughout the development of quantum mechanics, timevolution appears approximately continuous on laboratory
always appears as a continuous parameter. Take the exampilde scales. To zeroth order, the Safirmer equation is re-
of a nonrelativistic particle. In Feynman’s path integrationcovered.
formulation, the probability amplitude for the particle to be  One feature of this model is that constants of motion re-
at the positionq(t;) and atq(t;) is given by the amplitude main constants of motion and thus stationary states remain
sum over all pathgj(t) connectingq(t;) and g(t;), apart stationary states. Whether or not these consequences are ob-
from a normalization constant. Clearly, the position of theservable depends on the size &if
particleq is not treated on the same basis as(tkeal) time t: In the following, we wish to explore some alternative pos-
at a given time, the path integration can be viewed as thadibilities. First, in place of treating time as a real parameter,
over the whole range of eigenvalues of the position operatorwe may consider time as a continuocasmplexparameter
This then underlies the familiar difference betwegias an  (analytical continuation formulation Second, time can be
operator and as a parameter. treated as aliscretecomplex parametefdiscrete complex-

In fact, this asymmetry can be made out in classical metime formulation. As we shall see, both possibilities can be
chanics. The classical trajectory of a particle is determinedealized. The result is that in this new formalism, our usual
by the extremity of the action, which is a functionalq(ft).  idea of continuous-time structure will appear only as an ap-
While g is the dynamical variabld, appears only as a con- proximation.
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II. CONTINUOUS-TIME EVOLUTION Hug =Eug . 8

Let us consider a quantum system whose time evolution is _ _
given by the complex-time propagator The (com_‘orma} _mappmgs->e>_<p(sEa), which has no zeros
and no singularities in the entire complex plane, turns out to

U(s)=exp(sH), 1) possess an essential singularity at infinity.

wheres=(—i/#)(t+iv) with t and v real parameters. In the Ill. GENERAL EVOLUTION

above the HamiltonianH is assumed to be Hermitian and ) o .
time-independent. In a particular physical system, we look The feature of quantum mechanics that most distinguishes

for a complete set of commuting observabiesVe then can it from classical mechanics is the coherent superposition of
NpIe . 9 . . distinct physical states. This feature is at the heart of the less
take their simultaneous eigenkets as basic Kdts(s)), «

= . . intuitive aspects of the theory. It is the basis for the concern
_(alﬁaz’ )y VYh?re @i 1S thg eigenvalue of the_ observ- about measurement in quantum mechanics, and it is the ex-
able a; . The Schrdinger equation for the system is then  pjanation for the nonappearance of chaos in systems that
classically would be chaotic. Apparently, however, the su-
HIW ,(s)) = i|‘1’a(3)> —E,|V,(5)). ) perposition pri_nciple does not operate on macroscopic scales,
ds although nothing in the present formulation of quantum me-
chanics would indicate this.

The reason for looking at the propagatdy will be clearer We now consider an ad hoc time distribution
as we go along. First let us note that we can write down th@)s, s,, ... s in the complex plane, wheg—s;=Jsis a
formula for it at once: fundamental time interval. Thus in the Sctiger equation
we need to introduce discrete derivativassociated with the
U(s)=2 1V ()W ,(s)|exp(SE,). 3) given time distribution, namely
The main point to note is that even though the time is now Hp| W 4(s))= EWH(S»' ©

complex, the eigenvalues and eigenfuctions that enter into
the formula forU(s) are the usual ones. Conversely, if we with Hp, in the s representation, wheris a givens;, and
knew U (s), we could extract the former.

The Hamiltonian is assumed to be represented by a self- S\ (8)=N"1(s,89)[| P (s 85))
adjoint operator. According to the basic principles of QM, _ _
one defines a Hilbert spade for each QM system. Every [V (s+ 05— 35A(5,99))] (10
measurable quantity or “observable” is represented by 3s a state difference whete is a holomorphicfunction of s

self-adjoint operator. The state of the system at tsne  and s in the wholek-complex plane, withss a given finite
given by a vector¥(s)) e H, which is analytic in the com- giference in the complexime plane. This is to be inter-

plex plane defined bg. Note that preted as a more general time evolution, the continuous evo-
q Py P lution being a limited case.
-~ _r9 _iz 2 In the above,
ds|\I’(S)> Js at|\lf(s)) Iﬁat|‘]§'(s)), ) )
i i
g s 5 4) s=—(t+iv), ds=—(dt+id), (1D
gal V()= oo [ W(s)=fi [ W(s)). _ _ _ _
and|W ,(s)) is analyticat s, therefore it can be expanded in
The ¥ are then normalizable, i.e., a Laurent series. Thus
t 3 5“? —d\If +§ 2_1O|n\If
(F(9)|¥(s))= L\P (0,5)¥(q,9)d°g=1, Vs, (5) 5/ Val9)=gglVa(sD+ 2, ==~ |Wa(9)),
(12)
whereV is the volume where the system is contained. Given
a basis{|¥(s))} of H, a self-adjoint operator is defined as !-€-,
satisfying N
Hp= e[l(xs’z)]ﬁsHsin)'(—sstH), 13
(¥i(9)|O[ () = (¥(9OW(s)*.  (6) s 2 49
The stationary states can be written in the form whereh=\(s,ds). For A4 a constant function of, the sta-
tionary states are of the form
(dl e (s))="e (q,5)=e"ug (q), ) .
\PED(q,S):eSeuE(q):el/h(tq+UeR)e—Ilﬁ(teR—uq)uE(q),
with (14)
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with E the eigenvalues dfl ande=eg+ie€, . In other words, 561-

we assume that and Hp act on the same Hilbert space. 5—J=H [{71 )c Pj (23

Furthermore, if S

Hpue(q)=EpUs(q) (15) corresponds to thgroup velocityof the quantum waves.

’ Thus from Eq.(22) we get

we find that o o
\ [di,a;1=[pi.p;]=0,

— [1-(\/2)]5SE cinH S
Ep NS sm)-( 5 5SE>. (16)

[qi.pj]=
We must require some basic physical conditions upon the

I+ﬁHDHH1HD5H

energy eigenvalues. Particularly, they must take real values, 7H Y (24)
which means that IrfE, =0, a condition we have to impose +1=|1=——|HoH " c"H “pip;
on Eq.(16).
37 3 7c? 1 7\?
IV. EXAMPLES =in 1+§% D 5ij+|§7HD pip;+O %) .

We shall consider two particular cases where the Hamil-

tonianHp is Hermitian. . L :
Case(a) regardsh (=1, with 5s=(1/) 7, wherer=r, is Let us now postulate the existence of a relativistic invariant

a finite time element. This case corresponds to an intrinsiEaSsM in this context. To this end, we impose the condition
loss of information. The discrete derivative is
27E mc?\ 2
N :M2C4
E

E3— czpz—Ez[l ex;{ -

g_;: - Zjie(f/z).(a/at)sm’_(lzf ;) g(efi(a/m)_”_
(7 For p=0, we get
Thus
h 2
(8s )n 1 gn MZ? ex;{%mcz)—l}=m+%m2c2+o (%—) ,
V(s —\If ¥ (9)). T
Ho| W o(8)) = 55| Wa(s)) = E T ge () 26
(18)

which represents a shift in value of the inertial mass
To determine the commutatdHp ,s], we evaluate this For a massless particle,
commutator operating oW (s), i.e.,
h 7C
X —
A%

Ep=—
D T
which involves a modification to the standard time-energyAS iS apparent, even for very small time stepthis model
commutation relation. predicts the possibilities of superluminal propagation pro-

Next let us consider a relativistic spin-0 free particle. Thevided that/p|>0.

Hamiltonian becomes Case(b) addresses =2, with §s=(—i/%) o a step time
element, i.e., unitary evolution. The generalized Sdimger

e(Tc,h)lp‘

p)—l}, vi(r)=Cc——

ol P

[HD,s]=exp<%H)=iﬁ(|+%HD), (19

h T o
HD:; exp(%H)—l ' (200  equation is
S
whereH = \/c?p?+ m?c?, p=—i#V. Therefore, Hp|W o(s))= 5_;|‘Pa(3)>, (28)
q, i T with
N 1

where 55l Val(8) = 55 [[W(s+68)~[W(s—5s))], (29

- ~ _Ho 5% the so-calledsymmetric derivativeThe Hamiltonian takes

4=9%. b= 2 05 =H 1HDexp( )pJ 22 ihe form[1]
are canonical conjugate coordinates, wj= —i#d/dq; . :f . [ To :ﬁ -y ﬁ
Furthermore, Hp Tosm 7 H 0sm IToat (30
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Therefore, the velocity operator is now given by

6q; i

~ _ To
55~ 7 [Ho.qj]=H 1c05<%H c?p;.

The position and momentum operators are then

. . Hp &gy sin(27E/h)
g;j=4q; ., pj=?g—ij,

(31)

(32

with p;=—i%dldq; as before. Thus from Eq32) we get

[a;,0;1=[pi.p;1=0,

~ - __sin(27oEl/h)
[Qi,pj]—5ijlﬁm
. sin(27E/ %) | c?pip;
+if| cod27mE/R) — 2roElh ) =

. 2 7'02
:5ij|ﬁ |_§ z HD

57

+0

(33
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For a massless particle,

E =£sin @p vi(79)=CCO %p ) (34)
A htlpe

For bound states, EG30) says that a maximum value for the
energy of the excited states exisE;=7%/7.

V. FINAL COMMENTS

To conclude, on sufficiently small time scales we conjec-
ture the system evolves by a sequence of unitary timelike
steps generated by the Hamiltonian. The Sdhrger equa-
tion can be obtained toth order in the expansioftomplex
parameterss. This timelike discretization involves a modi-
fication both to the standard time-energy commutation rela-
tion and to they,p canonical commutation relations. Particu-
larly, for the casda) even for small time steps, the model
predicts the possibility of superluminal velocities, for in-
stance, for a massless particle with nonvanishing momentum.

If the physical evolution time scale is much larger than
the discrete time scale, then the evolution resembles a quan-
tum stochastic process. This process could be studied using
the quantum version of the Ito and Stratonovich stochastic
calculus[9].
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