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Discrete time in quantum mechanics

S. Bruce
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The possibility that time can be regarded as a discrete dynamical variable is reexamined. We study the
dynamics of the free particle and find in some cases superluminal propagation.
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I. INTRODUCTION

The purpose of any physical theory, such as the one un
discussion in this paper, is to set up a mathematical mo
that enables us to correlate some empirical phenomen
physical theory is considered satisfactory if we can ma
quantitative predictions of physical data. Such data usu
involve the measurements of certain quantities that are
pressed in a system of fundamental units. The choice of th
units is to some extent arbitrary with respect to magnitude
well as with respect to kind. Such a choice of units w
therefore be guided primarily by considerations of con
nience.

A great simplification is introduced in quantum mecha
ics if we use as the fundamental units certain physical qu
tities that are constants of nature. Two constants of this
are c, the speed of light in vacuum, and\, Planck’s bar
constant. We usually choose these constants as two o
fundamental units of our systems. As the third unit, we u
the second or centimeter as the conventional and arbit
unit of time or length. Here we shall mention that this cho
is guided by the fact that the theory under discussion ar
from an intimate relation of special relativity characteriz
by the constantc and quantum mechanics characterized
\. To our knowledge, at present there exists no theory
involves in its fundamental laws either a universal time o
universal length, which would make a natural choice of
third basic unit. The need for such a theory involving a fu
damental time~length! has been the subject of much spec
lation in the past and present, but it seems safe to say tha
are far from understanding the role of such a unit in exist
theories.

Throughout the development of quantum mechanics, t
always appears as a continuous parameter. Take the exa
of a nonrelativistic particle. In Feynman’s path integrati
formulation, the probability amplitude for the particle to b
at the positionq(t i) and atq(t f) is given by the amplitude
sum over all pathsq(t) connectingq(t i) and q(t f), apart
from a normalization constant. Clearly, the position of t
particleq is not treated on the same basis as the~real! time t:
at a given time, the path integration can be viewed as
over the whole range of eigenvalues of the position opera
This then underlies the familiar difference betweenq as an
operator andt as a parameter.

In fact, this asymmetry can be made out in classical m
chanics. The classical trajectory of a particle is determin
by the extremity of the action, which is a functional ofq(t).
While q is the dynamical variable,t appears only as a con
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tinuous parameter. By setting the variational derivative,
obtain the usual Lagrange equation of motion, whose so
tion gives the classical path. In relativistic quantum fie
theory, space and time have to be treated symmetrically
to Lorentz invariance. The usual approach is to regardqi and
t all as parameters; the operators are then field variables

The purpose here is not to replace a continuous dynam
evolution parameter with a discrete parameter. Our intere
in the construct of a self-consistent discrete complex-ti
quantum mechanics with well-specified equations of moti
This is motivated by the notion that at some small scale, ti
is really discrete. This has echoes in theories such as rel
istic quantum mechanics with a time associated to the e
tron’s Compton wavelength (10222 s) and string theory,
where the Planck time (10243 s) sets a scale at which con
ventional notions of space and time break down.

There are various circumstances in physics where i
convenient or necessary to replace the continuous time~tem-
poral evolution! parameter with a discrete parameter. The
have been various attempts to construct classical
quantum-mechanical theories based on this notion, suc
the work of Caldirola@1# and Lee@2#. The work of Yama-
moto et al. @3#, Hashimotoet al. @4#, Klimek @5#, Jaroszk-
iewicz and Norton@6#, and Milburn@7,8# show that the sub-
ject continues to receive attention.

The underlying postulate is that on sufficiently short tim
steps, the system does not develop continuously under a
ture of unitary and nonunitary evolution but rather in a s
quence ofidentical transformations. The inverse of this tim
step is the mean frequency of the steps,dt, which turns into
an expansion parameter. If the time step is large enough
evolution appears approximately continuous on laborat
time scales. To zeroth order, the Schro¨dinger equation is re-
covered.

One feature of this model is that constants of motion
main constants of motion and thus stationary states rem
stationary states. Whether or not these consequences ar
servable depends on the size ofdt.

In the following, we wish to explore some alternative po
sibilities. First, in place of treating time as a real parame
we may consider time as a continuouscomplexparameter
~analytical continuation formulation!. Second, time can be
treated as adiscretecomplex parameter~discrete complex-
time formulation!. As we shall see, both possibilities can b
realized. The result is that in this new formalism, our us
idea of continuous-time structure will appear only as an
proximation.
©2001 The American Physical Society03-1
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II. CONTINUOUS-TIME EVOLUTION

Let us consider a quantum system whose time evolutio
given by the complex-time propagator

U~s!5exp~sH!, ~1!

wheres5(2 i /\)(t1 iv) with t andn real parameters. In the
above the Hamiltonian,H is assumed to be Hermitian an
time-independent. In a particular physical system, we lo
for a complete set of commuting observablesâ. We then can
take their simultaneous eigenkets as basic kets:uCa(s)&, a
5(a1 ,a2 , . . . ), wherea i is the eigenvalue of the observ
able â i . The Schro¨dinger equation for the system is then

HuCa~s!&5
d

ds
uCa~s!&5EauCa~s!&. ~2!

The reason for looking at the propagator~1! will be clearer
as we go along. First let us note that we can write down
formula for it at once:

U~s!5(
a

uCa~s!&^Ca~s!uexp~sEa!. ~3!

The main point to note is that even though the time is n
complex, the eigenvalues and eigenfuctions that enter
the formula forU(s) are the usual ones. Conversely, if w
knew U(s), we could extract the former.

The Hamiltonian is assumed to be represented by a s
adjoint operator. According to the basic principles of Q
one defines a Hilbert spaceH for each QM system. Every
measurable quantity or ‘‘observable’’ is represented by
self-adjoint operator. The state of the system at times is
given by a vectoruC(s)&PH, which is analytic in the com-
plex plane defined bys. Note that

d

ds
uC~s!&5

]t

]s

]

]t
uC~s!&5 i\

]

]t
uC~s!&,

~4!
d

ds
uC~s!&5

]y

]s

]

]y
uC~s!&5\

]

]y
uC~s!&.

The C are then normalizable, i.e.,

^C~s!uC~s!&5E
V
C†~q,s!C~q,s!d3q51, ;s, ~5!

whereV is the volume where the system is contained. Giv
a basis$uC j (s)&% of H, a self-adjoint operator is defined a
satisfying

^C i~s!uOuC j~s!&5^C j~s!uOuC i~s!&* . ~6!

The stationary states can be written in the form

^quCEa
~s!&5CEa

~q,s!5esEauEa
~q!, ~7!

with
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HuEa
5EuEa

. ~8!

The ~conformal! mappings→exp(sEa), which has no zeros
and no singularities in the entire complex plane, turns ou
possess an essential singularity at infinity.

III. GENERAL EVOLUTION

The feature of quantum mechanics that most distinguis
it from classical mechanics is the coherent superposition
distinct physical states. This feature is at the heart of the
intuitive aspects of the theory. It is the basis for the conc
about measurement in quantum mechanics, and it is the
planation for the nonappearance of chaos in systems
classically would be chaotic. Apparently, however, the s
perposition principle does not operate on macroscopic sca
although nothing in the present formulation of quantum m
chanics would indicate this.

We now consider an ad hoc time distributio
0,s1 ,s2 , . . . ,sN in the complex plane, wheresi2sj5ds is a
fundamental time interval. Thus in the Schro¨dinger equation
we need to introduce adiscrete derivativeassociated with the
given time distribution, namely

HDuCa~s!&5
dl

ds
uCa~s!&, ~9!

with HD in the s representation, wheres is a givensj , and

dluCa~s!&[l21~s,ds!@ uCa~s1ds!&

2uC„s1ds2dsl~s,ds!…&] ~10!

is a state difference wherel is a holomorphicfunction of s
andds in the wholel-complex plane, withds a given finite
difference in the complextime plane. This is to be inter-
preted as a more general time evolution, the continuous e
lution being a limited case.

In the above,

s52
i

\
~ t1 iv !, ds[2

i

\
~dt1 idv !, ~11!

and uCa(s)& is analytic at s, therefore it can be expanded i
a Laurent series. Thus

dl

ds
uCa~s!&5

d

ds
uCa~s!&1 (

n52

`
ls

n21

n!

dn

dsn
uCa~s!&,

~12!

i.e.,

HD5
2

lsds
e[12(ls/2)]dsH sinhS ls

2
dsHD , ~13!

wherels[l(s,ds). For ls a constant function ofs, the sta-
tionary states are of the form

CED
~q,s!5eseuE~q!5e1/\(te I1veR)e2 i /\(teR2ve I )uE~q!,

~14!
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with E the eigenvalues ofH ande[eR1 i e I . In other words,
we assume thatH and HD act on the same Hilbert spac
Furthermore, if

HDuE~q!5EDuE~q!, ~15!

we find that

ED5
2

lsds
e[12(ls/2)]dsE sinhS ls

2
dsED . ~16!

We must require some basic physical conditions upon
energy eigenvalues. Particularly, they must take real val
which means that ImED50, a condition we have to impos
on Eq.~16!.

IV. EXAMPLES

We shall consider two particular cases where the Ham
tonianHD is Hermitian.

Case~a! regardsls51, with ds5(1/\)t, wheret5t1 is
a finite time element. This case corresponds to an intrin
loss of information. The discrete derivative is

dl

ds
5HD5

2\

t
e(t/2)i (]/]t) sinhS i t

2

]

]t D5
\

t
~et i (]/]t)2I !.

~17!

Thus

HDuCa~s!&5
dl

ds
uCa~s!&5 (

n51

`
~ds!n21

n!

dn

dsn
uCa~s!&.

~18!

To determine the commutator@HD ,s#, we evaluate this
commutator operating onC(s), i.e.,

@HD ,s#5expS t

\
H D5 i\S I 1

t

\
HDD , ~19!

which involves a modification to the standard time-ene
commutation relation.

Next let us consider a relativistic spin-0 free particle. T
Hamiltonian becomes

HD5
\

t FexpS t

\
H D21G , ~20!

whereH5Ac2p21m2c4, pÄ2 i\“. Therefore,

dq̂ j

ds
5

i

\
@HD ,q̂ j #5H21 expS t

\
H D c2pj , ~21!

where

q̂ j[qj , p̂ j[
HD

c2

dq̂ j

ds
5H21HD expS t

\
H D pj ~22!

are canonical conjugate coordinates, withpj52 i\]/]qj .
Furthermore,
01410
e
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dq̂ j

ds
5H21 expS t

\
H D c2pj ~23!

corresponds to thegroup velocityof the quantum waves
Thus from Eq.~22! we get

@ q̂i ,q̂ j #5@ p̂i ,p̂ j #50,

@ q̂i ,p̂ j #5 i\S I 1
t

\
HDD H H21HDd i j

1F12S 12
2tH

\ DHDH21Gc2H22pipj J
5 i\S 11

3

2

t

\
HDD d i j 1 i

3

2

tc2

\
HD

21pipj1OF S t

\ D 2G .
~24!

Let us now postulate the existence of a relativistic invari
massM in this context. To this end, we impose the conditi

ED
2 2c2p̂25ED

2 H 12expS 2tE

\ D F12S mc2

E D 2G J 5M2c4.

~25!

For p50, we get

M5
\

tc2 FexpS t

\
mc2D21G5m1

t

2\
m2c21OF S t

\ D 2G ,
~26!

which represents a shift in value of the inertial massm.
For a massless particle,

ED5
\

t FexpS tc

\ UpU D21G , v j~t!5c
e(tc/\)upu

upu
pj .

~27!

As is apparent, even for very small time stept, this model
predicts the possibilities of superluminal propagation p
vided thatupu.'0.

Case~b! addressesls52, with ds5(2 i /\)t0 a step time
element, i.e., unitary evolution. The generalized Schro¨dinger
equation is

HDuCa~s!&5
dl

ds
uCa~s!&, ~28!

with

dl

ds
uCa~s!&5

1

2ds
@ uC~s1ds!&2uC~s2ds!&], ~29!

the so-calledsymmetric derivative. The Hamiltonian takes
the form @1#

HD5
\

t0
sinS t0

\
H D5

\

t0
sinS i t0

]

]t D . ~30!
3-3
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Therefore, the velocity operator is now given by

dq̂ j

ds
5

i

\
@HD ,q̂ j #5H21 cosS t0

\
H D c2pj . ~31!

The position and momentum operators are then

q̂ j[qj , p̂ j[
HD

c2

dq̂ j

ds
5

sin~2t0E/\!

2t0E/\
pj , ~32!

with pj52 i\]/]qj as before. Thus from Eq.~32! we get

@ q̂i ,q̂ j #5@ p̂i ,p̂ j #50,

@ q̂i ,p̂ j #5d i j i\
sin~2t0E/\!

2t0E/\

1 i\S cos~2t0E/\!2
sin~2t0E/\!

2t0E/\ D c2pipj

E2

5d i j i\F I 2
2

3 S t0

\ D 2

HD
2 G2 i\

4

3 S t0

\ D 2

c2pipj

1OF S t0

\ D 3G .

~33!
e,

o,

01410
For a massless particle,

ED5
\

t0
sinS ct0

\
pD , v j~t0!5c cosS ct0

\
pD pj

p
. ~34!

For bound states, Eq.~30! says that a maximum value for th
energy of the excited states exists:ED5\/t0.

V. FINAL COMMENTS

To conclude, on sufficiently small time scales we conje
ture the system evolves by a sequence of unitary time
steps generated by the Hamiltonian. The Schro¨dinger equa-
tion can be obtained tonth order in the expansion~complex!
parameterds. This timelike discretization involves a mod
fication both to the standard time-energy commutation re
tion and to theq,p canonical commutation relations. Partic
larly, for the case~a! even for small time stepds, the model
predicts the possibility of superluminal velocities, for in
stance, for a massless particle with nonvanishing moment

If the physical evolution time scale is much larger th
the discrete time scale, then the evolution resembles a q
tum stochastic process. This process could be studied u
the quantum version of the Ito and Stratonovich stocha
calculus@9#.
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