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Evanescent waves in a time-of-arrival measurement model
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The analysis of the model quantum clocks proposed by Aharonovet al. @Phys. Rev. A57, 4130 ~1998!;
e-print quant-ph/9709031# requires considering evanescent components in the transient regime, previously not
examined, and consideration of several aspects of the asymptotic regime. We also clarify the meaning of the
operational time of arrival distribution that had been investigated. The accuracy limitation due to the back
reaction of the clock is not affected.
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The concept of time has a very problematic status in
development of quantum theory. This has led several
searchers to investigate and propose quantum clocks,
quantum devices that in some way will capture and refle
given aspect of time. A recent such set of proposals for qu
tum clocks, in the specific case of measurement of time
arrival, has been put forward by Aharonovet al. @1#. We
shall concentrate here on the first quantum clock propose
that paper, which was introduced to demonstrate that
back reaction of the clock leads to an accuracy limitati
This clock is coupled to the otherwise free system wh
times of arrival one wishes to measure in such a way that
total Hamiltonian~system plus clock! is

H5
1

2m
Px

21u~2x!Py . ~1!

The system variable isx, while the clock corresponds to th
time variabley. This is in fact a cyclic variable, which entail
the conservation of the energyPy . Let us then considerPy
restricted to a given valuep, in the classical case.

The motion of the particle~the system! is not fully free:
moving from left to right, it runs into a step potential
x50, either downwards ifp.0, or upwards for negativep.
For p.0, the classicaly variable encodes how much tim
elapses from when the particle is released and the cloc
started, to the instant the particle crossesx50. For negative
barrier heightp, the classical particle would be reflected if i
energy were not big enough to overcome the step, and
clock variabley would keep running after the particle is re
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flected. This suggests using predominantly positivep values
in the analysis, even though quantum mechanically ther
reflection even for downward steps.

In the quantum case, restricting ourselves to an eige
pace ofPy with eigenvaluep, either positive or negative, th
~generalized! eigenstates of the~restricted! Hamiltonian are
~i! scattering states, with degeneracy 2; and~ii ! ‘‘evanes-
cent’’ states, whose eigenvalue is not degenerate. On ch
ing an adequate orthogonal basis of these scattering and
nescent states, one can simply write the time evolution
any given state. However, for states with support in thex
space restricted to one side (x,0, in particular!, there is a
compact alternative expression in terms of an integral ove
path in complex momentum space that provides us with
whole space-time dependence of the state@2,3#.

More explicitly, consider an initial wave function in (x,y)
space, assumed to be factorized,c(x,y,0)5c1(x)c2(y),
such thatc1(x) has no support on positivex, and compute its
Fourier components, that is to say,

c~x,y,0!5
1

2p\E2`

1`

dk E
2`

1`

dp eikx/\eipy/\g~k! f ~p!.

It is then the case that, for any timet, the state evolved with
the total HamiltonianH, defined in Eq.~1!, can be written as

c~x,y,t !5E
2`

1`

dpE
G(p)

dk f~p!g~k!fkp~x,y,t !, ~2!

where
fkp~x,y,t !5
1

2p\
35 S eikx/\1

k2q

k1q
e2 ikx/\Deipy/\e2 i (p1k2/2m)t/\, x<0

S 2k

k1qDeiqx/\eipy/\e2 i (p1k2/2m)t/\, x>0,
~3!
n

q5Ak212mp, defined with a branch cut in thek plane,
which, for positivep, goes from2 iA2mp to iA2mp, and
G(p) is a path in the complexk plane from real negative to
real positive infinity that goesabovethe branch cut.
Thus, in order to write the general solution for Schro¨d-
inger’s equation with the HamiltonianH and initial support
at x,0, it is imperative to take into account the contributio
of the branch cut in Eq.~2!, which was omitted in@1#. It
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should be noted that supposing thatg(k) is zero along the
branch cuts would in turn bring in the problem thatg(k)
would be forced to be either zero everywhere or nonanaly
however, if the initial wave function is normalizable and h
initial support atx,0, its Fourier transformg(k) must be
analytic in the upper half plane. It follows that we cann
consistently assume both initial localization and thatg(k) is
zero along the branch cuts, and the contribution of the bra
cuts is of necessity present. Quite another issue is whe
the contribution of the branch cut can be neglected with
gard to the physics that we want to describe. If the state w
initially peaked at high energies, it would present negligib
overlap with evanescent states, and their contribution to
posterior evolution of the state would remain ignorab
However, we should point out that generically the evan
cent component cannot be ignored, even in the asymp
limit t→`. As a first example, to be supplemented la
graphically, consider the total probability that a partic
which starts att50 from the left-hand side,x,0, has to be
found at positivex for large times, after colliding with a
downward step barrier of heightp. This ~transmission! prob-
ability tends to

PT5E
0

`

dqU 2q

q1k
g~k!U2

, ~4!

whereq andk are related as before, and the evanescent c
ponent provides the lower part of the integration interv
from 0 toA2mp ~this expression can be obtained by using
variant of Riemann-Lebesgue’s lemma, in a way similar
the computation performed by Allcock in the free case@4#!.
Note that there is a contribution to Eq.~4! from positive and
imaginaryk, but not from negative values ofk.

In order to graphically illustrate the relevance of evan
cent waves, let us first examine Fig. 1, where we depict
probability density for positivex at a given instant, as well a
the modulus square of the contribution to the wave funct
of evanescent components@corresponding to imaginaryk
along the branch cut in Eq.~3!#, and the modulus square o
the contribution of scattering~real k) components, in the
case of a step potential~fixed p); that is to say, we are
computing the result of a collision of a wave function with
downward step potential. The initial state is a truncated s
function, i.e., c0(x)5@2/(b2a)#1/2sin@p(x2a)/(b2a)#@u(x
2a)2u(x2b)#, where u(x) is the step function and 0.b
.a. It is apparent that evanescent waves are numeric
important, and even more so is the interference term betw
the evanescent and scattering components.

From classical considerations, Aharonovet al.were led to
suggest as an operational candidate for the distribution
times of arrival of thex particle the following expression:

rc~y,t !5E
0

`

dx uc~x,y,t !u2. ~5!

We would suggest that this quantity be better understoo
an operational distribution ofdwell timesconditionalon the
particle being found at positivex. The correspondinguncon-
ditional operational distribution would be given by
01410
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ru~y,t !5E
2`

1`

dx uc~x,y,t !u2. ~6!

The definition of the unconditional distribution makes
normalization to unity apparent. However, if the evanesc
components were not included, there would be a probab
deficit. Carrying back this argument to the conditional dist
bution ~5!, which need not be normalized, one sees that le
ing out the evanescent components leads to a probab
deficit. This is apparent in Fig. 2.

Another effect of considering or not considering the ev
nescent components is that the peak of arrivals is slig
shifted towards higher values ofy. This can be understood a
due to the fact that the evanescent components are, in a
‘‘slower’’ than those going over the step, thus remaini
longer inx,0. This also brings down the tail in negativey
coordinates.

The additional conceptual distinction between arrival a
dwell time distributions is due to the fact that, even in
classical picture, particles that arrived atx50 but did not
cross this point, being reflected, would force the clock diay
to keep on moving. Similarly, particles that had cross
x50 and were later reflected back would have the cor
sponding dial stop for a while and then resume its ticking.
this way bothrc andru are ~conditional and unconditional!
distributions of dwell times of the particle in the left ha
line.

Another way of understanding the need of reservatio
with respect to the interpretation ofrc as a time-of-arrival
distribution comes about because of Allcock’s analysis of
possibility of ideal distribution of times of arrival@4#. He
identified the final (t→`) probability of finding the particle

FIG. 1. Collision with a downward step potential: The contin
ous line portrays the modulus squared of the contribution of e
nescent waves to the wave function; the dashed line is assigne
the modulus squared for scattering waves; the dotted line co
sponds to the total probability density. All quantities are display
in atomic units. A timet510 a.u. has elapsed. Step heightp52 a.u.
The initial state is a truncated sine~see text!, with a522.01 a.u.
andb520.01 a.u.
1-2
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BRIEF REPORTS PHYSICAL REVIEW A 64 014101
in the half-space of positivex with the final probability of
having arrived atx50, for a particle initially confined at
negativex. He concluded from this identification that a
ideal time-of-arrival probability distribution could not exis
however, it is by now well known that an ideal time-o
arrival distribution does indeed exist for the free partic
namely, Kijowski’s distribution@5,6#. As has been discusse
elsewhere@7,8#, the flaw in Allcock’s argument was to ig
nore that negative momenta components~in the free particle
case and in the case at hand too! would contribute to the
arrival probability in a transient regime, thus invalidating t
stated identification. Similarly,rc(t→`) only contains
asymptotic information on dwell times, but not detailed i
formation on the transients, so it cannot generically be in
preted as a distribution of times of arrival.

The major difference between the conditional and unc
ditional distributions, when enough time has passed for
situation to be considered asymptotic, is the presence in
unconditional distribution of a second peak, associated w
those components of the wave function that are still
x,0 and will in fact remain there. This second peak
present no matter whether we do or do not take into acco
the evanescent components, and, in fact, does not get

FIG. 2. The conditional distribution~5! without evanescen
components is represented by a dotted line; with evanescent
ponents by the dashed-dotted line. The dashed line correspon
the unconditional distribution~6! without evanescent component
the continuous line depicts the full unconditional distribution, w
the evanescent components taken into account. The initial state
truncated sine wave for the particle, as before, inx space, and a
minimum-uncertainty-product Gaussian for the clock, with centrap
being 2 a.u.,̂ y&50, andDy51.1 a.u.
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contribution from them, as can be seen in Fig. 2. The evo
tion of the second peak, moving forward iny space as time
goes by, is represented in Fig. 3.

At any rate, it should be noticed that the numerical chan
of the conditional distribution when the evanescent com
nents are taken into account, in the asymptotic regime
mostly a scale change, thus rendering the difference ir
evant for the analysis carried out in Ref.@1# with regard to
uncertainties in the position of the clock dial.

In this respect, it is interesting to note that the low
bound suggested in Ref.@1# for the product of the averag
energy of the particle and the uncertainty in the time of
rival has been obtained in a completely different context, i
for Kijowski’s distribution, without recourse to any couplin
with clock variables@9#. The interpretation, however, is dif
ferent: in this latter case the lower bound is derived as
uncertainty relation, whereas Aharonovet al. suggest that
there are intrinsic limitations in the accurate measuremen
time.
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FIG. 3. The full conditional distributions at timest55 a.u. and
t57 a.u., for the same initial wave function as in Fig. 2, are sho
with the dotted line. The full unconditional distribution att55 a.u.
is depicted with a dashed line, while the continuous line repres
the full unconditional distribution att57 a.u.
or.
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