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Evanescent waves in a time-of-arrival measurement model
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The analysis of the model quantum clocks proposed by Aharetal. [Phys. Rev. A57, 4130(1998);
e-print quant-ph/970903%equires considering evanescent components in the transient regime, previously not
examined, and consideration of several aspects of the asymptotic regime. We also clarify the meaning of the
operational time of arrival distribution that had been investigated. The accuracy limitation due to the back
reaction of the clock is not affected.
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The concept of time has a very problematic status in thdlected. This suggests using predominantly posifwealues
development of quantum theory. This has led several rein the analysis, even though quantum mechanically there is
searchers to investigate and propose quantum clocks, i.egflection even for downward steps.
guantum devices that in some way will capture and reflect a In the quantum case, restricting ourselves to an eigens-
given aspect of time. A recent such set of proposals for quarpace ofP, with eigenvaluep, either positive or negative, the
tum clocks, in the specific case of measurement of times ofgeneralizedl eigenstates of th&estricted Hamiltonian are
arrival, has been put forward by Aharonet al. [1]. We (i) scattering states, with degeneracy 2; diidl “evanes-
shall concentrate here on the first quantum clock proposed icent” states, whose eigenvalue is not degenerate. On choos-
that paper, which was introduced to demonstrate that thang an adequate orthogonal basis of these scattering and eva-
back reaction of the clock leads to an accuracy limitation.nescent states, one can simply write the time evolution of
This clock is coupled to the otherwise free system whoseany given state. However, for states with support in xhe
times of arrival one wishes to measure in such a way that thepace restricted to one side<(0, in particulay, there is a

total Hamiltonian(system plus clockis compact alternative expression in terms of an integral over a
1 path in complex momentum space that provides us with the
H= 5Pt 0(=x)Py. (1)  whole space-time dependence of the sfat8].

More explicitly, consider an initial wave function ix(y)

The system variable is, while the clock corresponds to the SPace, assumed to be factorizegi(x,y,0)= 1(X) (y),
time variabley. This is in fact a cyclic variable, which entails Such thai;(x) has no support on positive and compute its
the conservation of the enerdy, . Let us then consideP, ~ Fourier components, that is to say,
restricted to a given valup, in the classical case. 1 [+ +oo _ _

The motion of the particléthe systemis not fully free: Pxy,0=5— ko’ dp e/"elPYig(k)f(p).
moving from left to right, it runs into a step potential at o o

x=0, eitheLdovlvnwgrds iD>_0t;|or upwgrdsgor negatri]vp_. It is then the case that, for any tiniethe state evolved with
For p>0, the classicay variable encodes how much time e ota) HamiltoniarH, defined in Eq(1), can be written as
elapses from when the particle is released and the clock is

started, to the instant the particle crosgzes0. For negative t) = J*”d J dk f K t 2
barrier heighp, the classical particle would be reflected if its vy LOP I'(p) (PIGR) dp(xy 1), (2)
energy were not big enough to overcome the step, and the

clock variabley would keep running after the particle is re- where

(eikx/ﬁ+ k_qe—ikx/h eipy/he—i(p+k2/2m)t/h, x<0
1 k+q

X,y,t)=—X 3
Prp(X,¥:1) 2mh el OX/% gipy/fi g =i (p-+k2/2m) U/t x=0 ®
k+q ’ '

q=k?+2mp, defined with a branch cut in the plane, Thus, in order to write the general solution for Safo
which, for positivep, goes from—i\2mp to iy2mp, and  inger's equation with the HamiltoniaH and initial support
I'(p) is a path in the complek plane from real negative to atx<O0, it is imperative to take into account the contribution
real positive infinity that goeabovethe branch cut. of the branch cut in Eq(2), which was omitted ir1]. It
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should be noted that supposing thligk) is zero along the ‘ -~ ' '
branch cuts would in turn bring in the problem trgk)
would be forced to be either zero everywhere or nonanalytic; 0.03 |
however, if the initial wave function is normalizable and has
initial support atx<<0, its Fourier transformg(k) must be
analytic in the upper half plane. It follows that we cannot . \
consistently assume both initial localization and thgk) is 2 002 . |
zero along the branch cuts, and the contribution of the branch:
cuts is of necessity present. Quite another issue is whethe®

the contribution of the branch cut can be neglected with re-

gard to the physics that we want to describe. If the state were ¢ g4
initially peaked at high energies, it would present negligible
overlap with evanescent states, and their contribution to the
posterior evolution of the state would remain ignorable.
However, we should point out that generically the evanes- 0
cent component cannot be ignored, even in the asymptotic

limit t—o. As a first example, to be supplemented later
graphically, consider the total probability that a particle, o ) ) )
which starts at=0 from the left-hand sides<0, has to be FI_G. 1. Collision with a downward step potentnal:_Th(_a continu-
found at positivex for large times, after colliding with a ous line portrays the modulus squared of the contribution of eva-

wnwar rrier of hei This (transmissi rob- nescent waves to the wave function; the dashed line is assigned to
ggility thdd:tteop barrier of heigpt s (transmissioh prob the modulus squared for scattering waves; the dotted line corre-

sponds to the total probability density. All quantities are displayed

50

2 in atomic units. A time =10 a.u. has elapsed. Step height2 a.u.
dq‘ a(k) (4)  The initial state is a truncated sirjeee text, with a= —2.01 a.u.
g+k andb=-0.01 a.u.

whereq andk are related as before, and the evanescent com- .
ponent provides the lower part of the integration interval, Pu(y!t):f dx|(x,y,b)|2 (6)
from 0 to y2mp (this expression can be obtained by using a -
variant of Riemann-Lebesgue’s lemma, in a way similar to
the computation performed by Allcock in the free c§4p.  The definition of the unconditional distribution makes its
Note that there is a contribution to E@) from positive and  normalization to unity apparent. However, if the evanescent
imaginaryk, but not from negative values &f components were not included, there would be a probability
In order to graphically illustrate the relevance of evanes-deficit. Carrying back this argument to the conditional distri-
cent waves, let us first examine Fig. 1, where we depict théution (5), which need not be normalized, one sees that leav-
probability density for positive at a given instant, as well as ing out the evanescent components leads to a probability
the modulus square of the contribution to the wave functiordeficit. This is apparent in Fig. 2.
of evanescent componenfsorresponding to imaginark Another effect of considering or not considering the eva-
along the branch cut in E¢3)], and the modulus square of nescent components is that the peak of arrivals is slightly
the contribution of scatteringreal k) components, in the shifted towards higher values gf This can be understood as
case of a step potentidfixed p); that is to say, we are due to the fact that the evanescent components are, in a way,
computing the result of a collision of a wave function with a “slower” than those going over the step, thus remaining
downward step potential. The initial state is a truncated sinéonger inx<<0. This also brings down the tail in negatiye
function, i.e., ¥o(x)=[2/(b—a)]Y%siNm(x—a)/(b—a)[é(x  coordinates.
—a)—A(x—b)], where 4(x) is the step function and8b The additional conceptual distinction between arrival and
>a. It is apparent that evanescent waves are numericallgwell time distributions is due to the fact that, even in a
important, and even more so is the interference term betweetlassical picture, particles that arrived »at 0 but did not
the evanescent and scattering components. cross this point, being reflected, would force the clock gial
From classical considerations, Aharoretval. were ledto  to keep on moving. Similarly, particles that had crossed
suggest as an operational candidate for the distribution af=0 and were later reflected back would have the corre-
times of arrival of thex particle the following expression:  sponding dial stop for a while and then resume its ticking. In
this way bothp. andp, are(conditional and unconditiongl
distributions of dwell times of the particle in the left half
line.
Another way of understanding the need of reservations
We would suggest that this quantity be better understood asith respect to the interpretation @f, as a time-of-arrival
an operational distribution adwell timesconditionalon the  distribution comes about because of Allcock’s analysis of the
particle being found at positive The correspondingncon-  possibility of ideal distribution of times of arrivdd]. He
ditional operational distribution would be given by identified the final {—c<°) probability of finding the particle

Py, )= f:dxlw(x,y,t)ﬁ. ©)
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FIG. 2. The conditional distributior(5) without evanescent FIG. 3. The full conditional distributions at timés=5 a.u. and

components is represented by a dotted line; with evanescent corh=7 a.u., for the same initial wave function as in Fig. 2, are shown

ponents by the dashed-dotted line. The dashed line corresponds with the dotted line. The full unconditional distributiontat 5 a.u.

the unconditional distributiori6) without evanescent components; is depicted with a dashed line, while the continuous line represents
the continuous line depicts the full unconditional distribution, with the full unconditional distribution &at=7 a.u.

the evanescent components taken into account. The initial state is a

truncated sine wave for the particle, as beforexispace, and a

minimum-uncertainty-product Gaussian for the clock, with cemtral
being 2 a.u.{y)=0, andAy=1.1 a.u.

contribution from them, as can be seen in Fig. 2. The evolu-
tion of the second peak, moving forward yrspace as time
goes by, is represented in Fig. 3.

in the half-space of positiv& with the final probability of At any rate, it should be noticed that the numerical change
having arrived atx=0, for a particle initially confined at of the conditional distribution when the evanescent compo-
negativex. He concluded from this identification that an nents are taken into account, in the asymptotic regime, is
ideal time-of-arrival probability distribution could not exist; mostly a scale change, thus rendering the difference irrel-
however, it is by now well known that an ideal time-of- evant for the analysis carried out in REL] with regard to
arrival distribution does indeed exist for the free particle,uncertainties in the position of the clock dial.

namely, Kijowski's distributior{5,6]. As has been discussed  |n this respect, it is interesting to note that the lower
elsewherg7,8], the flaw in Allcock’s argument was 10 ig- hound suggested in RefL] for the product of the average
nore that negative momenta componesthe free particle  energy of the particle and the uncertainty in the time of ar-
case and in the case at hand)teeould contribute to the | has been obtained in a completely different context, i.e.,
arrival probability in a transient regime, thus invalidating theg, Kijowski's distribution, without recourse to any coupling

stated identification. Similarly,pc(t—c) only contains i clock variableg9]. The interpretation, however, is dif-
asymp.totlc mformatlor) on dwe!l times, but no.t deta||ed_ 'N" ferent: in this latter case the lower bound is derived as an
formaduon ondt_he.gar.men;[cs,_ solt c?nnpt g:ljener|cally be Inter[mcertainty relation, whereas Aharonev al. suggest that
preted as a distribution of times of arrival. there are intrinsic limitations in the accurate measurement of

The major difference between the conditional and uncong
ditional distributions, when enough time has passed for the
situation to be considered asymptotic, is the presence in the We acknowledge support from the Ministerio de Educa-
unconditional distribution of a second peak, associated witltion y Cultura(AEN99-0315, the University of the Basque
those components of the wave function that are still inCountry (Grant No. UPV 063.310-EB187/98 and the
x<0 and will in fact remain there. This second peak isBasque Governmen{PI-1999-28. A.D. Baute acknowl-
present no matter whether we do or do not take into accourgdges financial support from the Ministerio de Educagjo
the evanescent components, and, in fact, does not get a@ultura.
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