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Effects of Pauli blocking on semiconductor laser intensity and phase noise spectra
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In this paper we derive the intensity and phase noise spectra of a single-mode semiconductor laser on the
basis of an operatorial Langevin set of equations that includes the dynamics of the microscopic variables, i.e.,
the carrier polarization and their distribution over thetates. In particular we take into account the fact that
the carriers pumped into the active layer are subject to the blocking determined by Pauli exclusion principle.
We demonstrate that, due to the fastness of the carrier scattering and polarization dephasing processes, the
noise spectra can be determined on the basis of a macroscopic linearized set of three equations for the two
quadrature components of the laser intensity and the total carrier number. A formal comparison with the
paradigmatic results ofYamamotoet al. Phys. Rev. A34, 4025 (1986] allows to deduce that the only
essential difference arises from Pauli-induced pump blocking, which has the effect of increasing the low-
frequency branch of the intensity noise spectrum. We demonstrate that, even for very small amounts of pump
blocking, the low-frequency intensity noise steeply rises with the stationary value of the carrier density in the
active layer, which depends on a great number of parameters. This result can explain the erratic behavior of the
experimental findings and their discrepancy with the standard theoretical predictions.
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[. INTRODUCTION sis of[1]. Ensuring single-mode operatidbe it a longitudi-
nal, transverse, or polarization mgdeas been generally
The paradigmatic analysis of the noise properties of semirecognized as an effective method to improve the experimen-
conductor lasers is widely considered to be that of Yamatal results, but also in this case, they may remain far from
moto and coauthor§l]. For asymptotically high pump it theoretical predictions and subject to a great variability as the
predicts an intensity noise spectrum flat and equal to thepecific device is changed.
standard quantum limit, the noise being contributed at low A possible explanation of the erraticity in the semicon-
and high frequency by pump and zero-point field fluctua-ductor lasers intensity noise properties relies on the fact that,
tions, respectively. The phase noise spectrum is equal to tHeecause of losses, the cavity spatial modes are not orthogo-
standard quantum limit at high frequency, but increases asal to each othelr16], and consequently the lasing mode will
the frequency diminishes because of unstationary phase dibe “contaminated” by noise from subthreshold transverse
fusion, and is enhanced by nonlinear dispersion. The boundnodes[17]. A measure of the mode nonorthogonality is
ary between “high” and “low”-frequency behavior is de- given by the increase of the Petermann excess noise fiéctor
termined by the cavity bandwidth. These results allow to[18] from the value of 1, and if19] it was shown thak
predict the possibility of generating intensity squeezed light= 1.5 constitutes the boundary above which intensity squeez-
if a sub-Poissonian pump is provided. Since “high-ing becomes impossible. Sineranges from approximately
impedance suppression” of the pump noise takes place spon- for purely index-guided lasers to 15-25 for gain-guided
taneously in electrically driven semiconductor lasers at highasers, the conclusion is that the field noise homodyned into
pump level[2], Yamamoto’s theory predicts, in the ideal the lasing mode from subthreshold transverse modes can se-
case of unitary quantum efficiency, perfect squeezing at lowiously impede intensity squeezifd9].
frequency. The underlying reasoning is simple: since carriers The analysis presented in this paper is complementary to
are pumped regularly into the active layer and they all rethe one described ih16—19, since it is based on the as-
combine to give a laser photon, if the observation time issumption that the additional intensity noise does not derive
long enough to let the photon leave the cavity, we shouldrom an optical coupling among the modes, but from the
detect a regular beam of photons. In other words, electricatlectronic processes that underlie the semiconductor laser
regularity ensures optical regularity under the conditions thabperation. Coherently with this approach,[R0,21] a theo-
(i) each pumped carrier is transformed into a photon@nd retical investigation has been started to determine the zero-
the frequency at which the output beam intensity noise idrequency intensity noise of a single-mode semiconductor
measured is small enough. laser on the basis of a microscopic model that includes phe-
Despite the fact that squeezed light generation by semirnomena such as carrier scattering, spectral hole burning and
conductor lasers has found many experimental confirmationsump blocking, which were not included in the original
[3—-15], the levels of squeezing actually detected are generYamamoto’s theory. The conclusion was that scattering and
ally smaller than those predicted by the paradigmatic analyspectral-hole burning do not contribute to zero-frequency in-
tensity noise, and the only electronic phenomenon that may
increase it is pump blocking. This paper is the natural sequel
*Present address: Pirelli Optical Labs, Viale Sarca 222, 2012&f [21], since it provides an expression of the intensity noise
Milano, Italy. Email address: Martino.Travagnin@Pirelli.com for all the frequencies, and determines also the phase noise
"Email address: Martino.Travagnin@mi.infn.it spectrum.
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The galculation of the_ inten_sity npise spectrum con_firm_s dNa o . . o
that the increase of the intensity noise by pump blocking is T > ypN—(l—nek)(l—nhk)—E ByNenk
not a spurious effect that takes place only when the fre- k p k
guency is mathematically equal to zero, but extends to all the
frequency range where squeezing is to be expected. A formal +iX (gF At G —gyofA) +FR (1d)
comparison with the expression of the intensity noise spec- K “
trum given in[1] allows to conclude that for asymptotically
high pump the spectrum does not become flat, but at loWiror generality we take into account the possibility of optical
frequency it exceeds the standard quantum limit by arosses others than those due to the outcoupling mirror, so that
amount that steeply increases with the carrier density in théhe total field-decay rate is given by the sum
active layer, and is exactly equal to zero only if the pump-
blocking effect is completely absent. The phase noise spec- K=Knt K|, i)
trum does not differ substantially from the predictions of
Yamamoto, and exhibits the same nonlinear dispersion corwherex,, and«, are the field-decay rates associated with the
tribution at low frequency. A parallelism between the inten-mirror and the additional losses, respectively. Accordingly,

sity noise enhancement due to pump blocking and the phasge total field noise operatdt; is defined as the sum of two
noise enhancement due to nonlinear dispersion has been car-

ried on in[22]. Uncorrelated noise operatdf§' and 5

The material of the present paper is organized as follows: o
after this Introduction, Sec. Il will present the microscopic FA=F
equations that are the basis of our analysis, and deduce from

them the exact set of linearized equations. In Sec. lll we willagsociated with the two independent loss sources, respec-
show that, due to the fastness of polarization dephasing angg|y.

carriers _scat_t(_aring, thg exact Iinearizeq .equation.s can be | et us briefly recall the meaning of the other symbéls:
gr.eatly smphﬁgd. Starting from the S|mp!|f|ed e_quatlons, Weis the cold-cavity mode frequency, is the (unknown laser

W|I_I determine in Sec. IV the extracavity intensity and phasegig|q frequencyg, is the light-matter coupling coefficieny;
noise spectra. A formal comparison between our results and e nolarization decay rate and the carrier scattering rate,
the standard results ¢f] is carried out in Sec. V, and allows w, is the frequency associated with thevector electron-

tourﬁongllggﬁmthat_rme ?10issif:;lniCr:f;Sirne%a?oenCZ?ntiﬁirg r:leeséf]a%le pair recombinatiorB, is the time rate associated with
pump g pny b ontaneous emission, ahg, is the operator that describes

nism and a final comment on the results of the paper can b e aK e
found in the concluding Sec. VI. the quasiequilibrium Fermi-Dirac distribution in each band.

The noise operatoﬂ%@ associated with the operators of Egs.
(1) are assumed to be zero averaged amdrrelated in time.
Il. MICROSCOPIOC DYNAMICAL EQUATIONS The pump term, which is the first one on the right-hand
) i _ side of Eq.(1d), deserves a more detailed commeyyis the
We start our analysis from the set of operatorial Langevirymp parameterf,, the spectral distribution of the pump
equations for the laser intracavity fiel, the microscopic carriers, andN,= =, f ,, their total number. In our theoretical
material polarization&k, the carrier distributionﬁak (a derivation we will always treat, as an arbitrary function,
=g,h for electrons and holes, respectivend the total car- so that all the formulas presented in the paper hold for any
rier number in each bandl,=3n,,, which have been de- choice of the pumped car_rier distribqtior). Only in the f@gures,
rived in [21] (see alsd23)) Wher_e we must fix a particular d|str|bl_Jt|0n to exemplify the
predictions of the theory, have we decided to follow the most
common choice reported by the literature, i.e., that of a
A . L o am Fermi-Dirac. Qistributior[23,24].
FTo —[Kkmt K +i(Q— v)]A—|; gkoxt+tFA+Fai, . The e_pr|C|t expressions ab, andg, depend on tht_a ac-
tive medium. We consider a GaAs quantum well of thickness
(18 L, and transverse dimensiohg andL,, and for simplicity
we assume a single longitudinally bound state for both the
electrons and the heavy holes, neglecting the confinement

+F; 3

doy - - ies with he band d taking for el
il S S _ Fig Aot Np— 1) +E- energies with respect to the band gap, and taking for elec-
dt [y i@ ot igANed tn— 1 +Fs, trons and holes the same average nrass0.09m,, where
(1b) m, is the free electron mass. The conduction and valence
bandsE, are separated by an energy dap=1.424 eV, and
~ the energy associated with each electron-hole recombination
dn,k fok - - A ~ - event is
:YpL(l_nek)(l_nhk)—Bknek”hk_ Y(Nak— f k)
dt Np ,
+i(gkATo - g ofA) +F; (10 ho=Eq+2E=Ey+ Zﬁkz, 4
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wherek= (ky,ky) is the transverse carrier wave vector. The dny f ok ) 5
light-matter coupling coefficient, has the dimensions of = Ve (30T B y(me— i)
(time)~* and is given by[25] P
2
o o L[ hac 12 - 2+7A2||gk|2(2nk—1), (8b)
K ﬁ EOnZV ’ K
1/2 dN f
Eg(EgtA) A% (mg | € — =y > X ny2- BnZ-2«1, (80
2 [ 2molme hen?t 5 dt  "PE N, X
2( Eg+ A ° K
3 where

where 0<c¢<1 is the confinement factor, i.e. the fraction of

the optical mode volume that overlaps with the active vol-
umeV=L,L,L,. The fixed parameters are the GaAs refrac-
tive indexn= 3.5, the energy separation between the heav
hole and the split-off band4d =0.34 eV, the electron mass

in the materialm,=0.065m,. The universal constants are

AkE wWK— V. (9)

In [21] it has already been explained in detail how the non-
Yinear set of equation, Eg&3), can be solved via a numerical
iterative procedure to give the exact stationary solution for
the laser frequency, the carrier distributiom,, and the
#1~(0.658 eVJ(10 5 ), intracavity photon numbef. Once the exact solution is
known, it can be verified that it can be approximated ex-
€0~(5.52x10"3 eV)(10 1 m)~tv2, tremely well by the quasiequilibrium solution obtained as-
suming that in each band the carriers follow the Fermi-Dirac
#12/(2my)~(3.81 eV)(10 0 m)2, distributionf, ; this follows from the fact that in Eq8b) the
scattering term proportional tg is by far much larger than
ande=1 eV/V. all the otherg21]. The quasiequilibrium stationary solution
To determine the laser stationary state it is useful to inis obtained by solving the nonlinear system given by the real
troduce the intensity operatbrand the average carrier num- @nd imaginary part of E¢8a)

ber operatoiN

Y 2
P 2f —1)=«, 10
I=ATA, (63) Ek: 72+Aﬁ|gk| (2f,—1)=« (10a
N=(Ng+N;)/2, (6b) A
. | S 5—5lad¥2f-1=(Q-».  (10p
and to define the expectation values Koy AL
1=(1), (7a)  Let us now recall that, depends orN via the chemical
potential (N)
o= (oK), (70) L
M= (Neid = (M) (70 = oAE R (1)
fie=(Fed=(Fri. (7d)  where in the quantum well case it resUlgs]
N=(N). (79 B A2 ON |
Bu=In exp{ZTrBZm LL, 1], (12

The stationary state is determined by the semiclassical coun-

terpart of Eqs(1): we have to take the expectation values of yiin B=1/KgT, KgT=0.025 eV at room temperature. Con-
all the terms, factorize them, and set to zero all the timesequently, our unknown variables in E40) are the super-
derivatives. First of all we set to zero the time derivative official carrier densityN/(L,L,) and the laser frequenay. We

the polarizationo, obtaining now defineNg and v as the stationary values of the carrier
d(A) number and of the laser frequency. Our numerical solutions
Y A how that, for any val f the laser parametegss ver
=kt lgd2(2n—1) [(A) show that, for any values of the laser parametegss very

dt close toQ2. On the other side, the dependenceNgf (L L)

2 2
k ’y +Ak
onk, vy, L,, 1llcs, and\.=2mc/Q) has been represented in

] Ay A Figs. X@—1(e), respectively.
—ij Q- ”)“L; 24 A2 |9k *(2n=1) [(A), Once the stationary valudé, and v, are determined, we
Y K obtain the stationary value of the photon number in the cav-
(8a ity
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FIG. 1. Dependence of the stationary value of the superficial carrier déwsify,L,) on (a) the field decay rat&, (b) the polarization
decay ratey, (c) the quantum well thickneds,, (d) the reciprocal confinement factorcl; and(e) the empty cavity eigenmode wavelength
Nc. The fixed parameters are=4-10"s ™1, y=6x10%s 1, L,=100x10 °m, ¢;=0.1,\,=850x10"° m, and for this choice the

carrier density resultdls/(LyL,)~1.8x 10" cm™ 2.

—h

K ls=(AIA)~(AD)(A), 15
,),DEK NL(l_fk)Z_Ek kai s (AAs) ~(Ag)(As) (19
ls= i 5 (13)  which hold under the conditiohs>1, and for definiteness
“ we have set to zero the arbitrary phaséAf) and(A,), so

that it results

and of the microscopic polarization
g (A)=(Ad)= s (16
iggvls(2f—1 S
_ gk\/ s( k ) (14)

Tk vH+iAg ' Note that in Eq(13) and Eq.(14) we should have written, in
a more rigorous notation, f)s, (oy)s, and @A,)s= wy
To write Eq.(14) we have used the semiclassical relation —vg, but for the sake of simplicity the subscrips™ has
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been dropped. From now on, we will always mean with
fi, ox, andA, the values assumed by these variables in thed N,= —

stationary state.
Let us now define the quantities

—2 Al llgl2(2f— 1), (179

Ay
— 3 ldad(2f—1), (17b

+Aj

HEX a

P—Z 7p

<1 fl)2— 2 Biff=A—Ay, (170

which will turn out to be very useful in the following. As can

be seen from Eqs(8), G/2l; and H/2|, are the carrier-

induced amplitude gain and the carrier-induced dispersion,
respectively, or in other terms the imaginary and the real part

of the active-material susceptivif23], while P is the num-

ber of carriers that are actually transformed into stimulate
photons per unit time, and it is given by the difference be-

tween the pump ratd and the pump threshold,. On the

basis of Eqs(8) it is easy to verify that in the stationary state

it results
g
2. (183
H
5 =—(Q—vy) (18b)
2l
P = 18
2|S_K| ( C)

and consequentlg=P.
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(SNgi+ SN

fok
> {ypN (10
—Ek) By f( SNyt 5ﬁhk)+i\/E§k: (OF So—gkday)

+iY (g oy SAT— ko OA) +F . (190
k

It can be noted that in this set of equations we have macro-
scopic variables §A and 6N,) and microscopic variables
(60 and &n,,). The microscopic variables evolve much
faster than the macroscopic ones, due to the presence of the
polarization decay rate and of the carrier scattering aite

Egs. (19b,9. We can therefore adiabatically eliminate Egs.

(19b,0 without losing anything of the physics of the prob-
lem. This will be done in the next section.

IIl. LINEARIZED MACROSCOPIC DYNAMICAL
EQUATIONS

To calculate the phase noise spectrum, we have to intro-

%uce the linearized fluctuating operat®p. It is well known

‘that the definition of an Hermitian operator associated with
the phase variable is still an open question in quantum me-
chanics, and up to date has found oatyhocsolutions. The
convenience to use one or the other of these “operative”
definitions depends on the particular problem under investi-
gation, as reviewed, for example, [i@6]. Our definition of

the linearized phase operator follows from a simple and com-
monly used procedurésee[27]), which will be briefly de-
scribed in the following. Let us start with the usual decom-
position

A=(Ag)+ A, (20a

Af=(Al)+ sAT, (20b)

where (A) and (A!) indicate the stationary values of the
field operators, and recall the semiclassical relations

We can now proceed with the linearization of the opera-

torial Egs.(1) around the stationary state, obtaining

SA=—[k+i(Q-v9)]6A-iD of do\+Fa, (199
k

S o= —[y+i(wx—ve)]do+igy(2f,—1) A

+igiI( Nyt dnp) +F5 (19b)

( Nyt ONp) — Bief i SN

['YpN (-1

+ 8N — V(N — TN, +iVI(gF Sov— gedoy)

+i(gK o OAT— gyl SA) +Fh (190

<A> — \/l—ei ¢/2,
<AT> — \/l_e—iqﬁ/Z,

which are certainly valid at high intensity. According to Egs.
(21), the semiclassical variablkg can be written as

(219

(21b)

d=i(In(ATY—In(A)), (22)
and substituting Eqg20) into Eqgs.(22), we obtain
5= JT:<<6A*>—<6A>), 23

where the arbitrary stationary value of the field phase has

been set to zero, so théh)~(Al)~|l,. Since the semi-
classical relation Eq23) is linear, it can be safely extended
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into an operatorial one, which will be used as definition of *

~ 1014 b
the linearized phase operatéw. The expressions of the @ 1g1er :
linearized operator$l and SN straightfully follows from = 10°F
Egs. (6), so that in the end our macroscopic linearized op-=
erators will be given by °

e

81=\1(5AT+ 5A), (249 %
| 8p=i I SAT— 5A), 24D £ 10o'f
5 r

~ ~ ~ =]
SN=(8N+ 6N /2, 249 © B}

1 ! -12 ! -12 * ! -12 * ! -12 * -1
where the stationary value of the intensityis determined 0 2x10 4x10 6x10 8x10 1x10
by Eqg.(13). k [1/m]

In [1] the linearized macroscopic operators under analysis FIG. 2. Functional dependence of the coefficients

are the field amplitude, the field phase, and the carrier num- -

. ) o ay, ay, by, ¢, andf, on the wave vectok, with N,=N; and
ber. Instead of the field amplitude and phase we will 8¢\~ 204, . The other parameters have the same values as in Fig. 1.

andl (8¢, that is the quadrature components of the linearized

intensity operator. This choice has the advantages that thghereh,=1/(y+iA,), and the coefficienta, , a, by, and
dynamical equations for the quadrature components are cha; are respectively, defined by

acterized by a higher degree of symmetry, and that the inten-

sity and phase noise spectra can be determined indepen- 2y
dently. ak=ﬁ2I5|gk|2, (263
Adiabatically eliminating from Eqg19) the fast-evolving yo+ AL

variables 8oy and én,, we are left with the macroscopic
linearized set of equations =

24
a=——2l4al’, (26b)

- acy - awvyfr - . .

== g—kk&HE "&%MJE(F;\TJFF;\)

VP+AL
k k

f ok 2y
br=y+ 2B fr+ 2y, —=(1—f )+ ———21 ]g./2,
kK=Y KTkt 27Yp Np( K A sl 9l

2
. - a . ax o k
FIVI 2 (i Foy—giheo) i1 oo o (260

2y

ay - 2 _
, (253 Ck 72+Aﬁ|gk| (2= 1).

—gihF5)+ Ek: by

Nhk

Fr +F;
Nek (26d)
2

These coefficients have been plotted, together wijth in

Fig. 2. At a first glance it is apparent thaf is the largest
among them, and it is practically independent of the wave
vectork. This is because, in semiconductor lasers the scat-
tering ratey is by far larger than any other time rate. We can
therefore define the vanishingly small parameters

- ack agyfy . ..
15p=+ K5 - S VK SR i T((Ear—E)
k by ko by

— VI (9Pt gihiFsy)

. ’i A i N*h E- a 5- b
+'\/E§k: bk(gkhkF(rl gkhkF(rk) =k k<1, 6bkE7k_1<1'

Fr +Fih
ek hk Ck
2 ) (258 o= <1, @7

and use them to rewrite the various terms that appear in Egs.

- (b= vfe o YCk <
oN==-2, oN=2, = (25). We see that the following approximations can be done.

by r by

x|

~ ~ a,Cy Ag€ck
XAy NF ~ e ~ ~
—iVIs2 - (gkhi For—gihiF5) by~ Tty ko0, (283
Fo., t Fa aofl  adf,
Y Mek " Mk kY Tk kT ,
— = ~afy, 28b
+§k: bk 2 ), (250) bk l+Ebk k' k ( )
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Z_:: %” €a=0, (280

ag_‘:k _ f‘f::k O, (280
E‘kb%fﬁ: 1i‘itk~5kf|ﬁ, (288
i_t:lfekbf ~0, (280
(bk—bak/) Al :(blkJ:Z’::"( ~(be=yfe, (289
Vb_‘;kz 1+C—kebfck’ (28h

2= 1+1€bk~1. (28)

The only nonzero sums that remain in E&5) can be writ-
ten in the form

> adi=0n, (293

Zk afe="Hy, (29b)

2 (b= V)fi= =P+ Gy, (299
Zk C =2k, (290

where in Eqs(29a,b,¢ Gy, Hy, and Py are the derivatives
with respect to the carriers numbisr of the quantities de-
fined by Eq.(17), calculated in the stationary state, while
Egs. (29d) is a direct consequence of the solution of the
stationary state determined by Ed0a. The linearized set
Egs. (25 can therefore be rewritten in the much simpler

form

8 T=GyoN+\I(Far+Fa)

FiVI (9o —gihd ), (303
168 b= —HynoN+iVI(Far—Fa)
—VIs2 (9hiFartaihFs), (30D

PHYSICAL REVIEW A 64 013818
SN="PysN—GyoN— 2k 51 +Ej
—iVI2 (ghiFor—giehds), (309

where the definition

Fi=e—— (31)

has been used, in agreement with E&p) and Eq.(24¢).
Let us now introduce the ratid22]

f
pk ’
E —(1—f)+Byf,(f
P % [J’pr( k) kk] K

T=‘— = , (324
On 2y
> [ﬁlsmﬂz]fﬁ

K +Ag

2A
> |—k2|gk|2]f;

k| Y2 +Af

:2{ »

Yo+ AR

: (32b)

|9k|2] fi
and rewrite Eqs(30) in the form
8 T=GyoN+\I(Far+FR)

i (@hiFo—gihds), (339

10 d=aGyoN+iI(Far—Fa)

—VI2 (g Forraihfs), (33D

SN=—7GyoN—GySN -2k 51 + Ej,

—iI (i Far—gihds), (339

which will be the basis for the determination of the intensity
and phase noise spectra. These equations are the equivalent
of Egs.(A1)—(A3) in the Appendix of1]. In Eq.(33b) « is

the nonlinear dispersion parameter, and it transfers carriers
fluctuations into phase fluctuations. In the same way the
pump-blocking parameter transfers carriers fluctuations
into pump fluctuations and then into carrier fluctuations

again. If we have, for exampleN>0 then the pump-
blocking effect increases, less pump carriers will enter the
active layer, andSN will diminish: all this process is taken
into account by the term- 7GyoN in Eq. (33¢). In the fol-
lowing section we will show the impact of and @ on the
intensity and phase noise spectra.
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IV. EXTRACAVITY INTENSITY AND PHASE NOISE
SPECTRA

To determine the intensity and noise spectra of the laser
we proceed as if21], that is, we Fourier transform Eq83)

and we obtain the frequency-dependent fluctuatiﬁ?(s»)

andlsﬁgb(w) inside the cavity. These turn out to be

. iw+Gy(1+7) _
Si(w)= I(Far+Fa
(@) ZKQN—w2+ing(1+ 7) \/—( ArtFA)
iw+7'gN . ~
+ ls hiF;
2kGy— 02+ i wGy(1+7) W12 (hiFo)

—Qﬁhkﬁ&k)‘*'

O )
: FR,
ZKQN_w2+|ng(1+ ’T)

w)
i
a2 KgN

2kGny— 0’ +iwGy(1+7)

1 . . 1
_(E) Vs, (gkhEF;;+g’k*hkng)+(—)

iw

- 1 ~ A
|s5¢(w)=<m>i\/E(FAf—FA)+

X

VIs(Far+Fa)

X( aGn(2k+iw)
2kGn— 0’ +iwGy(1+7)

W2 (gdhicFar

a'gle
2kGN— w2+ing(l+ 7)

—gihFs)—

(34b)

PHYSICAL REVIEW A 64 013818

1s6° =i IOV (5A°UY) T — SACUY =24 ] Sp—F T

(37b)

where for brevity we have defined
Fri=VI(F+FL), (383
Fr=iVI(FL—FD. (38b)

The output spectra, normalized with respect to the standard
quantum limit 2|, are determined by the relations

1 1 n “
Si(w)= 2 > [dl U )]T 81 w) )}

101,
2T 2741 (@) 4 (@)

— 2k ([ 81 () TF (@) +([F T (0)]781 (0))}

+H([EMN ) TR 0)}, (399

1 1 - N
Sy(@) = 5—= 5—{{[1:8¢™(@)]"1:0¢™ ()}

Kmls
1

- 2Kl
~ 2kl [([1:8¢()]TFi(w)
+H([FT(0)]"18p(0))}+([FT()]TF (@)}

(39b

The three terms appearing on the right-hand side of Egs.
(39a,b represent, in the order, the noise contribution(ipf
the internal fluctuations exiting from the outcoupling mirror,

i{4 2 s6()]"1s6p(w))
2 Ko(Lls w s [0}

For clarity, the contributions of the various noise operatorgii) the interference between the exiting internal fluctuations
have been written in different lines. Note that, due to theand the external zero-point fluctuations reflected by the mir-
presence ofe, the phase noise receives contributions not'or, (lll) the external fluctuations reflected by the mirror. For

only from the noise operators appearing in Eg3b), but
also from those appearing in E®39 and Eq.(330.
The field input-output relation is given 48]

gm
Aout= 2 A— —A_ (35)
" V2K
and its linearization gives
£m
SACU= \[25c SA— —2 (36)

\/2Km.

In terms of the quadrature components of the intensity, and

defining the output photon flux d8¥'=2kls, we obtain

S10Ut= 1PV (5AUY T+ SAU =24, 61— F1T, (378

the intensity noise spectrum we have

1 X .
5{4,(;([&(60)]*5!((»»}

2Kmls

2k [0+ (14 7)2GRID "+ [0’ + GRIDP+ GRDC

s (2kGn— ©2) 2+ 02G{(1+ 7)?
(409
1 J S ~ ~
szlsg{—ZKm{Qél(w)]TF:?(w)H([F[?(w)]T&(w)>}}
2Ky 2(1+7)G2D"
Tl (26kGy— 022+ w0?GE(1+ 1) (40b)
LR TET _
2Km|sz{<[Frf(w)] Frf(w)>}_1 (400
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from which we can see that the noise exiting from the cavity
gives a positive contribution to the spectrum, and the noise

PHYSICAL REVIEW A 64 013818

reflected by the mirror interferes partially destructively with
it. In the phase noise case we have

1

2Kmls

—{4f<m<[l 0h(0)]"5p(w))}
—{(D'+DP)+a?GY,
lsw

X(2K)21>f+[w2+(2K)2]Dp+w273°
(2KGy— %)+ w?GR(1+7)?

(413
1 5 ~m
P > A= 2kn{([1:00(0)"F ()
+H([FT(0)]"1s8h(w))}}=0 (41b
1 n n
2. 2 (R (@] Fi(e)} =1 (419

k
D° 52 Yoo L (1- fk>2+2k Bif2=EA+ Ay,
(420

where the parametéris addedex postand must be set equal
to 1 or to 0 in the case of Poissonian or quiet pump, respec-
tively.
Summing up the three terms of E@O0) and of Eq.(41),
we obtain, respectively,

2K
S(w)=1+- o

S

X[wz—gﬁ(l— ) ID +[w?+ PGRIDP+GRDC

3

and we can see that there is not any destructive interference,

so that the output phase spectra is essentially identical to the

phase spectra inside the laser cavity.

The noise coefficients for the fielf?, the polarization
DP, and the carrier®®, have been determined|[ial]. They
are given by

D'=D[+D]

=2kl st 2k =2kls, (423

2y
DP=> — 1 ]g.|A2f2—2f +1), 42b)
Ek Y s|lgul*(2fi—2f+1) (42

(ZKQN—wZ)Z-i-wZQﬁ(l-i- 7)?
(4339
_ ., 2Km foyp 22
S¢(w)—1+m (D'+DP)+a“Gy
(2K)2D +[w?+(2k)?]DP+ w?D*
(26GN— w2)2+w2g (1+7)°
(43b)

These expressions will be plotted in the next section, after
having derived a formal comparison between Yamamoto's
and ours results for the intensity and phase noise spectra.

V. COMPARISON WITH YAMAMOTOQO’S THEORY

Let us rewrite the final expressions obtained by Yamamo-
to’s treatment of the intensity and phase spectra, that is Eq.
(3.19 and Eq.(3.20 of [1]. In the original notation, we have

2 2 f2
Qﬂ[Ag(r§+r§p+r2)+(A§+92)<G,2+g,2>—2A1A3<FGr>]+ QﬁAl—AzAs—Q2 +02 ﬂ+A1) rcy
e e e
Q.
Par(Q)= ,
’ [(AA3— Q%)+ AT0]
(4439
ot et 2| /2. 2 2 A2 2
Q_ w21 Qe A <Fp+l“sp+1“ >+ (G +gr+f )
Pai(Q ( ) +— GZ+g¥)+ 44b)
A= [ Qe 02 292< %) [(AAs—02) +A§92] (
|
With respect to the original, we have corrected the following 1 1
misprints(i) in both Eq.(443 and Eq.(44b) the first term in Ap=—+—, (459
the denominator isA,A;—Q?)2, and not B,A;+Q?)? (i) b st
in Eq. (44b) the termAj[(I'5+ '3 +T?) was missing, and
has been added. A,= 2, (45D)

The coefficientsA;, A,, Az, A, are given by
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1 (ff+a7)—2x, (469
As—m, (450
(2Ag)°— s, (460
o
A4:2A§rst' 459 (I'3+T2)—D°, (46f)
With the_following connections between Yamamoto’'s and (FZ),(2A0)2<Gr2>,(2A0)(FGr>—>Dp, (469
our notation
wlQ— 2k, (463 (2A0)X(fF+gf)—D", (46h)
0l Qe— 2k, (46b) O—w (46i)
(f8)—2xm, (460  we obtain
|
1\2 [1)\2 12 12
5 w’+ —) —(—) D'+| w?+ —) DP+ —) D¢
K T T K T
Pai(@)=1+——" N TR’ 2 — (479
s 2k, ( 1 1)\%,
— | t|—F+—]| w
Tst Tst  Tsp
2K 1\2(2k)?D"+[(2k)%+ 0?]DP+ 0?D°
rgPA;/,(w)=1+—m (Df+DP)+a? —) (2x) L 2) ! > (47b)
| Tt (ZK 5 1 14\%,
— | t|—Ft—
Tst Tst  Tsp
|
Under the assumption that the photon absorption {&fg) 2
is much smaller than the stimulated emission d&g,) the r(Z,PA;p(w)=1+—"; (Df+DP)
population inversion parametat,, defined by Eq(3.10 of lsw

[1], is =1, and one obtains

1 X

—==, (48)
Tsp  Tst
where
Pth
= , 49
P— Pt 49

with p and py, being, respectively, the pump level and the
pump threshold. If we assume the correspondence

1
T_St_)gNl

(50

and introduce Eq(48) and Eq.(50) in Egs.(47a,b, we ob-
tain

2Km

Is
X[wZ—gﬁ(l—xz)]Dw(w2+x2g§,)pp+gﬁ,z>°
(2kGn— 0?)2+ w?GR(1+x)?

(51a

(2K)°D +[w?+ (2k)2]DP+ w?DC
(2kGn— ©2)%+ 0?G2(1+X)?
(51b)

+a2gﬁ,

Comparing our noise spectf&gs. (43)] and Yamamoto’'s
ones[Egs. (51)], we can see that a formal identity can be
established between them if the correspondence

X—T (52
is assumed. In our notationcan be rewritten as
Ath Ath
X= oAt G (53
while 7 is defined as
th
= —'ANQ_NAN 3 (54)

We can therefore say that our model reduces to that of
Yamamoto ifr reduces tok, and this happens if we assume:
(i) linear dependence of the threshold and of the gain on the
carrier numberjii) no pump blocking. As already pointed
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Df
2KIS:1’ (569
g c
3 —x+(1+
8 g X108, (560
w
2
[]
p=4 L 2f2
g DL po Ek Kl Okl “Ti
g - =2 , (560
g 2kl 2
- -0 > Ldad?(2f— 1)
; = @ k
10 o LT Y] T 13 .
1x10 1x10 1x10 1x10 1x10 so that from Eqs(55) we obtain

o [rad/s]

10 k| [ K
Par(O)=—| | ——1|+x+(1+x)¢
3 K K
10 3
£
2
g 104 2¢2
@ Ek: Lilgl i
§ 10 ] +2 x?|, (57a
2 > Ldgd?(2f—1)
£ 1] K
] (b)
101 10" - ””1'”10'0' ' 1 I1o“' ' ””1'”1012' ' ””1”1013 Km K
X X * o lrads] S|(0)=7 (K——l +X+(1+x)€
m
FIG. 3. Intensity(a) and phaséb) noise spectra for increasing
value of the pump, wittN,=Ns, x,=0, {=1, and the other pa-
rameters as in Fig. 1. The full and dashed lines correspond to our E Lig |2f2
Egs.(43) and Yamamoto's Eq$51), respectively. The numbers 10, R KISkl Tk 5
20, 40, 80, and the symbel represent the ratid/Ay, . +2 ™. (57b

, o > Lad(2fi—1)
out in[20], our treatment is different due to the presence of k

Ay in the numerator of Eq(54), which prevents the vanish-
ing of 7 as the pumping increases, in sharp contrast with™" . .
what happens t&. In Fig. 3 we have plotted the intensity and which precedegz and 7* is always bigger than 1. From Eq.
phase spectra given by our analysis and by Yamamoto’s on@Ob) we have indeed

for increasing value of the pumping. Note that the presence

of pump blocking reduces the noise in correspondence of the E Laul?(2f—1)=ky>0, (58
carrier relaxation oscillation peak and, in the intensity case, K
increases the noise at the left side of the peak. In other terms
pump blocking increases intensity noise in all the frequencf
range where we expect to obtain squeezing if we quietly
pump the laser. Let us therefore concentrate on the low- > Lilgil?f2 > Lgul2(f—1)2
frequency branch of the intensity noise spectrum, and rewrite K 1+ K -1

the intensity noise spectra at=0: 2 2
L 2f -1 L 2f -1
; kOl “(2f—1) Ek kO “(2f—1)

H_et us demonstrate that the coefficient in the parenthesis

hd therefore

kml ([ K p' D D'+DP | 59
Par(0)=- (Km 1)2K|S+2K|SJr 2l X 59
(559 Note however that the second term tends to f) ibecomes
approximately equal to one for all the values lofwhere
Km| [ & D' D¢ D+DP | L|g«/? is appreciably different from zero, and this happens
S,(0)=7 PR P R R Rk as the stationary carrier numbi increases. By inspecting
" s s s (55b) Egs. (56a,0 and Eq.(59) we conclude that it is alway®P
>D' and it become®PP~D' only for high values of the
From Egs.(42) we have carrier density.
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Let us now define the optical and the internal efficiencies

Km
WoptZTv

(60a

77int:1_xa (60b)

so that the zero-frequency noise can be rewritten as

Par(0)=1- NoptNint T 770pt(2_ Nint) &

EK Lilokl*fi
(1_ 77int)2a

+ 7]opt2
Ek: Lilgul?(2f,—1)

(61a

S(0)=1- NoptMint+ 7]opt(z_ Nint) €

Ek: Lilowl?fg
+ Dopi2 . (61b
; Ligul?(2f—1)

If the pump level is risen up to infinity, them,,;— 1, and we

obtain

P:}(O) =1=noptt 770pt§a (629
STO(O) =1- Nopt™ 770pt§
; Lyl gul?fR
+ Nopt2 7%, (62b

2 Ldad*2fi-1)
where, using the relatiofy o f (1—f,), it results[21]

2 faf(1-10? 2 Ldgd(2fi- 1)
Too= . (63
2 =107 2 Lad*fl1=fu)

If 70pt=1 then

P1;(0)=¢, (643
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§ L g/ 2(2f— 1)

S (0)=¢+2
Ek: Lilowl?fE

2
; fokfi(1—1f)?

> o112

k

S (64b)
Ek: Lilgul *fi
-1

; Lilowl?fE

Let us now define the following expressions

Ek Lo/ 2(2f,—1)

B,= : (653
Ek Lilowl?f2
2 (1=
B,= , (65b)
2 11?2
% Lk|gk|2fk
Bg=—"", (650
> Lilgw?f2

k

so that Eq.(64b) can be rewritten in the compact form

00 B%
S (0)=¢+ ZBlr

o (66)

In Fig. 4 we have represented the functiohs f2, and

L Jg./? that appear inB; for two different values of the
stationary carriers density. Since for increasing densjty
and fﬁ tends to be equal wherevér|g,|? is appreciably
different from zero, we can deduce ti@§— 1" as the den-

sity increases. This has a major impact on the zero-frequency
noise, because it means that the denominator of the second
term in Eq.(66) vanishes, and therefore the noise might be-
come very large as the density is increased. To confirm this
possibility, it is necessary to describe also the behavior of the
other blocks that appear in E¢66). This has been done in
Figs. 5a) and 3b), where the density increase has been ob-
tained by reducing the confinement factor from 1 to 0.025.
We can see that, as the density increas®s—~1", B,
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1.0 @ 5
(@ s (@)
= 00,
o8l z ,l S7(0)
f=
[0}
£
s 0.6 S 3}
o 2
35 =
' o
:; 0.4 é_ ol
8 Bs
@0
0.2 Lklgkl2 E 1 &
[ [arb. units] s B Bz
[}
0.00 2 '10-12 . 10-12 o 10-12 s '10-12 ) 10-11 5 0 A ] . ] . ] R
12 12 12 12 12
X X X X £ 10 2x10 3x10 4x10 , 5x10
[ ] N/(LxLy) [1/cm ]
1.0 - 3 s
S (b)
0.8 z , .
é i sTo)
“=z 06 f
R 2 o 3t
- E—"Lulgkl £
Y= g4l [arb. units] g
e Q
a 2
g Bs
21
0 2 |l
2
c
0.0 . L 3 o
B 2 ER] 12 2 -1 c B2
0 2x10 4x10 6x10 8x10 1x10 g olg= — — — 12
Kk [/m] & 1x10 2x10 3x10 4x10 5x10
N/(Ly) [1/em ]
FIG. 4. Behavior of the function$,, f2, andL,|g,/? for (a) ) o
Cf=1—>Ns/(LxL¥)=1.35>< 102 cm 2 (b) ¢;=0.025- N/ (LyLy) FIG. 5. I_Depend(_ence of the various tErms appearlng_ln(m).
=5.0x 10" cm . The values of the other parameters are as in FigOn the carrier density for the cas@ N,=Ns and (b) N;=5N;.
1. The flat line at 1 is the Poissonian pump nagsevhile the meaning

of the lines marked b, , B,, andB; is explained in the text.

remains approximately constant, aBg—1". As a conse-
guence, the noise increases well above the pump contributi
&. Figure 4b) differs from Fig. 4a) because the amount of
pump blocking is reduced; this is obtained, as explained i
[20,21], by increasing the ratidl,/Ns. The only difference
with respect to Fig. @) is a smaller value oB,, but again

'ljlhe only essential difference is that the paramgtdefined
qby Eq. (49 is substituted by the parameterdefined by Eq.
I,g?:Za), and the central point is that, because of pump block-
ing, 7 does not go to zero as the pump level is increased,
whereasx does. As an aside comment, we note that this

the noise increases well above the standard quantum limit Euggests that the noise effects that we have ascribed to pump

. ST S locking could actually derive from any other mechanism
the carrier density is increased. This brings us to the Conclu: . :
SioNs capable of introducing a dependence of the pump rate on the

carrier density in the active layer.
The consequence of a carrier-dependent pump rate is that
VI. CONCLUSIONS at zero frequency the coefficient that multiplies the field and
the polarization noise terms do not disappear as the pump is
The main result of this paper is that in the presence ofncreased. Even if ideal optical and internal efficiency are
even a small amount of pump blocking, the zero-frequencyssumed, so that we are guaranteed that any pump carrier is
intensity noise steeply increases with the stationary value dfansformed in a photon in the output laser beam, it results
the carrier density in the active laygsee Fig. . Since the that, in contrast with Yamamoto predictions, the low-
carrier density depends on a lot of laser paramdtas Fig.  frequency intensity noise is not given only by the pump
1], this finding can explain the great dependence of the noiseoise, but there are unexpected contributions from field and
performance of semiconductor lasers on the specific devicpolarization noise. To explain the presence of these noise
under examination, even when single-mode operation is ercontributions we observe that if the pump rate depends on
sured. the carrier density, then the stimulated recombination rate
To show the origin of this pump-blocking-induced noise will depend on it. As a consequence, any carrier fluctuations
we have demonstrated that a formal identity between thevill cause a stimulated recombination rate fluctuation, and it
paradigmatic noise spectra E§S1) calculated i1] and the is precisely this fluctuation that causes the additional field
spectra Eq943) determined in this paper can be establishedand polarization noise. It is natural to expect that this effect
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increases with the increasing of the carrier density. To sumagreement witf1]) nor from the point of view of intensity
marize, we can say that in the presence of pump blocking aoise (in disagreement with1]), and consequently we can
semiconductor laser does not behave as a shot noise limitewt expect perfect squeezing for asymptotically high pump,
device neither from the point of view of phase noige  even if the pump noise is completely removed.
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