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Effects of Pauli blocking on semiconductor laser intensity and phase noise spectra

M. Travagnin*
INFM, Dipartimento di Fisica, Universita` di Milano, Via Celoria 16, 20133 Milano, Italy†

~Received 2 August 2000; published 13 June 2001!

In this paper we derive the intensity and phase noise spectra of a single-mode semiconductor laser on the
basis of an operatorial Langevin set of equations that includes the dynamics of the microscopic variables, i.e.,
the carrier polarization and their distribution over thek states. In particular we take into account the fact that
the carriers pumped into the active layer are subject to the blocking determined by Pauli exclusion principle.
We demonstrate that, due to the fastness of the carrier scattering and polarization dephasing processes, the
noise spectra can be determined on the basis of a macroscopic linearized set of three equations for the two
quadrature components of the laser intensity and the total carrier number. A formal comparison with the
paradigmatic results of@Yamamotoet al. Phys. Rev. A34, 4025 ~1986!# allows to deduce that the only
essential difference arises from Pauli-induced pump blocking, which has the effect of increasing the low-
frequency branch of the intensity noise spectrum. We demonstrate that, even for very small amounts of pump
blocking, the low-frequency intensity noise steeply rises with the stationary value of the carrier density in the
active layer, which depends on a great number of parameters. This result can explain the erratic behavior of the
experimental findings and their discrepancy with the standard theoretical predictions.

DOI: 10.1103/PhysRevA.64.013818 PACS number~s!: 42.50.Dv, 42.50.Lc, 42.55.Px
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I. INTRODUCTION

The paradigmatic analysis of the noise properties of se
conductor lasers is widely considered to be that of Yam
moto and coauthors@1#. For asymptotically high pump i
predicts an intensity noise spectrum flat and equal to
standard quantum limit, the noise being contributed at l
and high frequency by pump and zero-point field fluctu
tions, respectively. The phase noise spectrum is equal to
standard quantum limit at high frequency, but increases
the frequency diminishes because of unstationary phase
fusion, and is enhanced by nonlinear dispersion. The bou
ary between ‘‘high’’ and ‘‘low’’-frequency behavior is de
termined by the cavity bandwidth. These results allow
predict the possibility of generating intensity squeezed li
if a sub-Poissonian pump is provided. Since ‘‘hig
impedance suppression’’ of the pump noise takes place s
taneously in electrically driven semiconductor lasers at h
pump level @2#, Yamamoto’s theory predicts, in the ide
case of unitary quantum efficiency, perfect squeezing at
frequency. The underlying reasoning is simple: since carr
are pumped regularly into the active layer and they all
combine to give a laser photon, if the observation time
long enough to let the photon leave the cavity, we sho
detect a regular beam of photons. In other words, electr
regularity ensures optical regularity under the conditions t
~i! each pumped carrier is transformed into a photon and~ii !
the frequency at which the output beam intensity noise
measured is small enough.

Despite the fact that squeezed light generation by se
conductor lasers has found many experimental confirmat
@3–15#, the levels of squeezing actually detected are gen
ally smaller than those predicted by the paradigmatic an
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sis of @1#. Ensuring single-mode operation~be it a longitudi-
nal, transverse, or polarization mode! has been generally
recognized as an effective method to improve the experim
tal results, but also in this case, they may remain far fr
theoretical predictions and subject to a great variability as
specific device is changed.

A possible explanation of the erraticity in the semico
ductor lasers intensity noise properties relies on the fact t
because of losses, the cavity spatial modes are not orth
nal to each other@16#, and consequently the lasing mode w
be ‘‘contaminated’’ by noise from subthreshold transve
modes @17#. A measure of the mode nonorthogonality
given by the increase of the Petermann excess noise factK
@18# from the value of 1, and in@19# it was shown thatK
51.5 constitutes the boundary above which intensity sque
ing becomes impossible. SinceK ranges from approximately
1 for purely index-guided lasers to 15–25 for gain-guid
lasers, the conclusion is that the field noise homodyned
the lasing mode from subthreshold transverse modes can
riously impede intensity squeezing@19#.

The analysis presented in this paper is complementar
the one described in@16–19#, since it is based on the as
sumption that the additional intensity noise does not der
from an optical coupling among the modes, but from t
electronic processes that underlie the semiconductor l
operation. Coherently with this approach, in@20,21# a theo-
retical investigation has been started to determine the z
frequency intensity noise of a single-mode semiconduc
laser on the basis of a microscopic model that includes p
nomena such as carrier scattering, spectral hole burning
pump blocking, which were not included in the origin
Yamamoto’s theory. The conclusion was that scattering
spectral-hole burning do not contribute to zero-frequency
tensity noise, and the only electronic phenomenon that m
increase it is pump blocking. This paper is the natural seq
of @21#, since it provides an expression of the intensity no
for all the frequencies, and determines also the phase n
spectrum.
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M. TRAVAGNIN PHYSICAL REVIEW A 64 013818
The calculation of the intensity noise spectrum confir
that the increase of the intensity noise by pump blocking
not a spurious effect that takes place only when the
quency is mathematically equal to zero, but extends to all
frequency range where squeezing is to be expected. A for
comparison with the expression of the intensity noise sp
trum given in@1# allows to conclude that for asymptoticall
high pump the spectrum does not become flat, but at
frequency it exceeds the standard quantum limit by
amount that steeply increases with the carrier density in
active layer, and is exactly equal to zero only if the pum
blocking effect is completely absent. The phase noise sp
trum does not differ substantially from the predictions
Yamamoto, and exhibits the same nonlinear dispersion c
tribution at low frequency. A parallelism between the inte
sity noise enhancement due to pump blocking and the ph
noise enhancement due to nonlinear dispersion has been
ried on in @22#.

The material of the present paper is organized as follo
after this Introduction, Sec. II will present the microscop
equations that are the basis of our analysis, and deduce
them the exact set of linearized equations. In Sec. III we w
show that, due to the fastness of polarization dephasing
carriers scattering, the exact linearized equations can
greatly simplified. Starting from the simplified equations, w
will determine in Sec. IV the extracavity intensity and pha
noise spectra. A formal comparison between our results
the standard results of@1# is carried out in Sec. V, and allow
to conclude that the noise-increasing mechanism rests
pump blocking. The physical interpretation of this mech
nism and a final comment on the results of the paper can
found in the concluding Sec. VI.

II. MICROSCOPIOC DYNAMICAL EQUATIONS

We start our analysis from the set of operatorial Lange
equations for the laser intracavity fieldÂ, the microscopic
material polarizationŝk , the carrier distributionn̂ak (a
5e,h for electrons and holes, respectively! and the total car-
rier number in each bandN̂a[(n̂ak , which have been de
rived in @21# ~see also@23#!

dÂ

dt
52@km1k l1 i ~V2n!#Â2 i(

k
gk* ŝk1F̂Â

m
1F̂Â

l ,

~1a!

dŝk

dt
52@g1 i ~vk2n!#ŝk1 igkÂ~ n̂ek1n̂hk21!1F̂ ŝk

,

~1b!

dn̂ak

dt
5gp

f pk

Np
~12n̂ek!~12n̂hk!2Bkn̂ekn̂hk2g~ n̂ak2 f̂ ak!

1 i ~gk* Â†ŝk2gkŝk
†Â!1F̂ n̂ak

, ~1c!
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dN̂a

dt
5(

k
gp

f pk

Np
~12n̂ek!~12n̂hk!2(

k
Bkn̂ekn̂hk

1 i(
k

~gk* Â†ŝk2gkŝk
†Â!1F̂N̂a

. ~1d!

For generality we take into account the possibility of optic
losses others than those due to the outcoupling mirror, so
the total field-decay rate is given by the sum

k[km1k l , ~2!

wherekm andk l are the field-decay rates associated with
mirror and the additional losses, respectively. According
the total field noise operatorF̂Â is defined as the sum of two
uncorrelated noise operatorsF̂Â

m and F̂Â
l

F̂ Â[F̂Â
m

1F̂Â
l

~3!

associated with the two independent loss sources, res
tively.

Let us briefly recall the meaning of the other symbols:V
is the cold-cavity mode frequency,n is the ~unknown! laser
field frequency,gk is the light-matter coupling coefficient,g
is the polarization decay rate and the carrier scattering r
vk is the frequency associated with thek-vector electron-
hole pair recombination,Bk is the time rate associated wit
spontaneous emission, andf̂ ak is the operator that describe
the quasiequilibrium Fermi-Dirac distribution in each ban
The noise operatorsF̂Ô associated with the operators of Eq
~1! are assumed to be zero averaged andd correlated in time.

The pump term, which is the first one on the right-ha
side of Eq.~1d!, deserves a more detailed comment:gp is the
pump parameter,f pk the spectral distribution of the pum
carriers, andNp5(kf pk their total number. In our theoretica
derivation we will always treatf pk as an arbitrary function,
so that all the formulas presented in the paper hold for
choice of the pumped carrier distribution. Only in the figure
where we must fix a particular distribution to exemplify th
predictions of the theory, have we decided to follow the m
common choice reported by the literature, i.e., that o
Fermi-Dirac distribution@23,24#.

The explicit expressions ofvk andgk depend on the ac
tive medium. We consider a GaAs quantum well of thickne
Lz and transverse dimensionsLx andLy , and for simplicity
we assume a single longitudinally bound state for both
electrons and the heavy holes, neglecting the confinem
energies with respect to the band gap, and taking for e
trons and holes the same average massm50.09m0, where
m0 is the free electron mass. The conduction and vale
bandsEk are separated by an energy gapEg51.424 eV, and
the energy associated with each electron-hole recombina
event is

\vk5Eg12Ek5Eg12
\2

2m
k2, ~4!
8-2
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EFFECTS OF PAULI BLOCKING IN SEMICONDUCTOR . . . PHYSICAL REVIEW A 64 013818
wherek5(kx ,ky) is the transverse carrier wave vector. T
light-matter coupling coefficientgk has the dimensions o
(time)21 and is given by@25#

gk5
1

\ S \Vcf

e0n2V
D 1/2

3H Eg~Eg1D!

2S Eg1
2

3
D D

\2

2m0
S m0

me
21D e2

~\vk!
2J 1/2

, ~5!

where 0,cf<1 is the confinement factor, i.e. the fraction
the optical mode volume that overlaps with the active v
umeV5LxLyLz . The fixed parameters are the GaAs refra
tive indexn53.5, the energy separation between the he
hole and the split-off bandsD50.34 eV, the electron mas
in the materialme50.065m0. The universal constants are

\'~0.658 eV!~10215 s!,

e0'~5.5231023 eV!~10210 m!21 V22,

\2/~2m0!'~3.81 eV!~10210 m!2,

ande51 eV/V.
To determine the laser stationary state it is useful to

troduce the intensity operatorÎ and the average carrier num
ber operatorN̂

Î 5Â†Â, ~6a!

N̂5~N̂e1N̂h!/2, ~6b!

and to define the expectation values

I 5^ Î &, ~7a!

sk5^ŝk&, ~7b!

nk5^n̂ek&5^n̂hk&, ~7c!

f k5^ f̂ ek&5^ f̂ hk&, ~7d!

N5^N̂&. ~7e!

The stationary state is determined by the semiclassical c
terpart of Eqs.~1!: we have to take the expectation values
all the terms, factorize them, and set to zero all the ti
derivatives. First of all we set to zero the time derivative
the polarizationsk , obtaining

d^Â&
dt

5F2k1(
k

g

g21Dk
2

ugku2~2nk21!G ^Â&

2 i F ~V2n!1(
k

Dk

g21Dk
2

ugku2~2nk21!G ^Â&,

~8a!
01381
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dnk

dt
5gp

f pk

Np
~12nk!

22Bknk
22g~nk2 f k!

2
2g

g21Dk
2

I ugku2~2nk21!, ~8b!

dN

dt
5gp(

k

f pk

Np
~12nk!

22(
k

Bknk
222kI , ~8c!

where

Dk[vk2n. ~9!

In @21# it has already been explained in detail how the no
linear set of equation, Eqs.~8!, can be solved via a numerica
iterative procedure to give the exact stationary solution
the laser frequencyn, the carrier distributionnk , and the
intracavity photon numberI. Once the exact solution is
known, it can be verified that it can be approximated e
tremely well by the quasiequilibrium solution obtained a
suming that in each band the carriers follow the Fermi-Di
distribution f k ; this follows from the fact that in Eq.~8b! the
scattering term proportional tog is by far much larger than
all the others@21#. The quasiequilibrium stationary solutio
is obtained by solving the nonlinear system given by the r
and imaginary part of Eq.~8a!

(
k

g

g21Dk
2

ugku2~2 f k21!5k, ~10a!

(
k

Dk

g21Dk
2

ugku2~2 f k21!5~V2n!. ~10b!

Let us now recall thatf k depends onN via the chemical
potentialm(N)

f k5
1

11eb[Ek2m(N)]
, ~11!

where in the quantum well case it results@23#

bm5 lnFexpS 2pb
\2

2m

N

LxLy
D21G , ~12!

with b51/KBT, KBT50.025 eV at room temperature. Con
sequently, our unknown variables in Eq.~10! are the super-
ficial carrier densityN/(LxLy) and the laser frequencyn. We
now defineNs andns as the stationary values of the carri
number and of the laser frequency. Our numerical soluti
show that, for any values of the laser parameters,ns is very
close toV. On the other side, the dependence ofNs /(LxLy)
on k, g, Lz , 1/cf , andlc52pc/V has been represented
Figs. 1~a!–1~e!, respectively.

Once the stationary valuesNs andns are determined, we
obtain the stationary value of the photon number in the c
ity
8-3
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FIG. 1. Dependence of the stationary value of the superficial carrier densityNs /(LxLy) on ~a! the field decay ratek, ~b! the polarization
decay rateg, ~c! the quantum well thicknessLz , ~d! the reciprocal confinement factor 1/cf , and~e! the empty cavity eigenmode waveleng
lc . The fixed parameters arek54•1011 s21, g5631013 s21, Lz5100310210 m, cf50.1, lc585031029 m, and for this choice the
carrier density resultsNs /(LxLy)'1.831012 cm22.
I s5

gp(
k

f pk

Np
~12 f k!

22(
k

Bkf k
2

2k
~13!

and of the microscopic polarization

sk5
igkAI s~2 f k21!

g1 iDk
. ~14!

To write Eq.~14! we have used the semiclassical relation
01381
I s5^Âs
†Âs&'^Âs

†&^Âs&, ~15!

which hold under the conditionI s@1, and for definiteness
we have set to zero the arbitrary phase of^Âs

†& and^Âs&, so
that it results

^Âs&'^Âs
†&'AI s. ~16!

Note that in Eq.~13! and Eq.~14! we should have written, in
a more rigorous notation, (f k)s , (sk)s , and (Dk)s5vk
2ns , but for the sake of simplicity the subscript ‘‘s’’ has
8-4
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been dropped. From now on, we will always mean w
f k , sk , andDk the values assumed by these variables in
stationary state.

Let us now define the quantities

G[(
k

2g

g21Dk
2

I sugku2~2 f k21!, ~17a!

H[(
k

2Dk

g21Dk
2

I sugku2~2 f k21!, ~17b!

P[(
k

gp

f pk

Np
~12 f k!

22(
k

Bkf k
2[L2L th , ~17c!

which will turn out to be very useful in the following. As ca
be seen from Eqs.~8!, G/2I s and H/2I s are the carrier-
induced amplitude gain and the carrier-induced dispers
respectively, or in other terms the imaginary and the real p
of the active-material susceptivity@23#, while P is the num-
ber of carriers that are actually transformed into stimula
photons per unit time, and it is given by the difference b
tween the pump rateL and the pump thresholdL th . On the
basis of Eqs.~8! it is easy to verify that in the stationary sta
it results

G
2I s

5k, ~18a!

H
2I s

52~V2ns!, ~18b!

P
2I s

5k, ~18c!

and consequentlyG5P.
We can now proceed with the linearization of the ope

torial Eqs.~1! around the stationary state, obtaining

d
•

Â52@k1 i ~V2ns!#dÂ2 i(
k

gk* dŝk1F̂Â , ~19a!

d
•

ŝk52@g1 i ~vk2ns!#dŝk1 igk~2 f k21!dÂ

1 igkAI s~dn̂ek1dn̂hk!1F̂ ŝk
, ~19b!

d
•

n̂ak52Fgp

f pk

Np
~12 f k!G~dn̂ek1dn̂hk!2Bkf k~dn̂ek

1dn̂hk!2g~dn̂ak2 f k8dN̂a!1 iAI s~gk* dŝk2gkdŝk
†!

1 i ~gk* skdA†2gksk
†dA!1F̂ n̂ak

, ~19c!
01381
e

n,
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d
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-

d
•

N̂a52(
k

Fgp

f pk

Np
~12 f k!G~dn̂ek1dn̂hk!

2(
k

Bkf k~dn̂ek1dn̂hk!1 iAI s(
k

~gk* dŝk2gkdŝk
†!

1 i(
k

~gk* skdA†2gksk
†dA!1F̂N̂a

. ~19d!

It can be noted that in this set of equations we have ma
scopic variables (dÂ and dN̂a) and microscopic variables
(dŝk and dn̂ak). The microscopic variables evolve muc
faster than the macroscopic ones, due to the presence o
polarization decay rate and of the carrier scattering rateg in
Eqs. ~19b,c!. We can therefore adiabatically eliminate Eq
~19b,c! without losing anything of the physics of the prob
lem. This will be done in the next section.

III. LINEARIZED MACROSCOPIC DYNAMICAL
EQUATIONS

To calculate the phase noise spectrum, we have to in
duce the linearized fluctuating operatordf̂. It is well known
that the definition of an Hermitian operator associated w
the phase variable is still an open question in quantum
chanics, and up to date has found onlyad hocsolutions. The
convenience to use one or the other of these ‘‘operativ
definitions depends on the particular problem under inve
gation, as reviewed, for example, in@26#. Our definition of
the linearized phase operator follows from a simple and co
monly used procedure~see@27#!, which will be briefly de-
scribed in the following. Let us start with the usual deco
position

Â5^Âs&1dÂ, ~20a!

Â†5^Âs
†&1dÂ†, ~20b!

where ^Âs& and ^Âs
†& indicate the stationary values of th

field operators, and recall the semiclassical relations

^Â&5AIeif/2, ~21a!

^Â†&5AIe2 if/2, ~21b!

which are certainly valid at high intensity. According to Eq
~21!, the semiclassical variablef can be written as

f5 i ~ ln^Â†&2 ln^Â&!, ~22!

and substituting Eqs.~20! into Eqs.~22!, we obtain

df5
i

AI s

~^dÂ†&2^dÂ&!, ~23!

where the arbitrary stationary value of the field phase
been set to zero, so that^Âs&'^Âs

†&'AI s. Since the semi-
classical relation Eq.~23! is linear, it can be safely extende
8-5
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M. TRAVAGNIN PHYSICAL REVIEW A 64 013818
into an operatorial one, which will be used as definition
the linearized phase operatordf̂. The expressions of the
linearized operatorsd Î and dN̂ straightfully follows from
Eqs. ~6!, so that in the end our macroscopic linearized o
erators will be given by

d Î[AI s~dÂ†1dÂ!, ~24a!

I sdf̂[ iAI s~dÂ†2dÂ!, ~24b!

dN̂[~dN̂e1dN̂h!/2, ~24c!

where the stationary value of the intensityI s is determined
by Eq. ~13!.

In @1# the linearized macroscopic operators under anal
are the field amplitude, the field phase, and the carrier n
ber. Instead of the field amplitude and phase we will used Î

andI sdf̂, that is the quadrature components of the lineariz
intensity operator. This choice has the advantages that
dynamical equations for the quadrature components are c
acterized by a higher degree of symmetry, and that the in
sity and phase noise spectra can be determined inde
dently.

Adiabatically eliminating from Eqs.~19! the fast-evolving
variablesdŝk and dn̂ak we are left with the macroscopi
linearized set of equations

d İ̂ 52(
k

akck

bk
d Î 1(

k

akg f k8

bk
dN̂1AI s~ F̂Â†1F̂Â!

1 iAI s(
k

~gkhk* F̂ ŝ
k
†2gk* hkF̂ ŝk

!2 iAI s(
k

ak

bk
~gkhk* F̂ ŝ

k
†

2gk* hkF̂ ŝk
!1(

k

ak

bk
S F̂ n̂ek

1F̂ n̂hk

2
D , ~25a!

I sdḟ̂51(
k

ãkck

bk
d Î 2(

k

ãkg f k8

bk
dN̂1 iAI s~ F̂Â†2F̂Â!

2AI s(
k

~gkhk* F̂ ŝ
k
†1gk* hkF̂ ŝk

!

1 iAI s(
k

ãk

bk
~gkhk* F̂ ŝ

k
†2gk* hkF̂ ŝk

!

2(
k

ãk

bk
S F̂ n̂ek

1F̂ n̂hk

2
D , ~25b!

d Ṅ̂52(
k

~bk2g!g f k8

bk
dN̂2(

k

gck

bk
d Î

2 iAI s(
k

g

bk
~gkhk* F̂ ŝ

k
†2gk* hkF̂ ŝk

!

1(
k

g

bk
S F̂ n̂ek

1F̂ n̂hk

2
D , ~25c!
01381
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wherehk[1/(g1 iDk), and the coefficientsak , ãk , bk , and
ck are, respectively, defined by

ak5
2g

g21Dk
2
2I sugku2, ~26a!

ãk5
2Dk

g21Dk
2
2I sugku2, ~26b!

bk5g12Bkf k12gp

f pk

Np
~12 f k!1

2g

g21Dk
2
2I sugku2,

~26c!

ck5
2g

g21Dk
2

ugku2~2 f k21!. ~26d!

These coefficients have been plotted, together withf k8 , in
Fig. 2. At a first glance it is apparent thatbk is the largest
among them, and it is practically independent of the wa
vector k. This is because, in semiconductor lasers the s
tering rateg is by far larger than any other time rate. We c
therefore define the vanishingly small parameters

eak[
ak

g
!1, e ãk[

ãk

g
!1, ebk[

bk

g
21!1,

eck[
ck

g
!1, ~27!

and use them to rewrite the various terms that appear in E
~25!. We see that the following approximations can be do

akck

bk
5

akeck

11ebk
'akeck'0, ~28a!

akg f k8

bk
5

akf k8

11ebk
'akf k8 , ~28b!

FIG. 2. Functional dependence of the coefficien

ak , ãk , bk , ck , and f k8 on the wave vectork, with Np5Ns and
L'20L th . The other parameters have the same values as in Fi
8-6



le
he

ler ity
alent

iers
the
s
ns

the

EFFECTS OF PAULI BLOCKING IN SEMICONDUCTOR . . . PHYSICAL REVIEW A 64 013818
ak

bk
5

eak

11ebk
'eak'0, ~28c!

ãkck

bk
5

ãkeck

11ebk
'ãkeck'0, ~28d!

ãkg f k8

bk
5

ãkf k8

11ebk
'ãkf k8 , ~28e!

ãk

bk
5

e ãk

11ebk
'e ãk'0, ~28f!

~bk2g!g f k8

bk
5

~bk2g! f k8

11ebk
'~bk2g! f k8 , ~28g!

gck

bk
5

ck

11ebk
'ck , ~28h!

g

bk
5

1

11ebk
'1. ~28i!

The only nonzero sums that remain in Eqs.~25! can be writ-
ten in the form

(
k

akf k85GN , ~29a!

(
k

ãkf k85HN , ~29b!

(
k

~bk2g! f k852PN1GN , ~29c!

(
k

ck52k, ~29d!

where in Eqs.~29a,b,c! GN , HN , andPN are the derivatives
with respect to the carriers numberN of the quantities de-
fined by Eq.~17!, calculated in the stationary state, whi
Eqs. ~29d! is a direct consequence of the solution of t
stationary state determined by Eq.~10a!. The linearized set
Eqs. ~25! can therefore be rewritten in the much simp
form

d
•

Î 5GNdN̂1AI s~ F̂Â†1F̂Â!

1 iAI s(
k

~gkhk* F̂ ŝ
k
†2gk* hkF̂ ŝk

!, ~30a!

I sd
•

f̂52HNdN̂1 iAI s~ F̂Â†2F̂Â!

2AI s(
k

~gkhk* F̂ ŝ
k
†1gk* hkF̂ ŝk

!, ~30b!
01381
ḋN̂5PNdN̂2GNdN̂22kd Î 1F̂N̂

2 iAI s(
k

~gkhk* F̂ ŝ
k
†2gk* hkF̂ ŝk

!, ~30c!

where the definition

F̂N̂[
F̂N̂e

1F̂N̂h

2
~31!

has been used, in agreement with Eq.~6b! and Eq.~24c!.
Let us now introduce the ratios@22#

t[UPN

GN
U5(

k
H gp

f pk

Np
~12 f k!1Bkf kJ f k8

(
k

H 2g

g21Dk
2

I sugku2J f k8

, ~32a!

a[UHN

GN
U5(

k
H 2Dk

g21Dk
2

ugku2J f k8

(
k

H 2g

g21Dk
2

ugku2J f k8

, ~32b!

and rewrite Eqs.~30! in the form

d
•

Î 5GNdN̂1AI s~ F̂Â†1F̂Â!

1 iAI s(
k

~gkhk* F̂ ŝ
k
†2gk* hkF̂ ŝk

!, ~33a!

I sd
•

f̂5aGNdN̂1 iAI s~ F̂Â†2F̂Â!

2AI s(
k

~gkhk* F̂ ŝ
k
†1gk* hkF̂ ŝk

!, ~33b!

d
•

N̂52tGNdN̂2GNdN̂22kd Î 1F̂N̂

2 iAI s(
k

~gkhk* F̂ ŝ
k
†2gk* hkF̂ ŝk

!, ~33c!

which will be the basis for the determination of the intens
and phase noise spectra. These equations are the equiv
of Eqs.~A1!–~A3! in the Appendix of@1#. In Eq. ~33b! a is
the nonlinear dispersion parameter, and it transfers carr
fluctuations into phase fluctuations. In the same way
pump-blocking parametert transfers carriers fluctuation
into pump fluctuations and then into carrier fluctuatio
again. If we have, for example,dN̂.0 then the pump-
blocking effect increases, less pump carriers will enter
active layer, anddN̂ will diminish: all this process is taken
into account by the term2tGNdN̂ in Eq. ~33c!. In the fol-
lowing section we will show the impact oft and a on the
intensity and phase noise spectra.
8-7
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IV. EXTRACAVITY INTENSITY AND PHASE NOISE
SPECTRA

To determine the intensity and noise spectra of the la
we proceed as in@21#, that is, we Fourier transform Eqs.~33!

and we obtain the frequency-dependent fluctuationsd Î (v)
and I sdf̂(v) inside the cavity. These turn out to be

d Î ~v!5S iv1GN~11t!

2kGN2v21 ivGN~11t!
DAI s~ F̂Â†1F̂Â!

1S iv1tGN

2kGN2v21 ivGN~11t!
D iAI s(

k
~gkhk* F̂ ŝ

k
†

2gk* hkF̂ ŝk
!1S GN

2kGN2v21 ivGN~11t!
D F̂N̂ ,

~34a!

I sdf̂~v!5S 1

iv D iAI s~ F̂Â†2F̂Â!1S 1

iv D
3S a2kGN

2kGN2v21 ivGN~11t!
DAI s~ F̂Â†1F̂Â!

2S 1

iv DAI s(
k

~gkhk* F̂ ŝ
k
†1gk* hkF̂ ŝk

!1S 1

iv D
3S aGN~2k1 iv!

2kGN2v21 ivGN~11t!
D iAI s(

k
~gkhk* F̂ ŝ

k
†

2gk* hkF̂ ŝk
!2S aGNI s

2kGN2v21 ivGN~11t!
D F̂N̂ .

~34b!

For clarity, the contributions of the various noise operat
have been written in different lines. Note that, due to
presence ofa, the phase noise receives contributions n
only from the noise operators appearing in Eq.~33b!, but
also from those appearing in Eq.~33a! and Eq.~33c!.

The field input-output relation is given by@28#

Âout5A2kmÂ2
F̂Â

m

A2km

, ~35!

and its linearization gives

dÂout5A2kmdÂ2
F̂Â

m

A2km

. ~36!

In terms of the quadrature components of the intensity,
defining the output photon flux asI out52kmI s , we obtain

d Î out5AI out@~dÂout!†1dÂout#52kmd Î 2F̂r Î
m , ~37a!
01381
er

s
e
t

d

I sdf̂out5 iAI out@~dÂout!†2dÂout#52kmI sdf̂2F̂ i Î
m ,

~37b!

where for brevity we have defined

F̂r Î
m

5AI s~ F̂Â†
m

1F̂Â
m

!, ~38a!

F̂ i Î
m

5 iAI s~ F̂Â†
m

2F̂Â
m

!. ~38b!

The output spectra, normalized with respect to the stand
quantum limit 2kmI s , are determined by the relations

SI~v!5
1

2kmI s

1

2p
$^@d Î out~v!#†d Î out~v!&%

5
1

2kmI s

1

2p
$4km

2 ^@d Î ~v!#†d Î ~v!&

22km$^@d Î ~v!#†F̂r Î
m

~v!&1^@ F̂r Î
m

~v!#†d Î ~v!&%

1^@ F̂r Î
m

~v!#†F̂r Î
m

~v!&%, ~39a!

Sf~v!5
1

2kmI s

1

2p
$^@ I sdf̂out~v!#†I sdf̂out~v!&%

5
1

2kmI s

1

2p
$4km

2 ^@ I sdf̂~v!#†I sdf̂~v!&

22km$@^@ I sdf̂~v!#†F̂ i Î
m

~v!&

1^@ F̂ i Î
m

~v!#†I sdf̂~v!&%1^@ F̂ i Î
m

~v!#†F̂ i Î
m

~v!&%.

~39b!

The three terms appearing on the right-hand side of E
~39a,b! represent, in the order, the noise contribution of~i!
the internal fluctuations exiting from the outcoupling mirro
~ii ! the interference between the exiting internal fluctuatio
and the external zero-point fluctuations reflected by the m
ror, ~iii ! the external fluctuations reflected by the mirror. F
the intensity noise spectrum we have

1

2kmI s

1

2p
$4km

2 ^@d Î ~v!#†d Î ~v!&%

5
2km

I s

@v21~11t!2G N
2 #D f1@v21t2G N

2 #D p1G N
2 D c

~2kGN2v2!21v2G N
2 ~11t!2

~40a!

1

2kmI s

1

2p
$22km$^@d Î ~v!#†F̂r Î

m
~v!&1^@ F̂r Î

m
~v!#†d Î ~v!&%%

52
2km

I s

2~11t!G N
2 D f

~2kGN2v2!21v2G N
2 ~11t!2

~40b!

1

2kmI s

1

2p
$^@ F̂r Î

m
~v!#†F̂r Î

m
~v!&%51 ~40c!
8-8
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from which we can see that the noise exiting from the cav
gives a positive contribution to the spectrum, and the no
reflected by the mirror interferes partially destructively w
it. In the phase noise case we have

1

2kmI s

1

2p
$4km

2 ^@ I sdf̂~v!#†I sdf̂~v!&%

5
2km

I sv
2 H ~D f1D p!1a2G N

2

3
~2k!2D f1@v21~2k!2#D p1v2D c

~2kGN2v2!21v2G N
2 ~11t!2 J

~41a!

1

2kmI s

1

2p
$22km$^@ I sdf̂~v!#†F̂ i Î

m
~v!&

1^@ F̂ i Î
m

~v!#†I sdf̂~v!&%%50 ~41b!

1

2kmI s

1

2p
$^@ F̂ i Î

m
~v!#†F̂ i Î

m
~v!&%51 ~41c!

and we can see that there is not any destructive interfere
so that the output phase spectra is essentially identical to
phase spectra inside the laser cavity.

The noise coefficients for the fieldD f , the polarization
D p, and the carriersD c, have been determined in@21#. They
are given by

D f5D m
f 1D l

f52kmI s12k l I s52kI s , ~42a!

D p5(
k

2g

g21Dk
2

I sugku2~2 f k
222 f k11!, ~42b!
ng

01381
y
e

ce,
he

D c5j(
k

gp

f pk

Np
~12 f k!

21(
k

Bkf k
2[jL1L th ,

~42c!

where the parameterj is addedex postand must be set equa
to 1 or to 0 in the case of Poissonian or quiet pump, resp
tively.

Summing up the three terms of Eq.~40! and of Eq.~41!,
we obtain, respectively,

SI~v!511
2km

I s

3
@v22G N

2 ~12t2!#D f1@v21t2G N
2 #D p1G N

2 D c

~2kGN2v2!21v2G N
2 ~11t!2

,

~43a!

Sf~v!511
2km

I sv
2 H ~D f1D p!1a2G N

2

3
~2k!2D f1@v21~2k!2#D p1v2D c

~2kGN2v2!21v2G N
2 ~11t!2 J .

~43b!

These expressions will be plotted in the next section, a
having derived a formal comparison between Yamamot
and ours results for the intensity and phase noise spectr

V. COMPARISON WITH YAMAMOTO’S THEORY

Let us rewrite the final expressions obtained by Yamam
to’s treatment of the intensity and phase spectra, that is
~3.19! and Eq.~3.20! of @1#. In the original notation, we have
PD r̂~V!5

v

Qe
@A3

2^Gp
21Gsp

2 1G2&1~A1
21V2!^Gr

21gr
2&22A1A3^GGr&#1F S v

Qe
A12A2A32V2D 2

1V2S v

Qe
1A1D 2G^ f r

2&
v

Qe

@~A2A32V2!21A1
2V2#

,

~44a!

PDĉ~V!5

v

Qe

r 0
2 H F S v

Qe
D 2G21

1
1

V2J 1

v

Qe

r 0
2V2

^Gi
21gi

2&1

A4
2F ^Gp

21Gsp
2 1G2&1S A2

V D 2

^Gr
21gr

21 f r
2&G

@~A2A32V2!21A1
2V2#

. ~44b!
With respect to the original, we have corrected the followi
misprints~i! in both Eq.~44a! and Eq.~44b! the first term in
the denominator is (A2A32V2)2, and not (A2A31V2)2 ~ii !
in Eq. ~44b! the termA4

2@^Gp
21Gsp

2 1G2& was missing, and
has been added.

The coefficientsA1 , A2 , A3 , A4 are given by
A15
1

tsp
1

1

tst
, ~45a!

A252
v

Q
, ~45b!
8-9
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A35
1

2A0tsp
, ~45c!

A45
a

2A0
2tst

. ~45d!

With the following connections between Yamamoto’s a
our notation

v/Q→2k, ~46a!

v/Qe→2km , ~46b!

^ f r
2&→2km , ~46c!
he

01381
^ f r
21gr

2&→2k, ~46d!

~2A0!2→I s , ~46e!

^Gp
21Gsp

2 &→D c, ~46f!

^G2&,~2A0!2^Gr
2&,~2A0!^GGr&→D p, ~46g!

~2A0!2^ f r
21gr

2&→D f , ~46h!

V→v ~46i!

we obtain
PD r̂~v!511
2km

I s

Fv21S 1

tsp
D 2

2S 1

tst
D 2GD f1Fv21S 1

tsp
D 2GD p1S 1

tst
D 2

D c

S 2k

tst
2v2D 2

1S 1

tst
1

1

tsp
D 2

v2

, ~47a!

r 0
2PDĉ~v!511

2km

I sv
2 H ~D f1D p!1a2S 1

tst
D 2~2k!2D f1@~2k!21v2#D p1v2D c

S 2k

tst
2v2D 2

1S 1

tst
1

1

tsp
D 2

v2 J . ~47b!
e

of
e:
the

d

Under the assumption that the photon absorption rate^Evc&
is much smaller than the stimulated emission rate^Ecv& the
population inversion parameternsp , defined by Eq.~3.10! of
@1#, is '1, and one obtains

1

tsp
5

x

tst
, ~48!

where

x[
pth

p2pth
, ~49!

with p and pth being, respectively, the pump level and t
pump threshold. If we assume the correspondence

1

tst
→GN , ~50!

and introduce Eq.~48! and Eq.~50! in Eqs.~47a,b!, we ob-
tain

PD r̂~v!511
2km

I s

3
@v22G N

2 ~12x2!#D f1~v21x2G N
2 !D p1G N

2 D c

~2kGN2v2!21v2G N
2 ~11x!2

,

~51a!
r 0
2PDĉ~v!511

2km

I sv
2 H ~D f1D p!

1a2G N
2 ~2k!2D f1@v21~2k!2#D p1v2D c

~2kGN2v2!21v2G N
2 ~11x!2 J .

~51b!

Comparing our noise spectra@Eqs. ~43!# and Yamamoto’s
ones@Eqs. ~51!#, we can see that a formal identity can b
established between them if the correspondence

x→t ~52!

is assumed. In our notationx can be rewritten as

x5
L th

L2L th
5

L th

G , ~53!

while t is defined as

t5
uLN2LN

thu
GN

. ~54!

We can therefore say that our model reduces to that
Yamamoto ift reduces tox, and this happens if we assum
~i! linear dependence of the threshold and of the gain on
carrier number;~ii ! no pump blocking. As already pointe
8-10
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out in @20#, our treatment is different due to the presence
LN in the numerator of Eq.~54!, which prevents the vanish
ing of t as the pumping increases, in sharp contrast w
what happens tox. In Fig. 3 we have plotted the intensity an
phase spectra given by our analysis and by Yamamoto’s
for increasing value of the pumping. Note that the prese
of pump blocking reduces the noise in correspondence of
carrier relaxation oscillation peak and, in the intensity ca
increases the noise at the left side of the peak. In other te
pump blocking increases intensity noise in all the freque
range where we expect to obtain squeezing if we quie
pump the laser. Let us therefore concentrate on the l
frequency branch of the intensity noise spectrum, and rew
the intensity noise spectra atv50:

PD r̂~0!5
km

k F S k

km
21D D f

2kI s
1

D c

2kI s
1

D f1D p

2kI s
x2G ,

~55a!

SI~0!5
km

k F S k

km
21D D f

2kI s
1

D c

2kI s
1

D f1D p

2kI s
t2G .

~55b!

From Eqs.~42! we have

FIG. 3. Intensity~a! and phase~b! noise spectra for increasin
value of the pump, withNp5Ns , k l50, j51, and the other pa-
rameters as in Fig. 1. The full and dashed lines correspond to
Eqs.~43! and Yamamoto’s Eqs.~51!, respectively. The numbers 10
20, 40, 80, and the symbol̀ represent the ratioL/L th .
01381
f

h

ne
e
e
,
s,
y
y
-

te

D f

2kI s
51, ~56a!

D c

2kI s
5x1~11x!j, ~56b!

D f1D p

2kI s
52S (

k
Lkugku2f k

2

(
k

Lkugku2~2 f k21!
D , ~56c!

so that from Eqs.~55! we obtain

PD r̂~0!5
km

k F S km

k
21D1x1~11x!j

12S (
k

Lkugku2f k
2

(
k

Lkugku2~2 f k21!
D x2G , ~57a!

SI~0!5
km

k F S k

km
21D1x1~11x!j

12S (
k

Lkugku2f k
2

(
k

Lkugku2~2 f k21!
D t2G . ~57b!

Let us demonstrate that the coefficient in the parenth
which precedesx2 andt2 is always bigger than 1. From Eq
~10b! we have indeed

(
k

Lkugku2~2 f k21!5kg.0, ~58!

and therefore

(
k

Lkugku2f k
2

(
k

Lkugku2~2 f k21!

511

(
k

Lkugku2~ f k21!2

(
k

Lkugku2~2 f k21!

.1.

~59!

Note however that the second term tends to 0 iff k becomes
approximately equal to one for all the values ofk where
Lkugku2 is appreciably different from zero, and this happe
as the stationary carrier numberNs increases. By inspecting
Eqs. ~56a,c! and Eq.~59! we conclude that it is alwaysD p

.D f , and it becomesD p'D f only for high values of the
carrier density.

ur
8-11
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Let us now define the optical and the internal efficienc

hopt5
km

k
, ~60a!

h int512x, ~60b!

so that the zero-frequency noise can be rewritten as

PD r̂~0!512hopth int1hopt~22h int!j

1hopt2S (
k

Lkugku2f k
2

(
k

Lkugku2~2 f k21!
D ~12h int!

2,

~61a!

SI~0!512hopth int1hopt~22h int!j

1hopt2S (
k

Lkugku2f k
2

(
k

Lkugku2~2 f k21!
D t2. ~61b!

If the pump level is risen up to infinity, thenh int→1, and we
obtain

PD r̂
`

~0!512hopt1hoptj, ~62a!

SI
`~0!512hopt1hoptj

1hopt2S (
k

Lkugku2f k
2

(
k

Lkugku2~2 f k21!
D t`

2 , ~62b!

where, using the relationf k8} f k(12 f k), it results@21#

t`5

(
k

f pkf k~12 f k!
2

(
k

f pk~12 f k!
2

(
k

Lkugku2~2 f k21!

(
k

Lkugku2f k~12 f k!

. ~63!

If hopt51 then

PD r̂
`

~0!5j, ~64a!
01381
s

SI
`~0!5j12S (

k
Lkugku2~2 f k21!

(
k

Lkugku2f k
2 D

3

S (
k

f pkf k~12 f k!
2

(
k

f pk~12 f k!
2 D 2

S (
k

Lkugku2f k

(
k

Lkugku2f k
2

21D 2 . ~64b!

Let us now define the following expressions

B1[

(
k

Lkugku2~2 f k21!

(
k

Lkugku2f k
2

, ~65a!

B2[

(
k

f pkf k~12 f k!
2

(
k

f pk~12 f k!
2

, ~65b!

B3[

(
k

Lkugku2f k

(
k

Lkugku2f k
2

, ~65c!

so that Eq.~64b! can be rewritten in the compact form

SI
`~0!5j12B1

B2
2

~B321!2
. ~66!

In Fig. 4 we have represented the functionsf k , f k
2 , and

Lkugku2 that appear inB3 for two different values of the
stationary carriers density. Since for increasing densityf k

and f k
2 tends to be equal whereverLkugku2 is appreciably

different from zero, we can deduce thatB3→11 as the den-
sity increases. This has a major impact on the zero-freque
noise, because it means that the denominator of the se
term in Eq.~66! vanishes, and therefore the noise might b
come very large as the density is increased. To confirm
possibility, it is necessary to describe also the behavior of
other blocks that appear in Eq.~66!. This has been done in
Figs. 5~a! and 5~b!, where the density increase has been o
tained by reducing the confinement factor from 1 to 0.0
We can see that, as the density increases,B1→12, B2
8-12
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remains approximately constant, andB3→11. As a conse-
quence, the noise increases well above the pump contribu
j. Figure 4~b! differs from Fig. 4~a! because the amount o
pump blocking is reduced; this is obtained, as explained
@20,21#, by increasing the ratioNp /Ns . The only difference
with respect to Fig. 4~a! is a smaller value ofB2, but again
the noise increases well above the standard quantum lim
the carrier density is increased. This brings us to the Con
sions.

VI. CONCLUSIONS

The main result of this paper is that in the presence
even a small amount of pump blocking, the zero-freque
intensity noise steeply increases with the stationary valu
the carrier density in the active layer@see Fig. 5#. Since the
carrier density depends on a lot of laser parameters@see Fig.
1#, this finding can explain the great dependence of the n
performance of semiconductor lasers on the specific de
under examination, even when single-mode operation is
sured.

To show the origin of this pump-blocking-induced noi
we have demonstrated that a formal identity between
paradigmatic noise spectra Eqs.~51! calculated in@1# and the
spectra Eqs.~43! determined in this paper can be establish

FIG. 4. Behavior of the functionsf k , f k
2 , and Lkugku2 for ~a!

cf51→Ns /(LxLy)51.3531012 cm22 ~b! cf50.025→Ns /(LxLy)
55.031012 cm22. The values of the other parameters are as in F
1.
01381
on

in

if
u-

f
y
of

se
ce
n-

e

.

The only essential difference is that the parameterx defined
by Eq. ~49! is substituted by the parametert defined by Eq.
~32a!, and the central point is that, because of pump blo
ing, t does not go to zero as the pump level is increas
whereasx does. As an aside comment, we note that t
suggests that the noise effects that we have ascribed to p
blocking could actually derive from any other mechanis
capable of introducing a dependence of the pump rate on
carrier density in the active layer.

The consequence of a carrier-dependent pump rate is
at zero frequency the coefficient that multiplies the field a
the polarization noise terms do not disappear as the pum
increased. Even if ideal optical and internal efficiency a
assumed, so that we are guaranteed that any pump carr
transformed in a photon in the output laser beam, it res
that, in contrast with Yamamoto predictions, the low
frequency intensity noise is not given only by the pum
noise, but there are unexpected contributions from field
polarization noise. To explain the presence of these no
contributions we observe that if the pump rate depends
the carrier density, then the stimulated recombination r
will depend on it. As a consequence, any carrier fluctuati
will cause a stimulated recombination rate fluctuation, an
is precisely this fluctuation that causes the additional fi
and polarization noise. It is natural to expect that this eff

.

FIG. 5. Dependence of the various terms appearing in Eq.~66!
on the carrier density for the cases~a! Np5Ns and ~b! Np55Ns .
The flat line at 1 is the Poissonian pump noisej, while the meaning
of the lines marked byB1 , B2, andB3 is explained in the text.
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increases with the increasing of the carrier density. To su
marize, we can say that in the presence of pump blockin
semiconductor laser does not behave as a shot noise lim
device neither from the point of view of phase noise~in
ev

r,
a-

at

t.

s

pt.

01381
-
a
ed

agreement with@1#! nor from the point of view of intensity
noise ~in disagreement with@1#!, and consequently we ca
not expect perfect squeezing for asymptotically high pum
even if the pump noise is completely removed.
P.
ett.

tt.

,
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