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Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems
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We construct a large number of coherent states satisfying the resolution of unity with a positive weight
function, obtained through analytic solutions of the Stieltjes moment profiehrerent states on a plarend
the Hausdorff moment problefeoherent states on a disk hese solutions are obtained through the method of
inverse Mellin transform. In addition, these coherent states induce a deformation of the metric that has been
calculated analytically.
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I. INTRODUCTION is the normalization, a convergent series|zf? within the
radius of convergencéz|?<R, 0<R<=, thus satisfying
In this paper we shall expose a rather general method forzondition (i). While continuity inz is easily checked for the
constructing coherent states, as defined according to a mirfierm of Eq.(2), the condition(1) presents a severe restriction
mal set of conditions, proposed by one of{ds2]. For con-  on the choice op(n)’s. In fact, only a relatively small num-
venience, we shall focus on holomorphic coherent stateder of distinct sets op(n)’s is known, for which the func-
which up to normalization, are functions of a single complextion W(|z|?) can be extracted. As a result, the family of truly
variablez. The ensemble of statés) labeled by the single coherent states is small in number. The standard example
complex number is called a set of coherent statdiif |z) is  leading to conventional coherent statep{®)=n! [2]. Re-
normalizable,(ii) |z) is continuous in the labet, i.e., |z  cently progress has been made in finding a resolution of
—27'|—0=||2)—|z')||—0, and (iii) the states|z), zeC, unity for selected choices @f(n) [3—5]. The physical moti-
form a completg(in fact, an overcomplejeset and that al- vation behind the form of Eq(2), is to propose a general

lows a resolution of unity with the positive functioi(|z|?) linear combination of basis statés), whose coefficients
(completeness relation ~[p(n)]~ Y2 are adapted to satisfy E€L) and can be linked
. to a specific HamiltoniarH#H,, whereH, is the linear
2 2ol harmonic oscillator. As we will show in the following, there
f L d=2ZpW(lz%)(z =1 _nZO Innl. @ exists only a very restricted set of families@fn) for which
the above requirements can be satisfied.
where, in Eq.(1) | is the unit operator an¢h) is a set of The idea of building coherent states through an appropri-

orthonormal eigenfunctions of a Hermitian operatbr As  ate choice op(n) has been put forward in Ref6] and[7].
already noted, without loss of generality, in Efj) the states The states defined through E@) share for generap(n)

|z) are normalized to one. In Eql) the integration is re- Some universal features that we will enumerate now. For two
stricted to the part of the complex plane where normalizatiorflifferent complex numbers andz' the stateqz) and|z’)
converges, see E@3) below. The general method of con- are, in general, not orthogonal and their overlap is given by
struction alluded to in the above consists of choosing a set of

strictly positive parameterg(n), n=0,1,... M, M=<wx, | Mz*z)
wherep(0)=1, such that the normalized std® reads (z2')= ; , (4)
= Mz 2]
12)=N"1%|2]3) > In), (20 where we have extended the definition of the normalization,
n=0 yp(n) Eq. (3
g.(3), to
where e
(z*2")
|2 Mz20= 2 = ©
M|z|*) = 3 -
(2= 2 0 3
Whereas, through the positivity p{n), M(|z|?) is a strictly
increasing function of its argument, the overl@z’) is a
*Email address: klauder@phys.ufl.edu complex function of its arguments.
"Email address: penson@Iptl.jussieu.fr The continuity in labelz follows from the continuity of
*Email address: sixdeniers@!Iptl.jussieu.fr the overlap(z|z") through
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| 2)— |z’>||2=2(1—Re(z|z’>), (6) sult, an extensive discussion of geometric properties of vari-
ous coherent states can be now given, based on numerous

and is easily satisfied in practice. The choice of the orthogoexamples of a qualitatively different nature.
nal set of|n)’s is arbitrary. In the forthcoming paragraphs,  The plan of the paper is as following: in Sec. Il the rela-
we shall assume for simplicity thai)’s are eigenfunctions tion between condition(1) and Stieltjes(for R=%) and
of the harmonic oscillator,|:|0|n>=n|n>, where |:|0=N Hausdorff(for R<e0) moment problems will be established
=2a%a with [é,éT]:]__ In the discussiofiSec. VII) we shall and explore_d. In Sec. I_II, we shall describe and develop the
amply discuss other choices and their implication for theWay {0 obtain the solutions of the moment problem through

properties of coherent states. With the above choice, variod§€ method of inverse Mellin transform. In Sec. 1V, the geo-

expectation values of polynomial Hermitian operators are exMetric properties of deformations of the complex plane, in-
pressible through derivatives 8f(||2), such as duced by the choice of coherent states themselves, are intro-

duced and discussed. In Secs. V and VI, we shall present

o EE r many examples op(n) for which the weight functions can
(zl(ah'a'|z)= 5 S| MlZ%), r=012... . be explicitly obtained, both for the StieltjeR€ «, coherent
M(z*) \ d|Z] states on a planeand the(much less studied in the present

() contex} Hausdorff R<o, coherent states on a djskno-
ment problems. Section VIl establishes a close link between
the coherent states and physical potentials. Section VIII is
devoted to a discussion and conclusions. In the appendix we
(2*)PZ' carry out in detail examples of constructing the coherent
2P states through the Mellin convolution.

[

The generalization of Eq.7) for non-Hermitian operators
wherer # p reads

(zl(ahra'|z)=

(n+p)(n+r)! 1/2|Z|2n II. RESOLUTION OF UNITY VERSUS MOMENT
PROBLEM: STIELTJES AND HAUSDORFF

8 p(n+p)p(n+r)

n

0 n!
In this section, we shall establish the link between the

r=0,1,2..., p=012.... (8) completeness condition Eql) and the classical moment

problem. To this end, we substiture=r e'? into the states

From Eq.(2), one obtains the probability of finding the state |z) of Eq. (2) to obtain O is a disk in the complex plane,

In) in the state|z). It is equal to k=|z|?) centered at the origin, of raditg if R=cc, thenD =)
Xn
nXx)=-———, 9 d?z|2)W(|z|?)(z 12

PNX= e © | | cdawiaa 12
which reduces to a Poisson distribution for the conventional - 1 R W(r2)
coherent statefp(n)=n!, M(x)=¢€*]. A Poisson distribu- = > J' rEn'g(r2)
tion is characterized by the fact that the variance of the num- nn=o0 | 2Vp(mp(n’)Jo [ M(r?)
ber operatoN is equal to its average. One aspect of the )
deviation from Poisson statistics can be measured with the XJ ”ei 6(n-n")qg In)(n’| (13)
Mandel paramete®,,(x) [8] 0

(zIN?|2)—(z|N|z)2—(z|N|2) - T (R
= = . 10 - _ n
Qu(x) e (10 S { p(n)jo X

By using Eq.(7) to evaluate the averages in Eq0), one  from which the following infinite set of equations results

easily obtains
fR ol W(X)
T X
0

Mx)
This relation implies that the statistical properties of theThe quantitiesp(n)>0 are then the power moments of the

state|z) are solely dependent on the growth properties of thd!nknown function(x) = 7W(x)/A(x) >0 and the problem

normalization functionA(x). A state for whichQy(x)  Stated in Eq(15) is the Stielties R=) or the Hausdorff
>0 (<0) is called supefsubjPoissonian. (R<) moment problem. These are classical mathematical

The main objective of this paper is to formalize and ex-Pproblems on which an extensive and mathematically oriented
tend this construction with the help of Mellin transform tech- literature exists[9-11]. As one approach, we could first
niques together with their convolution properties. As will be Verify the necessary and sufficient conditions for the exis-
explained below, it appears that this technique is ideallytence of positive solutions, i.eW/(x)>0. These conditions
suited for greatly extending coherent state families. As a reare known for both the Stieltjes and Hausdorff ca$e40].

W(x)
Nx)

dx]|n)<n|, (x=r?), (14

dx=p(n), n=0,1,..., OKR=w.
(15

N"(x) N’(x)). an

QM(X)ZX(/\/’(X) —-/\f(x)
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However, exploiting these conditions for genepéh) is Equation(20) is also referred to as generalized Parseval
difficult if not impossible. A more practical approach would relation. Conditions on the functions so that all the opera-
be simply toconstructthe required solutions by some auxil- tions in Eq.(20) are well defined are discussed in the spe-
iary means. It is the essence of the present paper to demoaialized treatise§17]. The expressions on the left-hand side
strate that these solutions can be obtained in many cases kifs) of Eq. (20) is called Mellin convolution off(x) and
the means of Mellin and inverse Mellin transforms. Theg(x).
links between the completeness of coherent states, the Let us rewrite the Stieltjes and Hausdorff moment prob-
moment problem, and the Mellin transform have been thdems as
object of scattered remarks and sofpartial and sometimes
incomplete calculations in the literaturgl2—14. Here, we
shall provide a more systematic exposition with an extensive
use of the convolution properties of the inverse Mellin trans-
form, an essential tool to extend the families of solutions ofwhere p(0)=1 in all subsequent cases. This condition

fORx“W(x)dx=p(n), n=01.2..., (21)

Eq. (19). means that the integral af/(x) is normalized to one. We
extend the natural values ofto complex values and re-
IIl. ESTABLISHING THE SOLUTIONS OF write it as
THE MOMENT PROBLEMS WITH
THE INVERSE MELLIN TRANSFORM f XsflVV(X)dXZ p(s—1) (R=w), (22)
0

We group here the main formulas of the Mellin and in-
verse Mellin transform§15,16] as applied to the solution of
the moment problem. The Mellin transform of a function

f(x), for complexs, is denoted by @ ~
j xSTIH(R—X)W(x)dx=pr(s—1) (R<x), (23
0

o def
f*(s)::J xS H(x)dx=M[f(x);s] (16)
0 where H(y) is the Heaviside function. According to Eq.
and its inverse then reads (17), the solutions of Eq(22) and Eq.(23) are given as
1 fotie def W(x)=M Y p..(s—1);x], (24)
f(x)=mf ' f*(s)x " Sds=M ~1[f*(s);x]. (17)
H(R—x)W(x)=M [ pr(s—1);x]. (25

It turns out that for a vast class of functiofis(s) the value
of f(x) in Eq.(17) does not depend ar) which is equivalent
to integration over the imaginary axis. A discussion of con-
ditions that ensure the existencefdf(s) and its inverse (x)
can be found in Ref.16].

A linear shift ofsin f*(s) produces e R; a,h>0) the
following transformation formulas

If the choice ofp..(n) andpg(n) is made so that the lhs
of Egs. (24) and (25) are positive functions, we have fur-
nished a solution of the moment problem. For a genefa)
it is evidently impossible to tell whether the inverse Mellin
transforms in Eqs(24) and (25) are positive functions. At
this stage, we shall make use of quite extensive tables of
Mellin and inverse Mellin transformgl8,21,23. A word of
1 s+b explanation is in order to characterize these references. In
M[xPf(ax);s]= —a (stD)/hfx <_) (18 Ref.[18] one finds inverse Mellin transfornfgx) of f* (s)
h h such thatf*(s) are expressible as ratios of products of
gamma functions. This constraint is not as strong as it would
M[xPf(axM):s]= 1a<s+b)/hf*<_ ﬂ) (19) appear at first glance, since th_e resultirfg) include prac-
h tically all the elementary functions, and a large number of
special functions, including the general hypergeometric func-
An essential property of the Mellin transformation is the so-tion. Referencg¢21] is an extended version of RéfL8] that
called Mellin convolution expresseor arbitrarya,b) as includes an all-embrassing terminology and notations of spe-
cial functions in terms of Meijer'ss function,
an tbf(f)g(t)dt
0 t

1 (+io
:2_77iJ~ f*(s+a)g*(s+a+b+1)x °ds. (20
e

m,n
Gp’q(x

ap, ..., ap
by, ..., byl

In Ref. [22], one findsf*(s) including functions other
than gamma functions and their respective inverse Mellin
Observe that the formula for the Mellin convolutions, Eg. transformsf (x), which include many different combinations
(20), contains the ratios of arguments of functions, as distinof special functions. As will be explained below, in this pa-
guished from the well-known Fourier convolutions where theper we concentrate on generalizationg@f) =n! that natu-
difference of arguments of functions arise. rally lead to gamma functions. Therefore, R¢fi3] and[21]
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are of main use for us. Our approach to find soluble moment IV. GEOMETRY OF THE COHERENT STATES
problems consists of two stage§) look for p(s) in the
tables such that the variabéenarrowed down to integers,
—1=n, permits all the values on=0,1, . ..;(ii) identify

The map fromz to |z) represented by Eq2) is a map
from the spacé. of complex numbergor a subset thereof if
R<®) into a continuous subset of unit vectors in Hilbert

the correspondingV(x) and check for its positivity for all - gpace. As such, one may imagine that this map generates a
the O=x<R. If the checks(i) and (ii) are affirmative, the two-dimensional (becauseC=R® R) surface “sweeping”

givenp(s) is suitable to construct a complete set of coherenty,oygh an infinite-dimensiondHilbert) space. It is interest-
states, provided the corresponding normalization has a NOMAg to describe that two-dimensional surface bygigametry

vanishing radius of convergence. which in explicit form, is represented by the induced two-
We have scrutinized the tables in Reffs8] and[21] ac-  gimensjonal Riemannian metric tensor implicit in the line

cording to the criteridi) and(ii) and we have found approxi- glementdc2. The metric in question is not that induced di-

mately 30 instances, which we call generic, which suit them'rectly by the Hilbert space metric itself, but rather is one
selves to our purposes. We shall not enumerate them all hefgqyced by the physical content of the Hilbert space in which
but rather pick out several typical examples. vectors differing only in phase are identified. A suitable met-

It is quite intriguing to notice that any countable $#t  yic hetween any two Hilbert space vectors, $éy and| &),
cluding ong of such generic functions immediately extends;q thus theray metricdefined by

itself into infinitely many positive solutions with the use of
the convolution property Eq(20). Suppose that we have dray(|#);])):= min |[|p)—€'*[) . (29
found f* (s) andg* (s) such thatf (x) andg(x) are positive. O<a<2m
Then fora,b real, f*(s+a)g*(s+a+b+1) is also a good
candidate for the moments of a positive weight function a:
thenxafﬁtbf(x/t)g(t)dt is again positive. Thus, solving one
moment problem implicitly solves an infinity of moment
problems. S do?:=|dl2)|2~|(zld]2) | (30

In the following, in order to avoid a proliferation of indi-
ces, the symbold/(x), W(x), etc., will refer to the normal- Observe, in this line element, that any change of the form
ization, the weight function, etc., of the state under currend|z)=\|z), \ e, haszerodistance, i.e.do®>=0. This fact

grhe infinitesimal form of this metric is given by the Fubini-
Study metric, which restricted to coherent states explicitly
takes the form

discussion. _ _ o is also useful in deriving an expression 2.
We close this section by remarking that the positivity of  |In forming d|z), therefore, we can ignore changes of the
the set ofp(n), n=0,1,... and thensuing convergence of normalization and just adopt

M) of Eg. (3) by no means guarantee the existence of a

positive weightW(x). We give here the illustration of such a 1 “ nz" !t
situation by choosing(n)=(n+1)?n!, n=0,1, ... ,which diz)=N dZZ In). (3D
: n=0 \p(n)
yields
It follows that
- x" © ol 12(n—1)
_ _ . - n?|z|
M= 2 o Sy L2200 (29 ld22=A"Ydzdn > —o—— (32
n=0 p(n)
—y—In(—=x)—Ei(1,—X) while
= X ’ (27) L “ n|Z|2(n71)
zld|z)=N"*(z*dz _— 33
(ddlz=N"Yzrd) 3 — (33)
a convergent series.
In Egs. (26) and (27) ,F,(a,b;c,d:x) is a higher-order Hence, we learn that
hypergeometric function, Ei(2) is the first-order exponen- 20,12(n—1)
1ype : / n%z|
tial integral[24] and y is Euler’s constant. Fax=0, N(x) dO_ZZN—l(dZ*dZ){ 2 —NYz*2)
is by construction a positive function. Howevep,(n) ni=o  p(Nn)
= [ox"W(x)dx, with W(x)=x e *(x— 1), which is a non- = 220D\ 2
positive function. x| > —) } (34)
Therefore, forp(n) above, i=o p(n)
Because
|2)=[2F2(1,1;2,22]*)] 7?2, ———==In), (28 S
n=0 \/(n+1)°n! MX)= 2, , (35
n=0 p(n)
is a normalizable state, but it is not a coherent state. wherex:=|z|2, a moment’s reflection shows that
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do?:=w(|z|?)dz* dz,

!

N'(x)
M(X)

1 2
WN (X)} =|X

1
w(X) :ZW[XN’(X)]’—X

(36)

whereN’ (x) :=dN(x)/dx. By constructionw(x)>0, for all
relevantx. In polar coordinatesz:=r e'?, it follows that

(37)

The result, therefore, is eircularly symmetric, two-
dimensional geometryif w(r?):=1, thendo? describes a

do?:=w(r?)(dr?+r?d6?).

flat, two-dimensional surface. This situation occurs when

p(nN)=n! and Mx)=¢€*. If M(x)#€* thenw(r?)+1 and
the geometry is nonflat. We refer to(x) as themetric fac-

tor, and knowledge ofv(x) enables us, in some sense, to

PHYSICAL REVIEW &4 013817

Vo(r?)/(du/dr):=b(u)=J1-[dz(u)/du]?.

Again, a solution of these two equations enables one to ob-
tain z(u) from a knowledge ofn(r?). In this case also the
surface can be “visualized,” although not so naturally as in
the Euclidean case. For all the new states introduced later we
know explicit expressions for their normalizations. Conse-
quently we are able, with E@36), to investigate for the first
time, the geometry of many different coherent states.

For simplicity in our presentation, we offer plots @{x)
and make only qualitative remarks about the geometry of the
coherent states. For an extensive discussion of the geometry
of selected coherent states, see R23].
Figures illustrating metric factors are presented in the fol-
lowing sections in which specific examples are discussed.

(45

V. COHERENT STATES ON THE PLANE

visualize the surface of coherent states embedded in the Hil-

bert space. More directly, we can also interpet’ as the
geometry of the associated “classical phase space.”

In this section we shall exploit a choice p{n)’s such
that M(x) is convergent everywhere on the positive axis,

As usual, we can aid our visualization of such a surfacémplying that|z) is well defined everywhere on the complex
by embedding it in a three-dimensional Euclidean or pseudoPlane and the weight function is a solution of the Stieltjes

Euclidean space. For the Euclidean case, we set
do?=du?+u’d6?+dz(u)?, (38

where herez=2z(u) corresponds to the third dimensigand
not a complex variablg! and set

w(r?)(dr2+r2dg?) =b(u)2du®+u?de?, (39)
b(u)?:=1+[dz(u)/du]?. (40)

To satisfy the last relation, we require that
u=a(rdr, (41)
Vo(r?)/(du/dr)=b(u)= 1+[dz(w/du]’. (42

These two equations provide a set of parametric differential
equations to fina(u), and hence, a two-dimensional surface

moment problem. We shall follow now the prescription out-
lined in Sec. lll and identify, partially with the help of tables
in Refs.[18,21], such choices op(n) for which the weight
function is positive. Ourp(n) will be always expressible
through ratios of products of gamma functions. In this para-
graph thep(n)’s satisfy lim,_..p(n)=0c. We will proceed
roughly according to the increasing complexity ptn),
choosing a few generic examples of positive weight func-
tions.

(@ The first example consists in choosingn)=(n
+p)!l/p!, p=0,1,2...,merely shiftingn by p in the stan-
dard definition. The normalization is

NMx)=1F1(1;1+p;x)
1
=p| = X PET(p)—(p—)x T (p—1x) |,

(46)

in the three-dimensional Euclidean space. For example, ifvhere in Eq.(46), ;F4(a;b;x) is Kummers confluent hy-

w(r?®)=1, thenu=r, and thush(u)=1, i.e.,dz(u)/du=0,

pergeometric function anb(«,x) is the incomplete gamma

or z(u)=const describing a flat plane as expected. Morgynction [24]. The weightW(x) = 7W(x)/N(x) is obtained
generally, these equations provide the connection betwegp,m, Eq. (18) by elementary means and is a term in the

the conformal form of the metrifeft side of Eq.(39)] and
the desired forn{given in the right side of Eq(39)], the
latter form being more useful for visualization.

It may happen that Eq41) and Eq.(42) have no solution,

Poisson distribution:

(47)

~ 1 b
W(x)=axe .

in which case it may be that the embedding is pseudo-
Euclidean rather than Euclidean. To cover this case, one ini- The metric factor is obtained from Eqggl6) and (36) to

tially sets

do?=w(r?)(dr’+r2d#?) =du?+u?d6?>—dz(u)?,
(43

and therefore the required set of parametric differential equa-

tions becomes

u:=vw(ror,

(44)

be

1F1(2;p+2;%)

P = (0 D) Fa(Lip+ 1)

1F1(3;p+3;%)
pt+2

~ LFu@p+207° )
(p+1)1F1(1;p+1:x)

(48)
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FIG. 1. The metric factors of Eq48) for different values op. FIG. 2. The Mandel parameter of E&1) for different values of
On this, as well as on all the subsequent figures, all the quantitieB. For p=0, Qu(0x)=0.

plotted are dimensionless.
found recently important applications in dynamical problems

which for every integep evaluates in terms of elementary [26,27]). This case was the subject of a separate sfddy
functions. We quote here only two expressions: where a rather detailed investigation of the corresponding
moment problem was carried out. We quote the simplest

1-e *(1+x) solution of the moment problem that can be obtained with
w(1x)= X a2 (49 formula(18) above:
(e7*=1)
(B—a)l ap—x1
1+e72x_e7>((2+x2) \7\/ _ W(X) . X e
w(2X)= , 50 x)=m = (54)
X e 102 (50 N(x) al'(B)
Note thatw(p,0)=(p+1)~. We quote here for iIIu_strative purposes two cases
The Mandel parametéd,, (p,x) is given by of ;/\/(1{)[-; for a=1, B arbitrary (ﬂ_>0)' N(X):f(ﬁ)
Xe*xP(L-[T(B—-1X) /[T (B-1)]); for a=1/2,
%) =x 2 1Fi(3;p+3:x) B=1, Mx)=e[1+erf(x)], where erf§) is the error
Qu(p.x)= 2+p F1(2;p+2;x) function.
The two positive constantsy,8 in the expression
1 4Fu(25p+25%) (51 for Mx) allow for a certain flexibility to investigate the
behavior of physical quantitites. For instance, the case

S 1t+p Fy(Lipti)

In Fig. (1) we have displayed the metric factors of E48)
for p=0,1,3,6,9,12.

One observes that for a giventhe geometry represents a
“vase” with the bottom at the valuep(+ 1) *. Forx—os, it
saturates at the value 1 for al In Fig. (2) we have pre-
sented the Mandel parameter that is positive fopatll and
X. The states are then super-Poissonian in nature.

(b) In this example we extend the exponential to its most
natural generalization, the so-called Mittag-Leffler function

[25] by choosing

I'an+pB)

Tp 62

p(n)= a,B>0.

Then
N(X)=T(B)E, g(x), (53

where E, 5(x) are the Mittag-Leffler functions defined as
Enp(X)=Z7_o(x")/T'(an+ B) [25]. (These functions have

a=2, B=1 gives N(x)=cosh(/x), the metric factor
w(X) = L([tanh(/x)]/(yx) + 1[ cost(yX)]) and the Mandel

parameter Qy(x) = —  + (VX)/[sinh(2/X)]. Observe that
0(0)=1/2 and thaQy,(x) <0, which indicates that the state

is sub-Poissonian. The quantitiegx) and Qy(x) are rep-
resented in Fig(3). The casex=1/2 andB=2 leads to

N )_ex2[1+erf(x)]—1_ 2
x)= 2 x\/;'

The correspondingw(x) and Qu(x) can be expressed
through exponential and error functions but will not be
quoted here. The drastic change compared withithe® and

B=1 case is observed.
(c) the next generic situation is obtained from a bit more

complicated choice

(55

(56)

013817-6
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FIG. 3. The metric factor and the Mandel parameter for the_

moments of Eq(52) for =2, B=1.

It leads to the normalization(x)=¢e*(1+x) and the posi-

tive weight functionW(x)= —Ei(—x) where Eify) is the
exponential integral24] (see the formula @) on p. 182 of
Ref.[18] or the formula 8.4.11.1 on p. 642 of Rg21]). The
weight W(x) = —Ei(—x) is plotted in Fig.(4). The metric
factor is w(x) = (x2+ 2x+2)/(x+1)? and Qy(x) = — x/[ (x
+1)(x+2)]. Clearly, o(x)=1 and Qy(x)<0 indicating

sub-Poissonian statistics.
(d) A generalization of(c) is to extend the factorial to a

gamma function parametrized lay>0. More precisely

'm+1+a)

P T 1) o7

originate fromW(x)=T"(«a,x)/T'(1+ «) (see formula 28l)
on p. 189 of Ref[18] or formula 8.4.16.2 on p. 647 of Ref.

[21])). It leads to

3

Wx)

FIG. 4. The weight functionV(x) = —Ei(—x) of example V
(c).
01

FIG. 5. The Mandel parameter of E¢60) for =2, and «
1/2.

N(X)=1F1(2;1+ a;x). (58
The metric factor is
w(a’x):(a+1)lFl(2;a+l;x) 1F1(3a+2:%)
2x1F1(3;a+2;x)
1+ a)Fy(2;at+1%)] ] (59

with w(@,0)=2/(a+1). The functionw(a,x) (as a function
of x) is monotonically decreasing for<Oa<<1, monotoni-
cally increasing fora>1 and equals to 1 fow=1. The

Mandel parameter
1F1(4;2+3:%)
at+2 F(3;at+2;x)
2 Fi(35a+2;x)
Ca+1l 1F1(2;a+1;x))’

Qum(a,x)=x

(60)

is positive fora>1 and negative for & «<1, as displayed
in Fig. (5). It follows that the statistics of the coherent state
with p(n) given by Eq.(57) crosses over from sub- to super-

Poissonian as& crossesx=1.
(e) The choicep(n)=(n!)? is the particular case of states

considered in the literatur¢l3]. Their normalization is
NMX)=10(2\x), and the weight function isW(x)
=2Ko(2x) (see the Appendix for a simple demonstration
of this resul}, wherel ; andK, are the modified Bessel func-
tions of first and third kind, respectively. Here

1(2V%)]°
oX)=1—-|———| , 61
0 1o(24/x) (61
lo(24X) |1<2&>>
=y - -1, 62
Qu) X(w&) lo(2y%) (62

3817-7
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FIG. 6. The metric factor and the Mandel parameter of Eg{b.
and(62).

with Qu(0)=0, Qu(*)=-—

w(X) andQpy(x) are displayed in Fig(6).

(f) By settingp(n)=(n!)* we arrive at the normalization

©

Nx) =2,

0 (n1)®

n

EOFZ(lvl;X)! (63)

which is a generalization of the serigb(1;x) in terms of
which all the Bessel functions are defindéhcluding
1o(2X) = oF1(1;x) of the preceding exampleThe weight
function hereW(x), is a solution of the moment problem

ij“VV(x)dx=(n!)3, n=0,1,..., (64)

0
which, through Eq.(20) is the Mellin convolution of
2K(24y) with e, or

W(x)=2 J:%ex’tKo(Z\/f)dt, (65)

which is positive, but which cannot be expressed in simpl
terms. A possible way to obtain a closed form expression fo
Eq. (65) is to use the MeijeG-function[21] that is defined

as a certain Mellin transform. When applied to E6¢) the

weight is expressed through a known series representation

Ggig(xo, 6, o):
\7v<x)=eg;g(xo 6 0) (66)
=3[IN(x)12 oF2(1,1;—x)
+LIN(X) ] T1(X) + Ta(x), (67)

1/2; Qu(x) is a strictly nega-
tive function, implying sub-Poissonian statistics. The plots of %

PHYSICAL REVIEW &4 013817

0.8 -

06— -
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Qu®)

021 -

04— -

FIG. 7. The metric factor and the Mandel parameter of EZf3.
and(71).

whereT (x) are rapidly converging power series defined by

+1
T0=-33 L e (68)
n=0 (n!)
1 2+9y%(n+1)-3yM(n+1
| (69

where y(z) and y(Y)(z) are, respectively, digamma and po-
lygamma functions of order ong4]. From Eg. (63) the
analytic formulas forw(x) and Qy(x) follow:

1 1
w(x):m oF2(2,2:x) + X ZOF2(3,3;X)
oF2(2,2)x)
EER T (79
[T oFa3.3X)  oF2(2,2)X)
QM(X)‘X(Z FA2.2%) 0F2<1,1;x>)' &

They are plotted in Fig.7). Note in passing tha¥/{x) of Eq.

(63) can be related to the so-called hyper-Bessel function
18-20 of “type” |Iy. In this perspective, the relation
o— K¢ between the normalization and weight in examjg)e
can be extended to the current example if we tentatively
identify the hyper-Bessel function of “typeK, with W(x)

of Eq. (67). By changing the moments frorm{)? to (n!)3
the singularity of the weight function at=0 becomes stron-
ger. This is illustrated on Fig(8) where we have plotted
2K(2+/x) andW(x) of Eq. (67) on the same graph.

(g) An extension of examplée) in the form

n'I"(n+4/3)
ramn -

leads to the normalization(x)=T"(4/3)[ 1 ;,3(2X) 1/ (x¥9).
From the formula 8.4.29.1 on p. 676 of RE21] one con-

p(n)= (72

013817-8
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W(x)

0.8 1

1 X

x FIG. 10. The weight functioWV(x) of Eq. (76).
FIG. 8. Comparison of weight functiow; (x) =2Ky(2yx) and
of W,(x)=W(x) of Eq. (67).

3
N(x)—le(z;l,l;x =[1o(VX)T?+2X1o(VX)11(Vx)
cludes that the corresponding positié(x) is given by (75)
AI[(9x)Y2]/T (4/3), where Aify) is the Airy function[24].

The metric factor is and the explicitly positive weight functiorisee formula

37(1) on p. 205 of Ref[18] or formula 8.4.23.27 on p. 668

of Ref.[21]):
1\ lag2%) 21D
o(X)=3+| —=-3|——F~=", (73 -
3k 1s(2V0) W) =[Ko(vx)]% (76)
a monotonically decreasing function Bfand Qv(x) turns  which is plotted in Fig(10). The metric factor and the Man-
out to be negative. They are illustrated on Hig). del parameter are rather complicated expressions involving
(h) The last example involves the moments lo(v/X) and1(y/X). We display them in Fig(11). Observe
3 that w(x) is monotonically decreasing fronm(0)=3/2,
(n)= (n1)°T'(3/2) (74 whereas Qy(x) is negative everywhere, with
p T(n+3/2) lim,_..Qu(X)=— 1/2.
As mentioned above, the precedipfn)’s, from (a)—(h),
leading to can still be convolutedwith themselves or bilaterallyto
0.8 1.5 T T T T T T T T T
0.6 =
_ g
3 0.4
02
0
F 0al — g 0
=
L 4 <o
041 =
L | ! L 1 T t } |
0 5 10 034 2 4 6 8 10

FIG. 9. The metric factor of Eq73) and the Mandel parameter FIG. 11. The metric factor and the Mandel parameter for the
for the moments of Eq(72). moments of Eq(74).
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produce again generally new positive weights. In the appen-30
dix we have presented examples of such calculations.

VI. COHERENT STATES ON THE DISK 0~ "
— N
-—- o(x)

I
'
t
i
!
[}
'
i
t
!
1
]
I
i
i
!
i
!
i
1

We turn now to a situation where the normalization given
by the series Eq(3) is only convergent fox<<R<. Then
the domain of definition of the coherent states is a disk on
the complex plane centeredxat0 with radiusR. A trivial
change of variables transforms it to a unit diBk 1, which
we shall adopt for all the subsequent examples. The resolu->°

tion of unity condition, Eq(1) takes the form of

f f22<1 dZZ|Z>W(|Z|2)<Z|:|:nzo [nynl, 77
W(x)

”J NX)
which is a classical Hausdorff moment probld®] for a Eqs.(?é) and (80).

sought for positive functionrW(x)/A(x). In contrast to the
Stieltjes problem, Eq(22), it is relatively easy here to fur- . -
nish the solutions of Eq(78) with a simple form of the both of which are plotted in Fig13). The Mandel parameter

0
n=0,1, ..., (78 .

dx=p(n),
FIG. 12. Normalization and metric factor of example 4,

moments. In this section, all the&(n)’'s satisfy lim,_,..p(n)

=0. We give here first two illustrative examples and then go . 5 5

over to more complicated moments and the applications of Qu(X) = X(X"—8x°+ 28x“— 42X+ 24) 84
M (2= 3x+3)(x2— 4x+ 6)(1—X)

the inverse Mellin transform method applied to H@8),
quite analogous to the preceding paragraph.

(@ First, choosingW(x)=2x, we obtain p(n)=2/(n We now extend our procedure of construction of coherent
states by choosing the moments in form Bfi()/(I'T"), with

+2), which leads to the normalization
I denoting some gamma function. This choice is not as ar-
bitrary as it may seem to be, since, by examining the tables

in Refs.[18,21], one finds at least four generic cases of posi-
(79  five weight function.
(c) Consider formul&8(1), p. 174 ofRef.[18] or formula
8.4.40.2 on p. 692 of Ref21], which reads

and through Eq(36), to the metric factor
50 T I T I T I T T

2—X

1 o1
NX)=5 2 (n+2)x TG

( ) 5 3—2x (80) ]
o(X)=2——————, ,
(2=x)%(1-x)? ' !
both of which are plotted in Fig12). The Mandel parameter ~ “°[” p— ',," 7]
L -—- 0(x) ! -

is
30

_ X(X*—6x+7)
QuiX)= = x=3)1=x)" (8D

(b) We complicate the moments a little Wgrbitrarily) 20
choosingp(n)=6/[(n+2)(n+3)], which can be shown to
originate fromW(x)=6x(1—x). The corresponding nor-
malization and metric factor are given, respectively, by 10

_lx —3x+3
Nx) = 3 17 (82 08 _ :

FIG. 13. Normalization and metric factor of example ),

3x%2—8x+6
(83
Eqgs.(82) and(83).

)= 321

013817-10
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CONSTRUCTING COHERENT STATES THROUGH
i ' . i L2
- "' 1 M n " 2 " 2 —F 3 5_2_
40— ":' .:— (x)= n:OX n'(n+1)! —2li 55 X
— NEX; ‘/ (89)
r -—= 0 ! |
——— QM(X) ",I 4
| T 37 X(x— 1){ (\/—)+—E(\/—) (90)

30

The weight function (3/4x(\/1—X) is a perfectly regular
i and nonsingular function drD,1]. The metric factor and the
Mandel parameter have a very similar behavior to the previ-

f ] ous case and will not be considered here.
The other two examples involve as weight functions a

| rather general form of the Gauss hypergeometric function

— 2F1(a,b;cix).
(e) We rewrite the formula 11(1) on p. 288 of RgL8] or

formula 8.4.49.22 on p. 720 of RgR21] as

|

FIG. 14. Normalization, metric factor, and Mandel parameter of
example VI(c). Jl . I'l+c—a)I'(1+c—b)
0 I'ic)I'(1+c—a—b)
f K(y1—x)x"dx= (n)? =p(n) (85)
2 5 3y P X (1-x)°"L,F(a,b;c;1—x)
'l n+ E
_I'(1+c—a)l'(1+c—b)

I'(l+c—a—h)
'(n+1)I'(n+1+c—a—h)

For this example, it follows that the normalization is given
X
I'n+1l+c—a)l'(n+1+c—h)

by
. rnsl —p(n), (01)
2 33
=2F1f 5.5:1x (86)
with the restrictionsa+b—c<1 andc>0. It turns out that
for many choices ofa, b, andc the weight functionthe

4
Mx)= plp 2 n—')2
expression in square brackets in Egl)] is positive

We illustrate Eq.(91) here with the valuesa=1/2
b=1/2, andc=3/2. For this choice, one can show that

W(x) =4/ arcsing/1—x) [which is plotted on Fig.(15)
with the weight functions of examplé&) in Sec. VI and
example(c) in Sec. VI and Eq.(91) reduces to

. (K(J—H—E(\/—)) (87)

7T(X 1)

where, in Eqs(85) and (87), K(k) is the complete elliptic
integral of the first kind, ande(k) is the complete elliptic
2 T'(n+3/2

integral of the second kinfR4]. The expressions fow(x)
i 4
—| x"arcsi X)dx= nj,
Wf ML= x0dx= = o =)

and Qu(x) are quite involved and will not be reproduced
here. The functiongV(x), w(x), andQy(x) are plotted in
(d) A further example is provided by formula 23(1) on p.
180 of Ref.[18] or formula 8.4.40.39 of Ref.21], which . o
reads with the normalization,
3 3 I(n+1)! Nx)=,F4| 2,2 3 )
1 n'(n+1)! X)= 1475, X
f ZE(\/l—x)x”dx= ?ﬁ =p(n), = 2
0
Fin+slin+3 1 (1+ 2x)arcsir( yx) ©3
(88) 4(1-x)? Wi-x |

the metric factor

giving the normalization
013817-11
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0.5
AN

X

FIG. 15. Plots of weight functionddV;(x): weight function of
example VI(c), W,(x): weight function of example V(d), W3(x):
weight function of example V(e).

8 1
w(X)= 3 §2F1(3,3;2 ,x)
2F1(2,2;§,x>
5
8 2F1(3,3;§;X) 6
—§x 3 +§x 2F1<4,4,2,x) ,
2F1(2,2;§;X
(94)
and the Mandel parameter
7 5
9 2F1(4,4;§;X) 4 2F1(373;§;X>
Qum(x)=2x 5 3 3
2F1(3,3;§;X) 2F1(2,2;§;X)
(95)

These expressions are plotted in Fi@j6). The functions in
Eqgs.(94) and(95) can still be expressed by formulas of type
(93) but these will not be reproduced here.

(f) The last example in this paragraph involves formula W L 1

12(4) on p. 289 of Ref18] or formula 8.4.49.25 on p. 721
of Ref.[21]:

1
0

=I'(c)y(a,b,c)

dx

1
Y(avbvc)(l_x)0712|:l a!blcyl_ ;)

I'in+1+a)'(n+1+b)
'(n+1+c¢c)I'(n+1+a+b)

=p(n),

(96)

PHYSICAL REVIEW &4 013817

FIG. 16. Normalization, metric factor, and the Mandel param-
eter of example VIe), Egs.(93), (94), and(95).
with the restrictions ¢>0, a,b>-1, and
where v(a,b,c):=[T'(1+c)['(1+a+b)]/[T'(c)I'(1
+a)['(1+b)]. We choose now the set=1, b=2, c=3/2
for which the moments arep(n)=3I(3)(n+1)!/[(n
+3)I'(n+3)] and the weight functiofin square bracket in
Ihs of Eq.(96)] is positive and reads

~ 9 1-x
W(x)=Zx \/1—x+xarcsinr€ \/T) , (97
while the corresponding normalization is
Ax) = 1 4—X 4 08
=3 X1 X’ (98)

These quantities as well as the corresponding metric factor
and the Mandel parameter are depicted in Figyg) and(18).

1+ —

o

0.5

0.2 04 0.6 0.8 1

X

FIG. 17. Weight function of example MF), Eq. (97).
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actual meaning of the orthogonal det) is extended to a

50 .
_ general Hermitian operatdt, such that
“ 1 H|n)=wey|n), (99
§ where the eigenvalues, satisfy
n O=ep<e;<e,, ... (100

30

Note that the usual boson operators do not enter these defi-
nitions, as in generat,#n. The modified definition of the

1 general coherent state becomes:

20
" “ J2exp(—ie
F(—”y)|n> (101

A 3,9)=N"¥
P | ) 2( )ngo m

10

and it satisfies an extended set of conditions for a state to be

coherent stat€30]:
(1) |3,v) is normalizable, i.e., the radius of convergefte

FIG. 18. Normalization, Eq98), metric factor, and the Mandel ¢ NQI)==r_ 3" p(n) is not zero.
(2) |3,9) is continuous intwo labels J and v, i.e.,

parameter for example MF).
. . . 3"y =)= ") = 13,y).
This terminates our list of examples of coherent states on (3) The statedJ, y) satisfy the resolution of unity, with
the unit disk for which the weight functions are positive. W(J,7)>0 such tr;at ’

This list is by no means exhaustive, since by Mellin convo-
luting any one of these examples, either with itself or with " - o0

any other of them, we will still obtain a new set @fn) with J dyf dJ| I, MW(I, y){(J,y|=1= 2 [n)(n].
a positive weight function and desired convergence proper- - 0 n=0

ties of the normalization. Furthermore, as explained in the

preceding paragraph, a similar construction procedure can be (4) Temporal stability for a specific HamiltoniaH.
designed using fop(n) functions other than ratios of prod- _

ucts of gamma functions using our procedure but this time e "3, »)=lJ,y+wt), w=const. (103

(5) Action identity: (J,y|H|J,y) = J.

based mostly on Ref22].
In the following, we shall point out that the foregoing
examples are sufficient to recognize a class of physical po- The propertieg4) and (5), which supplement the funda-

tentials for which the constructed coherent states are asympaental characteristics elaborated upon in the introduction,
originate from the adaptation ¢8,vy) to a specific Hamil-

tonian’H of a truly interacting system, away from the har-
monic oscillator, the free boson system. The propéBy
forces the quantitiep(n) to be a unique function oé,’s,

(102

totically relevant.

VII. COHERENT STATES AND PHYSICAL POTENTIALS

The large variety of quantum wave functions introducednamely,
and discussed in the preceding paragraphs needs to be con-
fronted with more specific physical situations usually formu-
lated with a one-particle nonrelativistic Hamiltoniaf(p,q)

with p momentum andy coordinate, in the forntH(p,q)
Note, that these quite far-reaching extensions of the initial

=p?/2m+V(q) whereV(q) is the potential. We shall limit
101), do not affect much the prop-

ourselves in this work to one-dimensional Hamiltonian prob-yqfinition (2) to arrive at(
ty (3)—the resolution of unity: if we assume the product

lems, and try to make contact between the coherent stat
and physical potentials. One way to do it is to consider &Form for W(J,7)=W(J)U(y) such that
recent formulation of coherent states for systems with dis '

crete and continuous spectry®0]. In this paper we shall 1 (r

only take into account Hamiltonians with discrete spectra. In j ... U(y)dy=lim ﬁf ...dy,
order to be able to associate the coherent states with Hamil- [—oe -r

tonian problems, some important modifications in the defini- ) ) )
tion of coherent states discussed in the introduction shoulf€n resolution of unity for E¢102) boils down to the equa-

p<n>=k[[l e, p(0)=1. (104)

(109

be made. We shall list them here. First of all, the idea oflONS
parametrizing the state) in terms of a single complex num- 5
ber z is extended by replacing by two independenteal j gn
numbers] and y, such that)J=0 and—o<y<e. Then the 0

013817-13
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which are the previous Eq15). It means that the states limit n—oo, the cases$a), (c), and(d) correspond ter=2, or
defined by Eq(101) have the same completeness relations ashe quadratic potentials; the cas@s, (g), and (h) can be
the states of Eq2). In addition, they are specifically adapted interpreted asr= 0, which can be represented as an infinite
to a Hamiltonian with the spectrum of EGLOO). square-well potential. The ca$é cannot be fitted to Eq.
We shall now try to extract some information about pos-(111). The case(b) for n— gives e,~n*? indicating o
sible Hamiltonians, by first deriving their spectra with Eq. =2/3. Taking literally Eq.(52) with generala,3>0 we ob-
(104) and then attempting to reconstruct the potentié&lg),  tain
thereby obtaining the estimations it It should be borne in
mind that these steps are only approximate, and for at least e — I'(an+B)
two reasons: first and foremost, the reconstruction of the " I'(antp-a)
Hamiltonian from its known spectrum is never unique. This )
has been explicitly demonstrated for instance by Abrahanyvhich is independent of. This leads to
and Mosed31] who have found highly anharmonic poten-

R

n—o n%, (112

tials, possessing_ the spectrum of the harmonic oscillator: The o= 20 . O<a<2, (113
second reason is, that the only feasible method to estimate 2—a
V(q) from e,’s is to use the quasiclassical quantization con- N
ditions of Bohr-Sommerfeld which includes any positive exponent as long as &«

< 2. Here, the Mittag-Leffler functions prove to be a particu-
1 larly flexible tool to identify any power-law potentials.
n+ E)- n=012..., (107 For the coherent states on the unit disk of Sec. VI the
situation is a little different. In fact, the states of Sec.VI are
or appropriate for attractive potentials of inverse power-law
type, which typically exhibit bounded spectrum, i.e., the
Coulomb problemgp=—1.
, n=012..., We derive the appropriate estimate fgrfrom Eq. (108
(109  With V(q)=— [Volq? (—2<0<0); it reads

1 (b
%fa p(q)dg=mw

1 (b
— | Vomte, Vi@~

L
v

20/(2+0)

wherea andb are the turning points of the potentidl(q), 3 |V0|2’(2+")n—~>oo—nz”’(z“’).

defined byp(a)=p(b)=0. We will consider only the sym- ©€n=
metric power-law potential¥’(q) =V,|q|.
The usual disclaimer at this point is to restrict the validity

of Eq.(107) jco n>1, although many examples are known for 1 integralD (o) =f(1)\/mdx is known exactly only for
V(q) for which Eq.(107) reproduces exactly the whole spec- ¢ajected values of o D(—1/2)=ml4, D(—1)= /2,

trum e,, n=0,1,... [32]. We will now reconsider the D(—3/2)=2 T (7/6)/T(5/3), etc. Together with the con-

whole set of coherent states from Secs. V and V1 in the lightyision ¢ /=0, we arrive at the following representation of the
of the definition, Eq(101), using thep(n)’s from the pre-  p o4 spectrumr(>1):

ceding examples. According to E¢L04), the spectrum of

f (n+1/2)
2 J2mD(o)

(114

the (unknown Hamiltonian is given by e,~1—n2'C*o0)  _2<4<0. (115
e,= p(n) ’ -12, ..., (109 The _expres;ionillS) will now be confronted with thee,’s
p(n—1) obtained with Eq.(109 using the set ofp(n)’s from the
examples of Sec. VI. After simple transformations we arrive
€=0. (110 at the followingn dependence:
The n dependence of théquasiclassical spectrum of the 1 1
potential V(q) =Vo|q|?, (Vg,0>0) is given from the Eq. (@ ep=1-——n—=l-g, (1106
(108 (A=1) by n+2
20/(2+0)
e = %M Vo|22+0) n o0 n20/(2+0), (b) en=1—i N o0 1_% (117
ZmC(o) n+3
(111
1 — 4n+1 — 1
where C(o)=[5yl—X dx=(J7/(2+ o)) (Ue)IT (1/2 (c) e,=1—-———n—o 1——, (118
+1/o7). (2n+1)° :
Let us calculate by Eq(109 the e,'s for the p(n) of
examples(a)—(h) of Sec. V; the result is{a) n+p; (b) an+3 — 1
I'(n/24+2)/IT'(n/2+3/2); (¢) n?/(n+1); (d) n(n+a)/(n (d) e,=1~— 1 AWl 1-57, (119
+1); (e) n?; (f) n; (g) n(n+1/3); and(h) n®/(n+1/2). All Aln+t =l nt2
these expressions represent an unbounded spectrum. In the 2 2
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3
—n+1
(e) ep=1— n— oo

12
(n+1)? (120

3
1- o,

3 5

2 _

3
(f) e,=1- m n—o 1— 20 (121)
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n
—5¢[1-n"Y5< D) In(1—k™ %)
k=2

<-5[2"%—(n+1)"1%. (1298
Doing better than this would require using more terms in the
series on the right side of Eq124), and with additional
effort this could be done. However, for convenience, we stop
at this point and take from this estimate the rough approxi-
mation that

We see that a common pattern emerges as the behavior

e,~1—c/n (c=const-0) applies to all these examples.
According to the estimate E¢lL15 the corresponding expo-
nent iso= — 2/3, thus the Hamiltoniaf{(p,q) for which the

states VI(a)—(f) are asymptotically relevant is

Pz |Vl

2m |q|2/3'

H(p,q)= (122

As far as we know the eigenfunctiofs) of the discrete

p(n)~ee (151 (129
for largen for some constant’~5. To proceed further, we
need to change our problem somewhat, and being guided by

Eq. (129, we adopt

[1+c'(n+1)" 17

(n):= :
P 1+c’

(130

part of spectrum of Eq:122) are not known so that the state &S our definition op(n) for all n, O<n<<. This final form

|J,y) of Eg. (101) cannot be completely determined.

We shall now attempt to describe qualitatively the coher-desired characteristic behavior

defines a normalized expression fefn) that exhibits the
15 jsolated above. Having

ent state and its weight function that is asymptotically rel-done so, we may then seek a weight functibitx) so that

evant to a situation somewhere in between two known cases,

o= —2/3 [case of Eq.(122] and the Coulomb cas¥(q)
~|q| 1, for which the weight function is known exac{lg0]

W(x)=%[l+ S(x—=17)], (123

where 6(y) is the Dirac delta function. We choose=
—3/4, which through Eq(115) yields e,=1—n"%5 Now
we go back to Eq.(104), which indicates thatp(n)

=TI}_,e=T;_,(1—k 5. As it appears that this product
cannot be evaluated in a closed form, we shall make a rough

approximation to its behavior. We first note that

n n
Inp(m)=2, In(1-k=®9=— 3, [k~ (1/2k™

+(1/3)k 1854 ...7 . (124

For all x, 0<x=<27%, and with c=-25In@1
—27%%(=1.31277), we next observe that
—cx=sIn(l—-x)<—x.

(125

Thus, we can assert that

n n n
—cD k<D In(1-k B<—> k55 (126
k=2 k=2 k=2

Since

n+1 n n
f X~ dx< > k*6’5sf x~85dx, (127
2 k= 1

2

it follows that

. [1+c/(n+1)" ]
f X"W(x)dx= ,
0 1+c’

(131

which again can be done using the inverse Mellin transform;
compare the formula 4.37 on p. 38 of REX2]. The solution
of Eq. (131) is then

W(x) 1 ! + S(x—17)
X)= X— s
1) 1+¢’ 1% 14¢
I g In ;
(132

which, as explained, may be considered as an approximate
form of the weight function corresponding te=—3/4. In
Fig. (19) we plot the first term of Eq(132 for ¢’=5 to-
gether with the weight of exampldc) in Sec. VI,
1/2K(\J1—x). We discern a clear pattern asgoes through
—2/3,—3/4 and—1: for o= —2/3, the weight is singular at
x=0, foroc=—3/4 itis singular ak=1, and forc=—1 it is
also singular ak=1.

Still more cases can be encompassed by choosipgrin
a general exponent>0, such thatp(n)=II;_,(1—k™").
This implies p()=Ilim,_.p(n)=0 if r<1 and 0<p(wx)
<1 if r>1. Since from Eq(114) r=—20/(2+ o) then for
—2<0<-2/3, p(»)#0, whereas for-2/3<c<0, p(x)
=0. Both of these circumstances define Hausdorff moment
problems; the case of E124) corresponds to the former
case, while all the examples of Sec. VI correspond to the
latter case.

VIIl. CONCLUSION

There are two main goals that we have tried to develop in
the present paper. For the first goal, in which attention is
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This is for instance the case of examplesand(b) in Sec.
V and fora<2, >0, in examplegc) and(a) in Sec. V. In
! contrast for exampléb) with «>2,8>0 the solution is de-

i finitively nonunique[4].
3 — W H From the point of view of the construction of coherent
--- W) ! states this situation would imply, in particular, that such sets
of coherent states would possess distinct, but still non-
negative, weight functions in their resolution of unity. What,
if anything, would be the physical consequences of such a
situation remains a problem for the future. Some thoughts
have been devoted to this question recef].

The solutions of the Hausdorff moment problems are al-
ways unique, which implies that the coherent states pertinent
to Hamiltonians with bounded spectra of Sec. VI have a
unigue resolution of unity.

We mention here a recent study of so-called molecular
coherent statds84] constructed with a finite set of arbitrarily
chosen numberp(n). In this case, the resolution of unity
x can only be achieved if the(n)’'s satisfy certain specific

. . . relations. In a recent work35], a related construction has
FIG. 19. Comparison of weight functions of example ¢) been undertaken

[W1(x) = (L/2)K (V1 =x)] with that of Eq.(132) [W(x)] The second goal of this paper has been an effort to relate

confined to holomorphic coherent statesherent states that OUr various coherent states to possible physical systems. In
up to normalization are functions of a single complex vari-S0 doing we were guided by a recent discussion of coherent
able, our purpose has been to display examples of the infistates[30] that generally does not involve holomorphic co-
nite variety of possible coherent states. In so doing we havBerent states. Most importantly, we have taken from that
given attention to many examples that can be characterize¥fudy a means of relating the sequence of momgngs)}

by various special functions, and have generally been able tith the sequence of rescaled energy eigenvajegs The
provide closed expressions for the normalization factor andrgen behavior of the energy eigenvalues can be related to
many expectation values such as the Mandel parameter, afdpotential function by the Bohr-Sommerfeld quantization
what we have called the metric factor. Study of the Mandefule, and by that route, we can give a qualitative association
parameter has provided many examples of coherent stat®§ our coherent states with selected quantum-mechanical
with either sub- or super-Poissonian behavior. The metri@roblems. This association serves to add a degree of physics
factor, on the other hand, has given us a direct handle on tH€ our discussion. .

geometry of the coherent states. It is noteworthy that for the Our states of Eq101) offer specific advantages as com-
class of coherent states we have studied, different geometriggred with previous constructions of Nieto and Simmons

are associated with different sets of coherent states in a onk36.,37, of coherent states for general potentials. Nieto and
to-one fashion. Simmons work is strictly semiclassical in character in regard

A principal tool in developing our various coherent statet0 its association with the presumed physical problem. There
families has been the use of Mellin and inverse Mellin transiS N0 control over what approximate kind of description Ni-
forms associated with both Stieltjes and Hausdorff momengto’s work has for a given physical system. Last but not
problems. Fortunately, tables of such transforms are suffilast, there is no general proof that Nieto's states even span
ciently rich to enable us to extract many examples of nonthe required Hilbert space, let alone whether they can be
negative weights in these transforms that can serve as probSed to form the usual kind of resolution of unity.
ability distributions. Convolution formulas implicitly extend ~ One clear result of our discussion has been to offer a
these examples to an unlimited supply of acceptable weigh¥ealth of specific and concrete examples of cloheren'g states.
functions. In our studies we have offered examples of weightf hese sets of coherent states stand ready to join their breth-
functions defined over the entire non-negative real numbergen in the service of providing explicit representations that
as well as over only a finite interval of the non-negative reaccan be applied to the study of various problems.
numbers including zero. These two categories are associated
with the different moment problems and correspond to co- ACKNOWLEDGMENTS
herent states defined over the entire complex plane or over a The authors thank J.-P. Gazeau, L. Haddad, and A. .

disk of f|n|te rad|u.s.ce.ntered at the origin, respectl\_/ely._ Solomon for discussions and a fruitful collaboration.
In this regard, it is interesting to recall that certain Stielt-

4 T T T T T T T T T

jes moment problems have a nonunique soluf@iq], that APPENDIX: APPLICATIONS OF

is, different, non-negative probability densities can lead to THE MELLIN CONVOLUTION

identical moments. The uniqueness of solutions can be de-

termined with the(sufficieny Carleman conditio10]: if In this appendix we shall carry out in detail two cases of

S=3r_[p(n)]~ Y diverges then the solution is unique. Eq. (20) applied to specific forms gf(n). The objective is

013817-16



CONSTRUCTING COHERENT STATES THROUGH . ..

to obtain the weight functioV,,(x) of the state described
by p15(n)=p41(n)- po(n) if we know the individual positive
weights W;(x) and W,(x) originating from p;(n) and
po(n), respectively.

(1) The simplest nontrivial example is to obtain the

weight W,,(x) by Mellin “convoluting” two conventional
coherent states, i.e.p15(N)=p1(n)p,(n)=p3(n)=(n!)2.
We use Euler’s representation of the gamma functlg(s)
= [5x5"te *dx, which implies M ~Y[T'(s);x]=e"*. This
in turn, using Eq(20) with a=0 andb=—1 gives

P RNV N
[T4(s);x] Jot ex;{

The Eq.(Al) will now be compared with Sommerfeld’s rep-
resentation of the modified Bessel functiésee formula
8.432.6 on p. 969 of Ref28)):

1/x\V = 2 1
R —(t+xc/4t) _—
K,(X) 2<2) foe tV+ldt,

immediately giving Wi,(x) =M ~T?(s);x]=2K(2x)
>0. Note that although the individuaW1,Z(X)=e‘x are

regular functions, their Mellin convolutio,;»(x) is singu-
lar atx=0. It is evidently an integrable singularity.

(2) The second example involvgs(n)=n!/(n+1) [see
Eq. (56)] with W, (x) = — Ei(—x)>0 andp,(n)=2/\/7I'(n
+3/2), which by means of Eq18) originates fromW,(x)

X
n +t]|dt. (Al)

(A2)

PHYSICAL REVIEW @4 013817

=2/(Jm)xY%e . We are going to obtain the function
W,5(x) whosenth momentpy,(n) is equal to

_Jw iy dx= 2 nlT'(n+3/2) A
p1An)= % 12(X) X_\/_;T (A3)
We use again Eq20) and obtain directly
W) ij\ﬁ—m[ E-01E, (A
X)=— —e —Ei(—t)]—,

which upon utilizing the formula 2.5.4.3 on p. 72 of Ref.
[29] results in

Wio(x) = — 4 Ei(—2x), (A5)

which is again a positive function. The normalization of the
state|z) defined by thep;5(n)’s above is equal to

Vo x'(n+1)
M= & nTnr3m (A
sinh(2+/X)
2\/_ — ———— +xcosh2y%) |. (A7)

We have thus obtained a coherent state satisfying the re-
quired fundamental properties. The reader may well imagine
other Mellin convolutions that can be either obtained analyti-
cally or, more generally, numerically.
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