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Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems
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We construct a large number of coherent states satisfying the resolution of unity with a positive weight
function, obtained through analytic solutions of the Stieltjes moment problem~coherent states on a plane! and
the Hausdorff moment problem~coherent states on a disk!. These solutions are obtained through the method of
inverse Mellin transform. In addition, these coherent states induce a deformation of the metric that has been
calculated analytically.
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I. INTRODUCTION

In this paper we shall expose a rather general method
constructing coherent states, as defined according to a m
mal set of conditions, proposed by one of us@1,2#. For con-
venience, we shall focus on holomorphic coherent sta
which up to normalization, are functions of a single comp
variablez. The ensemble of statesuz& labeled by the single
complex numberz is called a set of coherent state if~i! uz& is
normalizable,~ii ! uz& is continuous in the labelz, i.e., uz
2z8u→0⇒iuz&2uz8&i→0, and ~iii ! the statesuz&, zPC,
form a complete~in fact, an overcomplete! set and that al-
lows a resolution of unity with the positive functionW(uzu2)
~completeness relation!

E E
C

d2zuz&W~ uzu2!^zu5I 5 (
n50

`

un&^nu, ~1!

where, in Eq.~1! I is the unit operator andun& is a set of
orthonormal eigenfunctions of a Hermitian operatorĤ. As
already noted, without loss of generality, in Eq.~1! the states
uz& are normalized to one. In Eq.~1! the integration is re-
stricted to the part of the complex plane where normalizat
converges, see Eq.~3! below. The general method of con
struction alluded to in the above consists of choosing a se
strictly positive parametersr(n), n50,1, . . . ,M , M<`,
wherer(0)51, such that the normalized stateuz& reads

uz&5N 21/2~ uzu2! (
n50

`
zn

Ar~n!
un&, ~2!

where

N~ uzu2!5 (
n50

` uzu2n

r~n!
~3!
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is the normalization, a convergent series inuzu2 within the
radius of convergenceuzu2,R, 0,R<`, thus satisfying
condition ~i!. While continuity inz is easily checked for the
form of Eq.~2!, the condition~1! presents a severe restrictio
on the choice ofr(n)’s. In fact, only a relatively small num-
ber of distinct sets ofr(n)’s is known, for which the func-
tion W(uzu2) can be extracted. As a result, the family of tru
coherent states is small in number. The standard exam
leading to conventional coherent states isr(n)5n! @2#. Re-
cently progress has been made in finding a resolution
unity for selected choices ofr(n) @3–5#. The physical moti-
vation behind the form of Eq.~2!, is to propose a genera
linear combination of basis statesun&, whose coefficients
;@r(n)#21/2 are adapted to satisfy Eq.~1! and can be linked
to a specific HamiltonianĤÞĤ0, where Ĥ0 is the linear
harmonic oscillator. As we will show in the following, ther
exists only a very restricted set of families ofr(n) for which
the above requirements can be satisfied.

The idea of building coherent states through an appro
ate choice ofr(n) has been put forward in Refs.@6# and@7#.
The states defined through Eq.~2! share for generalr(n)
some universal features that we will enumerate now. For
different complex numbersz and z8 the statesuz& and uz8&
are, in general, not orthogonal and their overlap is given

^zuz8&5
N~z* z8!

@N~ uzu2!N~ uz8u2!#1/2
, ~4!

where we have extended the definition of the normalizati
Eq. ~3!, to

N~z* z8!5 (
n50

`
~z* z8!n

r~n!
. ~5!

Whereas, through the positivity ofr(n), N(uzu2) is a strictly
increasing function of its argument, the overlap^zuz8& is a
complex function of its arguments.

The continuity in labelz follows from the continuity of
the overlap̂ zuz8& through
©2001 The American Physical Society17-1
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i uz&2uz8&i252~12Rê zuz8&!, ~6!

and is easily satisfied in practice. The choice of the ortho
nal set ofun& ’s is arbitrary. In the forthcoming paragraph
we shall assume for simplicity thatun& ’s are eigenfunctions
of the harmonic oscillator,Ĥ0un&5nun&, where Ĥ05N̂

5â†â with @ â,â†#51. In the discussion~Sec. VII! we shall
amply discuss other choices and their implication for
properties of coherent states. With the above choice, var
expectation values of polynomial Hermitian operators are
pressible through derivatives ofN(uzu2), such as

^zu~ â†!r âr uz&5
uzu2r

N~ uzu2!
S d

duzu2
D r

N~ uzu2!, r 50,1,2, . . . .

~7!

The generalization of Eq.~7! for non-Hermitian operators
whererÞp reads

^zu~ â†!pâr uz&5
~z* !pzr

N~ uzu2!

3 (
n50

` F ~n1p!! ~n1r !!

r~n1p!r~n1r !G
1/2uzu2n

n!
,

r 50,1,2, . . . , p50,1,2, . . . . ~8!

From Eq.~2!, one obtains the probability of finding the sta
un& in the stateuz&. It is equal to (x5uzu2)

p~n,x!5
xn

N~x!r~n!
, ~9!

which reduces to a Poisson distribution for the conventio
coherent states@r(n)5n!, N(x)5ex#. A Poisson distribu-
tion is characterized by the fact that the variance of the nu
ber operatorN̂ is equal to its average. One aspect of t
deviation from Poisson statistics can be measured with
Mandel parameterQM(x) @8#

QM~x!5
^zuN̂2uz&2^zuN̂uz&22^zuN̂uz&

^zuN̂uz&
. ~10!

By using Eq.~7! to evaluate the averages in Eq.~10!, one
easily obtains

QM~x!5xS N 9~x!

N 8~x!
2

N 8~x!

N~x! D . ~11!

This relation implies that the statistical properties of t
stateuz& are solely dependent on the growth properties of
normalization functionN(x). A state for which QM(x)
.0 (,0) is called super-~sub-!Poissonian.

The main objective of this paper is to formalize and e
tend this construction with the help of Mellin transform tec
niques together with their convolution properties. As will
explained below, it appears that this technique is idea
suited for greatly extending coherent state families. As a
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sult, an extensive discussion of geometric properties of v
ous coherent states can be now given, based on nume
examples of a qualitatively different nature.

The plan of the paper is as following: in Sec. II the rel
tion between condition~1! and Stieltjes~for R5`) and
Hausdorff~for R,`) moment problems will be establishe
and explored. In Sec. III, we shall describe and develop
way to obtain the solutions of the moment problem throu
the method of inverse Mellin transform. In Sec. IV, the ge
metric properties of deformations of the complex plane,
duced by the choice of coherent states themselves, are i
duced and discussed. In Secs. V and VI, we shall pres
many examples ofr(n) for which the weight functions can
be explicitly obtained, both for the Stieltjes (R5`, coherent
states on a plane! and the~much less studied in the prese
context! Hausdorff (R,`, coherent states on a disk! mo-
ment problems. Section VII establishes a close link betw
the coherent states and physical potentials. Section VII
devoted to a discussion and conclusions. In the appendix
carry out in detail examples of constructing the coher
states through the Mellin convolution.

II. RESOLUTION OF UNITY VERSUS MOMENT
PROBLEM: STIELTJES AND HAUSDORFF

In this section, we shall establish the link between t
completeness condition Eq.~1! and the classical momen
problem. To this end, we substitutez5r eiu into the states
uz& of Eq. ~2! to obtain (D is a disk in the complex plane
centered at the origin, of radiusR; if R5`, thenD5C)

E E
D

d2zuz&W~ uzu2!^zu ~12!

5 (
n,n850

` H 1

2Ar~n!r~n8!
E

0

RFW~r 2!

N~r 2!
G r n1n8d~r 2!

3E
0

2p

eiu(n2n8)duJ un&^n8u ~13!

5 (
n50

` H p

r~n!
E

0

R

xnFW~x!

N~x! GdxJ un&^nu, ~x5r 2!, ~14!

from which the following infinite set of equations results

pE
0

R

xnFW~x!

N~x! Gdx5r~n!, n50,1, . . . , 0,R<`.

~15!

The quantitiesr(n).0 are then the power moments of th
unknown functionW̃(x)5pW(x)/N(x).0 and the problem
stated in Eq.~15! is the Stieltjes (R5`) or the Hausdorff
(R,`) moment problem. These are classical mathemat
problems on which an extensive and mathematically orien
literature exists@9–11#. As one approach, we could firs
verify the necessary and sufficient conditions for the ex
tence of positive solutions, i.e.,W̃(x).0. These conditions
are known for both the Stieltjes and Hausdorff cases@9,10#.
7-2
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CONSTRUCTING COHERENT STATES THROUGH . . . PHYSICAL REVIEW A64 013817
However, exploiting these conditions for generalr(n) is
difficult if not impossible. A more practical approach wou
be simply toconstructthe required solutions by some aux
iary means. It is the essence of the present paper to dem
strate that these solutions can be obtained in many case
the means of Mellin and inverse Mellin transforms. T
links between the completeness of coherent states,
moment problem, and the Mellin transform have been
object of scattered remarks and some~partial and sometimes
incomplete! calculations in the literature@12–14#. Here, we
shall provide a more systematic exposition with an extens
use of the convolution properties of the inverse Mellin tra
form, an essential tool to extend the families of solutions
Eq. ~15!.

III. ESTABLISHING THE SOLUTIONS OF
THE MOMENT PROBLEMS WITH

THE INVERSE MELLIN TRANSFORM

We group here the main formulas of the Mellin and i
verse Mellin transforms@15,16# as applied to the solution o
the moment problem. The Mellin transform of a functio
f (x), for complexs, is denoted by

f * ~s!ªE
0

`

xs21f ~x!dx5
def

M@ f ~x!;s# ~16!

and its inverse then reads

f ~x!5
1

2p i Ec2 i`

c1 i`

f * ~s!x2sds5
def

M 21@ f * ~s!;x#. ~17!

It turns out that for a vast class of functionsf * (s) the value
of f (x) in Eq. ~17! does not depend onc, which is equivalent
to integration over the imaginary axis. A discussion of co
ditions that ensure the existence off * (s) and its inversef (x)
can be found in Ref.@16#.

A linear shift ofs in f * (s) produces (bPR; a,h.0) the
following transformation formulas

M@xbf ~axh!;s#5
1

h
a2~s1b!/hf * S s1b

h D , ~18!

M@xbf ~ax2h!;s#5
1

h
a~s1b!/hf * S 2

s1b

h D . ~19!

An essential property of the Mellin transformation is the s
called Mellin convolution expressed~for arbitrarya,b) as

xaE
0

`

tbf S x

t Dg~ t !dt

5
1

2p i E2 i`

1 i`

f * ~s1a!g* ~s1a1b11!x2sds. ~20!

Observe that the formula for the Mellin convolutions, E
~20!, contains the ratios of arguments of functions, as dis
guished from the well-known Fourier convolutions where t
difference of arguments of functions arise.
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Equation~20! is also referred to as generalized Parse
relation. Conditions on the functions so that all the ope
tions in Eq.~20! are well defined are discussed in the sp
cialized treatises@17#. The expressions on the left-hand sid
~lhs! of Eq. ~20! is called Mellin convolution off (x) and
g(x).

Let us rewrite the Stieltjes and Hausdorff moment pro
lems as

E
0

R

xnW̃~x!dx5r~n!, n50,1,2, . . . , ~21!

where r(0)51 in all subsequent cases. This conditio
means that the integral ofW̃(x) is normalized to one. We
extend the natural values ofn to complex valuess and re-
write it as

E
0

`

xs21W̃~x!dx5r`~s21! ~R5`!, ~22!

or

E
0

`

xs21H~R2x!W̃~x!dx5rR~s21! ~R,`!, ~23!

where H(y) is the Heaviside function. According to Eq
~17!, the solutions of Eq.~22! and Eq.~23! are given as

W̃~x!5M 21@r`~s21!;x#, ~24!

H~R2x!W̃~x!5M 21@rR~s21!;x#. ~25!

If the choice ofr`(n) andrR(n) is made so that the lhs
of Eqs. ~24! and ~25! are positive functions, we have fur
nished a solution of the moment problem. For a generalr(n)
it is evidently impossible to tell whether the inverse Mell
transforms in Eqs.~24! and ~25! are positive functions. At
this stage, we shall make use of quite extensive tables
Mellin and inverse Mellin transforms@18,21,22#. A word of
explanation is in order to characterize these references
Ref. @18# one finds inverse Mellin transformsf (x) of f * (s)
such that f * (s) are expressible as ratios of products
gamma functions. This constraint is not as strong as it wo
appear at first glance, since the resultingf (x) include prac-
tically all the elementary functions, and a large number
special functions, including the general hypergeometric fu
tion. Reference@21# is an extended version of Ref.@18# that
includes an all-embrassing terminology and notations of s
cial functions in terms of Meijer’sG function,

Gp,q
m,nS xUa1 , . . . , ap

b1 , . . . , bq
D .

In Ref. @22#, one finds f * (s) including functions other
than gamma functions and their respective inverse Me
transformsf (x), which include many different combination
of special functions. As will be explained below, in this p
per we concentrate on generalizations ofr(n)5n! that natu-
rally lead to gamma functions. Therefore, Refs.@18# and@21#
7-3
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are of main use for us. Our approach to find soluble mom
problems consists of two stages:~i! look for r(s) in the
tables such that the variables narrowed down to integers,s
215n, permits all the values ofn50,1, . . . ; ~ii ! identify
the correspondingW̃(x) and check for its positivity for all
the 0<x<R. If the checks~i! and ~ii ! are affirmative, the
givenr(s) is suitable to construct a complete set of coher
states, provided the corresponding normalization has a n
vanishing radius of convergence.

We have scrutinized the tables in Refs.@18# and @21# ac-
cording to the criteria~i! and~ii ! and we have found approxi
mately 30 instances, which we call generic, which suit the
selves to our purposes. We shall not enumerate them all
but rather pick out several typical examples.

It is quite intriguing to notice that any countable set~in-
cluding one! of such generic functions immediately exten
itself into infinitely many positive solutions with the use
the convolution property Eq.~20!. Suppose that we hav
found f * (s) andg* (s) such thatf (x) andg(x) are positive.
Then fora,b real, f * (s1a)g* (s1a1b11) is also a good
candidate for the moments of a positive weight function
thenxa*0

`tbf (x/t)g(t)dt is again positive. Thus, solving on
moment problem implicitly solves an infinity of momen
problems.

In the following, in order to avoid a proliferation of indi
ces, the symbolsN(x), W(x), etc., will refer to the normal-
ization, the weight function, etc., of the state under curr
discussion.

We close this section by remarking that the positivity
the set ofr(n), n50,1, . . . and theensuing convergence o
N(x) of Eq. ~3! by no means guarantee the existence o
positive weightW(x). We give here the illustration of such
situation by choosingr(n)5(n11)2n!, n50,1, . . . ,which
yields

N~x!5 (
n50

`
xn

~n11!2n!
52F2~1,1;2,2;x! ~26!

5
2g2 ln~2x!2Ei~1,2x!

x
, ~27!

a convergent series.
In Eqs. ~26! and ~27! 2F2(a,b;c,d;x) is a higher-order

hypergeometric function, Ei(1,z) is the first-order exponen
tial integral @24# andg is Euler’s constant. Forx>0, N(x)
is by construction a positive function. However,r(n)
5*0

`xnW̃(x)dx, with W̃(x)5x e2x(x21), which is a non-
positive function.

Therefore, forr(n) above,

uz&5@2F2~1,1;2,2;uzu2!#21/2(
n50

`
zn

A~n11!2n!
un&, ~28!

is a normalizable state, but it is not a coherent state.
01381
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IV. GEOMETRY OF THE COHERENT STATES

The map fromz to uz& represented by Eq.~2! is a map
from the spaceC of complex numbers~or a subset thereof if
R,`) into a continuous subset of unit vectors in Hilbe
space. As such, one may imagine that this map generat
two-dimensional~becauseC5R% R) surface ‘‘sweeping’’
through an infinite-dimensional~Hilbert! space. It is interest-
ing to describe that two-dimensional surface by itsgeometry,
which in explicit form, is represented by the induced tw
dimensional Riemannian metric tensor implicit in the lin
elementds2. The metric in question is not that induced d
rectly by the Hilbert space metric itself, but rather is o
induced by the physical content of the Hilbert space in wh
vectors differing only in phase are identified. A suitable m
ric between any two Hilbert space vectors, sayuc& and uf&,
is thus theray metricdefined by

dray~ uc&;uf&):5 min
0<a,2p

i uc&2eia uf& i . ~29!

The infinitesimal form of this metric is given by the Fubin
Study metric, which restricted to coherent states explic
takes the form

ds2
ªiduz&i22u^zuduz&u2. ~30!

Observe, in this line element, that any change of the fo
duz&5luz&, lPC, haszerodistance, i.e.,ds250. This fact
is also useful in deriving an expression fords2.

In forming duz&, therefore, we can ignore changes of t
normalization and just adopt

duz&5N 21/2dz(
n50

`
nzn21

Ar~n!
un&. ~31!

It follows that

iduz&i25N 21~dz* dz! (
n50

`
n2uzu2(n21)

r~n!
, ~32!

while

^zuduz&5N 21~z* dz! (
n50

`
nuzu2(n21)

r~n!
. ~33!

Hence, we learn that

ds25N 21~dz* dz!F (
n50

`
n2uzu2(n21)

r~n!
2N 21~z* z!

3S (
n50

`
nuzu2(n21)

r~n! D 2G . ~34!

Because

N~x!ª(
n50

`
xn

r~n!
, ~35!

wherexªuzu2, a moment’s reflection shows that
7-4
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ds2
ªv~ uzu2!dz* dz,

v~x!ª
1

N~x!
@xN 8~x!#82xF 1

N~x!
N 8~x!G2

5Fx
N 8~x!

N~x! G8,
~36!

whereN 8(x)ªdN(x)/dx. By construction,v(x).0, for all
relevantx. In polar coordinates,zªr eiu, it follows that

ds2
ªv~r 2!~dr21r 2du2!. ~37!

The result, therefore, is acircularly symmetric, two-
dimensional geometry. If v(r 2)ª1, then ds2 describes a
flat, two-dimensional surface. This situation occurs wh
r(n)5n! and N(x)5ex. If N(x)Þex, then v(r 2)Þ1 and
the geometry is nonflat. We refer tov(x) as themetric fac-
tor, and knowledge ofv(x) enables us, in some sense,
visualize the surface of coherent states embedded in the
bert space. More directly, we can also interpretds2 as the
geometry of the associated ‘‘classical phase space.’’

As usual, we can aid our visualization of such a surfa
by embedding it in a three-dimensional Euclidean or pseu
Euclidean space. For the Euclidean case, we set

ds25du21u2du21dz~u!2, ~38!

where herez5z(u) corresponds to the third dimension~and
not a complex variable!!, and set

v~r 2!~dr21r 2du2!5b~u!2du21u2du2, ~39!

b~u!2
ª11@dz~u!/du#2. ~40!

To satisfy the last relation, we require that

uªAv~r 2!r , ~41!

Av~r 2!/~du/dr !ªb~u!5A11@dz~u!/du#2. ~42!

These two equations provide a set of parametric differen
equations to findz(u), and hence, a two-dimensional surfa
in the three-dimensional Euclidean space. For example
v(r 2)51, thenu5r , and thus,b(u)51, i.e.,dz(u)/du50,
or z(u)5const describing a flat plane as expected. M
generally, these equations provide the connection betw
the conformal form of the metric@left side of Eq.~39!# and
the desired form@given in the right side of Eq.~39!#, the
latter form being more useful for visualization.

It may happen that Eq.~41! and Eq.~42! have no solution,
in which case it may be that the embedding is pseu
Euclidean rather than Euclidean. To cover this case, one
tially sets

ds25v~r 2!~dr21r 2du2!5du21u2du22dz~u!2,
~43!

and therefore the required set of parametric differential eq
tions becomes

uªAv~r 2!r , ~44!
01381
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Av~r 2!/~du/dr !ªb~u!5A12@dz~u!/du#2. ~45!

Again, a solution of these two equations enables one to
tain z(u) from a knowledge ofv(r 2). In this case also the
surface can be ‘‘visualized,’’ although not so naturally as
the Euclidean case. For all the new states introduced late
know explicit expressions for their normalizations. Cons
quently we are able, with Eq.~36!, to investigate for the first
time, the geometry of many different coherent states.

For simplicity in our presentation, we offer plots ofv(x)
and make only qualitative remarks about the geometry of
coherent states. For an extensive discussion of the geom
of selected coherent states, see Ref.@23#.

Figures illustrating metric factors are presented in the f
lowing sections in which specific examples are discussed

V. COHERENT STATES ON THE PLANE

In this section we shall exploit a choice ofr(n)’s such
that N(x) is convergent everywhere on the positive ax
implying thatuz& is well defined everywhere on the comple
plane and the weight function is a solution of the Stielt
moment problem. We shall follow now the prescription ou
lined in Sec. III and identify, partially with the help of table
in Refs.@18,21#, such choices ofr(n) for which the weight
function is positive. Ourr(n) will be always expressible
through ratios of products of gamma functions. In this pa
graph ther(n)’s satisfy limn→`r(n)5`. We will proceed
roughly according to the increasing complexity ofr(n),
choosing a few generic examples of positive weight fun
tions.

~a! The first example consists in choosingr(n)5(n
1p)!/ p!, p50,1,2, . . . , merely shiftingn by p in the stan-
dard definition. The normalization is

N~x!51F1~1;11p;x!

5pS 2
1

x
1x2pexG~p!2~p21!x2pexG~p21,x! D ,

~46!

where in Eq.~46!, 1F1(a;b;x) is Kummer’s confluent hy-
pergeometric function andG(a,x) is the incomplete gamma
function @24#. The weightW̃(x)5pW(x)/N(x) is obtained
from Eq. ~18! by elementary means and is a term in t
Poisson distribution:

W̃~x!5
1

p!
xpe2x. ~47!

The metric factor is obtained from Eqs.~46! and ~36! to
be

v~p,x!5
1

~p11!1F1~1;p11;x! F 1F1~2;p12;x!

1xS 2
1F1~3;p13;x!

p12
2

@1F1~2;p12;x!#2

~p11!1F1~1;p11;x! D G ,
~48!
7-5
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which for every integerp evaluates in terms of elementa
functions. We quote here only two expressions:

v~1,x!5
12e2x~11x!

~e2x21!2
, ~49!

v~2,x!5
11e22x2e2x~21x2!

~211e2x~11x!!2
. ~50!

Note thatv(p,0)5(p11)21.
The Mandel parameterQM(p,x) is given by

QM~p,x!5xS 2

21p
1F1~3;p13;x!

1F1~2;p12;x!

2
1

11p
1F1~2;p12;x!

1F1~1;p11;x! D . ~51!

In Fig. ~1! we have displayed the metric factors of Eq.~48!
for p50,1,3,6,9,12.

One observes that for a givenp, the geometry represents
‘‘vase’’ with the bottom at the value (p11)21. Forx→`, it
saturates at the value 1 for allp. In Fig. ~2! we have pre-
sented the Mandel parameter that is positive for allp>1 and
x. The states are then super-Poissonian in nature.

~b! In this example we extend the exponential to its m
natural generalization, the so-called Mittag-Leffler functi
@25# by choosing

r~n!5
G~a n1b!

G~b!
, a,b.0. ~52!

Then

N~x!5G~b!Ea,b~x!, ~53!

where Ea,b(x) are the Mittag-Leffler functions defined a
Ea,b(x)5(n50

` (xn)/G(a n1b) @25#. ~These functions have

FIG. 1. The metric factors of Eq.~48! for different values ofp.
On this, as well as on all the subsequent figures, all the quant
plotted are dimensionless.
01381
t

found recently important applications in dynamical proble
@26,27#!. This case was the subject of a separate study@4#
where a rather detailed investigation of the correspond
moment problem was carried out. We quote the simp
solution of the moment problem that can be obtained w
formula ~18! above:

W̃~x!5p
W~x!

N~x!
5

x(b2a)/ae2x1/a

a G~b!
. ~54!

We quote here for illustrative purposes two cas
of N(x): for a51, b arbitrary (b.0), N(x)5G(b)
3ex x12b(12@G(b21,x)#/@G(b21)#); for a51/2,
b51, N(x)5ex2

@11erf(x)#, where erf(x) is the error
function.

The two positive constantsa,b in the expression
for N(x) allow for a certain flexibility to investigate the
behavior of physical quantitites. For instance, the c
a52, b51 gives N(x)5cosh(Ax), the metric factor
v(x)5 1

4 (@ tanh(Ax)#/(Ax)11/@cosh2(Ax)#) and the Mandel
parameterQM(x)52 1

2 1(Ax)/@sinh(2Ax)#. Observe that
v(0)51/2 and thatQM(x),0, which indicates that the stat
is sub-Poissonian. The quantitiesv(x) and QM(x) are rep-
resented in Fig.~3!. The casea51/2 andb52 leads to

N~x!5
ex2

@11erf~x!#21

x2
2

2

xAp
. ~55!

The correspondingv(x) and QM(x) can be expressed
through exponential and error functions but will not b
quoted here. The drastic change compared with thea52 and
b51 case is observed.

~c! the next generic situation is obtained from a bit mo
complicated choice

r~n!5
n!

n11
. ~56!

es

FIG. 2. The Mandel parameter of Eq.~51! for different values of
p. For p50, QM(0,x)50.
7-6
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It leads to the normalizationN(x)5ex(11x) and the posi-
tive weight functionW̃(x)52Ei(2x) where Ei(y) is the
exponential integral@24# ~see the formula 1~1! on p. 182 of
Ref. @18# or the formula 8.4.11.1 on p. 642 of Ref.@21#!. The
weight W̃(x)52Ei(2x) is plotted in Fig.~4!. The metric
factor isv(x)5(x212x12)/(x11)2 andQM(x)52x/@(x
11)(x12)#. Clearly, v(x)>1 and QM(x),0 indicating
sub-Poissonian statistics.

~d! A generalization of~c! is to extend the factorial to a
gamma function parametrized bya.0. More precisely

r~n!5
G~n111a!

G~11a!~n11!
~57!

originate fromW̃(x)5G(a,x)/G(11a) ~see formula 28~1!
on p. 189 of Ref.@18# or formula 8.4.16.2 on p. 647 of Re
@21#!. It leads to

FIG. 3. The metric factor and the Mandel parameter for
moments of Eq.~52! for a52, b51.

FIG. 4. The weight functionW̃(x)52Ei(2x) of example V
~c!.
01381
N~x!51F1~2;11a;x!. ~58!

The metric factor is

v~a,x!5
2

~a11!1F1~2;a11;x! F 1F1~3;a12;x!

3S 12
2x1F1~3;a12;x!

~11a!1F1~2;a11;x! D G , ~59!

with v(a,0)52/(a11). The functionv(a,x) ~as a function
of x) is monotonically decreasing for 0,a,1, monotoni-
cally increasing fora.1 and equals to 1 fora51. The
Mandel parameter

QM~a,x!5xS 3

a12
1F1~4;a13;x!

1F1~3;a12;x!

2
2

a11
1F1~3;a12;x!

1F1~2;a11;x! D , ~60!

is positive fora.1 and negative for 0,a,1, as displayed
in Fig. ~5!. It follows that the statistics of the coherent sta
with r(n) given by Eq.~57! crosses over from sub- to supe
Poissonian asa crossesa51.

~e! The choicer(n)5(n!) 2 is the particular case of state
considered in the literature@13#. Their normalization is
N(x)5I 0(2Ax), and the weight function is W̃(x)
52K0(2Ax) ~see the Appendix for a simple demonstrati
of this result!, whereI 0 andK0 are the modified Bessel func
tions of first and third kind, respectively. Here

v~x!512F I 1~2Ax!

I 0~2Ax!
G 2

, ~61!

QM~x!5AxS I 0~2Ax!

I 1~2Ax!
2

I 1~2Ax!

I 0~2Ax!
D 21, ~62!

e
FIG. 5. The Mandel parameter of Eq.~60! for a52, and a

51/2.
7-7
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with QM(0)50, QM(`)521/2; QM(x) is a strictly nega-
tive function, implying sub-Poissonian statistics. The plots
v(x) andQM(x) are displayed in Fig.~6!.

~f! By settingr(n)5(n!) 3 we arrive at the normalization

N~x!5 (
n50

`
xn

~n! !3
[0F2~1,1;x!, ~63!

which is a generalization of the series0F1(1;x) in terms of
which all the Bessel functions are defined@including
I 0(2Ax)5 0F1(1;x) of the preceding example#. The weight
function here,W̃(x), is a solution of the moment problem

E
0

`

xnW̃~x!dx5~n! !3, n50,1, . . . , ~64!

which, through Eq. ~20! is the Mellin convolution of
2K0(2Ay) with e2y, or

W̃~x!52E
0

`1

t
e2x/tK0~2At !dt, ~65!

which is positive, but which cannot be expressed in sim
terms. A possible way to obtain a closed form expression
Eq. ~65! is to use the MeijerG-function @21# that is defined
as a certain Mellin transform. When applied to Eq.~64! the
weight is expressed through a known series representatio

G0,3
3,0S xU •

0, 0, 0D :

W̃~x!5G0,3
3,0S xU •

0, 0, 0D ~66!

5 1
2 @ ln~x!#2

0F2~1,1;2x!

1@ ln~x!#T1~x!1T2~x!, ~67!

FIG. 6. The metric factor and the Mandel parameter of Eqs.~61!
and ~62!.
01381
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whereT1,2(x) are rapidly converging power series defined

T1~x!523(
n50

`
c~n11!

~n! !3
~2x!n, ~68!

T2~x!5
1

2 (
n50

`
p219c2~n11!23c (1)~n11!

~n! !3
~2x!n,

~69!

wherec(z) andc (1)(z) are, respectively, digamma and p
lygamma functions of order one@24#. From Eq. ~63! the
analytic formulas forv(x) andQM(x) follow:

v~x!5
1

0F2~1,1;x! F 0F2~2,2;x!1xS 1

4 0F2~3,3;x!

2
0F2~2,2;x!

0F2~1,1;x! D G , ~70!

QM~x!5xS 1

4
0F2~3,3;x!

0F2~2,2;x!
2

0F2~2,2;x!

0F2~1,1;x! D . ~71!

They are plotted in Fig.~7!. Note in passing thatN(x) of Eq.
~63! can be related to the so-called hyper-Bessel funct
@18–20# of ‘‘type’’ I 0. In this perspective, the relatio
I 0↔K0 between the normalization and weight in example~e!
can be extended to the current example if we tentativ
identify the hyper-Bessel function of ‘‘type’’K0 with W̃(x)
of Eq. ~67!. By changing the moments from (n!) 2 to (n!) 3

the singularity of the weight function atx50 becomes stron-
ger. This is illustrated on Fig.~8! where we have plotted
2K0(2Ax) andW̃(x) of Eq. ~67! on the same graph.

~g! An extension of example~e! in the form

r~n!5
n!G~n14/3!

G~4/3!
, ~72!

leads to the normalizationN(x)5G(4/3)@ I 1/3(2Ax)#/(x1/6).
From the formula 8.4.29.1 on p. 676 of Ref.@21# one con-

FIG. 7. The metric factor and the Mandel parameter of Eqs.~70!
and ~71!.
7-8
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cludes that the corresponding positiveW̃(x) is given by
Ai @(9x)1/3#/G(4/3), where Ai(y) is the Airy function @24#.
The metric factor is

v~x!531S 1

3Ax
23D I 2/3~2Ax!

I 1/3~2Ax!
, ~73!

a monotonically decreasing function ofx and QM(x) turns
out to be negative. They are illustrated on Fig.~9!.

~h! The last example involves the moments

r~n!5
~n! !3G~3/2!

G~n13/2!
~74!

leading to

FIG. 8. Comparison of weight functionW1(x)52K0(2Ax) and

of W2(x)5W̃(x) of Eq. ~67!.

FIG. 9. The metric factor of Eq.~73! and the Mandel paramete
for the moments of Eq.~72!.
01381
N~x!5 1F2S 3

2
;1,1;xD5@ I 0~Ax!#212AxI0~Ax!I 1~Ax!

~75!

and the explicitly positive weight function~see formula
37~1! on p. 205 of Ref.@18# or formula 8.4.23.27 on p. 668
of Ref. @21#!:

W̃~x!5@K0~Ax!#2, ~76!

which is plotted in Fig.~10!. The metric factor and the Man
del parameter are rather complicated expressions involv
I 0(Ax) and I 1(Ax). We display them in Fig.~11!. Observe
that v(x) is monotonically decreasing fromv(0)53/2,
whereas QM(x) is negative everywhere, with
limx→`QM(x)521/2.

As mentioned above, the precedingr(n)’s, from ~a!–~h!,
can still be convoluted~with themselves or bilaterally! to

FIG. 10. The weight functionW̃(x) of Eq. ~76!.

FIG. 11. The metric factor and the Mandel parameter for
moments of Eq.~74!.
7-9
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produce again generally new positive weights. In the app
dix we have presented examples of such calculations.

VI. COHERENT STATES ON THE DISK

We turn now to a situation where the normalization giv
by the series Eq.~3! is only convergent forx,R,`. Then
the domain of definition of the coherent states is a disk
the complex plane centered atx50 with radiusR. A trivial
change of variables transforms it to a unit disk,R51, which
we shall adopt for all the subsequent examples. The res
tion of unity condition, Eq.~1! takes the form of

E E
uzu2,1

d2zuz&W~ uzu2!^zu5I 5 (
n50

`

un&^nu, ~77!

pE
0

1

xnFW~x!

N~x! Gdx5r~n!, n50,1, . . . , ~78!

which is a classical Hausdorff moment problem@9# for a
sought for positive functionpW(x)/N(x). In contrast to the
Stieltjes problem, Eq.~22!, it is relatively easy here to fur
nish the solutions of Eq.~78! with a simple form of the
moments. In this section, all ther(n)’s satisfy limn→`r(n)
50. We give here first two illustrative examples and then
over to more complicated moments and the applications
the inverse Mellin transform method applied to Eq.~78!,
quite analogous to the preceding paragraph.

~a! First, choosingW̃(x)52x, we obtain r(n)52/(n
12), which leads to the normalization

N~x!5
1

2 (
n50

`

~n12!xn5
1

2

22x

~12x!2
, ~0<x,1!,

~79!

and through Eq.~36!, to the metric factor

v~x!52
322x

~22x!2~12x!2
, ~80!

both of which are plotted in Fig.~12!. The Mandel paramete
is

QM~x!5
x~x226x17!

~x22!~x23!~12x!
. ~81!

~b! We complicate the moments a little by~arbitrarily!
choosingr(n)56/@(n12)(n13)#, which can be shown to
originate from W̃(x)56 x(12x). The corresponding nor
malization and metric factor are given, respectively, by

N~x!5
1

3

x223x13

~12x!3
, ~82!

v~x!53
3x228x16

~x223x13!2~x21!2
, ~83!
01381
n-

n

lu-

o
of

both of which are plotted in Fig.~13!. The Mandel paramete
is

QM~x!5
x~x428x3128x2242x124!

~x223x13!~x224x16!~12x!
. ~84!

We now extend our procedure of construction of coher
states by choosing the moments in form of (GG)/(GG), with
G denoting some gamma function. This choice is not as
bitrary as it may seem to be, since, by examining the tab
in Refs.@18,21#, one finds at least four generic cases of po
tive weight function.

~c! Consider formula3(1), p. 174 ofRef. @18# or formula
8.4.40.2 on p. 692 of Ref.@21#, which reads

FIG. 12. Normalization and metric factor of example VI~a!,
Eqs.~79! and ~80!.

FIG. 13. Normalization and metric factor of example VI~b!,
Eqs.~82! and ~83!.
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E
0

11

2
K ~A12x!xndx5

p

4

~n! !2

G2S n1
3

2D 5r~n!. ~85!

For this example, it follows that the normalization is give
by

N~x!5
4

p (
n50

`

xn

G2S n1
3

2D
~n! !2

5 2F1S 3

2
,
3

2
;1;xD ~86!

5
2

p~x21! S K ~Ax!1
2

x21
E~Ax! D , ~87!

where, in Eqs.~85! and ~87!, K (k) is the complete elliptic
integral of the first kind, andE(k) is the complete elliptic
integral of the second kind@24#. The expressions forv(x)
and QM(x) are quite involved and will not be reproduce
here. The functionsN(x), v(x), andQM(x) are plotted in
Fig. ~14!.

~d! A further example is provided by formula 23(1) on
180 of Ref. @18# or formula 8.4.40.39 of Ref.@21#, which
reads

E
0

13

4
E~A12x!xn dx5

3p

8

n! ~n11!!

GS n1
3

2DGS n1
5

2D 5r~n!,

~88!

giving the normalization

FIG. 14. Normalization, metric factor, and Mandel parameter
example VI~c!.
01381
N~x!5
8

3p (
n50

`

xn

GS n1
3

2DGS n1
5

2D
n! ~n11!!

5 2F1S 3

2
,
5

2
;2;xD

~89!

5
4

3p

1

x~x21! FK ~Ax!1
x11

x21
E~Ax!G . ~90!

The weight function (3/4)E(A12x) is a perfectly regular
and nonsingular function on@0,1#. The metric factor and the
Mandel parameter have a very similar behavior to the pre
ous case and will not be considered here.

The other two examples involve as weight functions
rather general form of the Gauss hypergeometric funct
2F1(a,b;c;x).

~e! We rewrite the formula 11(1) on p. 288 of Ref.@18# or
formula 8.4.49.22 on p. 720 of Ref.@21# as

E
0

1

xnFG~11c2a!G~11c2b!

G~c!G~11c2a2b!

3~12x!c21
2F1~a,b;c;12x!Gdx

5
G~11c2a!G~11c2b!

G~11c2a2b!

3
G~n11!G~n111c2a2b!

G~n111c2a!G~n111c2b!

5r~n!, ~91!

with the restrictionsa1b2c,1 andc.0. It turns out that
for many choices ofa, b, and c the weight function@the
expression in square brackets in Eq.~91!# is positive.

We illustrate Eq. ~91! here with the valuesa51/2,
b51/2, and c53/2. For this choice, one can show th
W̃(x)54/p arcsin(A12x) @which is plotted on Fig.~15!
with the weight functions of example~d! in Sec. VI and
example~c! in Sec. VI# and Eq.~91! reduces to

4

pE0

1

xn arcsin~A12x!dx5
2

Ap

G~n13/2!

~n11!2n!
5r~n!,

~92!

with the normalization,

N~x!5 2F1S 2,2;
3

2
;xD

5
1

4~12x!2 F31
~112x!arcsin~Ax!

Ax~12x!
G , ~93!

the metric factor

f
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v~x!5
8

2F1S 2,2;
3

2
;xD F 1

3 2F1S 3,3;
5

2
;xD

2
8

9
x

2F1S 3,3;
5

2
;xD

2F1S 2,2;
3

2
;xD 1

6

5
x 2F1S 4,4;

7

2
;xD G ,

~94!

and the Mandel parameter

QM~x!52xS 9

5

2F1S 4,4;
7

2
;xD

2F1S 3,3;
5

2
;xD 2

4

3

2F1S 3,3;
5

2
;xD

2F1S 2,2;
3

2
;xD D .

~95!

These expressions are plotted in Fig.~16!. The functions in
Eqs.~94! and~95! can still be expressed by formulas of typ
~93! but these will not be reproduced here.

~f! The last example in this paragraph involves formu
12(4) on p. 289 of Ref.@18# or formula 8.4.49.25 on p. 721
of Ref. @21#:

E
0

1

xnFg~a,b,c!~12x!c21
2F1S a,b;c;12

1

xD Gdx

5G~c!g~a,b,c!
G~n111a!G~n111b!

G~n111c!G~n111a1b!
5r~n!,

~96!

FIG. 15. Plots of weight functions:W1(x): weight function of
example VI~c!, W2(x): weight function of example VI~d!, W3(x):
weight function of example VI~e!.
01381
with the restrictions c.0, a,b.21, and
where g(a,b,c)ª@G(11c)G(11a1b)#/@G(c)G(1
1a)G(11b)#. We choose now the seta51, b52, c53/2

for which the moments arer(n)53G( 5
2 )(n11)!/@(n

13)G(n1 5
2 )# and the weight function@in square bracket in

lhs of Eq.~96!# is positive and reads

W̃~x!5
9

4
xFA12x1x arcsinhSA12x

x D G , ~97!

while the corresponding normalization is

N~x!5
1

9 S 42x

x~12x!5/2
2

4

xD . ~98!

These quantities as well as the corresponding metric fa
and the Mandel parameter are depicted in Figs.~17! and~18!.

FIG. 16. Normalization, metric factor, and the Mandel para
eter of example VI~e!, Eqs.~93!, ~94!, and~95!.

FIG. 17. Weight function of example VI~f!, Eq. ~97!.
7-12
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This terminates our list of examples of coherent states
the unit disk for which the weight functions are positiv
This list is by no means exhaustive, since by Mellin conv
luting any one of these examples, either with itself or w
any other of them, we will still obtain a new set ofr(n) with
a positive weight function and desired convergence prop
ties of the normalization. Furthermore, as explained in
preceding paragraph, a similar construction procedure ca
designed using forr(n) functions other than ratios of prod
ucts of gamma functions using our procedure but this ti
based mostly on Ref.@22#.

In the following, we shall point out that the foregoin
examples are sufficient to recognize a class of physical
tentials for which the constructed coherent states are asy
totically relevant.

VII. COHERENT STATES AND PHYSICAL POTENTIALS

The large variety of quantum wave functions introduc
and discussed in the preceding paragraphs needs to be
fronted with more specific physical situations usually form
lated with a one-particle nonrelativistic HamiltonianH(p,q)
with p momentum andq coordinate, in the formH(p,q)
5p2/2m1V(q) whereV(q) is the potential. We shall limit
ourselves in this work to one-dimensional Hamiltonian pro
lems, and try to make contact between the coherent st
and physical potentials. One way to do it is to conside
recent formulation of coherent states for systems with d
crete and continuous spectrum@30#. In this paper we shal
only take into account Hamiltonians with discrete spectra
order to be able to associate the coherent states with Ha
tonian problems, some important modifications in the defi
tion of coherent states discussed in the introduction sho
be made. We shall list them here. First of all, the idea
parametrizing the stateuz& in terms of a single complex num
ber z is extended by replacingz by two independentreal
numbersJ andg, such thatJ>0 and2`,g,`. Then the

FIG. 18. Normalization, Eq.~98!, metric factor, and the Mande
parameter for example VI~f!.
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actual meaning of the orthogonal setun& is extended to a
general Hermitian operatorH, such that

Hun&5venun&, ~99!

where the eigenvaluesen satisfy

05e0,e1,e2 , . . . . ~100!

Note that the usual boson operators do not enter these
nitions, as in generalenÞn. The modified definition of the
general coherent state becomes:

uJ,g&ªN 21/2~J! (
n50

`
Jn/2 exp~2 i eng!

Ar~n!
un& ~101!

and it satisfies an extended set of conditions for a state to
coherent state@30#:

~1! uJ,g& is normalizable, i.e., the radius of convergenceR
of N(J)5(n50

` Jn/r(n) is not zero.
~2! uJ,g& is continuous in two labels J and g, i.e.,

(J8,g8)→(J,g)⇒uJ8,g8&→uJ,g&.
~3! The statesuJ,g& satisfy the resolution of unity, with

W(J,g).0 such that

E
2`

`

dgE
0

`

dJuJ,g&W~J,g!^J,gu5I 5 (
n50

`

un&^nu.

~102!

~4! Temporal stability for a specific HamiltonianH.

e2 i HtuJ,g&5uJ,g1v t&, v5const. ~103!

~5! Action identity: ^J,guHuJ,g&5v J.

The properties~4! and ~5!, which supplement the funda
mental characteristics elaborated upon in the introduct
originate from the adaptation ofuJ,g& to a specific Hamil-
tonian H of a truly interacting system, away from the ha
monic oscillator, the free boson system. The property~5!
forces the quantitiesr(n) to be a unique function ofen’s,
namely,

r~n!5)
k51

n

ek , r~0!51. ~104!

Note, that these quite far-reaching extensions of the ini
definition ~2! to arrive at~101!, do not affect much the prop
erty ~3!—the resolution of unity: if we assume the produ
form for W(J,g)5W(J)U(g) such that

E . . . U~g!dg5 lim
G→`

1

2 GE2G

G

. . . dg, ~105!

then resolution of unity for Eq.~102! boils down to the equa-
tions

E
0

R

JnFW~J!

N~J! GdJ5r~n!, n50,1,2, . . . , ~106!
7-13
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which are the previous Eq.~15!. It means that the state
defined by Eq.~101! have the same completeness relations
the states of Eq.~2!. In addition, they are specifically adapte
to a Hamiltonian with the spectrum of Eq.~100!.

We shall now try to extract some information about po
sible Hamiltonians, by first deriving their spectra with E
~104! and then attempting to reconstruct the potentialsV(q),
thereby obtaining the estimations forH. It should be borne in
mind that these steps are only approximate, and for at l
two reasons: first and foremost, the reconstruction of
Hamiltonian from its known spectrum is never unique. Th
has been explicitly demonstrated for instance by Abrah
and Moses@31# who have found highly anharmonic pote
tials, possessing the spectrum of the harmonic oscillator.
second reason is, that the only feasible method to estim
V(q) from en’s is to use the quasiclassical quantization co
ditions of Bohr-Sommerfeld

1

\Ea

b

p~q!dq5pS n1
1

2D , n50,1,2, . . . , ~107!

or

5
1

\Ea

b
A2m~en2V~q!!dq5pS n1

1

2D , n50,1,2, . . . ,

~108!

wherea and b are the turning points of the potentialV(q),
defined byp(a)5p(b)50. We will consider only the sym-
metric power-law potentialsV(q)5V0uqus.

The usual disclaimer at this point is to restrict the valid
of Eq. ~107! to n@1, although many examples are known f
V(q) for which Eq.~107! reproduces exactly the whole spe
trum en , n50,1, . . . @32#. We will now reconsider the
whole set of coherent states from Secs. V and VI in the li
of the definition, Eq.~101!, using ther(n)’s from the pre-
ceding examples. According to Eq.~104!, the spectrum of
the ~unknown! Hamiltonian is given by

en5
r~n!

r~n21!
, n51,2, . . . , ~109!

e050. ~110!

The n dependence of the~quasiclassical! spectrum of the
potentialV(q)5V0uqus, (V0 ,s.0) is given from the Eq.
~108! (\51) by

en5Fp
2

~n11/2!

A2mC~s!
G 2s/(21s)

uV0u2/(21s) n→`
;

n2s/(21s),

~111!

where C(s)5*0
1A12xsdx5(Ap/(21s))G(1/s)/G(1/2

11/s).
Let us calculate by Eq.~109! the en’s for the r(n) of

examples~a!–~h! of Sec. V; the result is:~a! n1p; ~b!
G(n/212)/G(n/213/2); ~c! n2/(n11); ~d! n(n1a)/(n
11); ~e! n2; ~f! n3; ~g! n(n11/3); and~h! n3/(n11/2). All
these expressions represent an unbounded spectrum. I
01381
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limit n→`, the cases~a!, ~c!, and~d! correspond tos52, or
the quadratic potentials; the cases~e!, ~g!, and ~h! can be
interpreted ass5`, which can be represented as an infin
square-well potential. The case~f! cannot be fitted to Eq.
~111!. The case~b! for n→` gives en;n1/2 indicating s
52/3. Taking literally Eq.~52! with generala,b.0 we ob-
tain

en5
G~an1b!

G~an1b2a! n→`
——→

na, ~112!

which is independent ofb. This leads to

s5
2a

22a
, 0,a,2, ~113!

which includes any positive exponents as long as 0,a
,2. Here, the Mittag-Leffler functions prove to be a partic
larly flexible tool to identify any power-law potentials.

For the coherent states on the unit disk of Sec. VI
situation is a little different. In fact, the states of Sec.VI a
appropriate for attractive potentials of inverse power-l
type, which typically exhibit bounded spectrum, i.e., t
Coulomb problem,s521.

We derive the appropriate estimate foren from Eq. ~108!
with V(q)52uV0uqs (22,s,0); it reads

en52Fp
2

~n11/2!

A2mD~s!
G 2s/(21s)

uV0u2/(21s)n→`
;

2n2s/(21s).

~114!

The integralD(s)5*0
1Axs21dx is known exactly only for

selected values ofs: D(21/2)5p/4, D(21)5p/2,
D(23/2)52ApG(7/6)/G(5/3), etc. Together with the con
dition e050, we arrive at the following representation of th
bound spectrum (n@1):

en;12n2s/(21s), 22,s,0. ~115!

The expression~115! will now be confronted with theen’s
obtained with Eq.~109! using the set ofr(n)’s from the
examples of Sec. VI. After simple transformations we arr
at the followingn dependence:

~a! en512
1

n12
n→`
——→

12
1
n , ~116!

~b! en512
2

n13
n→`
——→

12
2
n , ~117!

~c! en512
4n11

~2n11!2
n→`
——→

12
1
n , ~118!

~d! en512
4n13

4S n1
1

2
D S n1

3

2
D n→`

——→
12

1
n , ~119!
7-14
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~e! en512

3

2
n11

~n11!2
n→`
——→

12
3

2n , ~120!

~ f! en512

3

2
n1

5

2
~n13!~n13/2! n→`

——→
12

3
2n. ~121!

We see that a common pattern emerges as the beh
en;12c/n (c5const.0) applies to all these example
According to the estimate Eq.~115! the corresponding expo
nent iss522/3, thus the HamiltonianH(p,q) for which the
states VI~a!–~f! are asymptotically relevant is

H~p,q!5
p2

2m
2

uV0u

uqu2/3
. ~122!

As far as we know the eigenfunctionsun& of the discrete
part of spectrum of Eq.~122! are not known so that the sta
uJ,g& of Eq. ~101! cannot be completely determined.

We shall now attempt to describe qualitatively the coh
ent state and its weight function that is asymptotically r
evant to a situation somewhere in between two known ca
s522/3 @case of Eq.~122!# and the Coulomb caseV(q)
;uqu21, for which the weight function is known exactly@30#

W~x!5
1

2
@11d~x212!#, ~123!

where d(y) is the Dirac delta function. We chooses5
23/4, which through Eq.~115! yields en512n26/5. Now
we go back to Eq.~104!, which indicates thatr(n)
5)k52

n ek5)k52
n (12k26/5). As it appears that this produc

cannot be evaluated in a closed form, we shall make a ro
approximation to its behavior. We first note that

ln r~n!5 (
k52

n

ln~12k26/5!52 (
k52

n

@k26/51~1/2!k212/5

1~1/3!k218/51•••# . ~124!

For all x, 0,x<226/5, and with c[226/5 ln(1
2226/5)(51.31 277), we next observe that

2cx< ln~12x!<2x. ~125!

Thus, we can assert that

2c(
k52

n

k26/5<(
k52

n

ln~12k26/5!<2 (
k52

n

k26/5. ~126!

Since

E
2

n11

x26/5dx<(
k52

n

k26/5<E
1

n

x26/5dx, ~127!

it follows that
01381
ior
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gh

25c@12n21/5#<(
k52

n

ln~12k26/5!

<25@221/52~n11!21/5#. ~128!

Doing better than this would require using more terms in
series on the right side of Eq.~124!, and with additional
effort this could be done. However, for convenience, we s
at this point and take from this estimate the rough appro
mation that

r~n!'ec8[(n11)21/521] ~129!

for largen for some constantc8'5. To proceed further, we
need to change our problem somewhat, and being guide
Eq. ~129!, we adopt

r~n!ª
@11c8~n11!21/5#

11c8
, ~130!

as our definition ofr(n) for all n, 0<n,`. This final form
defines a normalized expression forr(n) that exhibits the
desired characteristic behaviorn21/5 isolated above. Having
done so, we may then seek a weight functionW̃(x) so that

E
0

1

xnW̃~x!dx5
@11c8~n11!21/5#

11c8
, ~131!

which again can be done using the inverse Mellin transfo
compare the formula 4.37 on p. 38 of Ref.@22#. The solution
of Eq. ~131! is then

W̃~x!5
1

GS 1

5D
c8

11c8

1

F lnS 1

xD G4/51
1

11c8
d~x212!,

~132!

which, as explained, may be considered as an approxim
form of the weight function corresponding tos523/4. In
Fig. ~19! we plot the first term of Eq.~132! for c855 to-
gether with the weight of example~c! in Sec. VI,
1/2K (A12x). We discern a clear pattern ass goes through
22/3,23/4 and21: for s522/3, the weight is singular a
x50, for s523/4 it is singular atx51, and fors521 it is
also singular atx51.

Still more cases can be encompassed by choosing inr(n)
a general exponentr .0, such thatr(n)5)k52

n (12k2r).
This implies r(`)5 limn→`r(n)50 if r<1 and 0,r(`)
,1 if r .1. Since from Eq.~114! r 522s/(21s) then for
22,s,22/3, r(`)Þ0, whereas for22/3<s,0, r(`)
50. Both of these circumstances define Hausdorff mom
problems; the case of Eq.~124! corresponds to the forme
case, while all the examples of Sec. VI correspond to
latter case.

VIII. CONCLUSION

There are two main goals that we have tried to develop
the present paper. For the first goal, in which attention
7-15



t
ri
nfi
av
iz
le
an
, a
de
ta
tr
t

th
tr
on

te
ns
en
uf
on
ro
d
ig
gh
e

ea
ia
co
e

lt

t
d

e.

nt
ets
on-
t,

h a
hts

al-
ent
a

lar
y
y

s

late
. In

rent
o-
hat

to
on
tion
ical
sics

-
ns
nd

ard
ere
i-
ot
pan
be

r a
tes.

reth-
at

. I.

of

J. R. KLAUDER, K. A. PENSON, AND J.-M. SIXDENIERS PHYSICAL REVIEW A64 013817
confined to holomorphic coherent states~coherent states tha
up to normalization are functions of a single complex va
able!, our purpose has been to display examples of the i
nite variety of possible coherent states. In so doing we h
given attention to many examples that can be character
by various special functions, and have generally been ab
provide closed expressions for the normalization factor
many expectation values such as the Mandel parameter
what we have called the metric factor. Study of the Man
parameter has provided many examples of coherent s
with either sub- or super-Poissonian behavior. The me
factor, on the other hand, has given us a direct handle on
geometry of the coherent states. It is noteworthy that for
class of coherent states we have studied, different geome
are associated with different sets of coherent states in a
to-one fashion.

A principal tool in developing our various coherent sta
families has been the use of Mellin and inverse Mellin tra
forms associated with both Stieltjes and Hausdorff mom
problems. Fortunately, tables of such transforms are s
ciently rich to enable us to extract many examples of n
negative weights in these transforms that can serve as p
ability distributions. Convolution formulas implicitly exten
these examples to an unlimited supply of acceptable we
functions. In our studies we have offered examples of wei
functions defined over the entire non-negative real numb
as well as over only a finite interval of the non-negative r
numbers including zero. These two categories are assoc
with the different moment problems and correspond to
herent states defined over the entire complex plane or ov
disk of finite radius centered at the origin, respectively.

In this regard, it is interesting to recall that certain Stie
jes moment problems have a nonunique solution@9,10#, that
is, different, non-negative probability densities can lead
identical moments. The uniqueness of solutions can be
termined with the~sufficient! Carleman condition@10#: if
S5(n50

` @r(n)#21/2n diverges then the solution is uniqu

FIG. 19. Comparison of weight functions of example VI~c!
@W1(x)5(1/2)K (A12x)# with that of Eq.~132! @W2(x)#.
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This is for instance the case of examples~a! and ~b! in Sec.
V and fora,2, b.0, in examples~c! and~a! in Sec. V. In
contrast for example~b! with a.2,b.0 the solution is de-
finitively nonunique@4#.

From the point of view of the construction of cohere
states this situation would imply, in particular, that such s
of coherent states would possess distinct, but still n
negative, weight functions in their resolution of unity. Wha
if anything, would be the physical consequences of suc
situation remains a problem for the future. Some thoug
have been devoted to this question recently@33#.

The solutions of the Hausdorff moment problems are
ways unique, which implies that the coherent states pertin
to Hamiltonians with bounded spectra of Sec. VI have
unique resolution of unity.

We mention here a recent study of so-called molecu
coherent states@34# constructed with a finite set of arbitraril
chosen numbersr(n). In this case, the resolution of unit
can only be achieved if ther(n)’s satisfy certain specific
relations. In a recent work@35#, a related construction ha
been undertaken.

The second goal of this paper has been an effort to re
our various coherent states to possible physical systems
so doing we were guided by a recent discussion of cohe
states@30# that generally does not involve holomorphic c
herent states. Most importantly, we have taken from t
study a means of relating the sequence of moments$r(n)%
with the sequence of rescaled energy eigenvalues$en%. The
largen behavior of the energy eigenvalues can be related
a potential function by the Bohr-Sommerfeld quantizati
rule, and by that route, we can give a qualitative associa
of our coherent states with selected quantum-mechan
problems. This association serves to add a degree of phy
to our discussion.

Our states of Eq.~101! offer specific advantages as com
pared with previous constructions of Nieto and Simmo
@36,37#, of coherent states for general potentials. Nieto a
Simmons work is strictly semiclassical in character in reg
to its association with the presumed physical problem. Th
is no control over what approximate kind of description N
eto’s work has for a given physical system. Last but n
least, there is no general proof that Nieto’s states even s
the required Hilbert space, let alone whether they can
used to form the usual kind of resolution of unity.

One clear result of our discussion has been to offe
wealth of specific and concrete examples of coherent sta
These sets of coherent states stand ready to join their b
ren in the service of providing explicit representations th
can be applied to the study of various problems.
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APPENDIX: APPLICATIONS OF
THE MELLIN CONVOLUTION

In this appendix we shall carry out in detail two cases
Eq. ~20! applied to specific forms ofr(n). The objective is
7-16



e

-

n

f.

he

re-
ine

yti-

CONSTRUCTING COHERENT STATES THROUGH . . . PHYSICAL REVIEW A64 013817
to obtain the weight functionW̃12(x) of the state described
by r12(n)5r1(n)•r2(n) if we know the individual positive
weights W̃1(x) and W̃2(x) originating from r1(n) and
r2(n), respectively.

~1! The simplest nontrivial example is to obtain th
weight W̃12(x) by Mellin ‘‘convoluting’’ two conventional
coherent states, i.e.,r12(n)5r1(n)r2(n)[r1

2(n)5(n!) 2.
We use Euler’s representation of the gamma function,G(s)
5*0

`xs21e2xdx, which implies M 21@G(s);x#5e2x. This
in turn, using Eq.~20! with a50 andb521 gives

M 21@G2~s!;x#5E
0

`

t21 expF2S x

t
1t D Gdt. ~A1!

The Eq.~A1! will now be compared with Sommerfeld’s rep
resentation of the modified Bessel function~see formula
8.432.6 on p. 969 of Ref.@28#!:

Kn~x!5
1

2 S x

2D nE
0

`

e2(t1x2/4t)
1

tn11
dt, ~A2!

immediately giving W̃12(x)5M 21@G2(s);x#52K0(2Ax)
.0. Note that although the individualW̃1,2(x)5e2x are
regular functions, their Mellin convolutionW̃12(x) is singu-
lar at x50. It is evidently an integrable singularity.

~2! The second example involvesr1(n)5n!/(n11) @see
Eq. ~56!# with W̃1(x)52Ei(2x).0 andr2(n)52/ApG(n
13/2), which by means of Eq.~18! originates fromW̃2(x)
-

. A

-

e

01381
52/(Ap)x1/2e2x. We are going to obtain the functio
W̃12(x) whosenth momentr12(n) is equal to

r12~n!5E
0

`

xnW̃12~x!dx5
2

Ap

n!G~n13/2!

n11
. ~A3!

We use again Eq.~20! and obtain directly

W̃12~x!5
2

Ap
E

0

`Ax

t
e2x/t@2Ei~2t !#

dt

t
, ~A4!

which upon utilizing the formula 2.5.4.3 on p. 72 of Re
@29# results in

W̃12~x!524 Ei~22Ax!, ~A5!

which is again a positive function. The normalization of t
stateuz& defined by ther12(n)’s above is equal to

N~x!5
Ap

2 (
n50

1`
xn~n11!

n!G~n13/2!
~A6!

5
1

2Ax
S sinh~2Ax!

2
1Axcosh~2Ax! D . ~A7!

We have thus obtained a coherent state satisfying the
quired fundamental properties. The reader may well imag
other Mellin convolutions that can be either obtained anal
cally or, more generally, numerically.
r
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