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Propagation of pulses in a three-level medium at exact two-photon resonance
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Propagation of a pulse pair in a nondissipative three-level medium is investigated in the adiabatic-following
approximation to a trapped state. The general case of unequal oscillator strengths of two electric dipole
transitions in an atom is studied analytically, and the adiabaticity criterion for the matter-field interaction is
derived. It is shown that the interaction adiabaticity strongly depends on the relationship between oscillator
strengths. A simple expression specifying the critical propagation length at which the stimulated Raman
adiabatic passage process is still effective is derived. An estimate of the propagation distance at which a
complete energy transfer from the pump pulse into the Stokes pulse occurs is made.
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I. INTRODUCTION

Coherent interaction of two laser pulses with three-le
media has exhibited a rich variety of interesting phenome
such as electromagnetically induced transparency, pop
tion transfer, lasing without inversion, and others@1#. The
mechanism underlying these coherent phenomena is the
istence of a so-called ‘‘trapped’’ superposition state@2# that
does not involve an intermediate bare state. Such a state
be realized, for example, by using a counterintuitive
quence of pulses~the Stokes pulse is switched on and o
before the pump pulse! interacting with a three-levelL sys-
tem that is initially in the ground state. If the pulses me
certain adiabaticity conditions@1#, after the interaction, the
system is found to be completely inverted. This method
population transfer is known in the literature as stimula
Raman adiabatic passage~STIRAP! and has been succes
fully demonstrated for atomic@3# and molecular@4# beams.
The efficiency of using a counterintuitive pulse sequence
nonlinear interaction of radiation with a medium has be
shown experimentally recently in Ref.@5# where the process
of nonlinear four-wave sum mixing has been investiga
and the enhancement of the generation efficiency by a fa
of 2 and more has been shown. In this connection it is c
sidered to be important and interesting to investigate the
teraction of pulses with a medium under the condition o
population trapped state in the presence of energy tran
from one pulse into another.

Much attention in the previous study of the propagat
problem has been focused on soliton-wave propaga
~without loss and dispersion!, for example, propagation o
‘‘matched pulses’’@6#, ‘‘adiabatons’’ @7#, and others@8,9#.
However, the processes of energy transfer from one p
into another lead to significant pulse-shape changes in
optically thick medium. Such processes have been inve
gated in a number of numerical studies, for example, in R
@10#, but, to our knowledge, there are no analytic results. I
obvious that pulse-shape changes accumulated during pr
gation can result, for example, in breaking down the adia
ticity condition, which is very important in most methods
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creating a population trapped state, for example, in Ref.@11#.
The adiabaticity condition for a single atom has been w
investigated@12# and requires both field intensities to va
slowly as compared to the Rabi frequencies. However, fo
gaseous medium, the adiabaticity condition should dif
from that for a single atom and contain the parameters of
medium. It is difficult to obtain such a criterion from numer
cal analysis. It is shown in Ref.@7# that the adiabaticity of
the system does not break down during propagation in
case of equal oscillator strengths of two electric dipole tr
sitions in an atom. The equality of the oscillator streng
means that the linear absorption coefficients of the b
fields are equal. It is not so easy to realize such a conditio
a real experiment. The case of unequal oscillator streng
has been investigated in Ref.@13#. The investigations per-
formed showed that in such a situation nonlinear adiaba
like waves are not shape-preserving pulses but underg
front sharpening and the authors state that the inequalit
the oscillator strengths results in the appearance of str
nonadiabatic effects in the ‘‘atoms1 field’’ system. How-
ever, a more detailed analysis performed in the present p
shows that the interaction adiabaticity strongly depends
the relation between the oscillator strengths and can be
served under certain conditions.

The goal of the present paper is to investigate the pro
gation of two optical pulses in a three-level medium w
unequal oscillator strengths without restriction on pu
shapes in the adiabatic-following approximation@14# to the
trapped state. The pulse durations are assumed to be sh
compared to all relaxation times. The effects of inhomog
neous broadening are not taken into account in this pa
@15#. Here we ask what happens with the ‘‘trapped’’ state
the pulses propagate into a medium, namely whether i
destroyed or preserved during propagation and what are
corresponding conditions. It is shown that the trapped s
destroys rather quickly during propagation in some cases
is preserved in other cases. We present exact analytic s
tions to propagation equations by taking into account the fi
nonadiabatic corrections to the trapped state. From the s
tions obtained we derive the conditions for loss-free pro
gation. The process of adiabaticity breaking down is a
lyzed and the adiabaticity criterion is obtained.

We investigate in detail the propagation dynamics o
©2001 The American Physical Society16-1
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G. G. GRIGORYAN AND Y. T. PASHAYAN PHYSICAL REVIEW A64 013816
counterintuitive pulse sequence in aL system. It is shown
that both pulses experience a considerable reshaping as
propagate into the medium, namely, the leading edge of
pump pulse is continuously depleted and its magnitude
creases, while at the tail of the Stokes pulse there appea
additional peak, which is correspondingly amplified. Su
pulse-shape change during propagation leads to the dec
of the population transfer efficiency. We derive a simple e
pression for the propagation length over which populat
transfer is still effective. The possibility of a complete e
ergy transfer from the pump pulse to the Stokes pulse
shown and an estimate of the propagation distance at w
this occurs is made.

The paper is organized as follows. In Sec. II we formul
the problem and present the propagation equations in
adiabatic-following approximation. The solutions to th
propagation equations are presented in Sec. III. In Sec
we focus on the adiabatic behavior of the system and de
the adiabaticity criterion specifying the propagation length
which the interaction adiabaticity is preserved. In Sec. V
study the propagation of a counterintuitive pulse sequenc
the STIRAP regime and analyze the evolution of the pul
for different propagation dynamics. The propagation leng
specifying the critical length at which an effective STIRA
is still possible in a medium, and the length at which a co
plete energy transfer from the pump pulse to the Stokes p
occurs, are derived. The results are summarized in Sec.

II. BASIC FORMULAS

The three-level systems under consideration are prese
in Fig. 1. Statesu1& and u2&, u2& and u3& are connected by
the laser radiationsEp5Ap cos(kpx2vpt1wp) and Es
5As cos(ksx2vst1ws), respectively. The direct transitio
u1&→u3& is electric dipole forbidden.

The probability amplitudes of the three states obey
time-dependent Shro¨edinger equation, which in the rotating
wave ~or resonant! approximation takes the form@1#

i
d

dt S b1

b2

b3

D 5S 0 Vp 0

Vp Dp Vs

0 Vs Dp1Ds

D S b1

b2

b3

D . ~1!

Here Vp52uApdpu/\, Vs52uAsdsu/\ are the Rabi fre-
quencies of the corresponding fields, withdp and ds being
the transition dipole moments between statesu1& and u2&,
u2& and u3&, respectively. The detunings off resonance
defined as

FIG. 1. Three-level systems coupled by two resonant pu
with Rabi frequenciesVp andVs .
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L V J

Dp5v212vp1ẇp Dp5v211vp2ẇp Dp5v212vp1ẇp

Ds5v321vs2ẇs Ds5v322vs1ẇs Ds5v322vs1ẇs.

~2!

The instantaneous Hamiltonian for all three systems ha
zero eigenvalue under the exact two-photon resonance
dition, i.e., whenDp1Ds50. The corresponding eigenstate
are referred to as trapped states and realized under the
lowing initial conditions:

b3~2`!

b1~2`!
52

Vp~2`!

Vs~2`!
, b2~2`!50. ~3!

For example, if the atom is initially in the ground stat
i.e., b2(2`)5b3(2`)50, b1(2`)51, a counterintuitive
pulse sequence should be applied to realize a trapped s

In the adiabatic following approximation~taking into ac-
count the first nonadiabatic corrections to the trapped st!
the atomic state populations are as follows@12#:

b15cosu1 i
u̇

V

2 sinu

tan 2c
, b252 i

u̇

V
,

b352sinu1 i
u̇

V

2 cosu

tan 2c
, ~4!

where V5AVp
21Vs

2, tanu5Vp /Vs , tan 2c52V/Dp (c
→p/4 atDp→0). Equations~4! are obtained under the con
dition u̇/V'(VT)21!1, which is the adiabaticity criterion
for a single atom@1#.

For theL system in the general case, the reduced pro
gation equations in terms of wave variablesx, t5t2x/c
reads@1#

2Vp

]wp

]x
52qp~b1* b21b1b2* !;

2Vs

]ws

]x
52qs~b3* b21b3b2* !;

2
]Vp

]x
52 iqp~b1* b22b1b2* !;

2
]Vs

]x
52 iqs~b3* b22b3b2* !, ~5!

where the coefficientsqp,s52pNvp,sdp,s
2 /\c are propor-

tional to the products of the atomic number density and
oscillator strengths for the transitionsu1&→u2& and u2&
→u3&, respectively.

In Eqs.~5! and all the posterior formulas for aJ system,
qs should be replaced by2qs , and for aV systemqp should
be replaced by2qp andqs by 2qs .

s
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PROPAGATION OF PULSES IN A THREE-LEVEL . . . PHYSICAL REVIEW A 64 013816
It follows from Eqs.~5! that in the ideal adiabatic limi
(b250) the pulses propagate through the medium with
the shape and phase change~both real and imaginary parts o
the dipole moments induced in the medium are equa
zero!. However, due to a small nonadiabatic coupling b
tween the trapped state and the two other eigenstates
upper level is populated slightly. This leads to nonzero
duced dipole moments between statesu1& and u2& and u2&
andu3&, which in turn causes a consequent alteration of b
fields. These changes, accumulated during the propaga
process, can affect the propagation dynamics remarkabl

III. SOLUTIONS TO PROPAGATION EQUATIONS IN
THE ADIABATIC-FOLLOWING APPROXIMATION

Using the definitions of the functionsu(x,t) andV(x,t)
we have

Vp~x,t!5V~x,t!sinu~x,t!,

Vs~x,t!5V~x,t!cosu~x,t!. ~6!

Substituting Eqs.~4! into Eqs.~5!, we obtain the follow-
ing equations for the functionsu(x,t) andV(x,t):

]V2~x,t!

]x
5~qs2qp!u̇~x,t!sin 2u~x,t!, ~7!

]u~x,t!

]x
1

qp cos2 u~x,t!1qs sin2 u~x,t!

V2~x,t!

]u~x,t!

]t
50.

~8!

It is seen from Eq.~7! that in the case of equal oscillato
strengths,qp5qs , the functionV(x,t) does not change dur
ing propagation,V2(x,t)5V0

2(t), and represents the inte
gral of motion. Note that in this case Eq.~8! is simplified
substantially. In the general case of unequal oscilla
strengths it is the total photon number density that repres
the integral of motion. Indeed, introducing the photon nu
ber densitiesnp,s5Ap,s

2 /\vp,s52pNVp,s
2 /cqp,s ~the dimen-

sion of np,s coincides with that of atomic number densit!
from Eqs.~5! for the total photon number density (np1ns)
we have

]~np1ns!

]x
5

2pN

c

d

dt
ub2u2. ~9!

In the adiabatic-following approximation, as seen fro
Eq. ~4!, the magnitude ofub2u2 is of the second order in th
adiabaticity parameteru̇/V, and we may neglect the right
hand side of Eq.~9!. Equation~9! presents the conservatio
law of the total photon number density under the trapp
state condition during propagation.

For aJ system an analogous relationship is obtained
the difference of the photon number densities

]~np2ns!

]x
5

2pN

c

d

dt
ub2u2. ~10!
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For the L system, from the law of conservation of th
photon number density we have the following expression
the functionV(x,t):

V2~x,t!5V0
2~t!

qs sin2 u0~t!1qp cos2 u0~t!

qs sin2 u~x,t!1qp cos2 u~x,t!
, ~11!

whereV0
2(t)5Vp0

2 1 Vs0
2 , with Vp0 andVs0 being the val-

ues of the corresponding functions at the medium entran
It follows from Eqs. ~4!, ~6!, and ~11! that in the

adiabatic-following approximation the dynamics of the sy
tem ~both the atomic state population change and the pu
shape evolution! is completely determined by the functio
u(x,t) satisfying Eq.~8!.

Using Eq.~8! and introducing ‘‘nonlinear group’’ velocity
u(x,t) and ‘‘nonlinear time’’j5t2x/u(x,t), for the func-
tion u(x,t) we find

]u~x,j!

]x
50. ~12!

The solution to Eq.~12! is straightforward and reads@16#

u~x,j!5u0~j!, ~13!

whereu0(j) is the value ofu(j) at the medium entrance an
the functionj is determined from the implicit equation

E
j

t

n0~ t8! dt85
x

qpqs

2pN

c
f 2
„u0~j!…. ~14!

Here n0(t8) is the total photon number density at the m
dium entrance,n05np01 ns0.

Given any explicit integrable expressions for the time d
pendence of the photon number densityn0(t) at the medium
entrance, we can directly evaluate the integral in Eq.~14! and
obtain a set of reasonably simple analytic solutions to
problem considered. Indeed, evaluating the integral in
~14! for a fixedx, we obtain the functiont(j) in an explicit
form, and after that there is no difficulty in the determinati
of the inverse functionj(x,t). For example, substituting in
stead of the functionsnp0 andns0 in Eq. ~14!, the functions
used in Ref.@13# or the Jacobi elliptic functions of Ref.@8#,
we find that Eq.~14! takes the form

const3~t2j!5
x

qpqs

2pN

c
f 2
„u0~j!….

One can easily obtain from this expression the functiont(j)
and, hence, the functionj(x,t). Thus, formulas~6!, ~11!,
~13!, and~14! represent exact analytical solutions of the ta
considered.

In the case of equal oscillator strengthsf 2(u)/qpqs51
and, as follows from Eq.~14!, the nonlinear propagation ve
locity u(x,t) is constant if the total photon number dens
n0(t) does not depend on time. This propagation regime
been called ‘‘adiabatons.’’ In the general case of uneq
oscillator strengths for soliton wave propagation, it is nec
6-3
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sary that the functionj(x,t), determined by Eq.~14!, be a
linear function oft and x, which means constancy of th
propagation velocity. Evaluating the corresponding deri
tives of the functionj(x,t) we have
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]j

]t
5

n0~t!

n0~j!1~2x/qsqp!~2pN/c! f „d f /du0~j!…„du0~j!/dj…

5const, ~15!
]j

]x
52

1

qsqp

2pN

c

f 2@u0~j!#

n0~j!1~2x/qsqp!~2pN/c! f „d f /du0~j!…„du0~j!/dj)
5const. ~16!
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As x enters the denominators of Eqs.~15! and ~16!, in
order for j(x,t) to be a linear function oft and x, it is
necessary and sufficient that the following two conditions
satisfied: ~i! „d f /du0(j)…„du0(j)/dj…50, and ~ii ! n0(j)
5const. The first of these conditions is fulfilled in the case
equal oscillator strengths~adiabatons! or in the case of a
constant u ~identical envelopes!. The second condition
means constancy of photon number density.

It should be noted that the regime of propagation of
multaneous different-wavelength optical solitons@17# is not
possible under the conditions considered here.

Note that, as follows from Eqs.~4!, ~6!, and ~14!, two
waves, ‘‘population wave’’ and ‘‘polarization wave,’’ propa
gate in the medium with the nonlinear group velocity det
mined by Eq.~14!.

IV. ADIABATICITY CRITERION

The analytic solution obtained has been derived under
condition u̇/V!1. In the medium, this condition takes th
form (1/V)(du/dj)„]j(x,t)/]t…!1. Even though we pro-
vide that the derivativedu/dj be small, the adiabaticity con
dition can break down, since during propagation in the m
dium, the derivative]j(x,t)/]t can become considerabl
large. We find now an expression specifying the critic
propagation length at which the interaction adiabaticity m
at the medium entrance is preserved during propagation

It follows from Eq.~15! that]j/]t→` when the denomi-
nator in the right-hand side tends to zero. Using the defi
tion of the functionf we find for the derivatived f /du0

d f

du0
5sin 2u0~j!~qs2qp!. ~17!

Substituting Eq.~17! into Eq. ~15!, we find that in order
for the denominator in the right-hand side of Eq.~15! to be
zero, the following condition should be satisfied:

12
2~qp2qs!x

V0
2

du0~j!

dj
sin 2u0~j!→0. ~18!

As sin 2u0(j) remains positive over the change range ofu,
expression~18! can be fulfilled only under the following
conditions:
e

f

-

-

e

-

l
t

i-

~qp2qs!
du0~j!

dj
.0;

2~qp2qs!x

V0
2T

'1. ~19!

Conditions~19! represent the interaction adiabaticity cr
terion specifying the critical length at which the interactio
adiabaticity, met at the medium entrance, breaks down d
ing propagation.

Consider this condition in detail. For aL system at a
counterintuitive pulse sequence, corresponding to the in
conditionsb1(2`)51,b3(2`)50, we haveu̇.0. In this
case, as follows from Eq.~19!, the interaction adiabaticity
breaks down whenqp.qs . The conditionqp.qs means that
the probability of the transitionu1&→u2& is greater than tha
of the transitionu2&→u3& and, thus, the population transfe
u1&→u2& dominates the depletion of levelu2&, i.e., the inter-
action adiabaticity breaks down. Whenqp<qs , condition
~19! is never fulfilled. In this case]j/]t remains finite and,
thus, the conditionVT@1 is sufficient to provide the adia
baticity of the system.

The condition stated above is illustrated by Fig. 2, whi
presents the time evolution of the mixing parameteru ~solid
curves! for q50.5;1 and 2~hereq5qp /qs) at the normal-
ized propagation lengthz50.03 (z[xqs /V0

2T). The dashed

FIG. 2. Time evolution of the mixing parameteru ~solid curves!
for different relationships betweenqp and qs (q50.5;1 and 2) at
propagation lengthz50.03. The dashed curve corresponds to
case of z50. The input pulses have been chosen in the fo
Vp(0,t)5Vmax/cosh@(t2td)T#, Vs(0,t)5Vmax/cosh(t/T), wheretd

is the delay time between the pulses.
6-4
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line has been obtained at the entry surface of the medium
z50. The dotted curve corresponds to the case ofu̇→`, i.e.,
when the adiabatic-following approximation breaks down
is seen from the figure that forq52 the evolution of the
mixing parameter differs from the adiabatic one~i.e., the
trapped state is destroyed! already at this propagation length
while in the cases ofq50.5 and 1 the adiabatic evolution o
the mixing parameter is preserved with propagation.

An intuitive pulse sequence (u̇,0), which can be applied
under the initial conditionsb1(2`)50, b3(2`)51, re-
sults in population transfer from stateu3& to stateu1& via
state u2&. Thus we see that the interaction adiabaticity
rather sensitive to the relationship between oscilla
strengthsq.

For a J system, replacingqs by 2qs , we find that at a
counterintuitive pulse sequence the interaction remains a
batic at any propagation length, but for an intuitive pu
sequence it can break down at 2x(qp2qs)/V0

2T'1. For aV
system, replacingqs by 2qs and qp by 2qs , we have the
case just opposite to that of aL system.

V. PROPAGATION IN THE STIRAP REGIME

Let us now investigate the propagation of a counterin
tive pulse sequence in aL system in the STIRAP regime fo
different relationships between the oscillator strengthsq
<1).

In Figs. 3~c! and 3~d! and 4~c! and 4~d! we present the
time evolution of the envelopes of both pulses as they pro
gate through the medium forq50.5 andq51, respectively.
We consider the hyperbolic secant pulse shapes:Vp(0,t)
5Vmax/cosh@(t2td)/T#, Vs(0,t)5Vmax/cosh(t/T), wheretd
is the delay time between the pulses.

It is seen that both pulses experience significant resha
during propagation. The leading edge of the pump pulse

FIG. 3. Time evolution of~a! the normalized Rabi frequencie
of the pump and Stokes pulses at the medium entrancez50, ~b! the
mixing parameteru, ~c! the normalized Rabi frequencies of th
Stokes pulse for different propagation lengths (z changes from 0 to
3.3!, and~d! the normalized Rabi frequencies of the pump pulse
different propagation lengths (z changes from 0 to 3.3!. The rela-
tionship betweenqp andqs is equal to 0.5.
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dergoes gradual depletion. At the tailing edge of the Sto
pulse there appears an additional peak, the amplitude
which increases continuously. Thus, there occurs a sig
cant dynamical redistribution of the number of photons in
overlapping range. Comparisons clearly show that the re
tribution dynamics depends on the value ofq. Indeed, for the
case ofq50.5 @Fig. 3~d!# at the propagation length ofz
53.3 ~the dotted curve in the figures! the pump pulse is still
intense enough, while at the same length for the case oq
51 @Fig. 4~d!# the energy of the pump pulse is complete
transferred to the Stokes pulse.

It is known that for an effective STIRAP process not on
a counterintuitive pulse switching on@u(2`)→0# but also
a corresponding switching off†u(1`)→p/2‡ is required,
which provides the corresponding change ofu, namely, from
0 to p/2. For such a switching off it is necessary that at
→1`, VpÞ0 butVs→0. The time evolution of the mixing
angleu(j,t) is presented in Figs. 3~b! and 4~b!. It is seen
from the figures that at the initial stage of propagation
needed condition is fulfilled and the final value ofu is close
to p/2. However, after a certain propagation length, the
occurs a noticeable decrease in the amplitude of the pu
pulse and the corresponding amplification of the Sto
pulse at its tail. Thus, after this length, the conditio
Vp(1`)Þ0, Vs(1`)→0, required for effective STIRAP
break down and the final value ofu differs fromp/2, which
means that the transfer process is not complete.

We see that even if all the conditions for effectiv
STIRAP are met at the entry surface of the medium, th
may break down during propagation due to the shape cha
of both pulses.

The analytic solution obtained enables us to find a sim
expression specifying the propagation length at which eff
tive population transfer is still possible in the medium. Aft
the interaction with the pulses the atoms will be in the fin

r

FIG. 4. Time evolution of~a! the normalized Rabi frequencie
of the pump and Stokes pulses at the medium entrancez50, ~b! the
mixing parameteru, ~c! the normalized Rabi frequencies of th
Stokes pulse for different propagation lengths (z changes from 0 to
3.3!, and~d! the normalized Rabi frequencies of the pump pulse
different propagation lengths (z changes from 0 to 3.3!. The rela-
tionship betweenqp andqs is equal to 1.
6-5
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state if sin2 u0(j)51 and cos2 u0(j)50, which corresponds to
j>T. Then for Eq.~14! we have

E
T

T1td
~np01ns0!dt85

qs

qp

2pN

c
x ~20!

or

n̄0td5
qs

qp

2pN

c
x, ~21!

where n̄0 is the mean photon number density in the pum
pulse after the Stokes pulse is switched off, which can
estimated as

n̄05
1

2

2pN

c

Vp,s
2

qp,s
. ~22!

Substituting Eq.~22! into Eq. ~21!, one can easily obtain
the following expression for the normalized propagati
length at which effective population transfer occurs

zSTIRAP;td/2T. ~23!

It follows from Eq. ~21! that for the given time delaytd
between the pulses, the more the number of photons in
time interval betweenT and T1td , the larger this length
This means that the Stokes pulse should be switched
more sharply, while the pump pulse should be switched
more smoothly. Thus, by a corresponding, namely, asymm
ric pulse switching off, one can provide more photons in
pump pulse, which results in the longer penetration len
for an effective STIRAP process.

On the other hand, as follows from Eq.~23!, the moretd ,
the longer the STIRAP penetration length. It is obvious t
td should not be too large in order to provide correspond
overlap between the pulses@1#.

It is seen from Figs. 4~c! and 4~d! that an effective photon
transfer from the pump pulse leading edge to the Sto
pulse tail edge is possible during propagation. The comp
transfer occurs when sin2 u0(j)50, i.e., whenj<2T1td .
Using Eq. ~14! we obtain the following simple expressio
specifying the critical length at which a complete ener
transfer from the pump pulse into the Stokes pulse occu

zpump;
2~11q!

q2
. ~24!

As follows from Eq.~24!, the moreq is, the quicker the
regime is set. In particular, for the caseq51, a complete
energy transfer from the pump pulse into the Stokes pu
occurs at the lengthz;4, which agrees with Fig. 4. Let u
now estimate the value ofz. For standard experimenta
parameters:N51015 atoms/cm23, v51015 s21,d2510235

esu, V0T510,T510212 s estimations show thatz51 cor-
responds to;50 cm. Thus, forq51 at the propagation
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length of 200 cm, the energy of the pump pulse is complet
transferred to the Stokes pulse.

The propagation length at which effective STIRAP is po
sible depends on the time delay between the pulses but
on the relationship betweenqp and qs . This conclusion is
confirmed by Fig. 5. This figure presents the time evolut
of the ground- and final-state populations for different tim
delaystd between the pulses forq50.5 andq51. Compari-
sons show that the penetration length of the STIRAP proc
increases with the increase oftd . Indeed, as seen from th
figure, at the propagation length ofz51.6 the efficiency of
the STIRAP process fortd /T52.5 is less than that for the
case oftd /T55, i.e., according to Eq.~23! the moretd , the
more the efficiency of the STIRAP process. For example,
the experimental parameters given above in the case
td /T55, one can provide an effective STIRAP process
the propagation length of;125 cm.

It is seen from the figure that the final values of t
ground- and final-state populations do not differ forq50.5
and q51, i.e., the population transfer process does not
pend on the relationship between the oscillator streng
Some difference between the population dynamics is
plained by the fact that the time evolution of the pulses
pends on the value ofq.

It should be noted thatzstirap should not exceedzpump, as
at this length the pump pulse, actually, is completely d
pleted and the STIRAP process is not possible.

Figure 6 presents the case whereq50.001. It is seen from
the figure that the pump pulse propagates without the cha
of its shape while the Stokes pulse changes its shape sig
cantly, which is not surprising as the number of photons
preserved during propagation, which is confirmed by F
6~c!. The figure presents the change of the number of p
tons as the pulses propagate into the medium. Some am
fication of the pump pulse, observed at the tailing edge,
dicates the beginning of the reverse process of the pho
transfer from the Stokes pulse to the pump pulse. This is
beginning of the process of adiabaton formation. Howev

FIG. 5. Population transfer for~a! q50.5 and~b! q51. Shown
are the populations of the ground and final states fortd /T52.5 and
5. Different curves correspond to different propagation lengt
z50, 0.08, 0.4, 0.8, and 1.6.
6-6



s

o

to
a
u
v
-

up

ga-
be-

er-
um.

en-
hen
en

er-
s at
er-
tic-
lse
ng
of

ing
of the
he
ion
fer
e
be

ely,
mp

m-
ulse
h at

ro-
n,
as
nia

-

ti

tio

PROPAGATION OF PULSES IN A THREE-LEVEL . . . PHYSICAL REVIEW A 64 013816
in the case considered, adiabatons cannot be formed a
Stokes pulse is switched off and the process stops.

VI. SUMMARY

In the present paper we have studied the propagation
pulse pair through a nondissipative three-level medium ofL,
J, and V types for the general case of unequal oscilla
strengths without restriction on the pulse shapes. We h
obtained exact analytical solutions to the propagation eq
tions under the adiabatic-following approximation and ha
shown that two waves, ‘‘population wave’’ and ‘‘polariza
tion wave,’’ propagate in the medium with nonlinear gro

FIG. 6. Time evolution of~a! the ground- and final-state popu
lations for different propagation lengths,~b! the normalized Rabi
frequencies of the pump and Stokes pulses for different propaga
lengths (z changes from 0 to 3!, and ~c! the change of the photon
number in the pump and Stokes pulses for different propaga
lengths (z changes from 0 to 3!. The relationship betweenqp andqs

is equal to 0.001.
-

, Z

,
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velocity. The investigation performed shows that propa
tion dynamics are strongly affected by the relationship
tween oscillator strengths.

We have derived the adiabaticity criterion for the matt
field interaction depending on the parameters of a medi
In the case of a counterintuitive pulse sequence in aL sys-
tem, the interaction adiabaticity, provided at the medium
trance, is preserved for any value of propagation length w
q<1 and breaks down rather quickly with propagation wh
q.1.

Next we have studied the spatial evolution of a count
intuitive pulse sequence during propagation for parameter
which the interaction adiabaticity is met. The analysis p
formed shows that during propagation under the adiaba
following approximation there occurs a considerable pu
reshaping, which lies in gradual depletion of the leadi
edge of the pump pulse and corresponding amplification
the tailing edge of the Stokes pulse. It is found that dur
propagation, pulse shape change leads to the decrease
efficiency of the STIRAP process in the medium. From t
analytical solutions we have derived a simple express
specifying the critical length at which the population trans
process is still effective in a medium. It follows from th
analysis that the efficiency of the STIRAP process can
increased by a corresponding pulse switching off, nam
sharper for the Stokes pulse and smoother for the pu
pulse.

Our investigation shows that during propagation a co
plete energy transfer from the pump pulse to the Stokes p
is possible. A simple expression for the propagation lengt
which this occurs has been obtained.
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