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Propagation of pulses in a three-level medium at exact two-photon resonance
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Propagation of a pulse pair in a nondissipative three-level medium is investigated in the adiabatic-following
approximation to a trapped state. The general case of unequal oscillator strengths of two electric dipole
transitions in an atom is studied analytically, and the adiabaticity criterion for the matter-field interaction is
derived. It is shown that the interaction adiabaticity strongly depends on the relationship between oscillator
strengths. A simple expression specifying the critical propagation length at which the stimulated Raman
adiabatic passage process is still effective is derived. An estimate of the propagation distance at which a
complete energy transfer from the pump pulse into the Stokes pulse occurs is made.
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I. INTRODUCTION creating a population trapped state, for example, in Rdf.
The adiabaticity condition for a single atom has been well
Coherent interaction of two laser pulses with three-levelinvestigated 12] and requires both field intensities to vary
media has exhibited a rich variety of interesting phenomenaslowly as compared to the Rabi frequencies. However, for a
such as electromagnetically induced transparency, popularaseous medium, the adiabaticity condition should differ
tion transfer, lasing without inversion, and oth¢ld. The  from that for a single atom and contain the parameters of the
mechanism underlying these coherent phenomena is the emedium. It is difficult to obtain such a criterion from numeri-
istence of a so-called “trapped” superposition sti2¢that  cal analysis. It is shown in Ref7] that the adiabaticity of
does not involve an intermediate bare state. Such a state céfe system does not break down during propagation in the
be realized, for example, by using a counterintuitive secase of equal oscillator strengths of two electric dipole tran-
quence of pulsegthe Stokes pulse is switched on and off sitions in an atom. The equality of the oscillator strengths
before the pump pulgenteracting with a three-level sys- means that the linear absorption coefficients of the both
tem that is initially in the ground state. If the pulses meetfields are equal. It is not so easy to realize such a condition in
certain adiabaticity conditiongl], after the interaction, the a real experiment. The case of unequal oscillator strengths
system is found to be completely inverted. This method othas been investigated in Refl3]. The investigations per-
population transfer is known in the literature as stimulatedformed showed that in such a situation nonlinear adiabaton-
Raman adiabatic passa¢g8TIRAP) and has been success- like waves are not shape-preserving pulses but undergo a
fully demonstrated for atomif3] and moleculaf4] beams.  front sharpening and the authors state that the inequality of
The efficiency of using a counterintuitive pulse sequence irthe oscillator strengths results in the appearance of strong
nonlinear interaction of radiation with a medium has beemonadiabatic effects in the “atoms field” system. How-
shown experimentally recently in Rgb] where the process ever, a more detailed analysis performed in the present paper
of nonlinear four-wave sum mixing has been investigatecshows that the interaction adiabaticity strongly depends on
and the enhancement of the generation efficiency by a factahe relation between the oscillator strengths and can be pre-
of 2 and more has been shown. In this connection it is conserved under certain conditions.
sidered to be important and interesting to investigate the in- The goal of the present paper is to investigate the propa-
teraction of pulses with a medium under the condition of agation of two optical pulses in a three-level medium with
population trapped state in the presence of energy transfemequal oscillator strengths without restriction on pulse
from one pulse into another. shapes in the adiabatic-following approximatidm] to the
Much attention in the previous study of the propagationtrapped state. The pulse durations are assumed to be short as
problem has been focused on soliton-wave propagatiogompared to all relaxation times. The effects of inhomoge-
(without loss and dispersignfor example, propagation of neous broadening are not taken into account in this paper
“matched pulses”[6], “adiabatons” [7], and otherd8,9].  [15]. Here we ask what happens with the “trapped” state as
However, the processes of energy transfer from one pulsthe pulses propagate into a medium, namely whether it is
into another lead to significant pulse-shape changes in adestroyed or preserved during propagation and what are the
optically thick medium. Such processes have been investieorresponding conditions. It is shown that the trapped state
gated in a number of numerical studies, for example, in Refdestroys rather quickly during propagation in some cases and
[10], but, to our knowledge, there are no analytic results. It iSs preserved in other cases. We present exact analytic solu-
obvious that pulse-shape changes accumulated during propigens to propagation equations by taking into account the first
gation can result, for example, in breaking down the adiabanonadiabatic corrections to the trapped state. From the solu-
ticity condition, which is very important in most methods of tions obtained we derive the conditions for loss-free propa-
gation. The process of adiabaticity breaking down is ana-
lyzed and the adiabaticity criterion is obtained.
*Email address: gaya@ipr.sci.am FA{R74) 4331172. We investigate in detail the propagation dynamics of a
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FIG. 1. Three-level systems coupled by two resonant pulses @
with Rabi frequencie$), and Q. The instantaneous Hamiltonian for all three systems has a

zero eigenvalue under the exact two-photon resonance con-

counterintuitive pulse sequence inAasystem. It is shown dition, i.e., whenA,+As=0. The corresponding eigenstates
that both pulses experience a considerable reshaping as thaie referred to as trapped states and realized under the fol-
propagate into the medium, namely, the leading edge of th®wing initial conditions:

pump pulse is continuously depleted and its magnitude de-

creases, while at the tail of the Stokes pulse there appears an ba(—=) __ Qp(— ) by(—)=0 @)
additional peak, which is correspondingly amplified. Such bi(—) Qy(—»)’ 2 '

pulse-shape change during propagation leads to the decrease

of the population transfer efficiency. We derive a simple ex- For example, if the atom is initially in the ground state,
pression for the propagation length over which populationi.e., by(—%)=bz(—=*)=0, b;(—«)=1, a counterintuitive
transfer is still effective. The possibility of a complete en- pulse sequence should be applied to realize a trapped state.
ergy transfer from the pump pulse to the Stokes pulse is In the adiabatic following approximatiofiaking into ac-
shown and an estimate of the propagation distance at whicgount the first nonadiabatic corrections to the trapped )state

this occurs is made. the atomic state populations are as follog]:

The paper is organized as follows. In Sec. Il we formulate
the problem and present the propagation equations in the 6 2sin6 0
adiabatic-following approximation. The solutions to the b;=cosf+i Q tan2y’ b= —i o’
propagation equations are presented in Sec. lll. In Sec. IV
we focus on the adiabatic behavior of the system and derive .
the_ adiaba_ticity Cri_terion_spec_ifying the propagation length at ba=—sin6+i E 2 COSG’ (4)
which the interaction adiabaticity is preserved. In Sec. V we Q tan2y

study the propagation of a counterintuitive pulse sequence in

the STIRAP regime and analyze the evolution of the pulsesvhere ()= \/szJr 0z, tanfd=Q,/Q, tan2p=20/A, (¢
for different propagation dynamics. The propagation length,— 7/4 atA,—0). Equationg4) are obtained under the con-
specifying the critical length at which an effective STIRAP dition #/Q~ (QT) <1, which is the adiabaticity criterion
is still possible in a medium, and the length at which a com-or a single atonf1].

plete energy transfer from the pump pulse to the Stokes pulse For the A system in the general case, the reduced propa-
occurs, are derived. The results are summarized in Sec. Vigation equations in terms of wave variabbesr=t—x/c

reads[1]
II. BASIC FORMULAS 9
$p .
The three-level systems under consideration are presented ZQpa_X =—0p(bTby+byb3);
in Fig. 1. Stateg1) and|2), |2) and|3) are connected by
the laser radiationsE,=A,coskXx—wt+¢,) and Eg P
=A coskx—wd+ @), respectively. The direct transition 20573=—q5(b§b2+b3b§);
|1)—|3) is electric dipole forbidden. X
The probability amplitudes of the three states obey the
time-dependent Shealinger equation, which in the rotating- 2’9913 = —iqy(b*b,—byb%):
wave (or resonantapproximation takes the forii] X itttz FiE2 M
b 0 Q 0 b s
df P ' 2— = =—iqy(b3b,~b3b3), ®)
ia by =| Qp A, Qg by |. 1
bs 0 Q¢ Ay+Ag/ \bs where the coefficients), ;= 27Nawj, (5 J#ic are propor-

tional to the products of the atomic number density and the
Here O, = —|Ady|/%, Qs=—|Ad4|/% are the Rabi fre- oscillator strengths for the transitiond)—|2) and |2)
quencies of the corresponding fields, wip and ds being —3), respectively.

the transition dipole moments between stgtes and |2), In Egs.(5) and all the posterior formulas for& system,
|2) and|3), respectively. The detunings off resonance aregs should be replaced by g5, and for aV systemq, should
defined as be replaced by-q, andqgs by —qs.
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It follows from Egs.(5) that in the ideal adiabatic limit For the A system, from the law of conservation of the
(b,=0) the pulses propagate through the medium withouphoton number density we have the following expression for
the shape and phase charieth real and imaginary parts of the functionQ(x,7):
the dipole moments induced in the medium are equal to
zerg. However, due to a small nonadiabatic coupling be- 5 Qs Sir? 00(7)+qp0052 0o(7)
tween the trapped state and the two other eigenstates, the Q%(x,7)=Q5(7)
upper level is populated slightly. This leads to nonzero in-
duced dipole moments between stajs and|2) and |2)
and|3), which in turn causes a consequent alteration of bot
fields. These changes, accumulated during the propagati
process, can affect the propagation dynamics remarkably.

qsSir? 0(x,7)+q, co O(x,7)’ 1y

ihereQ5(7)= Qg+ Q2, with O andQ, being the val-
s of the corresponding functions at the medium entrance.
It follows from Egs. (4), (6), and (11) that in the
adiabatic-following approximation the dynamics of the sys-
tem (both the atomic state population change and the pulse-

lll. SOLUTIONS TO PROPAGATION EQUATIONS IN shape evolutionis completely determined by the function

THE ADIABATIC-FOLLOWING APPROXIMATION 0(x,7) satisfying Eq.(8).
Using the definitions of the functior&(x, 7) and Q(x, 7) Using Eq.(8) and introducing “nonlinear group™ velocity
we have u(x,7) and “nonlinear time” ¢= 7—x/u(x, 7), for the func-

tion 6(x,7) we find
Qu(X,7)=Q(X,7)sINO(X,7),

d0(X, &) 12
Qy(x,7)=Q(X,7)C0SH(X,T). (6) x (12
Substituting Eqgs(4) into Egs.(5), we obtain the follow-  The solution to Eq(12) is straightforward and read46]
ing equations for the functiong(x, ) andQ(x,):

9Q2(x,7)

ox (45— dp) 0(x,7)sin 26(x, 7), (7) whereg,(¢) is the value ofg(£) at the medium entrance and
the function¢ is determined from the implicit equation

d0(X,7) G, COS O(X,7)+ s SIF O(X,7) JO(X,T) B ;
x Q%(x,7) a0 L No(t") dt’=
8

It is seen from Eq(7) that in the case of equal oscillator
strengthsg,=ds, the functionfl(x, 7) does not change dur- Given any explicit integrable expressions for the time de-

. . 2 —_ 2 i
ing propagation{)“(x,7) ={2g(7), and represents the inte- pendence of the photon number densigyt) at the medium

gral of motion. Note that in this case E(B) is S|mpI|f|e_d entrance, we can directly evaluate the integral in(&4) and
substantially. In the general case of unequal oscillator

. : obtain a set of reasonably simple analytic solutions to the
strengths it is the total photon number density that represenﬁoblem considered. Indeed, evaluating the integral in Eq.
the integral of motion. Indeed, introducing the photon num '

- Y i > . “(14) for a fixedx, we obtain the functionr(¢£) in an explicit
ber densitiesip, = A /i wp s=27NQG Jcqp s (the dimen- 0.0 ang after that there is no difficulty in the determination

sion of n, s coincides with that of atomic number density ot the inverse functior(x, 7). For example, substituting in-
from Egs.(5) for the total photon number density(+ns)  gtead of the functions g andngg in Eq. (14), the functions
we have used in Ref[13] or the Jacobi elliptic functions of Reff8],
we find that Eq.(14) takes the form

@fz(e ) (14)
o ¢ o(&)).

Here ny(t’) is the total photon number density at the me-
dium entranceny=nyo+ Neo.

dnp+tng) 27N d )
¢ a_|b2| : 9

27N
——f2(00(8)).

constx (17— §) =
(1= &) 00 ©

In the adiabatic-following approximation, as seen from

Eq. (4), the magnitude ofb,|* is of the second order in the e can easily obtain from this expression the functitg)
adiabaticity parametef/(), and we may neglect the right- and, hence, the functio#i(x,7). Thus, formulas(6), (11),

hand side of Eq(9). Equation(9) presents the conservation (13), and(14) represent exact analytical solutions of the task
law of the total photon number density under the trappedonsidered.

state condition during propagation. In the case of equal oscillator strength& 6)/q,0s= 1
For aE system an analogous relationship is obtained forng, as follows from Eq(14), the nonlinear propagation ve-
the difference of the photon number densities locity u(x,7) is constant if the total photon number density
no(7) does not depend on time. This propagation regime has
d(np—ns) _2aN ilb 2 (10  been called “adiabatons.” In the general case of unequal
X c dr' 2 oscillator strengths for soliton wave propagation, it is neces-
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sary that the functiorg(x, 7), determined by Eq(14), be a ¢ No(7)

linear function of7 and x, which means constancy of the -~ No(&)+(2x/050,) (27N/c) (A f/d6y(€))(d b €)/dE)
propagation velocity. Evaluating the corresponding deriva-

tives of the functioné(x, ) we have =const, (15

% __ 1 2mN f2L0o(£)]
X"y € No(€)+(2x/05,) (2N/C) T (dF7d o £)) ([dfo(£)/dE)

=const. (16)

As x enters the denominators of Eqd5) and (16), in déy( &) 2(qy— Qo)X
order for &(x,7) to be a linear function ofr and x, it is (A= G)—gz >0 P ~1. (19)
necessary and sufficient that the following two conditions be ¢ QgT

satisfied: (i) (df/df(£))(d6e(£)/d€)=0, and (i) ne(é)
= const. The first of these conditions is fulfilled in the case of Conditions(lg) represent the interaction ad|abat|c|ty cri-
equal oscillator strengthgadiabatons or in the case of a terion specifying the critical length at which the interaction
constant ¢ (identical envelopgs The second condition adiabaticity, met at the medium entrance, breaks down dur-
means constancy of photon number density. ing propagation.

It should be noted that the regime of propagation of si- Consider this condition in detail. For A system at a
multaneous different-wavelength optical solitdig] is not  counterintuitive pulse sequence, corresponding to the initial
possible under the conditions considered here. conditionsb; (— ) =1ps(—)=0, we haved=>0. In this

Note“that, as follows Irom I;qs(.4),. (6).’ and (14?,’ two case, as follows from Eq19), the interaction adiabaticity
waves, “population wave” and “polarization wave,” propa- 1< qown when,>qs. The conditiong,>gs means that
gate énbtheEmeltﬂum with the nonlinear group velocity deter'the probability of the transitiofl)—|2) is greater than that
mined by Eq.(14). of the transition|2)—|3) and, thus, the population transfer
|1)—|2) dominates the depletion of levil), i.e., the inter-
IV. ADIABATICITY CRITERION action adiabaticity breaks down. Whep<qs, condition

h i luti . h . h 19) is never fulfilled. In this case@é/d+ remains finite and,
The analytic solution obtained has been derived under t us, the conditio) T>1 is sufficient to provide the adia-

condition 6/Q<1. In the medium, this condition takes the baticity of the system.

form (142)(d6/d¢)(9£(x,7)/dr)<1. Even though we pro-  The condition stated above is illustrated by Fig. 2, which
vide that the derivativel9/d¢ be small, the adiabaticity con- presents the time evolution of the mixing parametésolid
dition can break down, since during propagation in the mecyrves for q=0.5;1 and 2(hereq=q,/q,) at the normal-

dium, the derivatived¢(x,7)/d7 can become considerably jzed propagation length=0.03 z=x0qs/Q2T). The dashed
large. We find now an expression specifying the critical

propagation length at which the interaction adiabaticity met 9
at the medium entrance is preserved during propagation.

It follows from Eq.(15) thatdé/ 97—~ when the denomi- 1.5
nator in the right-hand side tends to zero. Using the defini-

tion of the functionf we find for the derivativel f/d 6,
1.0

df .
G- =S 206(£)(2s~ ). D s

Substituting Eq(17) into Eq. (15), we find that in order
for the denominator in the right-hand side of Ef5) to be 0.0
zero, the following condition should be satisfied:

6

4}

FIG. 2. Time evolution of the mixing parameter(solid curve$
for different relationships betweeny, andqgs (q=0.5;1 and 2) at
propagation lengtlz=0.03. The dashed curve corresponds to the

As sin 20,(¢) remains positive over the change range&pf case ofz=0. The input pulses have been chosen in the form
expression(18) can be fulfilled only under the following Q,(0t)=Qpa/costit—7)T], Q(01t) = Qyax/cosh@/T), wherery
conditions: is the delay time between the pulses.

Z(qp_QS)X dao(f)ﬁ.
1- 02 dz sin 260,(£)—0. (18
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FIG. 3. Time evolution of(a) the normalized Rabi frequencies
of the pump and Stokes pulses at the medium entrand® (b) the
mixing parameterd, (c) the normalized Rabi frequencies of the
Stokes pulse for different propagation lengtaschanges from 0 to
3.3), and(d) the normalized Rabi frequencies of the pump pulse for
different propagation lengths (changes from 0 to 3)3The rela-
tionship betweemy, andgs is equal to 0.5.

FIG. 4. Time evolution of(a) the normalized Rabi frequencies
of the pump and Stokes pulses at the medium entrand® (b) the
mixing parameterd, (c) the normalized Rabi frequencies of the
Stokes pulse for different propagation lengtaschanges from 0 to
3.3), and(d) the normalized Rabi frequencies of the pump pulse for
different propagation lengths (changes from 0 to 3)3The rela-
tionship betweem, andq; is equal to 1.

line has been obtained at the entry surface of the medium %Iergoes gradual depletion. At the tailing edge of the Stokes

z=0. The dotted curve corresponds to the casé-ef, i.e., s there appears an additional peak, the amplitude of
when the adiabatic-following approximation breaks down. Ityhich increases continuously. Thus, there occurs a signifi-
is seen from the figure that fay=2 the evolution of the  cant dynamical redistribution of the number of photons in the
mixing parameter differs from the adiabatic ofiee., the  qyerjapping range. Comparisons clearly show that the redis-
trapped state is destroyealready at this propagation length, yipytion dynamics depends on the valuegofndeed, for the
while in the cases of=0.5 and 1 the adiabatic evolution of 55 ofq=0.5 [Fig. 3d)] at the propagation length of

the mi.xing Iparameter is preserved with. propagation. _ =3.3(the dotted curve in the figurethe pump pulse is still
An intuitive pulse sequencef(<0), which can be applied intense enough, while at the same length for the casg of
under the initial conditions,(—=)=0, by(—«)=1, re- =1 [Fig. 4d)] the energy of the pump pulse is completely

sults in population transfer from stat8) to state|1) via  transferred to the Stokes pulse.
state|2). Thus we see that the interaction adiabaticity is It is known that for an effective STIRAP process not only
rather sensitive to the relationship between oscillatora counterintuitive pulse switching drd(—)—0] but also
strengthsy,. a corresponding switching offé(+«)— #/2] is required,
For aE system, replacing|s by —gs, we find that at a  which provides the corresponding changedphamely, from
counterintuitive pulse sequence the interaction remains adi@ to /2. For such a switching off it is necessary thatt at
batic at any propagation length, but for an intuitive pulse_, + Q,#0 butQ¢—0. The time evolution of the mixing
sequence it can break down at(®1,—qs)/Q5T~1. ForaV  angle d(&,7) is presented in Figs.(B) and 4b). It is seen
system, replacingls by —qs andq, by —qs, we have the from the figures that at the initial stage of propagation the

case just opposite to that of/a system. needed condition is fulfilled and the final value fs close
to 7/2. However, after a certain propagation length, there
V. PROPAGATION IN THE STIRAP REGIME occurs a noticeable decrease in the amplitude of the pump

pulse and the corresponding amplification of the Stokes

Let us now investigate the propagation of a counterintuipulse at its tail. Thus, after this length, the conditions
tive pulse sequence in/ system in the STIRAP regime for Q (+%)#0, Q4(+%)—0, required for effective STIRAP,
different relationships between the oscillator strengtfs ( break down and the final value éfdiffers from /2, which
<1). means that the transfer process is not complete.

In Figs. 3c) and 3d) and 4c) and 4d) we present the We see that even if all the conditions for effective
time evolution of the envelopes of both pulses as they propaSTIRAP are met at the entry surface of the medium, they
gate through the medium fay=0.5 andg=1, respectively. may break down during propagation due to the shape change
We consider the hyperbolic secant pulse shaggs0.t) of both pulses.
= Q ma/cosh(t—mg)/T], Q(0t) = Qma/cosh{/T), where 74 The analytic solution obtained enables us to find a simple
is the delay time between the pulses. expression specifying the propagation length at which effec-

It is seen that both pulses experience significant reshapintive population transfer is still possible in the medium. After
during propagation. The leading edge of the pump pulse unthe interaction with the pulses the atoms will be in the final
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state if sirt 6,(£)=1 and co$6,(£)=0, which corresponds to 2 . “ fT=5
&=T. Then for Eq.(14) we have ‘M,J o o A\
06 06
T+1g . Os 27N (@) o4 04
f (np0+ ”so)dt =——X (20) 02 02
T 0p C
0.0 0.0
4 0 8 or
or
1.0 10
— 27N '
nora= s Ty, (1) N >
dp C (b) o8 08
04 04
Whereﬁo is the mean photon number density in the pump 02 02
pulse after the Stokes pulse is switched off, which can be S —— i S e —
estimated as T
122N 032 FIG. 5. Population transfer fag) g=0.5 and(b) g=1. Shown
Np=— —— p's_ 22 are the populations of the ground and final statesrfé =2.5 and
0 2 ( )
C Ops 5. Different curves correspond to different propagation lengths:

T . . . z=0,0.08,0.4,0.8, and 1.6.
Substituting Eq(22) into Eq. (21), one can easily obtain

the following expression for the normalized propagation

length at which effective population transfer occurs length of 200 cm, the energy of the pump pulse is completely

transferred to the Stokes pulse.
The propagation length at which effective STIRAP is pos-
Zstirap~ Tal2T. (23)  sible depends on the time delay between the pulses but not
on the relationship betweeq, andgs. This conclusion is
It follows from Eqg. (21) that for the given time delayy;  confirmed by Fig. 5. This figure presents the time evolution
between the pulses, the more the number of photons in thef the ground- and final-state populations for different time
time interval betweerm and T+ 74, the larger this length. delaysry between the pulses fay=0.5 andq= 1. Compari-
This means that the Stokes pulse should be switched oBons show that the penetration length of the STIRAP process
more sharply, while the pump pulse should be switched ofincreases with the increase of. Indeed, as seen from the
more smoothly. Thus, by a corresponding, namely, asymmetigure, at the propagation length ¥ 1.6 the efficiency of
ric pulse switching off, one can provide more photons in thethe STIRAP process fory/T=2.5 is less than that for the
pump pulse, which results in the longer penetration lengtftase ofry/T=5, i.e., according to Eq23) the morery, the
for an effective STIRAP process. more the efficiency of the STIRAP process. For example, for
On the other hand, as follows from E@3), the morery,  the experimental parameters given above in the case of
the longer the STIRAP penetration length. It is obvious that;,/T=5, one can provide an effective STIRAP process at
74 should not be too large in order to provide correspondinghe propagation length of 125 cm.
overlap between the pulsgs]. It is seen from the figure that the final values of the
Itis seen from Figs. @) and 4d) that an effective photon ground- and final-state populations do not differ épr 0.5
transfer from the pump pulse leading edge to the Stokegndq=1, i.e., the population transfer process does not de-
pulse tail edge is possible during propagation. The completgend on the relationship between the oscillator strengths.
transfer occurs when siy(£)=0, i.e., whené<-T+74.  Some difference between the population dynamics is ex-
Using Eq.(14) we obtain the following simple expression plained by the fact that the time evolution of the pulses de-
specifying the critical length at which a complete energypends on the value af.
transfer from the pump pulse into the Stokes pulse occurs: |t should be noted thatia, Should not exceed, mp, as
at this length the pump pulse, actually, is completely de-
2(1+q) plett_ad and the STIRAP process is not possil?le.
Zpump~ ——5— (24) Figure 6 presents the case whgre0.001. It is seen from
2 the figure that the pump pulse propagates without the change
of its shape while the Stokes pulse changes its shape signifi-
As follows from Eq.(24), the moreq is, the quicker the cantly, which is not surprising as the number of photons is
regime is set. In particular, for the cage=1, a complete preserved during propagation, which is confirmed by Fig.
energy transfer from the pump pulse into the Stokes pulsé(c). The figure presents the change of the number of pho-
occurs at the lengti~4, which agrees with Fig. 4. Let us tons as the pulses propagate into the medium. Some ampli-
now estimate the value of. For standard experimental fication of the pump pulse, observed at the tailing edge, in-
parametersN=10"° atoms/cm3, w=10" s71,d?=10"> dicates the beginning of the reverse process of the photon
esu, 0 T=10T=10 *? s estimations show that=1 cor-  transfer from the Stokes pulse to the pump pulse. This is the
responds to~50 cm. Thus, forg=1 at the propagation beginning of the process of adiabaton formation. However,
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12 |b,2 b2 velocity. The investigation performed shows that propaga-

08 — tion dynamics are strongly affected by the relationship be-
tween oscillator strengths.

o4 M We have derived the adiabaticity criterion for the matter-

0.0|

field interaction depending on the parameters of a medium.
In the case of a counterintuitive pulse sequence i sys-

tem, the interaction adiabaticity, provided at the medium en-
trance, is preserved for any value of propagation length when
g=1 and breaks down rather quickly with propagation when

-10 -5 0 5 10 4T

q>1.
o‘? 2, Next we have studied the spatial evolution of a counter-
intuitive pulse sequence during propagation for parameters at
00008 which the interaction adiabaticity is met. The analysis per-
gm formed shows that during propagation under the adiabatic-
00002 following approximation there occurs a considerable pulse

0.0000|

reshaping, which lies in gradual depletion of the leading
edge of the pump pulse and corresponding amplification of
the tailing edge of the Stokes pulse. It is found that during
FIG. 6. Time evolution of@) the ground- and final-state popu- propagation, pulse shape change leads to the decrease of the
lations for different propagation lengthé)) the normalized Rabi  efficiency of the STIRAP process in the medium. From the
frequencies of the pump and Stokes pulses for different propagatiognalytical solutions we have derived a simple expression
lengths ¢ changes from 0 to)3and (c) the change of the photon  gpecifying the critical length at which the population transfer
number in the pump and Stokes pulses for different propagatiomrocess is still effective in a medium. It follows from the
lengths € changes from 0 to)3The relationship between, andds  analysis that the efficiency of the STIRAP process can be
is equal to 0.001. increased by a corresponding pulse switching off, namely,
in the case considered, adiabatons cannot be formed as t %?Srger for the Stokes pulse and smoother for the pump
Stokes pulse is switched off and the process stops. Our investigation shows that during propagation a com-
plete energy transfer from the pump pulse to the Stokes pulse
VI. SUMMARY is possible. A simple expression for the propagation length at

In the present paper we have studied the propagation of §Nich this occurs has been obtained.
pulse pair through a nondissipative three-level medium of
=, andV types for the general case of unequal oscillator
strengths without restriction on the pulse shapes. We have The authors wish to thank Professor K. Bergmann, Pro-
obtained exact analytical solutions to the propagation equdaessor V. O. Chaltykyan, Professor M. L. Ter-Mikayelyan,
tions under the adiabatic-following approximation and haveand Dr. R. Unanyan for useful discussions. The work was
shown that two waves, “population wave” and “polariza- supported by the State sources of the Republic of Armenia
tion wave,” propagate in the medium with nonlinear group under scientific theme 96-772.
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