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Subwavelength lithography over extended areas
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We demonstrate a systematic approach to subwavelength resolution lithographic image formation on films
covering areas larger than a wavelength squared. For example, it is possible to make a lithographic pattern with
a feature size resolution ofl/@2(N11)# by using a particular 2M -photon, multimode entangled state, where
N<M , and banks of birefringent plates. By preparing such a statistically mixed state, one can form any pixel
pattern on a 2M2N(N11)32M2N(N11) pixel grid occupying a square with sideL52M2N21l. Hence, there
is a trade off between the exposed area, the minimum lithographic feature size resolution, and the number of
photons used for the exposure. We also show that the proposed method will work even under nonideal
conditions, albeit with somewhat poorer performance.
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I. INTRODUCTION

Classically, to create an optical image, one has to mo
late a wave front of an electromagnetic wave in space.
minimum resolvable feature size of an imaged object co
sponds, roughly speaking, to the minimum modulation
riod allowed, which turns to be of the order of the wav
lengthl of the light used. In fact, the best resolution that c
be achieved classically is aboutl/2, which is usually known
as the diffraction limit.

When the quantum nature of light is considered, one
naturally confronted with the role that photon fluctuatio
play in setting fundamental performance limits for imagi
systems. Even if all thetechnical noise sources are elimi
nated from the imaging system, the corpuscular nature of
photon induces fluctuations, or shot noise, that determin
seemingly fundamental spatial resolution, or standard qu
tum limit, of aboutl/(2AN), whereN is the average numbe
of photons. Subwavelength imaging has been used in a n
ber of applications@1–6# and a careful analysis shows th
indeed the shot noise sets the resolution limit@5,6#.

However, the quantum viewpoint allows for strategi
that could significantly improve the spatial resolution beyo
the standard quantum limit. A typical way of reducin
photon-counting noise is by using multimode squeezed l
@7–12#. This possibility has been experimentally demo
strated in other precision measurement schemes@13# and al-
lows one to attain an optimum spatial resolution proportio
to l/(2N), usually known as the Heisenberg limit. These s
shot-noise imaging systems enable resolving, in princi
arbitrarily small details of an object in a diffraction-limite
optical system.

However, writing images imposes even more stringent
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quirements than subwavelength resolution of spatial featu
because in image writing one wants to write small deta
with high contrast. A particular field where circumventing
the classical resolution limit is becoming more and mo
important is optical lithography, which is the primary to
for writing electronic-circuit patterns. Current productio
technologies have tended to use light of shorter wavelen
to fabricate ever-smaller device features.

It has been known for some time that entangled pho
pairs can be used to achieve Heisenberg-limited resolutio
time @14–16# and phase@17–20#, but only very recently has
the use of entanglement to increase high-contrast image r
lution indefinitely @21–24# been proposed. The reason th
these entangled quantum states show increased resol
can be traced back to the fact that they allow the modula
period to be as small asl/(2N), and thus, they approac
Heisenberg-limited resolution. The process can be en
sioned as the photons clustering into aN-photon quasiparti-
cle with a linear momentumN times as large as that of
single photon, and therefore with a shorter de Broglie wa
length @25#. It is the de Broglie wavelength that ultimatel
determines the interference resolution. This has been ap
ciated for a long time in atomic, molecular, and solid-sta
physics, but has only recently been noticed for electrom
netic waves.

In an earlier paper, we discussed the use of recipro
binomial states in subwavelength resolution lithography@24#.
Our method works for even number of photons 2N and it is
especially germane to determine the exposure sequenc
generate any pixellated pattern on a (N11)3(N11) grid,
occupying a square with a half wavelength long side.
advantage with the method is that only one particular
tangled state needs to be generated: all other necessary
can be produced from the first by means of, e.g., a sm
bank of phase plates with a prescribed birefringence. Un
tunately, it is not possible to generate larger patterns si
the deposition methods proposed hitherto all are perio
with a period of half a wavelength@21–24#. Restricting the
exposure source of the lithography to four modes, with pa
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wise opposite wave vectors~Fig. 1! one can only increase th
size of the pattern by some factor by sacrificing the patt
resolution by exactly the same factor. To be able to ad
the size of the deposited patternindependentlyof the resolu-
tion, one must use more modes. In this paper, we repo
systematic multimode extension to the method we propo
earlier @24#.

II. SUBWAVELENGTH LITHOGRAPHY

A. One dimension, two modes

Our goal is to establish how to create arbitrary tw
dimensional patterns on a squared substrate of sideL. Sup-
pose we have two counter-propagating beams in a direc
we shall denoteX, see Fig. 1. The beams propagate at ang
6u to the normal of the substrate. This substrate is coa
with lithographic resist~in the following, we will refer to the
resist as the film! and situated in the region where the bea
overlap. In general, provided the coherence lengths of
wave packets are much longer than the side of the film,
do not need to take into account the mode shapes and we
assume that they are plane over the side of the film.

Following Ref. @21#, the lithographic film absorption is
modeled by anM-photon absorption process. Thus, the a
sorption process can be modeled by the operatorê† MêM

given by

ê† MêM5S 1

AW
(

i
âi

†D MS 1

AW
(

i
âi D M

, ~2.1!

whereâi is the annihilation operator of modei, andW is the
number of excited modes impinging on the film. In this wa
higher-order interference effects are naturally brought o
The photosensitive ‘‘grains’’ in the film must be muc
smaller than the shortest de Broglie wavelength encount
in the exposure process. Therefore, from the point of view
a ‘‘grain,’’ the photon packets in the respective modes w
be indistinguishable in spite of their different linear m
menta, as manifested by Eq.~2.1!.

Let us now discuss the interference in one dimension
tween a pair of modes, labeled21 and 1, propagating in the
plane defined by theX axis and the film normal. We restric
ourselves to consider states that are eigenstatesN1 of the
total photon number in the modes61. According to our
assumptions, the deposition rate in the substrateDM is pro-

FIG. 1. A schematic showing the geometry of the lithograp
exposure.
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portional to the expectation value of the operatorê† MêM,
whereê5(â211â1)/A2. Let us further assume that the tw
beams impinge at the anglesu6156p/2. The beams will
hence strike the film surface at grazing incidence. Furth
more, we shall assume that the modes are prepared in a
mode reciprocal binomial state of the general form

uc (Ni )&5
1

ANi
(
n50

Ni

An! ~Ni2n!! un& i ^ uNi2n&2 i ,

~2.2!

whereNi is the total photon number of the two modes a
Ni5(n50

Ni n!(Ni2n)! is a normalization factor.
Let theX coordinate normalized to the optical waveleng

l be denotedx. Since the two modes21 and 1 impinge over
the film in antiparallel directions, the accumulated phase
mode 1~propagating in the positiveX direction! at a distance
lx from the left edge of the film will be

Û15exp~ iklxâ1
†â1!5exp~ i2pxâ1

†â1!, ~2.3!

wherek52p/l, while mode21 will have accumulated the
phase

Û215exp@ ikl~12x!â21
† â21#5exp@ i2p~12x!â21

† â21#
~2.4!

at the same location. Using these free-space unitary prop
tion operators, we find that at the locationx, the state~2.2!
for modes61 is transformed into

ucx
(N1)

&5
1

AN1
(
n50

N1

ei2px(2n2N1)

3An! ~N12n!! un&1^ uN12n&21 . ~2.5!

We can now translate the substrate a distancel/@4(N1
11)# to the left, and at the same time, phase shift mode 1
2pl 1x /(N111) (l 1x51,2, . . . ,N111) relative to mode
21. The corresponding state will be labeleducx

(N1 ,l 1x)
&,

where

ucx
(N1 ,l 1x)

&5
1

AN1
(
n50

N1

eip[2x2(l 1x21/2)/(N111)](2n2N1)

3An! ~N12n!! un&1^ uN12n&21 . ~2.6!

As shown in Ref. @24#, this state will deposit a ‘‘one-
dimensional pixel,’’ that is, the deposition rateDM will have
a single pronounced peakl/@2(N111)# wide, occupying
the interval on theX axis betweenl(l 1x21)/@2(N111)#
andll 1x /@2(N111)#.

To make a qualitative comparison between the subwa
length resolution lithographic method proposed in Re
@21,23# and our method, we have calculated the deposit
pattern when the target pattern is a rectangular trench
Refs. @21,23# such a trench,l/4 wide, was used as a tria
1-2



th
ix
n
xe
-
is

n
th
i

m
p

es
th
lf

be
pu
n
i

re
he

e
zing

si-

n-

de

te
e

-

en

ne
Th

ith
o
eri-

is
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target function for a 10-photon state. We have done
same, but since a 10-photon state will define an 11-p
pattern~in one dimension! the natural target trench functio
in our case is an integer number of pixels wide. The pi
width for a 10-photon state isl/22. In Fig. 2 we have calcu
lated the deposition rate for a four-pixel wide trench, that
a trench 2l/11'0.18l wide. In order to make this patter
we can, e.g., expose the pixels sequentially employing
states indicated in the figure caption. Although not shown
the figure, remember that this two-mode deposition rate
periodic with the periodl/2.

We see that the result of our method is almost the sa
both in the respect of edge sharpness and in exposure
alty, to those obtained by the method proposed by Botoet al.
@21,23#. As we shall show below, neither the edge sharpn
nor the exposure penalty need to be sacrificed when
lithographic pattern is extended over areas larger than ha
wavelength in each dimension. A fundamental difference
tween the methods is that the pattern-producing state is
in the proposal of Botoet al., while our proposal is based o
mixed states~or a sequence of pure states if each pixel
deposited separately!.

B. One dimension, four modes

To overcome the limitingl/2 periodicity of the deposi-
tion rate, we introduce another pair of modes22 and 2
impinging along the X direction at angles u62
56 arcsin@1/(N211)# from the film normal. Hence, they
have only the wave vector components62p/@l(N211)# in
the X direction. We assume that this pair of modes are p
pared in a reciprocal binomial state, too. Consequently, t
state at locationx is given by

ufx
(N2)

&5
1

AN2
(
n50

N2

ei2px(2n2N2)/(N211)

3An! ~N22n!! un&2^ uN22n&22 . ~2.7!

FIG. 2. The deposition rate due to a pair of modes withu61

56p/2 and N510 in an equal statistical mixture state betwe
ucx

(10,1)&, ucx
(10,2)&, ucx

(10,3)&, ucx
(10,4)&, ucx

(10,9)&, ucx
(10,10)&, and

ucx
(10,11)&. A trench, four pixels wide (54l/22) is formed. The

unwanted exposure modulation of both the exposed and the u
posed pixels is on the order of 10% of the maximum exposure.
target deposition function is drawn with thick lines.
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~We use the symbolf in the ket above to indicate that th
modes corresponding to the state do not impinge at gra
incidence over the film surface.!

Now suppose the (N11N2)-photon, product state
ucx

(N1)
& ^ ufx

(N2)
& is prepared. Calculating the pattern depo

tion rate DM , where now ê5(â221â211â11â2)/2 and
M5N11N2, we find that

DM}U (
m50

N1

ei2px(2m2N1) (
n50

N2

ei2px(2n2N2)/(N211)U2

}
1

@~N111!~N211!#2

sin2@2~N111!px#

sin2@2px/~N211!#
. ~2.8!

The deposition rateDM has a highest oscillation period inx
of 1/@2(N111)# and an overall periodicity of (N211)/2,
corresponding to the physical lengthsl/@2(N111)# and
l(N211)/2, respectively. A plot of Eq.~2.8! for the case
N15N253 is shown in Fig. 3. Note that the depositio
function spatial resolution isl/8 and its periodicity is 2l.

When we translate the substrate a distancel/@4(N1
11)# to the left, and at the same time, phase shift mo
2 by 2pl 2x /(N211)12pl 1x /@(N111)(N211)# (l 2x

51,2, . . . ,N211) relative to mode22, the stateufx
(N2)

& in
modes62 is transformed to

ufx
(N2 ,l 1x ,l 2x)

&

5
1

AN2
(
n50

N2

eip[2x2l 2x2(l 1x21/2)/(N111)](2n2N2)/(N211)

3An! ~N22n!! un&2^ uN22n&22 . ~2.9!

Using Eqs.~2.6! and~2.9! we see that the four-mode sta
ucx

(N1)
& ^ ufx

(N2)
& will consequently be transformed into th

stateucx
(N1 ,l 1x)

& ^ ufx
(N2 ,l 1x ,l 2x)

& after the translation and re

x-
e

FIG. 3. The deposition rate due to two pairs of modes w
u6156p/2 and u6256 arcsin (1/4) that are prepared in tw
three-photon reciprocal binomial states. The deposition rate is p
odic with period 2l. The width of the deposition rate peak
roughly l/8.
1-3
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spective relative phase shifts. The deposition rate for
state can readily be calculated to be

DM~ l 1x ,l 2x!}
1

@~N111!~N211!#2

3
sin2$@2~N111!x2l 1x11/2#p%

sin2F S 2x2l 2x2
l 1x21/2

N111 D p

N211G .

~2.10!

If we divide the part of theX axis between the origin and th
point x5(N211)/2 into (N111)(N211) pieces, each
1/@2(N111)# long, each interval will represent a ‘‘one
dimensional pixel.’’ With a specific choice ofl 1x and l 2x
we can deposit~or expose! pixel numberl 1x1(N11)l 2x
@numbered from left to right and the number taken mod
(N111)(N211)# with a negligible exposure penalty~that is,
negligible unwanted exposure of nominally unexposed p
els!. This can be clearly seen in Fig. 4, where we have
sumed thatN15N253, l 1x52, andl 2x51, leading to the
exposure of pixel number 6. The relative phase-shifts
tween the modes, labeled by the numbersl 1x and l 2x , can
be accomplished via a bank of appropriately chosen biref
gent plates, provided that the modes61 and 62, respec-
tively, are originally prepared in spatially and temporally d
generate modes, but with orthogonal polarizations,
discussed in Ref.@24#.

The deposition-rate function~2.10! has two special prop
erties that are worth pointing out. The first is that the de
sition rate will be identically zero at the center of all une
posed pixels regardless of what other pixels are expo
Hence, a nominally unexposed pixel surrounded by expo
pixels will remain unexposed at the pixel center. This is
very appealing feature of the proposed method since the
posure penalty hardly depends at all on the particular p

FIG. 4. The deposition rate due to two pairs of modes w
u6156p/2 andu6256 arcsin (1/4) in the six-photon reciproca
binomial product stateucx

(3,2)& ^ ufx
(3,2,1)& exposing pixel number

six. The deposition rate is periodic with period 2l. Only one period
is shown.
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pattern one intends to expose. The second nice feature is
the sum of the deposition-rate functions for all pixels add
to unity; i.e.,

(
l 1x51

N111

(
l 2x51

N211

DM~ l 1x ,l 2x![1, ~2.11!

for all values ofx. This, in turn, means that we never ris
overexposure, even if we expose two or more adjacent
els. In fact, if a row, or column, of adjacent pixels are e
posed, the resulting deposition function ridge will hard
have any modulation@24#. The identity ~2.11! also means
that if one wants to make the negative image of some p
pattern, one can constructidentically the negative image
deposition rate by exposing all previously unexposed pix
and vice versa.

Let us now discuss the geometrical scaling properties
the deposition rate. By decreasing the modes’ wave-ve
components in the film plane by a fixed factor, both t
minimum feature-size resolution and the fundamental per
of deposition rate will increase by the same factor. If w
e.g., let modes61 impinge at angles6 arcsin(1/2) from the
film normal and modes62 impinge at the angles
6 arcsin(1/@2(N211)#), then the minimum feature siz
resolution~i.e., pixel size! becomesl/(N111) and the pe-
riod of the deposition rate becomes (N211)l. However, the
wave-vector component parallel to the film is not only go
erned by the modes’ propagation angles, but it is also g
erned by the de Broglie wavelength of the impinging stat
Therefore, the pixel and pattern sizes are intimately c
nected to how we prepare the states. If the~one-dimensional!
film is modeled as aM52N-photon absorber, the choice t
partition the 2N photons equally between the two pairs
modes61, and62, as assumed in Fig. 4, is by no mea
necessary. Instead we can, e.g., prepare modes21 and 1 in
a two-mode (N21)-photon stateucx

(N21)& and the modes
22 and 2 in a two-mode (N11)-photon stateufx

(N11)&. The
appropriate relative phase shifts are 2pl 1x /N, where l 1x
51,2, . . . ,N and 2pl 2x /(N12)12pl 1x /(N212N)
where l 2x51,2, . . . ,N12, respectively. In this case, th
minimum lithographic feature size resolution becom
l/(2N), the number of individually depositable pixels b
comeN(N12), and the fundamental period of the depo
tion rate becomesl(N12)/2. An illustration of an ensuing
deposition rate function is given in Fig. 5. Continuing th
repartition, one can either increase the fundamental perio
the deposition rate at the expense of increasing the minim
resolution by increasing the photon number in modes62 at
the expense of the photon number in modes61, or vice
versa. The attainable minimum size resolution and dep
tion rate period are shown in Table I.

C. Two dimensions, eight modes

One can now extend the lithographic exposure proced
to two dimensions by simply introducing two addition
pairs of modes618 and628, impinging towards the film at
corresponding angles to modes61 and 62, but in theY
direction, perpendicular toX @24#. If the eight modes are
1-4
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prepared in the initial stateucx
(N,l 1x)

& ^ ufx
(N,l 1x ,l 2x)

&
^ ucy

(N,l 1y)
& ^ ufy

(N,l 1y ,l 2y)
&, the deposition rate is given b

the product of the corresponding deposition rates in thX
and in theY direction. Of course, if the number of photons
each of the two-mode statesucx

(N,l 1x)
&, . . . , ufy

(N,l 1y ,l 2y)
& is

N, then the film must have a non-negligibleM54N-photon
absorption cross section. If so, the assumed state will exp
the pixel„l 1x1(N11)l 2x ,l 1y1(N11)l 2y… and leave the
remaining pixels essentially unexposed. In order to expo
pattern, such as a line of adjacent pixels, one must prepa
statistical mixture of the pixels’ associated states, or one
expose the pixels sequentially. As shown in Ref.@24#, diag-
onal lines composed of exposed pixels will have an un
ceptably large deposition-rate fluctuation along the diago
center line. However, the minima can be ‘‘filled in’’ by de
positing intermediate pixels~with their centers at the inter
section points between four adjacent regular pixels!. Again,
the states corresponding to these intermediate pixels ca
prepared by appropriate relative phase shifts between
mode pairs@24#. For the rest of this paper, we shall on
study the deposition rates in one dimension, bearing in m
that with our method, the two-dimensional deposition-r
function is simply the product of two one-dimensional fun
tions.

FIG. 5. The deposition rate due to two pairs of modes w
u6156p/2 and u6256 arcsin (1/5) in the stateucx

(2,1)&
^ ufx

(4,1,1)&. In comparison to the example in Fig. 4, the pixel size
increased by a factor 4/3 tol/6, while the deposition-rate perio
has increased by a factor 5/4 to 5l/2.
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III. GENERALIZED MULTIMODE QUANTUM
LITHOGRAPHY

It is clear that the procedure to increase the depositi
rate period is not limited by considering only two pairs
modes with opposite wave vectors in each dimension.
can continue this procedure by introducing a third pair
modes, labeled23 and 3, impinging towards the film at th
anglesu6356 arcsin@1/(N11)2# from the film normal. If
the number of photonsM contributing to the film absorption
process is divisible by 3~or 6, in two dimensions!, so that
M53N, and this photon number is partitioned equally b
tween the three modes, then one will be able to deposit
pixellated patterns with the minimum feature-size resolut
of l/@2(N11)# over a length ofL5l(N11)2/2.

However, in order to cover the maximum area for a giv
number of photonsM and resolvable feature sizel/@2(N
11)#, where 1<N,M , the following product state should
be prepared:

ucx
(N,l 1x)

& ^ ufx
(1,l 1x ,l 2x)

& ^ . . . ^ ufx
(1,l 1x ,l 2x , . . . ,l (M2N)x)

&,
~3.1!

where l 1x51,2, . . . ,N11, l 2x , . . . ,l (M2N)x51,2, and
modes61 impinge at grazing incidence, while modes6 i ,
i 52, . . . ,M2N, impinge at the angles u6 i
56 arcsin@22(i21)#. The rationale for preparing this state
that the stateucx

(N,l 1x)
& will determine the feature size reso

lution and will let us deposit any one ofN11 pixels each
with a size ofl/@2(N11)#. With the remainingM2N pho-
tons, each of the one photon statesufx

(1,l 1x ,l 2x)
&, . . . ,

ufx
(1,l 1x ,l 2x , . . . ,l (M2N)x)

& will allow us to double the funda-
mental period of the deposition-rate function. If we compa
this to a case where theM2N photons are partitioned be
tween a smaller number of more highly excited states, i
clear that the state~3.1! gives a longer fundamenta
deposition-rate period since 2M2N>M2N11 for all rel-
evant numbersM andN. With the initial state~3.1! one will
be able to deposit any one of 2M2N(N11) pixels in one
dimension, where each pixel isl/@2(N11)# wide. The fun-
damental period of the pixel pattern will beL52M2N21l.
With 2M photons one will be able to make a two
dimensional pattern with this resolution and periodicity
both dimensions. This is the major result in this paper.
, and
TABLE I. A table demonstrating the number of depositable pixels, minimum feature size resolution
the fundamental deposition rate periodicity for different partitions ofN11N252N photons between two
pairs of modes in one dimension.

N1 N2 Number of pixels Feature size Periodicity

2N 0 2N11 l/(4N12) l/2
2N21 1 4N l/4N l

A A A A A
n 2N2n (n11)(2N2n11) l/2(n11) (2N2n11)l/2
A A A A A
1 2N21 4N l/4 Nl

0 2N 2N11 l/2 (2N11)l/2
1-5
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BJÖRK, SÁNCHEZ-SOTO, AND SO¨ DERHOLM PHYSICAL REVIEW A 64 013811
Fig. 6, we have plotted the one-dimensional deposition
from the interference between eight modes in a statist
mixture of the states

ucx
(3,1)& ^ ufx

(1,1,1)& ^ ufx
(1,1,1,1)& ^ ufx

(1,1,1,1,0)& ~3.2!

and

ucx
(3,3)& ^ ufx

(1,3,1)& ^ ufx
(1,3,1,1)& ^ ufx

(1,3,1,1,0)&, ~3.3!

where modes61 impinge atu6156p/2 and the remaining
three pairs of modes impinge at the anglesu62
56 arcsin(1/2),u635arcsin(1/4), andu6456 arcsin(1/8).
The total photon number in all states is six, the same num
assumed in Figs. 4 and 5. The ensuing 32-pixel pattern is
largest one-dimensional pattern one can make with six p
tons provided that the minimum feature size is fixed tol/8.
The price for the large number of depositable pixels is
difficulty one will have generating this eight-mode state.
the states’ relative phase shifts are generated by birefrin
phase plates, one will need two plates for the first pair
modes, and three, four, and five plates for the remain
three pairs of modes, respectively. We can, in principle, c
tinue this processad infinitum, but for a fixed minimum fea-
ture size, this requiresM, the number of photons contributin
to the exposure process, to increase. Since the absor
cross section quite generally decreases rapidly with incr
ing M, there will be a practical limit to such an extension

IV. IMPERFECTIONS DUE TO LOSSES
AND COMPETING MULTIPHOTON

ABSORPTION PROCESSES

Above we have discussed how subwavelength imag
can work under ideal conditions. However, in order for t
proposed method to be of practical use it is necessary th
is robust against imperfections. Below we shall discuss th
mechanisms that will deteriorate the image forming ability
entangled states: linear losses, competing multiphoton

FIG. 6. The deposition rate due to a superposition state of
pairs of modes with three, one, one, and one photon. The pixel
is l/8, while the deposition rate period has increased to 4l. The
relative phase shifts of the states have been chosen so that pixe
and 15 are exposed. As can be seen, the deposition rate is ze
the center of pixel 14.
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sorption processes, and exposure noise due to light quan
tion.

First we will discuss the effect of losses occuring betwe
the state generator and the film. As long as the film stric
absorbs the same number of photons as the generated m
mode state contains, losses will not affect the lithograp
resolution, it will only lower the deposition rate by a fixe
amount. This is rather obvious, because if one or more p
tons are lost from anM-photon state, noM-photon absorp-
tion process can be triggered by the state. However, if th
exists a competing (M21)-photon absorption process in th
film, the film may be exposed even after a photon is lost.
this case, the modified deposition rate will be the sa
whether the photon is lost before impinging on the film or
only M21 out of M photons impinging on the film are ab
sorbed. Losses prior to the film will, however, shift the re
tive proportion between (M21)- andM-photon absorption
processes in favor of the former by decreasing the proba
ity that the state impinging on the film containsM photons.
Therefore, losses in the optical system prior to the fi
should be kept as low as possible. Fortunately, losses
only gradually increase the required exposure dose and
the probability of absorption toward absorption processes
volving a smaller number of photons.

Next, we shall examine how the deposition rate of
M-photon state is affected by absorption processes involv
less thanM photons. Two physical effects will deteriorat
the resolution and the exposure penalty in this case. On
that if the state containsM photons, but onlyM21 of them
are absorbed, there are as many final states as there
modes. If we look at the simplest case, an impinging tw
mode stateucx

(M )&, the possible final states areu1,0& and
u0,1&. Since these states are distinguishable, the absorp
probability amplitudes leading to one of these final sta
will not interfere with the amplitudes leading to the othe
Only the initial stateuM ,0& (u0,M &) will evolve into the state
u1,0& (u0,1&) with certainty upon absorption ofM21 pho-
tons. ~All other number-difference statesuM2n,n&, n
Þ0,M can evolve either intou1,0& or u0,1&). This means that
the two extreme number-difference states in the expansio
ufx

(M )& cannot interfere at all in aM21 photon absorption
process. Therefore, the Fourier component with the high
spatial frequency will be absent in the ensuing deposit
rate. Hence, thespatial resolutionwill decrease monotoni-
cally with decreasing order of the absorption process. A s
ond effect will be that the destructive interference betwe
the absorption probabilities outside the designated pixel
be incomplete, leading to an increasedexposure penalty.

In Fig. 7 we have drawn the deposition rates of the st
ucx

(4,3)& due to four-, three-, two-, and one-photon absorpt
processes. The curves have been normalized such tha
deposition rates all have a maximum of unity to facilita
comparisons. It can be seen that the width of the deposit
rate peak increases, and so does the exposure penalty a
mismatch between the state and the absorption proces
creases. It is, of course, possible to make a better deposi
rate function for, e.g., a three-photon absorption film by e
posing the film by a state of the kinducx

(3)& instead of the

r
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stateucx
(4,3)&. On the positive side, it is seen that if the fil

allows both for a three-photon and a four-photon absorp
process, our method will still work, but it yields a somewh
poorer result than if the three-photon cross-section w
identically zero. The ensuing deposition rate is modera
deteriorated as compared to the ideal case.

In Fig. 8 we have drawn similar curves for a six-mod
four-photon state that exposes pixel 7~from the left! of 12
pixels. Each pixel isl/6 wide, and the fundamental period o
the deposition rate is 2l. Again, three-, two-, and one
photon absorption processes will deteriorate the depos
rate, and in this case by a larger amount than for the t
mode state. The physical reason is that with a larger num
of modes, there can also be a larger number of final st
that will separate the interference paths into a larger num
of distinguishable groups. This will primarily affect the~de-
structive! interference between the different absorption pa
outside the deposition rate peak. However, in the six-m
case too, the deterioration is gradual. Hence, even if
three-photon cross section is not identically zero, the con
quences are not catastrophic.

The final effect we wish to discuss regards the fact t
the calculated deposition rate is an ensemble average. I
experiment, the actual deposition rate may look rather dif
ent than its expectation value. This effect has not been
cussed in any of the previous papers on entangled-state
wavelength lithography@21–24#. If a state of the type given
by Eq. ~3.1! impinges on the film, the probability of stat
absorption is with all likelihood low. In addition, as has be
discussed previously, each pixel defined on the film m
contain many photosensitive grains since, for the metho
make sense, the grains must be smaller~preferably much
smaller! than the pixel size. Therefore, in order to expos
pixel, many exposure shots~per pixel! are needed. Since th
absorption process is stochastic, the ensuing exposure
also be stochastic. The consequences of such an effect
studied in the context of the opposite process, namely im
recognition, by Rose already in the 1940s@26,27# ~an up-to-

FIG. 7. The deposition rate due to a pair of modes withu61

56p/2 in the stateucx
(4,3)&. The solid line shows the depositio

rate for a four-photon absorption film. The dashed, dotted,
dash-dotted lines represent the~normalized! deposition rate for
three-, two-, and one-photon absorption processes, respectivel
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date review of this early work was recently written by Bu
gess@28#!. In a first-order approximation, the exposure
each pixel can be modeled by a Poisson distribution wit
mean determined by the relation between the absorp
probability of a grain, the deposition rate at the pixel, and
exposure dose. It is clear that in order to have pixels wit
relative variation in exposure of, say less than 10%, the m
number of exposed grains must be larger than 100. Thi
turn implies that the number of states that need to impinge
the film to expose this particular pixel must be much larg
than 100. As a consequence, it is desirable that the s
generator emits states with a high-repetition frequency in
der to expose the film swiftly.

Finally, we wish to mention that the last, rather difficu
hurdle we have to deal with is how to generate two-mo
reciprocal binomial states. ForN52, they can be prepare
using standard parametric down conversion. Other sche
to produce them have been discussed in Ref.@29# and there
is, at least, one realistic proposal for implementing the
schemes for higherN @30#.

V. CONCLUSIONS

We have developed a multimode extension of the s
wavelength lithographic method based on multiphoton
sorption proposed in Ref.@24#. We have shown the optima
way ~in terms of the number of photons used in the proce!
to generate a pixellated pattern of given~subwavelength!
resolution and pattern size. A salient feature of our propo
is that only one particular multimode photon number eige
state needs to be prepared. Any pixellated pattern can
generated from this state by applying differential phase sh
between the modes. For a given lithographic feature res
tion, the price to be paid for a larger pattern is that the co
plexity of the state used to expose the pattern increases.

FIG. 8. The deposition rate due to three pairs of modes w
u6156p/2, u6256 arcsin (1/2), andu6356 arcsin (1/4) in
the four-photon stateucx

(2,1)& ^ ufx
(1,1,2)& ^ ufx

(1,1,2,2)&. The solid line
shows the deposition rate for a four-photon absorption film. T
dashed, dotted, and dash-dotted lines represent~normalized! the
deposition rate for three-, two-, and one-photon absorption p
cesses, respectively.
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each doubling of the pattern area, two more modes in a o
photon state must be used. This also requires the film abs
tion process to increase by one, in terms of photons abso
in the process. Therefore, it seems unlikely that it will
possible to make very large patterns.

We have also studied the effects of imperfections,
terms of losses, competing lower order multiphoton p
cesses, and deposition-rate fluctuations due to the quan
tion of the light used for the exposure. We have shown t
ic

p

n

.

01381
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neither effect results in catastrophic consequences, dem
strating that the proposed method is somewhat robust ag
imperfections.
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