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Excitations in photonic crystals infiltrated with polarizable media

A. Yu. Sivachenko, M. E. Raikh, and Z. V. Vardeny
Department of Physics, University of Utah, Salt Lake City, Utah 84112

~Received 3 November 2000; published 8 June 2001!

Light propagation in a photonic crystal with incomplete band gap, infiltrated with polarizable molecules is
considered. We demonstrate that the interplay between the spatial dispersion caused by Bragg diffraction and
polaritonic frequency dispersion gives rise to alternative propagating excitations, or photonic-crystal-polaritons
~PCP!, with intragap frequencies. We derive the PCP dispersion relation and show that it is governed by two
parameters, namely, the strength of light-matter interaction and detuning between the Bragg frequency and that
of the infiltrated molecules. We also study defect-induced states when the photonic band gap is divided into
two subgaps by the PCP branches and find that each defect createstwo intragap localized states insideeach
subgap.
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I. INTRODUCTION

Photonic crystals and, in particular, photonic band-g
~PBG! materials@1,2#, have recently attracted much attentio
@3,4# due to their rich physics and possible applications.
these systems the dielectric function is periodically mo
lated and, as a result, their optical properties are domin
by light diffraction effects. When Bragg diffraction cond
tions are met then light scattering is very strong, so t
within certain frequency intervals near the resonances l
propagation is inhibited.

Since the subject of photonic crystals was introduc
@1,2#, one of the main goals of photonic band-structure c
culations has been to engineer structures with acomplete
band gap, i.e., with no propagating solutions of Maxwe
equations within a certainforbidden gap. The pursuit of this
goal has generated a stream of studies that are too nume
to be cited here; early works are reviewed in Refs.@3,4#.
Here we only mention that a complete band gap in two
mensions~2D! was theoretically predicted@5,6# and experi-
mentally demonstrated@5# for an array of dielectric rods. In
the quest for a structure having a complete PBG in th
dimensions~3D!, the diamond lattice was shown@7# to be
more promising than a simple face-centered-cubic~fcc! lat-
tice @7,8#.

The frequency gap in the photonic spectrum sets a s
for a number of physical effects. The prime effect, nam
the inhibition of spontaneous emission for an emitter w
transition frequency within the gap, was already suggeste
the pioneering works@1,9,10#. Furthermore, since ligh
cannot leave the emitting atom, a coupled atom-field in-g
state is formed, in which the atomic level is ‘‘dressed’’ by
own exponentially localized radiation field@9,11#. It was also
demonstrated that although a single photon cannot propa
inside the gap, nevertheless, a nonlinear medium embe
inside the photonic crystal gives rise to multiphoton bou
states@12#, or gap solitons@13# that result in self-induced
transparency. Yet another consequence of PBG is the m
fication of cooperative emission with frequency close to
band edge. In particular, the PBG was shown to change
rate of superradiant emission from an ensemble of emit
@10,14#. Lastly, PBG structures facilitate strong Anders
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localization of photons@15# because the sharp density
states within the gap spectral range necessitates a reinte
tation of the Ioffe-Regel criterion@2#.

PBG structures with a defect constitute a separate are
study initiated by the classical works in Refs.@5,16#. These
structures are important since the defects cause localize
tragap states. For these states, the PBG sample acts
resonator with a very high quality factor. This property w
recently used for designing a low-threshold PBG defe
mode laser@17#.

Another class of materials with a forbidden gap for lig
propagation is spatially homogeneous, but frequen
dispersive media. The energy gap in these systems h
polaritonic origin, i.e., it is formed due to the interaction
light with the medium polarization@18#. This energy gap can
be viewed as the result of anticrossing between the phot
and excitonic dispersion relation branches. Some nontri
manifestations of the polaritonic gap were recently explo
in Refs.@19,20#. In these papers a general model of two-lev
systems interacting with elementary electromagnetic exc
tions with a gap in the spectrum was solved by means of
Bethe ansatz technique. Within this model a very rich ex
tation spectrum was found@19,20#, consisting of ordinary
solitons, single-particle impurity bound states, and mass
pairs of confined gap excitations and their bound comple
— dissipationless quantum gap solitons.

Most of the available photonic crystals nowadays, ho
ever, haveincompletePBGs; this means that light propag
tion is forbidden only along certain directions inside t
crystal. A prominent example is opals, representing s
assembled monodispersed silica balls@21# arranged in a fcc
type lattice. Although opals have only an incomplete PB
the voids between the balls can be infiltrated by various m
dia, which brings about nontrivial physics. In particular, t
medium may contain polarizable molecules. Infiltrated o
with polarizable molecules combines therefore polarito
and Bragg-diffractive properties. Obviously, both effects c
exist independently when the Bragg (v5vB) and polari-
tonic (v5vT) resonances are well separated in frequency
completely different situation occurs whenvB'vT . This
may be easily achieved in infiltrated opals that gives rise t
©2001 The American Physical Society09-1
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peculiar interplay between various frequency dispersion
This interplay is the subject of the present paper.

Our most important finding pertains to the case when
polaritonic gap of the polarized molecules infiltrating t
opal lies within the opal PBG. We demonstrate that such
overlap gives rise to massivepropagatingexcitations having
frequencies inside the Bragg gap, which we refer to
photonic-crystal-polaritons~PCPs!. In other words, the
Bragg gapsplits into two subgaps, so that the PCP branch
are isolated from the rest of the spectrum. We found that
PCP dispersion relation is very sensitive to the freque
detuning betweenvB andvT and to the relative width of the
polaritonic gap~or, alternatively Rabi frequency! and the
Bragg gap.

The principal assumption we adopt here is that the Br
gap, DvB , is narrow compared tovB ; this is actually the
case in opals. The small value ofDvB /vB!1 enables us
then to obtain analytical results. In addition, we also stu
the phase slip related intragap defect states forvB'vT . In
the absence of polaritonic effect, the underlying physics
the defect-induced intragap states was already discusse
the original PBG paper@1#. An analogy was drawn betwee
a defect state and a localized mode in a distributed feedb
resonator, which originates from a phase slip. We extend
picture to incorporate the polarizable medium and show
when the Bragg gap splits into two subgaps, then an exis
phase slip gives rise totwo localized states with frequencie
within eachof the subgaps.

Our paper is organized as follows: In order to introdu
the notations, we separately review in Sec. II the derivat
of the PBG and polaritonic spectra using the second qua
zation representation. In Sec. III we consider the combi
Hamiltonian in the second quantization representation
diagonalize it by a unitary transformation. This yields t
dispersion relations for the two excitations outside the g
or Bloch-like waves, and the two intragap branches, or P
excitations. The properties of these excitations are analy
in Sec. IV. We use them in Sec. V to determine the intrag
frequencies of the defect-induced localized states. Conc
ing remarks are presented in Sec. VI.

II. SECOND QUANTIZED PBG
AND POLARITONIC HAMILTONIANS

The HamiltonianH of the system under study is the su
of three terms

H5Hph1Hm1Hm-ph. ~1!

The first termHph describes the photons in a photonic cry
tal. The second termHm is the Hamiltonian of the polariz
able medium;Hm-ph describes the photon-medium couplin
In this section we review two limiting cases:~i! no polariz-
able medium (Hm[0), and~ii ! no modulation of the dielec
tric constant.
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A. Incomplete PBG

The general form of the HamiltonianHph is

Hph5
1

8pE dr@«~r!E21H2#, ~2!

whereE and H are, respectively, the electric and magne
fields. For a constant dielectric function,«(r)[«0, the sec-
ond quantized form@22# of the Hamiltonian~2! reduces to a
sum over oscillators representing plane waves with frequ
ciesvk5ck/A«0, wherek is the wave vector. Modulation o
«(r) causes light diffraction, so that the plane-wave solutio
are no longer the correct eigenfunctions of the Hamilton
~2!. Below we consider a photonic crystal with an incom
plete PBG along thez axis. A particular example is opals
which are self-assembled photonic crystals made of si
balls. The gradient of the refractive index is small enou
@21# so that the width of the incomplete PBG is relative
small. Thus, the situation can be adequately approximate
a one-dimensional modulation of«(r) along thez direction,
with only a single harmonics taken into account:

«~z!5«01d« cos~sz1f!. ~3!

Here d« (!«0) is the modulation amplitude,s52p/d,
where d is the modulation period, andf is the dielectric
modulation phase. We assume for simplicity that the elec
magnetic field propagates along thez direction and is homo-
geneous in thexy plane. In this case light polarization i
irrelevant. Generalization to arbitrary propagation directi
is straightforward. The Fourier components of«(z) in Eq.
~3! couple the original photon oscillators with momentak
and k6s. These coupled oscillators form an infinite seri
that is constructed by successive addition~subtraction! of s.
However, ifd«!«0 and the wave-vector domain is restricte
to the vicinity of the first Bragg resonance atk's/2, then
the Hamiltonian~2! can be truncated. In this case, only th
coupling to the near-resonance backscattered photons
momenta (s2k)'s/2 must be retained, so that the Ham
tonian ~2! takes the form

Hph5(
q

$v~q!â→
1 ~q!â→~q!1v~2q!â←

1 ~2q!â←~2q!

1VB@eifâ→
1 ~q!â←~2q!1e2 ifâ←

1 ~2q!â→~q!#%.

~4!

Here, we introduced the notationsq5k2s/2, â→(q)5âk

and â←(2q)5âk2s for k's/2, whereâk is the usual pho-
ton annihilation operator. In the notations introduced in E
~4!, the frequencies of the photonic branches are given b

v~q!5
c~q1s/2!

A«0

5vBS 11
2q

s D , ~5!

where vB5cs/(2A«0) is the Bragg frequency. We defin
the coupling constant,VB , as the half-width of the Bragg
gap, i.e.,VB5 1

2 DvB . It can be shown thatVB is related to
9-2
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the amplitude of the dielectric function modulation:VB
5vBd«/(2«0). The summation in Eq.~4! is performed over
the k domainuqu!s/2.

It is straightforward to diagonalize the Hamiltonian in E
~4! with the use of the following unitary transformation:

â→~q!5cosub̂1~q!1sinueifb̂2~q!,

â←~2q!52sinue2 ifb̂1~q!1cosub̂2~q!, ~6!

where

cos 2u5
v~q!2v~2q!

A@v~q!2v~2q!#214VB
2

. ~7!

The new operatorsB̂1 and B̂2 describe the creation~annihi-
lation! of pairs of Bloch waves that consist of forward an
backscattered photons near the Bragg frequency. The di
nalized Hamiltonian~4! takes the form

Hph5(
q

vB
(1)~q!b̂1

1~q!b̂1~q!1vB
(2)~q!b̂2

1~q!b̂2~q!,

~8!

where the dispersion relations of the two photonic branc
are given by

vB
(1,2)~q!5

1

2
@v~q!1v~2q!

6A~v~q!2v~2q!!214VB
2 #

5vB6AS 2vB

s D 2

q21VB
2. ~9!

As mentioned above, the width of the PBG from Eq.~9! is
2VB .

B. Polarizable medium

The HamiltoniansHm of the polarizable medium an
Hm-ph of light-polarization interaction in Eq.~1! can be writ-
ten in the second quantization form as

Hm1Hm-ph5vT(
k

b̂k
1b̂k1VP(

k
@ b̂k

1âk1âk
1b̂k#,

~10!

where b̂ is the annihilation operator of the medium excit
tions ~e.g., excitons or optical phonons!, which we assume
here to be dispersionless having frequencyvT ; VP denotes
the light-medium coupling strength that is proportional to t
Rabi frequency. In the absence of the Bragg scattering t
(VB50), the complete Hamiltonian~1! reduces to the con
ventional polaritonic HamiltonianHpol , given by

Hpol5(
k

vkâk
1âk1vT(

k
b̂k

1b̂k1VP(
k

@ b̂k
1âk1âk

1b̂k#,

~11!
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with eigenstates representing the mixture of light and m
dium excitations

âk5coscp̂1~k!1sincp̂2~k!,

b̂k52sincp̂1~k!1coscp̂2~k!, ~12!

where

cos 2c5
vk2vT

A~vk2vT!214VP
2 ~vk5ck/A«0!. ~13!

With the new operatorsp̂1 and p̂2, the Hamiltonian~11! is
diagonalized:

Hpol5(
k

vP
(1)~k!p̂1

1~k!p̂1~k!1(
k

vP
(2)~k!p̂2

1~k!p̂2~k!,

~14!

where the frequencies of the polaritonic branches are gi
by

vP
(1,2)~k!5

1

2
@vk1vT6A~vk2vT!214VP

2 #. ~15!

The Rabi splitting at resonance, i.e., atvk5vT is 2VP .
Equation~15! allows one to express the phenomenologi
parameter VP through the observables. Namely,VP

5AvTvLT/2, wherevLT!vT is the transverse-longitudina
splitting.

We note that the above description is valid only for wa
numbersk in the vicinity of ‘‘crossing’’ of the excitation
branches, wherevk.vT . It does not capture, however, th
correct behavior@18# of the polaritonic branches fork→0. In
this limit an additional term of the typeakb2k1c.c. should
be taken into account in Eq.~11!. Under the same condition
vk.vT , the dispersion relation Eq.~15! can also be derived
from the wave equation with the frequency-dependent
electric function.

III. DIAGONALIZATION OF THE FULL HAMILTONIAN

Now let us consider the full Hamiltonian~1! with both
Bragg scattering and light-medium interaction included,

H5(
q

@v~q!â→
1 ~q!â→~q!1v~2q!â←

1 ~2q!â←~2q!#

1VB(
q

@eifâ→
1 ~q!â←~2q!1e2 ifâ←

1 ~2q!â→~q!#

1vT(
q

@ b̂→
1 ~q!b̂→~q!1b̂←

1 ~2q!b̂←~2q!#

1VP(
q

@ b̂→
1 ~q!â→~q!1â→

1 ~q!b̂→~q!

1b̂←
1 ~2q!â←~2q!1â←

1 ~2q!b̂←~2q!#, ~16!
9-3
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where we have again truncated the ‘‘Bragg’’ Hamiltonian
Eq. ~1! by including only near-resonance terms. If a colum
of operatorsĉ5$â→(q),â←(2q),b̂→(q),b̂←(2q)% is intro-
duced, then the Hamiltonian~16! can be formally rewritten
in a matrix formH5 ĉ1Hĉ, where

H5S v~q! VBeif VP 0

VBe2 if v~2q! 0 VP

VP 0 vT 0

0 VP 0 vT

D . ~17!

The fourH eigenvalues yield the dispersion relations of t
four excitation branches, whereas the eigenvectors determ
the unitary transformation diagonalizingH.

The characteristic equation for the eigenvaluesv of the
matrix H reads
g
t

an

s

01380
ne

F ~v~q!2v!~v~2q!2v!2VB
2

2S v~q!1v~2q!22v

vT2v DVP
2 G~vT2v!21VP

4 50.

~18!

If the light-matter coupling is absent, i.e.,VP50, then the
roots of Eq.~18! reduce to two pure medium excitations wi
unperturbed frequencyvT propagating in the forward and
backward directions alongz, and two purely photonic exci-
tations with dispersion relation given by Eq.~9! that results
from the Bragg scattering. If, on the other hand, the Bra
scattering is absent, i.e.,VB50, then the roots of Eq.~18!
reduce to two pairs of polariton branches with the dispers
relation given by Eq.~15!.

It appears that the unitary transformation infour-
dimensionalspace diagonalizing the HamiltonianH can be
parametrized bytwo angles:
S â→~q!

â←~2q!

b̂→~q!

b̂←~2q!

D 5S cosu cosc̃ sinu sinc̃ cosu sinc̃ sinu cosc̃

sinu cosc̃ 2cosu sinc̃ sinu sinc̃ 2cosu cosc̃

cosu sinc̃ sinu cosc̃ 2cosu cosc̃ 2sinu sinc̃

sinu sinc̃ 2cosu cosc̃ 2sinu cosc̃ cosu sinc̃

D •S B̂2

Î2

Î1

B̂1

D , ~19!

whereB̂1 , Î1 , Î2, andB̂2 are new operators that annihilate mixed light-matter states. The angleu in Eq. ~19! is precisely the
‘‘Bragg’’ rotation angle introduced in Eq.~7! @for simplicity we setf50 for the modulation phase in Eq.~19!#. The second
angle,c̃ is defined by the following relation:

cos 2c̃5
A@v~q!2v~2q!#214VB

222~vT2vB!

A$2~vT2vB!2A@v~q!2v~2q!#214VB
2%2116VP

2
. ~20!
r

ed

of

po-
Naturally, for VB50 the anglec̃ reduces to the polaritonic
rotation anglec in Eq. ~13!. In the presence of the Brag
scattering, however, this rotation angle also depends on
‘‘Bragg’’ parametersvB andVB . Therefore it is the anglec̃
that characterizes the interplay between the polaritonic
diffraction effects.

IV. PCP EXCITATIONS

In order to analyze the solutions of Eq.~18!, it is conve-
nient to introduce the following dimensionless variables. W
measure frequenciesD from the Bragg frequencyvB and
express them in units of the Bragg gap 2VB :

D5
v2vB

2VB
. ~21!

In analogy with Eq.~21!, we introduce the dimensionles
frequency detuning,d, of vT from the Bragg frequencyvB ,
where
he

d

e

d5
vT2vB

2VB
. ~22!

As seen from Eq.~9!, the natural unit for the wave-vecto
deviation,q, from the Bragg wave vector,s/2, is sVB /vB .
Hence, we introduce the dimensionless parameter

Q5S vB

sVB
Dq. ~23!

With the new notations, the excitation spectrum determin
by Eq. ~18! can be rewritten in a more concise form

Q56AS D2
a2

D2d D 2

2
1

4
, ~24!

wherea5VP /(2VB) characterizes the relative strength
the Bragg and polaritonic couplings. Expression~24! is our
main result. It clearly demonstrates that the Bragg and
laritonic dispersion relationscompetewith each other.
9-4
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Consider for simplicity the case of exact resonance,
d50. It is seen from Eq.~24! that in the absence of light
matter coupling (a50), the first term in the brackets give
rise to the conventional PBG. It is also seen that with
creasinga ~or, VP), the decay length ImQ21 increases, and
for sufficiently smallD we find thatQ becomesreal. This
manifests the emergence of theallowed photonic states, or
PCP excitations, inside the PBG~see Fig. 1!. The PCP
branches in the excitation dispersion relations are descr
by the operatorsÎ1 and Î2. They occupy the frequenc
ranges D5@0,6 1

4 (A1116a221)#. For small a (a!1),
the PCP frequency interval reduces to (0,62a2). We note
that due to the finitea value the Bragg gap broaden
Namely, the band edges of the branches described by
operatorsB̂1 , B̂2 are, respectively, given ford50 by D
56 1

4 (A1116a211) ~compare toD561/2 for a50). The
dispersion relationsD(Q) calculated using Eq.~24! are
shown in Fig. 1~a! for different values ofa in the case of
exact resonancevB5vT , or d50.

FIG. 1. Dispersion of mixed photonic-medium excitations f
various coupling strengths:a50,0.35,0.57.~a! d50; ~b! d50.3.
The shaded area represents the two forbidden subgaps ata50.35.
01380
.,

-

ed

he

Moderate frequency detuningdÞ0 does not qualitatively
change the above picture as seen in Fig. 1~b!. The major
effect of frequency detuning is that the PCP branchesI1 , I2
acquire an asymmetry since they are ‘‘pinned’’ byvT . Fig-
ure 1 also shows that the Bragg-like photonic branchesB1 ,
B2 are affected by coupling or detuning only weakly.

To quantitatively describe the PCP dispersion relation,
consider two characteristics:~i! dimensionless effective mas
M near the band edges that is defined from Eq.~24! by the
relation

D.DQ501
Q2

2M
, ~25!

and~ii ! the density of states,N(D). Expanding Eq.~24! in Q
yields the following effective masses for the PCP exci
tions:

MI1
5F12

122d

A~122d!2116a2G21

, ~26!

MI2
52F12

112d

A~112d!2116a2G21

. ~27!

These masses are plotted in Fig. 2 versus the coup
strengtha. Fora→0, we haveMI1

, MI2
→`, reflecting the

fact that ata50 the PCPs reduce to dispersionless medi
excitations that are not coupled to light. With the light-mat
interaction switched on, the PCP effective mass rapidly
creases~the width of the in-gap branches increases!.

The one-dimensional density of statesN(D) is given from
Eq. ~24! by

FIG. 2. The effective mass for various excitations~in units of
‘‘free’’ Bragg massMB5MB1

5MB2
at a50) is plotted vs cou-

pling strength: solid lines are ford50, whereMB15MB2 , MI1

5MI2
; dashed lines are ford50.3.
9-5
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N~D!}
dQ

dD
5

D2
a2

D2d

AS D2
a2

D2d D 2

2
1

4

S 11
a2

~D2d!2D ,

~28!

and shown in Fig. 3 for different values ofa and detuning,
d. The density of states of the PCP branches inside the
exhibits conventional 1D square-root singularities at

band edgesD5d andD5 1
2 @d7 1

2 6A(d6 1
2 )214a2#.

As mentioned above, the upper and lower Bragg-like p
tonic branchesB1 , B2 are only slightly affected by the cou
pling and/or detuning. In particular, their effective masse

MB1
52F11

112d

A~112d!2116a2G21

, ~29!

MB2
5F11

122d

A~122d!2116a2G21

, ~30!

change only by a factor of 2 asa varies from zero to infinity
~see Fig. 2!.

V. INTRAGAP LOCALIZED STATES

We now turn our attention to the localized photonic sta
caused by a phase-slip-like defect. Note that in the abse
of the polarizable medium, a structure with one-dimensio
modulation~3! of the dielectric function can be viewed as
distributed feedback resonator@1# first considered by
Kogelnik and Shank@23# in 1972. Later it was realized that
phase slip@24# in the modulation

«~z!5«01d« cos@sz1f~z!#, ~31!

where

f~z!5H f1 , z,0,

f2 , z.0
~32!

FIG. 3. Density of states for mixed photonic-medium exci
tions. Left panel is for the symmetric case (d50), for a50.35
~solid line!, and a50.57 ~dashed line!. Right panel is ford50.3
anda50.35. The thin solid vertical lines indicate the band edg
01380
ap
e
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results in a localized state inside the PBG. Within the sec
quantization formalism of Sec. II, the emergence of suc
state can be established as follows. Consider the eigen
annihilation operators of the Hamiltonian~4!,

S b̂1

b̂2
D 5S cosu 2sinueif

sinue2 if cosu D S â→

â←
D . ~33!

It follows from Eq. ~33! that the absolute valuel of the
amplitude ratio of the left and right propagating waves co
stituting the eigenstatesb1 , b2 is either l5tanu, or l
5tan21u. These expressions are actually equivalent to
appropriate choice of the sign of square root:

l6~D!52S D6AD22
1

4D , ~34!

where we used the definition~7! of the rotation angleu.
In the presence of a phase slip~32!, the continuity condi-

tion at z50 reads

l2~D!e2 if25l2* ~D!e2 if1. ~35!

As is well known@25#, Eq.~35! has a unique in-gap solution
D8, for an arbitrary phase discontinuityf12f2,

D85cosx, ~36!

where

x5H f12f2

2
1p, 2p,f12f2,0,

f12f2

2
, 0,f12f2,p.

~37!

Generalization of the above consideration to include the
larizable medium is straightforward. It reduces to the follo
ing modification of the parameterl in Eq. ~35!:

l6~D,a,d!52S D2
a2

D2d
6AS D2

a2

D2d D 2

2
1

4D .

~38!

Then condition~35! yields the gap state solutionD8,

D85
1

2 Fd1
1

2
cosx6AS d2

1

2
cosx D 2

14a2G , ~39!

wherex is defined by Eq.~37!. For a50 we return to the
in-gap state~36!. Remarkably, we note that for nonzero co
pling parametera, when the Bragg gap is divided into tw
subgaps as in Fig. 1, the two values ofD8 determined by Eq.
~39! are located ineach of the corresponding subgaps. I
Fig. 4 the frequenciesD8 of the localized in-gap states ar
shown versus the magnitudef12f2 of the phase slip for
zero detuningd50.

In the case of opal photonic crystals, the phase slip c
sidered above models a stacking fault. In fact, stacking fa
are the most common defects in these structures@26#.

-
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VI. DISCUSSION

The band structure of a photonic crystal with frequen
dependent dielectric function was recently studied num
cally in Ref.@27#, using the plane-wave method. In this wo
the photonic crystal was modeled as a two-dimensional a
of GaAs rods. Frequency dispersion was introduced thro
the transverse-longitudinal splitting of the optical phono
The authors@27# ~see also Ref.@28#! observed that numerou
branches of the band structure calculated forvB[vT be-
come almost dispersionless at frequencies close to the
quencyvT . One-dimensional realization of the situation@27#
was considered in Ref.@29# and exhibited similar behavior.

In the context of the present work, this weakening of d
persion can be understood from Eqs.~26! and ~26! that de-
scribe the effective masses of the PCP branchesI1 , I2.
These masses rapidly increase as the coupling paramea
decreases. A more detailed comparison is impossible, s
in order to show numerous dispersion curves, the author
Refs. @27–29# choose a wide frequency scale that does
allow for identification of PCP branches.

It is important that our results are applicable for an o
lique incidence at the arbitrary angleb. Indeed, in a photonic
crystal with incomplete band gap, the general Bragg re
nance condition isk̃z5s/2, wherek̃z is the component of the
wave vectork̃ inside the photonic crystal along the modul
tion directionz @Eq. ~3!#. If the interface is perpendicular t
the modulation direction~e.g., parallel to the@111# plane of
opal, which is the case in many experiments!, then the wave-
vector component parallel to the interface,k sinb, is fixed by
boundary conditions. In this case, the Hamiltonians, Eq.~4!
and Eq.~16!, correctly describe propagation along thez di-
rection if q5 k̃z2s/2 and the Bragg frequency and couplin

FIG. 4. The frequencies of localized intragap states vs
phase-slip magnitude:D1, D2 are defect levels inside the Bragg ga

(a50, dashed line!; D1 , D̃1 are defect levels inside the lowe

subgap, andD2 , D̃2 are defect levels inside the upper subgapd
50, a50.35, solid line!. Thin solid and dashed lines represent t
band edges of the two forbidden gaps and of conventional Br
gap ~in the absence of coupling!, respectively.
01380
-
i-

y
h
.

e-

-

r
ce
of
t

-

o-

are appropriately modified asvB(b)5sc@2A«02sin2b#21,
and VB(b)5vB(b)d«@2(«02sin2b)#21. Correspondingly,
all the results of this paper remain valid at the arbitrary
cident angle ifvB(b) andVB(b) are used in the definitions
of dimensionless parameters.

This opens an opportunity for experimental verification
the results. It was shown@26# that the absorption coefficien
in self-assembled opal photonic crystals is as small
1 cm21. The only region of strong absorption is in the clo
vicinity of medium resonance frequencyvT . However, the
width of this region is of the order ofvLT!VP ,VB . Thus
the existence of the propagating in-gap exitations and
forbidden gaps can be directly observed in measuremen
transmission or reflection. The prime experimental manif
tation of the PCP excitations derived in the present paper
be summarized as follows. Away from the resonancevB

5vT , the polaritonic peak in the reflectivity spectrum o
curs atv5vT regardless of the incident angleb. However,
the variation of the Bragg peak frequencyvB with b may
lead to the resonance conditionvB(b)'vT . At these angles
Bragg-diffractedphotons couple to the medium excitation
resulting in the formation of the PCP branches. We pred
that instead of a single Bragg reflection peak at the reson
condition, two reflection peaks may be observed that cor
spond to the two subgaps in the excitation spectrum. T
frequencies of thetwo reflection bands become sensitive
the incident angleb, so that the angle-dependent reflectivi
spectra will look as if thepolaritonic peak blueshiftswith
increasingb. Note also that at exact resonance, namely wh
vB(b)5vT , the two reflection peaks would be the mirro
images of each other.

Signatures of the behavior described above can be fo
in the numerical calculations of Ref.@30#. In that work,
transmission spectra of a photonic crystal identical to tha
Ref. @27# were calculated within the transfer-matrix forma
ism. Two minima in the transmission spectra were fou
instead of the usualsingle minimum that is caused by th
Bragg diffraction in nondispersive photonic crystal. In lig
of the theory developed in the present work, these t
minima can be identified with thetwo forbidden subgapsin
the excitation spectrum~Figs. 1 and 3!. As we have demon-
strated~Fig. 3!, in the presence of light-matter coupling the
are two spectral regions with zero density of states. Co
spondingly, the transmission coefficient within these f
quency regions must be low if the sample is sufficien
thick.

A very different realization of periodic polarizable stru
tures was the subject of extensive theoretical studies du
the last decade@31,32#. The structures are multiple quantu
wells separated by wide-gap semiconductor barriers.
width d of each barrier was assumed to be close tol0/2,
wherel0 is the wavelength corresponding to the intraw
exciton resonance frequencyvT . The conditiond'l0/2 im-
plies that the Bragg frequencyvB is close tovT . Since the
quantum wells with strong frequency dispersion atv;vT
had thickness much smaller thand, then a real Bragg gap in
the structures@31,32# was lacking. However, under the con
dition vT[vB , the dispersion law of light propagating alon

e

g
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the principal axis was shown to have a gap within a f
quency rangeuv2vTu5(2G0vT /p)1/25V (eff). HereG0 de-
notes the radiative rate for an exciton in a single well.
other words,V (eff) plays the role of the ‘‘effective’’ Bragg
gap in the structures@31,32#. Remarkably, a physical pictur
completely analogous to the multiple-quantum-well stru
tures emerged from consideration of an optical lattice form
by laser-cooled atoms@33#. Correspondingly, the light dis
persion relation derived in Ref.@33# has the same form as i
Refs. @31,32#. Note that as was recently pointed out@34#, a
detuning (vB2vT);V (eff) gives rise to a band of propaga
ing states within the ‘‘effective’’ Bragg gap of the multiple
quantum-well structures.

Yet another realization of a system combining Bragg a
polaritonic properties was studied in Ref.@35#. Similarly to
Refs. @31,32,34#, the polarizable medium in Ref.@35# was
nd

g,

tt.

n

P.

01380
-

-
d

d

restricted to a system ofd layers. In contrast to multiple
quantum wells, the dispersive layers were immersed into
Bragg lattice. The presence of the two lattices in Ref.@35#
makes the dispersion relation sensitive to their relative ph
Naturally, the excitation spectrum@35# is very different from
Eq. ~24!. In particular, the authors of@35# observe only a
single propagating in-gap excitation branch positioned as
metrically with respect to the Bragg frequency.
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