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Excitations in photonic crystals infiltrated with polarizable media
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Light propagation in a photonic crystal with incomplete band gap, infiltrated with polarizable molecules is
considered. We demonstrate that the interplay between the spatial dispersion caused by Bragg diffraction and
polaritonic frequency dispersion gives rise to alternative propagating excitations, or photonic-crystal-polaritons
(PCB, with intragap frequencies. We derive the PCP dispersion relation and show that it is governed by two
parameters, namely, the strength of light-matter interaction and detuning between the Bragg frequency and that
of the infiltrated molecules. We also study defect-induced states when the photonic band gap is divided into
two subgaps by the PCP branches and find that each defect ciwatedragap localized states insiéach
subgap.

DOI: 10.1103/PhysRevA.64.013809 PACS nuntber42.50.Ct, 71.36tc, 42.70.Qs

I. INTRODUCTION localization of photong15] because the sharp density of
states within the gap spectral range necessitates a reinterpre-
Photonic crystals and, in particular, photonic band-gapation of the loffe-Regel criteriof2].
(PBG materialg 1,2], have recently attracted much attention ~ PBG structures with a defect constitute a separate area of
[3,4] due to their rich physics and possible applications. Instudy initiated by the classical works in Ref§,16]. These
these systems the dielectric function is periodically modu-structures are important since the defects cause localized in-
lated and, as a result, their optical properties are dominateglagap states. For these states, the PBG sample acts as a
by light diffraction effects. When Bragg diffraction condi- resonator with a very high quality factor. This property was
tions are met then light scattering is very strong, so thatecently used for designing a low-threshold PBG defect-
within certain frequency intervals near the resonances lighthode lasef17].
propagation is inhibited. Another class of materials with a forbidden gap for light
Since the subjec_t of photonic cry_stals was inthdUCderopagation is spatially homogeneous, but frequency-
[1,2],_ one of the main goals_ of photonic band-_structure Ca"dispersive media. The energy gap in these systems has a
culations has been to engineer structures withomplete qaritonic origin, i.e., it is formed due to the interaction of
band gap, 1.€., with no propagating solutions of.Maxw.ell Slight with the medium polarizatiof8]. This energy gap can
equations within a certaiforbidden gapThe pursuit of this be viewed as the result of anticrossing between the photonic

goal has generated a stream of studies that are t0o NUMETO4RY excitonic dispersion relation branches. Some nontrivial

to be cited here; early works are reviewed in Refd]. manifestations of the polaritonic gap were recently explored
Here we only mention that a complete band gap in two di-. P gap y €xp

mensions(2D) was theoretically predictefb,6] and experi- Refs.[1_9,2(]. ”_‘ thes_e papers a general model of t\_/vo-lev_el
mentally demonstratef$] for an array of dielectric rods. In systems interacting with elementary electromagnetic excita-

the quest for a structure having a complete PBG in thredOns with a gap in the spectrum was solved by means of the
dimensions(3D), the diamond lattice was showid] to be ~ Bethe ansatz technique. Within this model a very rich exci-
more promising than a simple face-centered-cufic) lat-  t@tion spectrum was founfll9,20, consisting of ordinary
tice [7,8]. solitons, single-particle impurity bound states, and massive
The frequency gap in the photonic spectrum sets a stagedirs of confined gap excitations and their bound complexes
for a number of physical effects. The prime effect, namely— dissipationless quantum gap solitons.
the inhibition of spontaneous emission for an emitter with Most of the available photonic crystals nowadays, how-
transition frequency within the gap, was already suggested irver, haveincompletePBGs; this means that light propaga-
the pioneering works[1,9,10. Furthermore, since light tion is forbidden only along certain directions inside the
cannot leave the emitting atom, a coupled atom-field in-gagrystal. A prominent example is opals, representing self-
state is formed, in which the atomic level is “dressed” by its assembled monodispersed silica b#i] arranged in a fcc
own exponentially localized radiation fie]dl,11]. It was also  type lattice. Although opals have only an incomplete PBG,
demonstrated that although a single photon cannot propagatiee voids between the balls can be infiltrated by various me-
inside the gap, nevertheless, a nonlinear medium embeddelia, which brings about nontrivial physics. In particular, the
inside the photonic crystal gives rise to multiphoton boundmedium may contain polarizable molecules. Infiltrated opal
states[12], or gap solitong13] that result in self-induced with polarizable molecules combines therefore polaritonic
transparency. Yet another consequence of PBG is the mod#nd Bragg-diffractive properties. Obviously, both effects co-
fication of cooperative emission with frequency close to theexist independently when the Bragg € wg) and polari-
band edge. In particular, the PBG was shown to change thmnic (w= w) resonances are well separated in frequency. A
rate of superradiant emission from an ensemble of emittersompletely different situation occurs whevg~ wt. This
[10,14). Lastly, PBG structures facilitate strong Andersonmay be easily achieved in infiltrated opals that gives rise to a
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peculiar interplay between various frequency dispersions. A. Incomplete PBG
This interplay is the supjeqt of the present paper. The general form of the HamiltoniaH,, is
Our most important finding pertains to the case when the
polaritonic gap of the polarized molecules infiltrating the 1 .
opal lies within the opal PBG. We demonstrate that such an th:@J drle(r)E“+H"], @
overlap gives rise to massiy@opagatingexcitations having
frequencies inside the Bragg gap, which we refer to asvhereE andH are, respectively, the electric and magnetic
photonic-crystal-polaritons(PCP$. In other words, the fields. For a constant dielectric functios(r)=e,, the sec-
Bragg gapsplitsinto two subgaps, so that the PCP branchegnd quantized fornj22] of the Hamiltonian(2) reduces to a
are isolated from the rest of the spectrum. We found that théum over oscillators representing plane waves with frequen-
PCP dispersion relation is very sensitive to the frequencgiesw,=ck/ e, wherek is the wave vector. Modulation of
detuning betweemg andwr and to the relative width of the &(r) causes light diffraction, so that the plane-wave solutions
polaritonic gap(or, alternatively Rabi frequengyand the —are no longer the correct eigenfunctions of the Hamiltonian
Bragg gap. (2). Below we consider a photonic crystal with an incom-
The principal assumption we adopt here is that the Brag®'ete PBG along the axis. A particular example is opals,
gap, Awg, is narrow compared teg: this is actually the which are self-gssembled photor_nc _crystal; made of silica
case in opals. The small value dfwg/wg<1 enables us balls. The gradient of the refractive index is small enough

then to obtain analytical results. In addition, we also stud;&ﬁllfo_rmit :EZ ;’;/,['3;200: égﬁ Llcg:jnepliieTBf l?o;?ﬁg;/ee(;yb
the phase slip related intragap defect stateswigre wy. In | ’ q Y app y

the ab f volaritonic effect. th derlvi hvsi ﬁ/one—dimensional modulation efr) along thez direction,
€ absence of pofaritonic effect, the underlying physics O, only a single harmonics taken into account:

the defect-induced intragap states was already discussed In

the original PBG papefrl]. An analogy was drawn between e(z)=¢go+ de cogoz+ ¢h). (3)

a defect state and a localized mode in a distributed feedback

resonator, which originates from a phase slip. We extend thislere de (<eg) is the modulation amplitudeg=2w/d,

picture to incorporate the polarizable medium and show thawhere d is the modulation period, ané is the dielectric

when the Bragg gap splits into two subgaps, then an existingnodulation phase. We assume for simplicity that the electro-

phase slip gives rise two localized states with frequencies magnetic field propagates along thdirection and is homo-

within eachof the subgaps. geneous in thexy plane. In this case light polarization is
Our paper is organized as follows: In order to introduceirrelevant. Generalization to arbitrary propagation direction

the notations, we separately review in Sec. Il the derivation$ Straightforward. The Fourier components &ifz) in Eq.

of the PBG and polaritonic spectra using the second quanti3) couple the original photon oscillators with momeria

zation representation. In Sec. Ill we consider the combine@Ndk=o. These coupled oscillators form an infinite series

Hamiltonian in the second quantization representation anéhat is constructed by successive additisabtraction of o.

diagonalize it by a unitary transformation. This yields the However, if e <&, and the wave-vector domain is restricted

dispersion relations for the two excitations outside the gapto the vicinity of the first Bragg resonance ket /2, then

or Bloch-like waves, and the two intragap branches, or PCphe Hamiltonian(2) can be truncated. In this case, only the

excitations. The properties of these excitations are analyzegPupling to the near-resonance backscattered photons with

in Sec. IV. We use them in Sec. V to determine the intragagnomenta ¢ —k)~¢/2 must be retained, so that the Hamil-

frequencies of the defect-induced localized states. Concludonian(2) takes the form

ing remarks are presented in Sec. VI.

th=2q {o(@)a"(qa_(q) +o(—q)a (—qa_(—q)

Il. SECOND QUANTIZED PBG e n gt .
AND POLARITONIC HAMILTONIANS +Qgle'?a’ (q)a_(—q)+e '"Pa’ (—q)a_(q)l}.

4

The HamiltonianH of the system under study is the sum

of three terms Here, we introduced the notatioms=k— o /2, a_.(q)=ay

and éH(—q)=ék,U for k= o/2, Whereék is the usual pho-
H=Hon+ Hm+ Hinph- (1)  ton annihilation operator. In the notations introduced in Eq.
(4), the frequencies of the photonic branches are given by

The first term?, describes the photons in a photonic crys- w(q)= c(q+o/2) :wB( 1+ 2_q> (5)

tal. The second terrt,,, is the Hamiltonian of the polariz- \/8—0
able medium;H,, o, describes the photon-medium coupling.

In this section we review two limiting case§) no polariz-  where wg=ca/(2zs,) is the Bragg frequency. We define
able medium H,,=0), and(ii) no modulation of the dielec- the coupling constant)g, as the half-width of the Bragg
tric constant. gap, i.e..Qp=3Awg. It can be shown tha)g is related to
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the amplitude of the dielectric function modulatiofz  with eigenstates representing the mixture of light and me-
= wgdel(2gy). The summation in Eq4) is performed over dium excitations
the k domain|g|< /2. A A A
It is straightforward to diagonalize the Hamiltonian in Eqg. = cosyrry(K) +sinygmy(k),
(4) with the use of the following unitary transformation:

R . . b= —siny, (k) + cosyy(k), (12
a_.(q)=cos6B1(q) +sin0e'?B,(q), “ ymileosim
A o A where
a_(—q)=—singe '?B1(q)+costBy(q),  (6)
Wy— WT
h COS 2= =ck/ . (13
where U= = rrar (% Veo). (13
w(q)—w(—Qq) . ~ - L :
cos 20= = > - (7)  With the new operatorsr; and m,, the Hamiltonian(11) is
Vie(q) —o(—a)*+405 diagonalized:

The new operator8; andB, describe the creatiofannihi- - - R -
lation) of pairs of Bloch waves that consist of forward and HpoI:; w(Pl)(k)Tff(k)Tfl(kH% o@/(k) 3 (k) (k)
backscattered photons near the Bragg frequency. The diago- (14)
nalized Hamiltonian4) takes the form

where the frequencies of the polaritonic branches are given
Hon= 2 o (@BL (@B +of (@B (@Bae). DY

® wi (k) = %[wk-i- w1t (o= 07)?+40%]. (15

where the dispersion relations of the two photonic branches

are given by The Rabi splitting at resonance, i.e., @,= w7t is 2Qp.
1 Equation(15) allows one to express the phenomenological
a)gl'z)(q)=—[w(q)+w(—q) parameter Q)p through the observables. Namel\Qp
2 =Jwrw 1/2, wherew 1<wr7 is the transverse-longitudinal
— 7 2 splitting.
=V(w(@)~o(~9)) T405] We note that the above description is valid only for wave
20g) 2 numbersk in the vicinity of “crossing” of the excitation
=wg* (T) g%+ Q3. (9)  branches, where,=w+. It does not capture, however, the

correct behaviof18] of the polaritonic branches fée— 0. In
As mentioned above, the width of the PBG from Eg) is this limit an addmonal_term of the type,b_,+c.c. shqu_ld
204. be taken into account in E¢L1). Under the same condition,
w= w7, the dispersion relation E415) can also be derived
. . from the wave equation with the frequency-dependent di-
B. Polarizable medium electric function.

The HamiltoniansH,,, of the polarizable medium and

Hm_Ph of |ight-p0|arizati0|_’1 inFeraCtion in EC{l) can be writ- IIl. DIAGONALIZATION OF THE EULL HAMILTONIAN
ten in the second quantization form as
Now let us consider the full Hamiltoniafll) with both
N A~ an Bragg scattering and light-medium interaction included,
it Honepn= 072 BBt Qp > [B &tay by, 99 g and g
K K

10 =3 [e(@a (@A (@) e(-0a (~@a (-]
whereb is the annihilation operator of the medium excita-
tions (e.g., excitons or optical phongnavhich we assume
here to be dispersionless having frequengy, (1p denotes

the light-medium coupling strength that is proportional to the
Rabi frequency. In the absence of the Bragg scattering term
(Q2g=0), the complete Hamiltoniafl) reduces to the con-
ventional polaritonic Hamiltoniaft,,, given by

+QB§ [e'%a’ (q)a_(—q)+e *a’ (—q)a_(q)]

+wT§ [bF ()b (q)+bS (—q)b. (—q)]

o o o +0p2 [bX (q)a_(q)+a’ (q)b_(q)

Hpo':Ek wka;ak-#wT; b;bk*‘ﬂp; [b;ak'f‘a;—bk], q
(11) +b  (—ma_(—a)+a’(—q)b_ (-], (16)
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where we have again truncated the “Bragg” Hamiltonian in 5
Eq. (1) by including only near-resonance terms. If a column (0(q)~w)(0(—q)~w)—Qf
of operator<={a_.(q),a.(—a),b_.(a),b. (—q)} is intro-
duced, then the Hamiltoniafi6) can be formally rewritten o(@)+o(-0)- 20| , 2. 4
. . Apn - — Qs |(w1— w)*+Q5=0.
in a matrix formH=c"Hc, where w7
(18)
w(q) Qge’ Qp 0 If the light-matter coupling is absent, i.€),=0, then the
Qge ™ w(-q) 0 Qp roots of Eq.(18) reduce to two pure medium excitations with
H= Q 0 o |- a7 unperturbed frequencwt propagating in the forward and
P T backward directions along and two purely photonic exci-
0 Qp 0 o7 tations with dispersion relation given by E@) that results

from the Bragg scattering. If, on the other hand, the Bragg
scattering is absent, i.eQ)g=0, then the roots of Eq18)

The fourH eigenvalues yield the dispersion relations of theredyce to two pairs of polariton branches with the dispersion
four excitation branches, whereas the eigenvectors determing|ation given by Eq(15).

the unitary transformation diagonalizirtg. It appears that the unitary transformation four-
The characteristic equation for the eigenvalue®f the  dimensionalspace diagonalizing the Hamiltonidi can be
matrix H reads parametrized bywo angles:
|

a_.(q) cosfcosy sindsiny  cosésing  sindcosy B,

a_(—q) sinfcosy —cosdsing sindsing  —cose cosy 3, 9

b _.(q) cosfsing sin@cosy —cosfcosy —sindsing 3

b_(—q) sinfsinyy —cosfcos) —sinfcosy cosdsiny B,

whereB,, 3;, J,, andBB, are new operators that annihilate mixed light-matter states. The @nglEq. (19) is precisely the
“Bragg” rotation angle introduced in Eq7) [for simplicity we set¢=0 for the modulation phase in E¢L9)]. The second

angle, is defined by the following relation:

VLo(q)— (- )12+ 405 - 2(wr— wg)

cos 2= ) = (20)
Vi2(wr- wg)~ V[w(@) - o(-q) ) +403}2+ 1602
|
Naturally, for Qg=0 the angleys reduces to the polaritonic _ w7~ wp
rotation angleys in Eqg. (13). In the presence of the Bragg 6= 205 (22)

scattering, however, this rotation angle also depends on the

“Bragg” parameterswg andQB . Therefore it is the ang[é As §e¢n from Eq(g), the natural unit for the wave-vector
that characterizes the interplay between the polaritonic an€éleviation,q, from the Bragg wave vectot;/2, is 0Qg/wg .

diffraction effects. Hence, we introduce the dimensionless parameter
wp
IV. PCP EXCITATIONS Q=( q )q. (23
giig

In order to analyze the solutions of E@{.8), it is conve-
nient to introduce the following dimensionless variables. WeWith the new notations, the excitation spectrum determined
measure frequencied from the Bragg frequencywg and by Eq.(18) can be rewritten in a more concise form
express them in units of the Bragg gafg:

w— Wy in\/

A= 0, (21

a® \? 1

where a=Qp/(2€Qg) characterizes the relative strength of
In analogy with Eq.(21), we introduce the dimensionless the Bragg and polaritonic couplings. Expressi@d) is our
frequency detuningg, of wy from the Bragg frequencyg,, main result. It clearly demonstrates that the Bragg and po-
where laritonic dispersion relationsompetewith each other.
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FIG. 1. Dispersion of mixed photonic-medium excitations for

various coupling strengthsy=0,0.35,0.57.(a) 6=0; (b) §=0.3.
The shaded area represents the two forbidden subgaps @135.

Consider for simplicity the case of exact resonance, i.e
6=0. It is seen from Eq(24) that in the absence of light-
matter coupling &=0), the first term in the brackets gives
rise to the conventional PBG. It is also seen that with in-
“lincreases, and

creasingx (or, )p), the decay length I
for sufficiently smallA we find thatQ becomegeal. This

manifests the emergence of th#owed photonic states, or

PCP excitations, inside the PB&ee Fig. 1 The PCP

branches in the excitation dispersion relations are described
by the operatorsy; and J,. They occupy the frequency

rangesA=[0,+(\/1+16a’—1)]. For small a (a<1),
the PCP frequency interval reduces to%@a?). We note

PHYSICAL REVIEW A64 013809

Effective mass, | M/ Mg |

Dimensionless coupling strength, o

FIG. 2. The effective mass for various excitatig(irs units of
“free” Bragg massM s=Mp =Mg, at a=0) is plotted vs cou-
pling strength: solid lines are fof=0, whereM zg;=Mg,, Ms,
= sz; dashed lines are faf=0.3.

Moderate frequency detuning# 0 does not qualitatively
change the above picture as seen in Fign).1The major
effect of frequency detuning is that the PCP branchgsJ,
acquire an asymmetry since they are “pinned” by . Fig-
ure 1 also shows that the Bragg-like photonic brandBes
B, are affected by coupling or detuning only weakly.

To quantitatively describe the PCP dispersion relation, we
consider two characteristic6) dimensionless effective mass
M near the band edges that is defined from &4) by the
relation

Q2

M (25

A=Agoot o

and(ii) the density of state$\(A). Expanding Eq(24) in Q
yields the following effective masses for the PCP excita-
‘tions:

1-25 o
M, =|1- , (26)
1 (1—26)%+ 1642
T 1425 o -
%2 J(1+26)2+ 162

These masses are plotted in Fig. 2 versus the coupling

that due to the finitea value the Bragg gap broadens. strengtha. Fora—0, we havel\/lj , |\/|~ — o, reflecting the
Namely, the band edges of the branches described by thct that ata—0 the PCPs reduce to dlsperS|onIess medium

operatorsBl, Bz are, respectively, given fo6=0 by A
=+1(J1+16a’+1) (compare taA = + 1/2 for =0). The
dispersion relationsA (Q) calculated using Eq(24) are
shown in Fig. 1a) for different values ofa in the case of
exact resonanceg= wt, or 6=0.

excitations that are not coupled to light. With the light-matter
interaction switched on, the PCP effective mass rapidly de-
creasegthe width of the in-gap branches incregses

The one-dimensional density of statéA) is given from
Eq. (24) by
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25 results in a localized state inside the PBG. Within the second
@38=0 (6)3=03 12 quantization formalism of Sec. Il, the emergence of such a
20 : state can be established as follows. Consider the eigenstate
annihilation operators of the Hamiltonid4),
15 1
. . o -
B1 cosd  —sinse'?\[a_
I el ~ 33
191 B, B, B,) \sinoe '®  coso |\a_ 33
5 It follows from Eg. (33) that the absolute valua of the
o o amplitude ratio of the left and right propagating waves con-
0 -0.5 0 0.5 stituting the eigenstateg,, B, is either A\=tand, or X\
A =tan 6. These expressions are actually equivalent to the
FIG. 3. Density of states for mixed photonic-medium excita- appropriate choice of the sign of square root:
tions. Left panel is for the symmetric casé=0), for «=0.35
(solid line), and «=0.57 (dashed ling Right panel is for6=0.3 Aa(A)=2| A A /Az_ E (34)
and «=0.35. The thin solid vertical lines indicate the band edges. - o 4)’
o2 where we used the definitiofY) of the rotation angle.
0 173 ) In the presence of a phase s(gR), the continuity condi-
— [e7 i =
N(A)or — = 14 , tion atz=0 reads
(A—6)?

A_(A)e ' P2=)\*(A)e 41, (35

(28)  Asis well known[25], Eq.(35) has a unique in-gap solution,

o ) . A’, for an arbitrary phase discontinuity;, — ¢,
and shown in Fig. 3 for different values ef and detuning,

6. The density of states of the PCP branches inside the gap A'=cosy, (36)
exhibits conventional 1D square-root singularities at the

band edges = 5 and A =3[ 67 = \/(6+ )2+ 4a?]. where
As mentioned above, the upper and lower Bragg-like pho- b1— b
tonic branche®3;, B, are only slightly affected by the cou- 1 72

+m, —m<¢1—$»<0,

pling and/or detuning. In particular, their effective masses _ 2 3
)t 37
1+25 -1 2 y 0<¢1_¢2<7T.
Mo =\ (2o t6a?| @9
( Generalization of the above consideration to include the po-
1 larizable medium is straightforward. It reduces to the follow-
Mo = 1-26 (30) ing modification of the parametar in Eq. (35):
B~ 2 2|
(1-26)°+ 16«

o? a® \? 1
change only by a factor of 2 asvaries from zero to infinity M(A’a’g):Z(A_A— 5i (A_A— 5) - 4)

(see Fig. 2 (38

" . .
V. INTRAGAP LOCALIZED STATES Then condition(35) yields the gap state solutiah’,

2

We now turn our attention to the localized photonic states A 1 a2
=— o

1 1
caused by a phase-slip-like defect. Note that in the absence 5| 0T peosy* \/( 0= 5C0sx
of the polarizable medium, a structure with one-dimensional
modulation(3) of the dielectric function can be viewed as a where y is defined by Eq(37). For a=0 we return to the
distributed feedback resonatdrl] first considered by in-gap statg36). Remarkably, we note that for nonzero cou-
Kogelnik and Shank23] in 1972. Later it was realized that a pling parameterw, when the Bragg gap is divided into two

, (39

phase slig24] in the modulation subgaps as in Fig. 1, the two valuesAdf determined by Eq.
(39) are located ineach of the corresponding subgaps. In
e(z)=go+ 6 codoz+ ¢(2)], (3D Fig. 4 the frequencied’ of the localized in-gap states are

shown versus the magnitudg, — ¢, of the phase slip for

where zero detunings=0.
& ,<0 In the case of opal photonic crystals, the phase slip con-
b(2)= 1 ' 32 sidered above models a stacking fault. In fact, stacking faults
¢,, z>0 are the most common defects in these struct[26%
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are appropriately modified asg(8)=oc[2eo—siB] ™%,
and Qg(B)=wg(B)de[2(so—sintB)] L. Correspondingly,
all the results of this paper remain valid at the arbitrary in-
cident angle ifwg(B8) andQg(B) are used in the definitions
of dimensionless parameters.
This opens an opportunity for experimental verification of
the results. It was showfi26] that the absorption coefficient
in self-assembled opal photonic crystals is as small as
1 cm L. The only region of strong absorption is in the close
vicinity of medium resonance frequenay; . However, the
width of this region is of the order ab 1<Qp,Qg. Thus
the existence of the propagating in-gap exitations and two
forbidden gaps can be directly observed in measurements of
transmission or reflection. The prime experimental manifes-
tation of the PCP excitations derived in the present paper can
=9, be summarized as follows. Away from the resonange
= w7, the polaritonic peak in the reflectivity spectrum oc-
FIG. 4 The _frequencies of localized iptra_gap states vs thq:urS atw= w7 regardless of the incident ang® However,
phase-slip magnitudé®,, DE are defect levels inside the Bragg gap the variation of the Bragg peak frequenay with 8 may
(a=0, dashed Ii~n)3 D;, D, are defect levels inside the lower o5 to the resonance conditien(8)~ wy . At these angles
subgap, and,, D, are defect levels inside the upper subga@p ( Bragg-diffractedphotons couple to the medium excitations
=0, «=0.35, solid ling. Thin solid and dashed lines represent the resulting in the formation of the PCP branches. We predict
band edges of the wo forbidden gaps and of conventional Bragg ot jnstead of a single Bragg reflection peak at the resonant
gap(in the absence of couplingrespectively. condition, two reflection peaks may be observed that corre-
spond to the two subgaps in the excitation spectrum. The
VI. DISCUSSION frequencies of théwo reflection bands become sensitive to
‘the incident anglg3, so that the angle-dependent reflectivity
spectra will look as if thepolaritonic peak blueshiftswith

The band structure of a photonic crystal with frequency

dependent dielectric function was recently studied numeri: )
cally in Ref.[27], using the plane-wave method. In this work increasingB. Note also that at exact resonance, namely when
! g(B) = w7, the two reflection peaks would be the mirror

the photonic crystal was modeled as a two-dimensional arraﬁrI
of GaAs rods. Frequency dispersion was introduced throug ages of each other. . .
the transverse-longitudinal splitting of the optical phonons., S|gnatures_of the behay|or described above can be found
The author$27] (see also Ref.28]) observed that numerous in the _nu_merlcal calculations Of. Ref30]. .In that work,
branches of the band structure calculated dgy=w be- transmission spectra of a phot.onlc crystal |dent|c§1I to that of
come almost dispersionless at frequencies close to the fréq-ef' [27] were calqulated within Fhe_ transfer-matrix formal-
guencywt. One-dimensional realization of the situati@7] ISm. Two minima. in _the transmission spectra were found
was considered in Ref29] and exhibited similar behavior. instead _Of the_ us_uaetmgle_ minimum that IS caused by t_he

In the context of the present work, this weakening of diS_Bragg diffraction in nondispersive photonic crystal. In light

: _of the theory developed in the present work, these two
gf:ii'g”tﬁ:”eft;gc‘t‘isge:ﬁ;‘;‘;‘lgr%';”tﬁfgg)ci,”db(ri?dt%a; ;'j minima can be identified with thevo forbidden subgapi

These masses rapidly increase as the coupling pararzmeterthe excitation spectrurtFigs. 1 and ® As we have demon-

decreases. A more detailed comparison is impossible, sinc%rated(':ig' 3, in the presence of Iight-matter coupling there
in order to show numerous dispersion curves, the authors re two spectral regions with zero density of states. Corre-

Refs.[27-29 choose a wide frequency scale that does not's,pondingly,_the transmission poefficient With.in the§(_e fre-
allow for identification of PCP branches. quency regions must be low if the sample is sufficiently
It is important that our results are applicable for an ob—th'ilf' qiff t realizati f periodi larizable st
e ndence i he sy anglnceed naphtoic A" et el of peros polariate s
crystal W|th.|-nco.r11plete band gf:ipf the general Bragg ®S%he last decadg31,37. The structures are multiple quantum
nance condition i&,= o/2, wherek, is the component of the \\eis separated by wide-gap semiconductor barriers. The
wave vectork inside the photonic crystal along the modula- width d of each barrier was assumed to be close\ 2,
tion directionz [Eq. (3)]. If the interface is perpendicular to where )\, is the wavelength corresponding to the intrawell
the modulation directiorte.g., parallel to th¢111] plane of  exciton resonance frequeney . The conditiond~\ /2 im-
opal, which is the case in many experimentien the wave- plies that the Bragg frequenays is close towt. Since the
vector Component paraHEI to the interfak@inﬁ, is fixed by quantum wells with Strong frequency dispersiona&t/ ot
boundary conditions. In this case, the Hamiltonians, Y. had thickness much smaller thelnthen a real Bragg gap in
and Eq.(16), correctly describe propagation along theli-  the structure$31,32 was lacking. However, under the con-

rection if q=k,— ¢/2 and the Bragg frequency and coupling dition w1= wg, the dispersion law of light propagating along
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the principal axis was shown to have a gap within a fre-restricted to a system of layers. In contrast to multiple
quency rangéw — w1 = (2 gw1/m)¥2=Q M Herel'y de-  quantum wells, the dispersive layers were immersed into the
notes the radiative rate for an exciton in a single well. InBragg lattice. The presence of the two lattices in R8§]
other words,Q®™ plays the role of the “effective” Bragg makes the dispersion relation sensitive to their relative phase.
gap in the structuref81,32. Remarkably, a physical picture Naturally, the excitation spectrufs5] is very different from
completely analogous to the multiple-quantum-well struc-gq. (24). In particular, the authors df35] observe only a
tures emerQEd from consideration of an Optical lattice forme%ing|e propagating in_gap excitation branch positioned asym-

by laser-cooled atomf33]. Correspondingly, the light dis- metrically with respect to the Bragg frequency.
persion relation derived in Ref33] has the same form as in

Refs.[31,32. Note that as was recently pointed ¢G4], a
detuning g — wr)~ QM gives rise to a band of propagat-
ing states within the “effective” Bragg gap of the multiple-
guantum-well structures. This work was supported by NSF Grant No. DMR

Yet another realization of a system combining Bragg and®732820, the Petroleum Research Fund under Grant No.
polaritonic properties was studied in REB5]. Similarly to ~ ACS-PRF 34302-AC6, and the Army Research Office Grant
Refs.[31,32,34, the polarizable medium in Ref35] was  No. DAAD 19-0010406.
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