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Resonant photon creation in a three-dimensional oscillating cavity
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We analyze the problem of photon creation inside a perfectly conducting, rectangular, three-dimensional
cavity with one oscillating wall. For some particular values of the frequency of the oscillations the system is
resonant. We solve the field equation using multiple scale analysis and show that the total number of photons
inside the cavity grows exponentially in time. This is also the case for slightly off-resonance situations.
Although the spectrum of a cavity is in general nonequidistant, we show that the modes of the electromagnetic
field can be coupled, and that the rate of photon creation strongly depends on this coupling. We also analyze
the thermal enhancement of the photon creation.
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I. INTRODUCTION expansion in terms of the amplitude of oscillations, as was
done in[6]. However, this perturbative treatment breaks
The existence of an attractive force between two perfecthdown after a short period of time due to the appearence of
conducting plates was predicted by Casimir in 1948 It secular terms. If7] the r(_anormallz_atlon group techmque
has been measured with accurate precision in recent years pﬁs used in order to obtain a solution valid for a period of

Lamoreaux2] and by Mohideen and Rdi]. These experi- e longer than that of the pertubative case. There it was
; v ) P . shown that the energy spectrum develops a nontrivial struc-
ments confirm the existence of vacuum field fluctuations iNure formed by peaks traveling at the speed of light and

the f_ramework of_ field qu_antization with static_ boundaries_*bouncing against the wallén agreement with other authors
and increase the interest in the case of dynamical boundarl?g])_ Referencd9] makes use of the fact that two different
as well. time scales characterize the problem; the usual one, related to
The dynamical effect consists in the generation of photonshe wall’s oscillation period, and a “slow” one which ac-
due to the instability of the vacuum state of the electromageounts for the cumulative resonance effect. It is then possible
netic field in the presence of time-dependent boundaries. 1tp isolate the resonant part after averaging over the fast os-
the literature it is referred to as the dynamical Casimir effecillations the initial equations for the electromagnetic field
[4] or motion-induced radiatiof6]. Up to now no concrete Modes. , _ o
experiment has been carried out to confirm this photon gen-. Therg IS some 'WOI’k in the Ilteratprg dealmg W't.h higher-
eration, but an experimental verification is not out of reach_dlmen&o_nal cavities. I110] the f?‘d'?‘“on emitted in each
From the theoretical point of view it is widely accepted thatpolan;atmn of the electromagnetic field was computed per-

. S turbatively, when two parallel, plane, and perfectly conduct-
the most favorable configuration in order to observe the pheg g pates oscillate along the direction perpendicular to their
nomenon is a vibrating cavity in which it is possible to pro- gyrfaces. Such geometry constitutes the simplest example of
duce resonant effects between the mechanical and field ogn open three-dimensional cavity. [a1] the authors ob-
cillations. tained the distribution of the created photons for the case of

Many previous papers have focused their attention on thgarametric resonance inside a three-dimensional cavity. In
field quantization within a one-dimensional cavity with one both case$10,11] a perturbative method was applied so the
or two walls performing small amplitude oscillations, at results are valid in the short time limit. [®] a nonperturba-
twice the eigenfrequency of some unperturbed electromagive analysis was presented, generalizing the method of av-
netic mode. For these cavities there exists a strong intermod&raging over fast oscillations to higher-dimensional cavities.
interaction, which is a consequence of the equidistant chatHowever, the intermode coupling was neglected, reducing
acter of the frequency spectrum. The main features of théhe problem to that of one single parametric oscillator.
one-dimensional model are that photons are created in all It is of particular interest to find out how the finite tem-
electromagnetic mode&lue to mode-mode couplingand  perature affects the photon production. This was studied in
that the total energy inside the cavity grows exponentially af12] with a nonperturbative methotsee alsq13]). A re-
the expense of the energy given to the system to keep th@arkable enhancement of the pure vacuum effect was found,
wall moving. A simple approach is to make a perturbativebut again neglecting the coupling between modes.

In this paper we present a detailed analysis of the photon
generation inside a three-dimensional resonant cavity. We

*Electronic address: mcrocce@df.uba.ar also discuss the finite temperature case, showing the en-
"Electronic address: dalvit@lanl.gov hancement of the effect with respect Te=0. We apply a
*Electronic address: fmazzi@df.uba.ar multiple scale analysi§MSA) which provides us with a
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simple technique equivalent to summing the most secular N 2 Noar

terms to all orders in the perturbative treatment. In this way u,(x,t<0)= —\/> sm( ) \f sm( Y y)

we can get a solution valid for a period of time longer than L Ly

that of the perturbative case. We pay particular attention to 5 N

the resonant coupling between different modes. % \/\ sin( 2™ z) gt )
The paper is organized as follows. In Sec. Il we obtain the L, L,

time evolution of the quantized field by expanding it over the

instantaneous basidg-or simplicity we deal with a scalar \/ ny\? ny 2 [n,)\?

bosonic field. Following the steps given [ih4] we arrive at = TNIL, L, L, )

an infinite set of coupled differential equations for the coef-
ficients of the expansion. We also explain there how to comwith the shorthand notation=(n,,n,n,) 2

pute the number of motion-induced photons for the zero- Whent>0 the boundary condition on the moving wall
temperature case. In Sec. lll we describe and apply the MSAecomesp(x=L,(t),y,z,t)=0. In order to satisfy it we ex-

to our problem. We find the coupling conditions betweenpand the mode functions in EfL) with respect to an instan-
different modes that can be satisfied depending on the cavianeous basis

ty’s spectrum. In Sec. IV we present a general analysis of the

coupling conditions, and discuss some examples. In particu- - 2 Ky

lar we find that the fundamental mode of a cubic cavity is ~ Un(Xt=>0)= E Q' (M ® sin 5y L)~

coupled to another mode in the parametric resonance case, *

giving as result that the number of photons with two differ- 2 ky 7 2 k,m
Co PN X sinl —=>— — sin z| (4
Ly Ly L, L,

ent frequencies increases exponentially in time. However,
the production rate for the fundamental mode is only one-
half of that expected if we neglected the coupling, as previ-
ous works did. At the end of this section we study slightly =, QM (t) @(x,Ly(1)), (5
off-resonance situations. In Sec. V we obtain an expression K

for the number of photons in each mode assuming that the
field was initially in thermal equilibrium. Section VI contains with the initial conditions
our final remarks and comments on the generalization to the
more realistic case of an electromagnetic field. Q(kn)(o)_

1 wn
= o e QAPO)=-i\5bn. (©

In this way we ensure that, as long ag(t) andL,(t) are
continuous at=0, each field mode and its time derivate are
We consider a rectangular cavity formed by perfectly re-also continuous functions. The expansion in Eg).for the
flecting walls with dimensions.,, L, andL,. The wall  field modes must be a solution of the wave equation. Taking
placed atx=L, is at rest fort<O and begins to move fol- into account that the’'s form a complete and orthonormal
lowing a given trajectory_,(t) att=0. Note that we assume set and that they depend bonly throughL,(t), we obtain a

this trajectory as prescribed for the problémot a dynamical set of coupled equations f@(t): [14]

variable and that it works as a time-dependent boundary

condition for the field. The fieldp(x,t) satisfies the wave n n n n
equationJ¢=0 in 3+ 1 dimensions, and the boundary con- Q"+ wi(1) Qf )_Zk(t)z 95 Q )+7\(t)z 9, Q™
ditions ¢|,,,s=0 for all times. The Fourier expansion of the

II. SCALAR FIELD QUANTIZATION WITH MOVING
BOUNDARIES

field for an arbitrary moment of time, in terms of creation n
e - +A2(0) 2 gwg; Q" (7)
and annihilation operators, can be written as kI~j
. where
d(x,t)=>, au,(x,t)+H.c., (1)
n 2 2 2 '
Ky k k, Lx(t)
w(t =7T\/( ) + 2] + —) , )= .
| <0 Lol TG TG L0
where the mode functionsu,(x,t) form a complete (8)
orthonormat set of solutions of the wave equation with van- o .
ishing boundary conditions. The coefficientsy,; are defined by
Whent<0 (static cavity each field mode is determined ey
by three positive integens,, n, andn,. That is, x Pk
y P 9emS Ny z gy = Lx(t f X G 9
X
The inner product is the usual for the Klein-Gordon equation,
namely, ¢,&)=—i [ caviyd*X[ ¢ £ — ¢ £*]. We are using units wherk=c=1.

013808-2



RESONANT PHOTON CREATION IN A THREE. .. PHYSICAL REVIEW A 64 013808

and read L(t)=Lo[1+ esin(Qt)+ef(t)], (15)
2K, j wheref(t) is some decaying function that allows us to meet
(_1)kx+ix_2 x X25kj Sep I K the continuity conditions att=0 [for example, f(t)
0=~ Ok = Jx—ke YT =—QOte *]. For small amplitudes of oscillations=€1),
0 if k=], the equations for the modes EJ) take the form
(10)

Ky

2
Q£”>+wEQ£”>=2e( 1 ) Sin(QH) QY
X

Furthermore, in deriving Eq.7) we have used that,gy g;
= Lifdx(aqok/aLx)(acpj /dL,), which follows from the com-
pleteness relation of the,’s. —e0? sin(Qt) ) gy Q"
The annihilation and creation operat@8 anda, " cor- :
respond to the particle notion in the “in” regiort€0). If

the wall stops fot>t;,,, we can define a new set of opera-

torsal" anda; °", associated with the particle notion in the

“out” region (t>t;,,). These two sets of operators are con-
nected by means of the Bogoliubov transformation

+2eQ) cog O1) X, gQM+€O(f)
J
+0(€?), (16)

whereO(f) denotes terms proportional fof, andf.
It is known that a naive perturbative solution of these
a=> (a"ay +al "Br). (11)  equations in powers of the displacemertireaks down after
n a short amount of time, of ordeeQ2) 1. This happens for
those particular values of the external frequeficguch that
The coefficientse,, and B, can be obtained as follows. thereis a resonant coupling with the eigenfrequencies of the
When the wall returns to its initial position the r|ght hand static CaVity. In this Situation, to find a solution valid for

side in Eq.(7) vanishes and the solution reads longer times(of order e *"*) we use the multiple scale
analysis techniqugl5]. We introduce a second time scale

_ (n)
(M (t>t. )= AN giot 4 g g-iogt 7=¢€t and expandQ,” as follows (we shall content our-
Qi (t>Tina) = A"+ Bye 1, (12 selves with first order MSA
with Al" and B{" being some constant coefficients to be QM (H)=QMOt,7)+eQMI(t,7)+O(€?). (17)
determined by the continuity conditionstat ts,5 . Inserting o _ _
Eq.(12) into Egs.(1) and(5) we obtain an expansion @f in The derivatives with respect to the time scalead
terms ofall anda] ™ for t>tg,,. Comparing this with the

~ A () — (n)(0) (m(0) (mM(1)
equivalent expansion in terms af"' anda}; °"'it is easy to Q"= Q™ el 0, QT+ Qi

see that .
Q=0 Q"+ [ 27N D+ QW] (1)
_ (n) —.f (n)
ank=N20kBi" s Brk= V2ZwrALT (13 The initial conditions are
The amount of photons created in the mddes the av-
&3 ougout Q" ©(0)= 8
erage value of the number opera&ir %k with respect to k o1 n.k
the initial vacuum statédefined throughal"|0,,)=0). With
the help of Eq(11) and Eq.(13) we get o oy
QP O(0)= =i\ 5 dnk. (19
—/0. |aToutGoutn \ _ )2 . . i
(M =(Ounlay %k 101n) En: 2en AT, (14) To zeroth order ine we get the equation of a harmonic
oscillator
lll. MULTIPLE SCALE ANALYSIS QMO=AP(r)e ek + BV (r)e K, (20

Up to this point the equations are valid for an _arbitraryand using the initial conditions it follows that
motion of the wall[we only assumd.(0)=L, and L(0)
=0 because the wall is at rest for. 0]. We are interested in A"(r=0)=0, (22)
the number of photons created inside the cavity, so it is natu-
ral to look for harmonic oscillations of the wall that could
enhance that number by means of resonance effects for some B(k”)( 7=0)=
specific external frequencies. So we study the trajectory VeWy

Onk- (22
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To first order ine we obtairt
QMM 1 ,2QNM= 272 QMO

X

k 2
T ) sin(Q1)QM©
Lx

+2

-0? sin(Qt)j;( g Q"

+20 cos(Qt)j;( 9 Q"M

+0O(f). (23
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The previous set of two equations are nontriyia., lead to
resonant behaviprif Q=2w, (resonant condition More-
over, there is intermode coupling between mopesdk if

any of the following conditions is satisfied:

Q=wk+wj ' (26)
Q=wk—wj ' (27)
Q=a)j—wk. (28)

There is an alternative, equivalent way of deriving the
equations of motiofi9]. Fore<1, it is natural to assume that
the solution of Eq(16) is of the form

The basic idea of MSA is to impose the condition that any
term on the right-hand side of the previous equation with a
time dependency of the forre™'“' must vanish. If not,
these terms would be in resonance with the left-hand-sidwhere the functionsA{” and B{" are slowly varying. In
term and secularities would appear. The terms contained iarder to obtain differential equations for them, we insert this
O(f) are not relevant because they are exponentially supansatz into Eq(16) and neglect second derivatives Af"
pressed, and do not produce secularities. After imposing thegnd ij‘). After multiplying the equation bﬁii‘”kt we aver-
requirement that no terre™'“' appear, we get age over the fast oscillations. The resulting equations coin-
cide with Eqs.(24) and (25).

We derived the equations for+3l dimensions. It is very
easy to obtain the corresponding ones it 1l and 2+1
dimensions. In all cases the resonant conditions are given by
Egs. (26)—(28) above. The main difference between the 1
+1 case and higher dimensions is that i 1 the eigenfre-
quenciesw, are proportional to integers. The spectrum is
equidistant and therefore an infinite set of modes may be
coupled. For example, when the external frequencylis
=2w1, the modek is coupled with the modds*2. This has
been extensively studied in the literatli?e9,11,17. In what
follows we will be concerned with cavities with non equidis-
tant spectra.

In a similar fashion, the fact that no secularities should arise
from thee '« term leads to

QM (1) =A"(t)e' K+ B (t)e e, (29)

dAY  wK Q

5 B(k”)ﬁ(ZwK—Q)-i-; ( — o+ E)

X

dr — 20,L

Q
wj+§

Q
X 5(—wk—w]-+Q)2—wkgkj Bl(n)'f‘;

Q
X 5(wk—wj—Q)+(w]-— E) 5(wk—wj+Q)

Q
— q..AM
X 5 gA" . (24

IV. RESONANT PHOTON CREATION

dB(" 72K2 o QO In this section we shall solve the coupled E(&4) and
dr ﬁAk 5(2wk—9)+2 (—w,-+ E) (25). We will see that there are different kinds of solution
@Wkbx ! depending both on the wall's frequency and on the spectrum
Q 0 of the static cavity. Note that the spectrum is related to the
X 5(—wk—wj+9)2—wgijj(”)+; ot cavity's dimensions through Eq3). In Sec. IV A we will

present a general analysis of the resonant conditions and the
solutions. We will show some particular examples in Sec.
IV B. In Sec. IVC we will analyze the case in which the
external frequency is slightly off-resonance.

Q
X 5(wk—wj—Q)+(wj— E) 5(wk—wj+Q)

Q
Xz_wkgkj B(". (25) A. General analysis

Let us consider the “parametric resonance case,” in
which the frequency of the wall is twice the frequency of
%It is not straightforward to compute the next order corrections>° M€ unperturbed mode, sey=2aw, . Under thls_ condition
using MSA. The introduction of new time scales like=et, 7, we expect that the -num.ber. of created photons in the rkode
= €°t, etc., is in general not sufficient to determine the second ordeW'II grow gxpo(r;)enually ('rg time due to resonance effects. In
solution unambiguousl15]. The renormalization group method Order to findA,” andB,” from Eg. (24) and Eq.(25) we
[16] (which is equivalent to MSA to first order ie) seems to be have to analyze whether the coupling conditigng * w;|
more appropiate to systematically improve the result. In any case={} can be satisfied or not. If we s@t=2w,, the resonant
the next order corrections will be very small feft<Q 1. modek will be coupled to some other modeonly if w;
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—w,=0=2w,. Clearly, the latter relation will be satisfied the infinite sum in Eq(24) and Eq.(25), that satisfiesw,
depending on the spectrum of the particular cavity under 3. We obtain forA{” andB{"
consideration.

K . . . . (n)
First, let us assume that this condition is not fullfilled. In dA” (n) Itk A(N)
this case, the equations (" andB{” reduce to g, = kBT (= DXTELAT, (35
dAY  —1 [ k|2 dB{"
__ (n) k f .
dr _Zwk( LX) Bic” (30 G =M RAD (-1 B, (36

where we have used the fact that the relatigr= 3wy is

dB{Y -1 (k|2 -
dr 2w\ L, A - (31) equivalent to
The solution that satisfies the initial conditiof®l) and (22) PP Ly, V2 [Ly \?
reads ix=9k;+8 L—yky + L—Zkz (37
1 because the coupling coefficie,; is proportional to
(n) — ki
By = 2o d,n COSH yKy7), (32 8,0, The next step is to obtain the equations A
and B{" . The modej is coupled to modes that satisfy
1 : 20=|w;*+ i = his relation is satisfied f
m_ _ w=|w;j* 0d. Sincew;=3 wy this relation is satisfied for
Ak 1/2(0k O SINACyky), (33 ws= wy (as expectedand forws=>5 w,. We assume that the

spectrum under consideration does not satisfy the latter. In
where y= (k,/Q)(m/L,)?. With the help of Eq.(14) we this case, the equations read

obtain - o
dA (—1)h"oyj
(Niy=sint?(vksr), (34 -5 AP, (39)
wherer;=€t; . In this uncoupled resonance case the average - [tk
number of created photons in the mddacreases exponen- dBj _ (=D ik B(M (39)
tially in time with a rate given by 2k, . The same result has dr 3 ke

been obtained in previous papésee Ref[9] and Ref[12]). _ _ _ _
There it was assumed that the coupling conditigr 3w In order to find the solution to the above equations we write
cannot be fullfilled for two- and three-dimensional cavities,the system in matrix form:

essentially due to the nonequidistant character of the spec-

trum. As we shall see, this is not always true. In what follows d—v—/\/l - (40
we will solve Eq.(24) and Eq.(25) with coupled modes, and dr Y
we will show some explicit examples.
Let us now assume the existence of one mode,jsay  where
|
B{(7) 0 —ky (— 1), 0
: AL(7) —ky 0 0 (=Dt
VDT B0 [ M -1 0 0 0 W
A7) 0 (=13 0 0
|
and the initial condition reads The solution is easily obtained after diagonalizing. The
eigenvalues are given by
L S vk iy 5 —
\/2_(1)k n,k )\:i—ig |9kx_12JX|’ (43)
v(0)= 1 : (42 where we have used E(B7). The solution can be formally
—— ) written as
\/2(1)J'
0 v(7)=CePC % (0), (44)
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whereD is the eigenvalue diagonal matrix adds the cor-  be coupled through the conditio3=w,, [~ wp, and Q
. . . . 1+ |
responding eigenvector matrix. This means m@i andA]-(“) =wp—op . One can show that, as long as the moges

a;i\ll':ﬁzrs ﬁgn&b'?jg)ogﬁ]g; exg%geggalo;ljer:](;;[;?nsr;vtnrzfe"are not coupled to modes outside the sequence, the number
9 q T P 9 of created photons in each of these modes will be an oscil-

A" and A(™ is determined by the eigenvalues with positive |1 “fnction of time.
real part. Looking at Eq.14) we conclude that the number of
created photons, in both the mo&eand the modg, will
increase exponentially in time with a rate given 4k, . B. Examples
This is our main result. In the resonance parametric case The first and more important example is the cubic cavity.

the resonant mode may be coupled to some other mode. I order to obtain parametric resonance we(lixas twice the
this case the number of created photons in both modes growswest cavity frequency,

exponentially in time with the same rate, which is exactly

one-half of the rate expected for the resonant mode when the 2m\3

coupling is neglected. Q=200107=— - (48)
We have derived Eq40) assuming that only two modes

are coupled. I.f the spectrum contains one medaich hat For this example we will assume thiat=1 cm. The funda-

ws=5wy, besidesw;=3wy, we get three coupled modes. oo modek = (1,1,1) will be coupled tg=(5,1,1) be-

The resulting equation will be similar to E10) but with a causews 1 1= 3w(,.1.1). Only these two modes are coupled,

6x6 mat_rix to diagqnalize. The numt_)er o_f photons in eaChsince there does not exist in the spectrum any nosiatis-
mode &, J, f"‘r.'d K) will grow exponentially in time. Due to faying ws=5w(1,1,1). The exponential growth for the modes
the nonequidistant character of the spectrum, it is not comg andj will be one-half of that expected by previous authors

mon to have three modes coupled. For a cubic cavie, [12]. Now we can write explicitly Eq(44) for this particular
Ly=Ly=L,=L), the first three modes coupled ale case. The result is

=(11,16,13),j=(67,16,13), ands=(115,16,13), the fre-
quency of the lowest mode being an order of magnitude

larger than the fundamental frequency of the cavity. This (M -y — Snk
case is therefore of less interest. Bi’(7) ‘/Zwk[00$2.567')008|'(0.45T)
Let us now discuss briefly what happens with the reman- _ _
ing cases in which the MSA is nontrivial and differs from the +0.176 si112.577)sinh(0.457) |
naive perturbation approach. We first study two nonresonant 5
modess andp (i.e., ws# (1/2# w,) satisfying the condition + M rq 76 i 2.57 4 4
(26), wgt wp:Q.4 After some algebra on Eq&4) and(25) ‘/ij[ 76siM2.57r)cosh0.45n)], (49
we get forAl" and Bg‘) the following:
dAgn) 1 T 2 (n) 5n,k .
S T D] (—1)5thx (n) A (7T)= [cogq2.567)sin(0.457)
dr 2ws( L) (TDYPeRET, (49 “ o
(n) 2 +0.176 sii2.57r)cosi0.45r) |
dBp - _ i m (—1)%*Pxs, p A (46)
dr 2wp | Ly XEXs o Snj
+ —==[1.76 sir{2.57r)sinh(0.45r)], (50)
and the same equations hold Bf” andA{" . The solutions Vew;

are straightforwardly obtained, giving for the average value
of the number operator

S
B"(7) =\/2L'_k[—0.586 sil§2.56r)cosh0.45r7) ]

(o= =sin| W)Z T @7 -
= =sin — Tel.
P Lx/ 2 w0 ! On,j
+ ——=[c0g2.567)cosh0.45r)
Note that if we ses,=p,(s=p) we recover the parametric VEw;
resonance case. This example shows the possibility of ob- —0.176 sifi2.56r)sinh(0.457) | (51)

taining exponential growth of photons in modes that are not
in resonance with the external frequency.
If the spectrum contains some sequence of equidistant fre-

0,
() )= K - -
quenciesw, separated by}, the corresponding modes wil A1) = o, [ —0.586 siri2.567)sinf(0.45r) ]

Wy
4 b [ cog 2.56r)sinh 0.457)
“Note that we are not necessarily within the parametric resonance 12 w; ' '
case. The external frequen€y could be or not be twice the fre- ]
guency of some other unperturbed mode. —0.176 siri2.567)cosh0.457)]. (52
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An important remark is that this solution satisfies the unitaryfrequencies aré)=2w ) and Q=2w, . In both cases

condition for the Bogoliubov transformatidd 1),

> B = | A=

n — (53)

the resonant mode is not coupled(}f=2w(, 3y, the mode
(1,3) will be coupled to the mode (9,3) and both will grow
exponentially in time. However, the mode (3,1) also satisfies
the parametric resonance condition and, being uncoupled to
other modes, it will grow faster than the previous ones. For

We can compute the number of created photons in eacthe same frequenc =2w, 3), we have found by inspec-

mode inserting by Eqs(50) and (52) into Eq. (14). The
result is

(N =cog(2.56r¢)sint?(0.45r¢)
+1.06 sirf(2.567¢)cosl(0.45r¢)
+0.088 sirf5.12r¢)sinh(0.97), (54)
(N]) =cos(2.56r¢)sint?(0.45r)
+1.06 sirf(2.567)cosl(0.45r)
—0.088 siti5.12r;)sinh(0.97¢). (55)
When ;=1 these expressions are approximated by

(Nih= (N~ e, (56)

tion three equidistant modesy i3 30)= 13m+/10/L (27 39)
=157\10/L, and w37 39/~ 17m+/10/L. The number of cre-
ated photons in each mode will oscillate in time.

Now we choosé.,=3L, . This choice causes the funda-
mental mode to be coupled in parametric resonance. If we set
Q=2w(y,), the mode9,]) satisfiesw g 1)=3w(1,1), SO both
modes will grow exponentially.

C. Off resonance

In this subsection we study what happens when the exter-

nal frequency() is slightly off resonance, i.eQ=Q+h,
where() is a resonant frequency ahe<(). We assume that
h=ea, wherea=0(Q). We show how to apply MSA to
this case. Off-resonance motions have already been consid-
ered in the literatur¢18] using a different approach, and it
was shown that there are threshold conditiongdor expo-

In a previous papef9] the authors considered two- nential photon creation.
dimensional cavities, which means that one of the cavity’s For small amplitudes of oscillations, the equations for the
dimensions is much smaller than the otheisay L, modes are still Eq(16) with () replaced by the external
<L,,L,). We can easily recover this limit by omitting tize ~ frequency{). Sinceh<(, all factors of the forme* " may
dimension. In what follows we will discuss this case, for be regarded as slow oscillations, so that the MSA conditions
increasing external frequencies. to get rid of secularities are exactly the same as in the reso-

Let us first assume that,=L,. If Q=2w ), then the nant case, Eqg26), (27) and (28). However, the equations
fundamental modé=(1,1) does not couple to any other for the modeg24), (25 do get modified. Their off-resonant
mode and it grows exponentially in time. The next resonanversion reads

dA" K2 B (20— )+ S +Q+h 5 L0 Q+h g
dr —_me k 020y~ )+J_ Tojt (— o= o )z—wkgkje i
o Q+h Ciwn Q+h QO+h ™
and
dB(" w2k Q+h Q+h .
- _ —iarp(n) _ — i ——— — L — Z gue et
G = a2 AP 8(2awy Q)+; ot 5| o wm ot Q)5 gge A
Ciwn Q+h - Q+h Q+h "
+; e a)j+T 5(wk—wj—Q)+e wJ_T 5(wk—wj+Q) zwk ngBJ . (58)
|
Let us solve these equations in the quasi-parametric- A(k”)=e‘”/2a(k“),
resonant case, that is, fof—h=0Q=2w,. In the case when
there are no coupled modes, we get two coupled first order B =g fam2p(M (59)

differential equations foA{"” andB{” . After the change of

variables the equations take the form
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da” @ (m 1
=—izal—ykby”, (60) A=t—\—Ux AV (70)
dr 2 \/E '
db(kn) o 2 2 .2 24 . .
il Ebf(“)_ ykalV. (61  WhereU=5a"/2+ y“/3[2j;— 3k{] is a positive numbelsee
T Eg. (37)], and
There will be growing exponential solutions if an eigen- 4 4
value of the corresponding matrix V=4a*+4a?y?| K3+ §j)2( - 'y4k§( k2— §jf . (7D
(e
5 YKy For «=0, V is negative, so there are two eigenvalues with
. (62) positive real part, which corresponds to exponential growth.
ok e As |a| grows,V will eventually become positive, all eigen-
Vi 2 values are purely imaginary fafV<U, and no exponential

N _ _ growth is obtained. The condition for exponential growth is
has a positive real part. The eigenvalues are given by V<0, which again sets a threshold for the off-resonance fre-

5 quency differencedn,
(44

N=*\/ VK- — (63)
o4 Ih|<eyV—dy+ Vd2+d,, (72)

and lead to the following threshold for resonant behavior:

with
lh| e (Ky /L)
< —<= : 4.
[h[<2evke= <3 (k'L 2+ (Ky L) 2+ (K, /L) dy=| K2+ §J§>>o, (73)
(64)

For this uncoupled, quasiresonant situation, the resonant N
mode satisfies a Mathieu equatieee Eq(16)]. The thresh- da =k 37 ky |>0. (74)
old we obtained in Eq(64) coincides with the one obtained
for the Mathieu equation using a different metHd®]. For the example of the cubic cavity discussed in the Sec.

As a second example, let us consider the case of tw@y B the threshold igh|<0.687y, that is,|h|/Q<0.06.
coupled modes, say modésand j, for which w;=3wy.

After the change of variable&9), and defining V. DYNAMICAL CASIMIR EFFECT
AN = g3iar25(n) AT FINITE TEMPERATURE
] 1

_ Up to this point we have assumed that the field was in the
B =g Slam2p(W, (65  in-vacuum statd =0 [see, for example, Eq14)]. It is well
i known that the temperature contribution can dominate the
the off-resonance form of Eq€35), (36), (38), and(39) is pure vacuum effect when computing thatic Casimir force
da™ [20]. Thus, it is expected that temperature plays an important
K Zamy M= kbW + (= 1)tk alM] role in the dynamical Casimir effect as well. In what follows
dr 27K Xk e we shall derive an expression for the number of created pho-
(66)  tons inside the cavity equivalent to Ed4), but now assum-
ing an initial state in equilibrium at finite temperature. After
that, we apply the result obtained to the resonant vibrating

dbl”  «a

b+ 4 —keaf” + (— 1)) 5x4,b(M], (67)

dr 2 cavity.
We adopt the scheme of scalar field quantization devel-
da(™ oped in Sec. Il. Fot<0 the wall is at rest, so we assume the

. a i k. 7JX
qr = 3 Eaj(n)_(_l)w XTa(kn)’ (68 system to be at thermal equilibrium at finite temperafiire
=1/B. The state of the system is described by a statistical

db™M a _ Vi operatorp which does not evolve in time. We expand this
L =3i - bW —(— 1)l Xp{M (69)  operator in Fock states of the field @&t 0,
dr 27 3
where we hav_e neglecte_d te_rms proportional_ hobwy p= 1 2 .. 'eXP—(ﬁZ N, + 1 Ek-)
=0(e€) in the right-hand side since they would introduce z N, =0 Ny, =0 i i2) N
only small corrections to the eigenvalues and thresholds. Just
as in Sec. IVA, we can rewrite these equations in matrix X|nk1nk2' : '><nk1nk2' i (79)
form, and find the solution by diagonalizing such a matrix.
The corresponding eigenvalues are whereEkiz Wy, and the normalization factor is given by
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1
nki E

z=> X -~-exrf<,82

nklzo nk2>O

Eki) . (79

At t=0 the wall begins to oscillate and the system will no
longer remain at thermal equilibrium. Following the steps

given in Sec. Il we assume that the wall stop$=atg,. In

that case, the number of photons in thenode is the average

value ofa] ®&a" with respect to the initial statg,

(77

Using Eq.(11) we can write this expression in terms @f
anda’”"

(Ni),=Tr(pa} *"ag").

Tr(p af *ag") = HZJ Bnk @ Tr(p apa”)

+ BB Tr(p apal ™)
+a, kaj*kTr(p EAi;ﬂ ‘“é}“)
+an B Tr(par"a ™. (78

With the help of Eqs(75) and (76) it is a straightforward
calculation to find that

2tinitin

Tr(paga”)=0=Tr(pa; "a] "), (79
T AtinZiny _ 1 5 _T ”in”Tin_l 80
rpa, g )_—eﬂEn—l nj=Tr(paga; ")—1. (80)
Inserting this into Eqs(78) and(77) we arrive at
<Nk>p:2 |Bn k|2+; (|Bn k|2+|an k|2)eﬁEn—]_ .
(81
Finally, using Eqs(13) and (14) we get
(V)20 | A(M 2y 2Pk
(Np=(Nidr=ot 2 (IBEIP+|AL D) ——— (82)
n efEn—1

PHYSICAL REVIEW A 64 013808

approach. However, we have seen that in this case the Bo-
goliubov coefficients are not diagonal, due to the coupling
between the fundamental modte=(1,1,1) and the modg¢
=(5,1,1). With the help of Eqg49), (50), (51), and(52) it

is easy to obtain the number of photons present in the fun-
damental mode after the wall stops,

(Ni)p=(N)7=0(1+2n,) — 2 sirf(2.567) coslF(0.45r)
X (N— ;) —sir(2,567) (N +Np) + Ny, (84)

wheren, = 1/(efE«— 1) is the Bose mean occupation number
for t<0. For the modg we find

(N7}, = (N;)1=0(1+2n;) — 2 sirf(2.56r) costt(0.45r)
X (n;—ny) — Sin?(2.567) (n;+ny) +n; . (85)

Again, we obtain the result that the effect of the temperature
is to increase the number of photons in the pure vacuum case
with thermal factors now depending onFor 7:=1 we have
(NMoT=0~(N))1-0 [s€€ EQq.(56)]. Therefore the total num-
ber of photons created inside the cavity becomes
(Nootad p= (14 N+ nj){ Noota) T=0- (86)

For a cubic cavity of sizé& =1 cm at room temperature
T~290 K, we obtain the result that the total number in cre-
ated photons is approximately 300 times that of pure vacuum
(T=0).

VI. CONCLUSIONS

We have calculated the photon production inside a three-
dimensional oscillating cavity, using MSA to deal with the
resonant effects. We have taken into account that, even
though the spectrum of the cavity is nonequidistant, the dif-
ferent modes may be coupled, and this coupling affects the
rate of photon creation.

We have found resonant effects when the external fre-
quency is equal to the sum of the frequencies of two unper-
turbed moded) = ws+ w,. When os# w,, the number of
photons in both modes grows exponentially. Whén
=2wy, the usual “parametric resonance case,” the number
of photons in the mod& also grows exponentially, along

_ Let us now apply the results obtained in Sec. IV for theyith the number of photons of other modes coupleckto
vibrating cavity to the case in which the field is initially at \when the modé is coupled to one mode, the rate of photon
thermal equilibrium. In the parametric resonance case Withgreation decreases by a factor of 2 with respect to the un-

out coupling the Bogoliubov coefficients are diagofsde
Egs.(32) and(33)], so Eq.(82) can be reduced to

(Mo p={N1=0 (83

1+2 + ,

coupled case.

We have also analyzed slightly off-resonance situations.
Using an extension of the MSA we showed that the number
of photons in the relevant modes also increases exponentially
if certain threshold conditions are satisfied. These conditions
imply that the external frequency should be almost equal to

with { NV )1=0 given by Eq.(34). We see that the effect of the the resonant frequency.

temperature is to enhance the amount of created photons in As an important example, we have described in detail the
the pure vacuum case by a thermal distribution factor. Notease of a cubic cavity. The fundamental mode (1,1,1) is
that the second term in expressi@B8) corresponds to the coupled to the mode (5,1,1) when the external frequency is
average number of photons, in the mddepresent in the ) =2w(;,1y. The number of photons created in both modes
cavity whent<0. The same result was obtained in H&2]  grows ase’®. Neglecting the mode coupling, one would

for the fundamental mode of a cubic cavity using a differenterroneously conclude that the number of photons in the mode
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(1,1,1) grows a®'®, and that there no exponential growth equations for thgnow polarization-dependenBogoliubov
for the mode (5,1,1). The mode coupling in three-coefficients are different for the transverse elec{fig) and
dimensional cavities has not been taken into account in thtransverse magneti@M) cases. However, it can be shown
previous literature. that, in the parametric resonant case, the rate of photon pro-
We have also computed the enhancement of the dynamduction in both polarizations TE and TM is the same and
cal Casimir effect for an initial thermal state. The main resultcoincides with the rate for the scalar field computed in this
is contained in Eq(82). Only when the Bogoliubov coeffi- paper.
cients are approximately diagonal does one recovers the Finally, we would like to comment briefly about the pos-
usual result, i.e., the number of photons created in a givesibility of observing the dynamical Casimir effect experi-
mode at temperatur€ is the T=0 result times the thermal mentally. Considering cavities of dimensions of the order of
distribution factor. 1 cm, the external frequency should be at least 1 GHz in
For simplicity, we have considered a quantum scalar fieldorder to have resonant photon creation. This is not trivial, the
The generalization to the case of an electromagnetic field igpper limit being around 100 MHz with the present tech-
not completely straightforward. We state here the main reniques[21]. Another serious technical problem is that, as
sults; the details will be described in a future work. Assum-already mentioned, in order to have resonance the external
ing that the potential vector satisfies the gauge conditiorirequency should be tuned with high accuracy to the resonant
V-A=0, the Maxwell equations reddA=0. The boundary frequency. Although extremely difficult, an experimental
conditions are the usudperfect conductojson the static verification of the photon production seems not completely
walls. On the moving mirror, these boundary conditionsunrealistic.
must be imposed in a Lorentz frame in which the mirror is

instantaneously at _re:{lsee [10]). This i_mplies that, atx ACKNOWLEDGMENTS
=L(t), the potential vector must satist,(t,L,(t),y,2)
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