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Resonant photon creation in a three-dimensional oscillating cavity
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We analyze the problem of photon creation inside a perfectly conducting, rectangular, three-dimensional
cavity with one oscillating wall. For some particular values of the frequency of the oscillations the system is
resonant. We solve the field equation using multiple scale analysis and show that the total number of photons
inside the cavity grows exponentially in time. This is also the case for slightly off-resonance situations.
Although the spectrum of a cavity is in general nonequidistant, we show that the modes of the electromagnetic
field can be coupled, and that the rate of photon creation strongly depends on this coupling. We also analyze
the thermal enhancement of the photon creation.
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I. INTRODUCTION

The existence of an attractive force between two perfe
conducting plates was predicted by Casimir in 1948@1#. It
has been measured with accurate precision in recent yea
Lamoreaux@2# and by Mohideen and Roy@3#. These experi-
ments confirm the existence of vacuum field fluctuations
the framework of field quantization with static boundarie
and increase the interest in the case of dynamical bound
as well.

The dynamical effect consists in the generation of phot
due to the instability of the vacuum state of the electrom
netic field in the presence of time-dependent boundaries
the literature it is referred to as the dynamical Casimir eff
@4# or motion-induced radiation@5#. Up to now no concrete
experiment has been carried out to confirm this photon g
eration, but an experimental verification is not out of rea
From the theoretical point of view it is widely accepted th
the most favorable configuration in order to observe the p
nomenon is a vibrating cavity in which it is possible to pr
duce resonant effects between the mechanical and field
cillations.

Many previous papers have focused their attention on
field quantization within a one-dimensional cavity with o
or two walls performing small amplitude oscillations,
twice the eigenfrequency of some unperturbed electrom
netic mode. For these cavities there exists a strong interm
interaction, which is a consequence of the equidistant c
acter of the frequency spectrum. The main features of
one-dimensional model are that photons are created in
electromagnetic modes~due to mode-mode coupling!, and
that the total energy inside the cavity grows exponentially
the expense of the energy given to the system to keep
wall moving. A simple approach is to make a perturbat

*Electronic address: mcrocce@df.uba.ar
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expansion in terms of the amplitude of oscillations, as w
done in @6#. However, this perturbative treatment brea
down after a short period of time due to the appearence
secular terms. In@7# the renormalization group techniqu
was used in order to obtain a solution valid for a period
time longer than that of the pertubative case. There it w
shown that the energy spectrum develops a nontrivial st
ture formed by peaks traveling at the speed of light a
bouncing against the walls~in agreement with other author
@8#!. Reference@9# makes use of the fact that two differen
time scales characterize the problem; the usual one, relate
the wall’s oscillation period, and a ‘‘slow’’ one which ac
counts for the cumulative resonance effect. It is then poss
to isolate the resonant part after averaging over the fast
cillations the initial equations for the electromagnetic fie
modes.

There is some work in the literature dealing with highe
dimensional cavities. In@10# the radiation emitted in each
polarization of the electromagnetic field was computed p
turbatively, when two parallel, plane, and perfectly condu
ing plates oscillate along the direction perpendicular to th
surfaces. Such geometry constitutes the simplest examp
an open three-dimensional cavity. In@11# the authors ob-
tained the distribution of the created photons for the case
parametric resonance inside a three-dimensional cavity
both cases@10,11# a perturbative method was applied so t
results are valid in the short time limit. In@9# a nonperturba-
tive analysis was presented, generalizing the method of
eraging over fast oscillations to higher-dimensional caviti
However, the intermode coupling was neglected, reduc
the problem to that of one single parametric oscillator.

It is of particular interest to find out how the finite tem
perature affects the photon production. This was studied
@12# with a nonperturbative method~see also@13#!. A re-
markable enhancement of the pure vacuum effect was fou
but again neglecting the coupling between modes.

In this paper we present a detailed analysis of the pho
generation inside a three-dimensional resonant cavity.
also discuss the finite temperature case, showing the
hancement of the effect with respect toT50. We apply a
multiple scale analysis~MSA! which provides us with a
©2001 The American Physical Society08-1
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simple technique equivalent to summing the most sec
terms to all orders in the perturbative treatment. In this w
we can get a solution valid for a period of time longer th
that of the perturbative case. We pay particular attention
the resonant coupling between different modes.

The paper is organized as follows. In Sec. II we obtain
time evolution of the quantized field by expanding it over t
instantaneous basis. For simplicity we deal with a scala
bosonic field. Following the steps given in@14# we arrive at
an infinite set of coupled differential equations for the co
ficients of the expansion. We also explain there how to co
pute the number of motion-induced photons for the ze
temperature case. In Sec. III we describe and apply the M
to our problem. We find the coupling conditions betwe
different modes that can be satisfied depending on the c
ty’s spectrum. In Sec. IV we present a general analysis of
coupling conditions, and discuss some examples. In part
lar we find that the fundamental mode of a cubic cavity
coupled to another mode in the parametric resonance c
giving as result that the number of photons with two diffe
ent frequencies increases exponentially in time. Howe
the production rate for the fundamental mode is only o
half of that expected if we neglected the coupling, as pre
ous works did. At the end of this section we study sligh
off-resonance situations. In Sec. V we obtain an expres
for the number of photons in each mode assuming that
field was initially in thermal equilibrium. Section VI contain
our final remarks and comments on the generalization to
more realistic case of an electromagnetic field.

II. SCALAR FIELD QUANTIZATION WITH MOVING
BOUNDARIES

We consider a rectangular cavity formed by perfectly
flecting walls with dimensionsLx , Ly , and Lz . The wall
placed atx5Lx is at rest fort,0 and begins to move fol
lowing a given trajectoryLx(t) at t50. Note that we assum
this trajectory as prescribed for the problem~not a dynamical
variable! and that it works as a time-dependent bound
condition for the field. The fieldf(x,t) satisfies the wave
equationhf50 in 311 dimensions, and the boundary co
ditionsfuwalls50 for all times. The Fourier expansion of th
field for an arbitrary moment of time, in terms of creatio
and annihilation operators, can be written as

f~x,t !5(
n

ân
inun~x,t !1H.c., ~1!

where the mode functionsun(x,t) form a complete
orthonormal1 set of solutions of the wave equation with va
ishing boundary conditions.

When t<0 ~static cavity! each field mode is determine
by three positive integersnx , ny andnz . That is,

1The inner product is the usual for the Klein-Gordon equati

namely, (c,j)52 i *cavityd
3x@c j̇!2ċ j!#.
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un~x,t,0!5
1

A2vn

A 2

Lx
sinS nxp

Lx
xDA 2

Ly
sinS nyp

Ly
yD

3A 2

Lz
sinS nzp

Lz
zDeivkt, ~2!

vn5pAS nx

Lx
D 2

1S ny

Ly
D 2

1S nz

Lz
D 2

, ~3!

with the shorthand notationn5(nx ,ny ,nz).
2

When t.0 the boundary condition on the moving wa
becomesf„x5Lx(t),y,z,t…50. In order to satisfy it we ex-
pand the mode functions in Eq.~1! with respect to an instan
taneous basis

un~x,t.0!5(
k

Qk
(n)~ t !A 2

Lx~ t !
sinS kxp

Lx~ t !
xD

3A 2

Ly
sinS kyp

Ly
yDA 2

Lz
sinS kzp

Lz
zD ~4!

5(
k

Qk
(n)~ t !wk„x,Lx~ t !…, ~5!

with the initial conditions

Qk
(n)~0!5

1

A2vn

dk,n , Q̇k
(n)~0!52 iAvn

2
dk,n . ~6!

In this way we ensure that, as long asLx(t) and L̇x(t) are
continuous att50, each field mode and its time derivate a
also continuous functions. The expansion in Eq.~5! for the
field modes must be a solution of the wave equation. Tak
into account that thewk’s form a complete and orthonorma
set and that they depend ont only throughLx(t), we obtain a
set of coupled equations forQk

n(t): @14#

Q̈k
(n)1vk

2~ t !Qk
(n)52l~ t !(

j
gkj Q̇j

(n)1l̇~ t !(
j

gkjQj
(n)

1l2~ t !(
j ,l

glkgljQj
(n) , ~7!

where

vk~ t !5pAS kx

Lx~ t ! D
2

1S ky

Ly
D 2

1S kz

Lz
D 2

, l~ t !5
L̇x~ t !

Lx~ t !
.

~8!

The coefficientsgkj are defined by

gkj 5Lx~ t !E
0

Lx(t)

dx
]wk

]Lx
w j , ~9!

,
2We are using units where\5c51.
8-2
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and read

gkj 52gjk 5H ~21!kx1 j x
2kxj x

j x
22kx

2
dkyj y

dkzj z
if kxÞ j x

0 if kx5 j x .
~10!

Furthermore, in deriving Eq.~7! we have used that( lgkl gjl
5Lx

2*dx(]wk /]Lx)(]w j /]Lx), which follows from the com-
pleteness relation of thewk’s.

The annihilation and creation operatorsâk
in and âk

† in cor-
respond to the particle notion in the ‘‘in’’ region (t,0). If
the wall stops fort.tfinal , we can define a new set of oper
tors âk

out andâk
† out, associated with the particle notion in th

‘‘out’’ region ( t.tfinal). These two sets of operators are co
nected by means of the Bogoliubov transformation

âk
out5(

n
~ ân

inank1ân
† inbnk

! !. ~11!

The coefficientsank and bnk can be obtained as follows
When the wall returns to its initial position the right han
side in Eq.~7! vanishes and the solution reads

Qk
(n)~ t.tfinal!5Ak

(n)eivkt1Bk
(n)e2 ivkt, ~12!

with Ak
(n) and Bk

(n) being some constant coefficients to
determined by the continuity conditions att5tfinal . Inserting
Eq. ~12! into Eqs.~1! and~5! we obtain an expansion off in
terms of âk

in and âk
† in for t.tfinal . Comparing this with the

equivalent expansion in terms ofâk
out and âk

† out it is easy to
see that

ank5A2vkBk
(n) , bnk5A2vkAk

(n) . ~13!

The amount of photons created in the modek is the av-
erage value of the number operatorâk

† outâk
out with respect to

the initial vacuum state~defined throughâk
inu0in&50). With

the help of Eq.~11! and Eq.~13! we get

^Nk&5^0inuâk
† outâk

outu0in&5(
n

2vkuAk
(n)u2. ~14!

III. MULTIPLE SCALE ANALYSIS

Up to this point the equations are valid for an arbitra
motion of the wall @we only assumeL(0)5L0 and L̇(0)
50 because the wall is at rest fort,0#. We are interested in
the number of photons created inside the cavity, so it is n
ral to look for harmonic oscillations of the wall that cou
enhance that number by means of resonance effects for s
specific external frequencies. So we study the trajectory
01380
-

u-

me

L~ t !5L0@11e sin~Vt !1e f ~ t !#, ~15!

where f (t) is some decaying function that allows us to me
the continuity conditions att50 @for example, f (t)
52Vt e2at#. For small amplitudes of oscillations (e!1),
the equations for the modes Eq.~7! take the form

Q̈k
(n)1vk

2Qk
(n)52eS pkx

Lx
D 2

sin~Vt !Qk
(n)

2eV2 sin~Vt !(
j

gkjQj
(n)

12eV cos~Vt !(
j

gkj Q̇j
(n)1eO~ f !

1O~e2!, ~16!

whereO( f ) denotes terms proportional tof, ḟ , and f̈ .
It is known that a naive perturbative solution of the

equations in powers of the displacemente breaks down after
a short amount of time, of order (eV)21. This happens for
those particular values of the external frequencyV such that
there is a resonant coupling with the eigenfrequencies of
static cavity. In this situation, to find a solution valid fo
longer times~of order e22V21) we use the multiple scale
analysis technique@15#. We introduce a second time sca
t5et and expandQk

(n) as follows ~we shall content our-
selves with first order MSA!:

Qk
(n)~ t !5Qk

(n)(0)~ t,t!1eQk
(n)(1)~ t,t!1O~e2!. ~17!

The derivatives with respect to the time scalet read

Q̇k
(n)5] tQk

(n)(0)1e@]tQk
(n)(0)1] tQk

(n)(1)#,

Q̈k
(n)5] t

2Qk
(n)(0)1e@2]tt

2 Qk
(n)(0)1] t

2Qk
(n)(1)#. ~18!

The initial conditions are

Qk
(n)(0)~0!5

1

A2vk

dn,k ,

Q̇k
(n)(0)~0!52 iAvk

2
dn,k . ~19!

To zeroth order ine we get the equation of a harmon
oscillator

Qk
(n)(0)5Ak

(n)~t!eivkt1Bk
(n)~t!e2 ivkt, ~20!

and using the initial conditions it follows that

Ak
(n)~t50!50, ~21!

Bk
(n)~t50!5

1

A2wk

dn,k . ~22!
8-3
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To first order ine we obtain3

] t
2Qk

(n)(1)1vk
2Qk

(n)(1)522]tt
2 Qk

(n)(0)

12S pkx

Lx
D 2

sin~Vt !Qk
(n)(0)

2V2 sin~Vt !(
jÞk

gkjQj
(n)(0)

12V cos~Vt !(
jÞk

gkj] tQj
(n)(0)

1O~ f !. ~23!

The basic idea of MSA is to impose the condition that a
term on the right-hand side of the previous equation wit
time dependency of the forme6 ivkt must vanish. If not,
these terms would be in resonance with the left-hand-s
term and secularities would appear. The terms containe
O( f ) are not relevant because they are exponentially s
pressed, and do not produce secularities. After imposing
requirement that no terme1 ivkt appear, we get

dAk
(n)

dt
52

p2kx
2

2vkLx
2

Bk
(n)d~2vk2V!1(

j
S 2v j1

V

2 D
3d~2vk2v j1V!

V

2vk
gkjBj

(n)1(
j

F S v j1
V

2 D
3d~vk2v j2V!1S v j2

V

2 D d~vk2v j1V!G
3

V

2vk
gkjAj

(n) . ~24!

In a similar fashion, the fact that no secularities should a
from thee2 ivkt term leads to

dBk
(n)

dt
52

p2kx
2

2vkLx
2

Ak
(n)d~2vk2V!1(

j
S 2v j1

V

2 D
3d~2vk2v j1V!

V

2vk
gkjAj

(n)1(
j

F S v j1
V

2 D
3d~vk2v j2V!1S v j2

V

2 D d~vk2v j1V!G
3

V

2vk
gkjBj

(n). ~25!

3It is not straightforward to compute the next order correctio
using MSA. The introduction of new time scales liket15et,t2

5e2t, etc., is in general not sufficient to determine the second o
solution unambiguously@15#. The renormalization group metho
@16# ~which is equivalent to MSA to first order ine) seems to be
more appropiate to systematically improve the result. In any c
the next order corrections will be very small fore2t<V21.
01380
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The previous set of two equations are nontrivial~i.e., lead to
resonant behavior! if V52vk ~resonant condition!. More-
over, there is intermode coupling between modesj andk if
any of the following conditions is satisfied:

V5vk1v j , ~26!

V5vk2v j , ~27!

V5v j2vk . ~28!

There is an alternative, equivalent way of deriving t
equations of motion@9#. Fore!1, it is natural to assume tha
the solution of Eq.~16! is of the form

Qk
(n)~ t !5Ak

(n)~ t !eivkt1Bk
(n)~ t !e2 ivkt, ~29!

where the functionsAk
(n) and Bk

(n) are slowly varying. In
order to obtain differential equations for them, we insert t
ansatz into Eq.~16! and neglect second derivatives ofAk

(n)

andBk
(n) . After multiplying the equation bye6 ivkt we aver-

age over the fast oscillations. The resulting equations co
cide with Eqs.~24! and ~25!.

We derived the equations for 311 dimensions. It is very
easy to obtain the corresponding ones in 111 and 211
dimensions. In all cases the resonant conditions are give
Eqs. ~26!–~28! above. The main difference between the
11 case and higher dimensions is that in 111 the eigenfre-
quenciesvk are proportional to integers. The spectrum
equidistant and therefore an infinite set of modes may
coupled. For example, when the external frequency isV
52v1, the modek is coupled with the modesk62. This has
been extensively studied in the literature@7,9,11,17#. In what
follows we will be concerned with cavities with non equidi
tant spectra.

IV. RESONANT PHOTON CREATION

In this section we shall solve the coupled Eqs.~24! and
~25!. We will see that there are different kinds of solutio
depending both on the wall’s frequency and on the spect
of the static cavity. Note that the spectrum is related to
cavity’s dimensions through Eq.~3!. In Sec. IV A we will
present a general analysis of the resonant conditions and
solutions. We will show some particular examples in S
IV B. In Sec. IV C we will analyze the case in which th
external frequency is slightly off-resonance.

A. General analysis

Let us consider the ‘‘parametric resonance case,’’
which the frequency of the wall is twice the frequency
some unperturbed mode, sayV52vk . Under this condition
we expect that the number of created photons in the modk
will grow exponentially in time due to resonance effects.
order to findAk

(n) and Bk
(n) from Eq. ~24! and Eq.~25! we

have to analyze whether the coupling conditionsuvk6v ju
5V can be satisfied or not. If we setV52vk , the resonant
mode k will be coupled to some other modej only if v j

s

er

e,
8-4
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2vk5V52vk . Clearly, the latter relation will be satisfie
depending on the spectrum of the particular cavity un
consideration.

First, let us assume that this condition is not fullfilled.
this case, the equations forAk

(n) andBk
(n) reduce to

dAk
(n)

dt
5

21

2vk
S pkx

Lx
D 2

Bk
(n) , ~30!

dBk
(n)

dt
5

21

2vk
S pkx

Lx
D 2

Ak
(n) . ~31!

The solution that satisfies the initial conditions~21! and~22!
reads

Bk
(n)5

1

A2vk

dk,n cosh~gkxt!, ~32!

Ak
(n)52

1

A2vk

dk,n sinh~gkxt!, ~33!

where g5(kx /V)(p/Lx)
2. With the help of Eq.~14! we

obtain

^Nk&5sinh2~gkxt f !, ~34!

wheret f5et f . In this uncoupled resonance case the aver
number of created photons in the modek increases exponen
tially in time with a rate given by 2gkx . The same result ha
been obtained in previous papers~see Ref.@9# and Ref.@12#!.
There it was assumed that the coupling conditionv j53vk
cannot be fullfilled for two- and three-dimensional cavitie
essentially due to the nonequidistant character of the s
trum. As we shall see, this is not always true. In what follo
we will solve Eq.~24! and Eq.~25! with coupled modes, and
we will show some explicit examples.

Let us now assume the existence of one mode, sayj , in
01380
r

e

,
c-

s

the infinite sum in Eq.~24! and Eq.~25!, that satisfiesv j
53vk . We obtain forAk

(n) andBk
(n)

dAk
(n)

dt
5g@2kxBk

(n)1~21! j x1kxj xAj
(n)#, ~35!

dBk
(n)

dt
5g@2kxAk

(n)1~21! j x1kxj xBj
(n)#, ~36!

where we have used the fact that the relationv j53vk is
equivalent to

j x
259 kx

218F S Lx

Ly
kyD 2

1S Lx

Lz
kzD 2G ~37!

because the coupling coefficientgkj is proportional to
dkyj y

dkzj z
. The next step is to obtain the equations forAj

(n)

and Bj
(n) . The modej is coupled to modess that satisfy

2vk5uv j6vsu. Sincev j53 vk this relation is satisfied for
vs5vk ~as expected! and forvs55 vk . We assume that the
spectrum under consideration does not satisfy the latter
this case, the equations read

dAj
(n)

dt
52

~21! j x1kxg j x

3
Ak

(n) , ~38!

dBj
(n)

dt
52

~21! j x1kxg j x

3
Bk

(n) . ~39!

In order to find the solution to the above equations we w
the system in matrix form:

dvW

dt
5M vW , ~40!

where
vW ~t!5S Bk
(n)~t!

Ak
(n)~t!

Bj
(n)~t!

Aj
(n)~t!

D , M5gS 0 2kx ~21!kx1 j x j x 0

2kx 0 0 ~21!kx1 j x j x

2~21!kx1 j x j x/3 0 0 0

0 2~21!kx1 j x j x/3 0 0

D , ~41!
and the initial condition reads

vW ~0!5S 1

A2vk

dn,k

0

1

A2v j

dn,j

0

D . ~42!
The solution is easily obtained after diagonalizingM. The
eigenvalues are given by

l56
gkx

2
6

ig

6
Au9kx

2212j x
2u, ~43!

where we have used Eq.~37!. The solution can be formally
written as

vW ~t!5C eDtC21vW ~0!, ~44!
8-5
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whereD is the eigenvalue diagonal matrix andC is the cor-
responding eigenvector matrix. This means thatAk

(n) andAj
(n)

are linear combinations of exponential functions of the
genvalues in Eq.~43! times t. The exponential growth o
Ak

(n) andAj
(n) is determined by the eigenvalues with positi

real part. Looking at Eq.~14! we conclude that the number o
created photons, in both the modek and the modej , will
increase exponentially in time with a rate given bygkx .

This is our main result. In the resonance parametric c
the resonant mode may be coupled to some other mod
this case the number of created photons in both modes g
exponentially in time with the same rate, which is exac
one-half of the rate expected for the resonant mode when
coupling is neglected.

We have derived Eq.~40! assuming that only two mode
are coupled. If the spectrum contains one modes such that
vs55vk , besidesv j53vk , we get three coupled mode
The resulting equation will be similar to Eq.~40! but with a
636 matrix to diagonalize. The number of photons in ea
mode (s, j , andk) will grow exponentially in time. Due to
the nonequidistant character of the spectrum, it is not co
mon to have three modes coupled. For a cubic cavity~i.e.,
Lx5Ly5Lz5L), the first three modes coupled arek
5(11,16,13), j5(67,16,13), ands5(115,16,13), the fre-
quency of the lowest mode being an order of magnitu
larger than the fundamental frequency of the cavity. T
case is therefore of less interest.

Let us now discuss briefly what happens with the rem
ing cases in which the MSA is nontrivial and differs from th
naive perturbation approach. We first study two nonreson
modess andp ~i.e., vsÞV/2Þvp) satisfying the condition
~26!, vs1vp5V.4 After some algebra on Eqs.~24! and~25!
we get forAs

(n) andBp
(n) the following:

dAs
(n)

dt
52

1

2vs
S p

Lx
D 2

~21!sx1pxsxpxBp
(n) , ~45!

dBp
(n)

dt
52

1

2vp
S p

Lx
D 2

~21!sx1pxsxpxAs
(n) , ~46!

and the same equations hold forBs
(n) andAp

(n) . The solutions
are straightforwardly obtained, giving for the average va
of the number operator

^Ns&5^Np&5sinh2F S p

Lx
D 2 sxpx

2Avsvp

t f G . ~47!

Note that if we setsx5px(s5p) we recover the parametri
resonance case. This example shows the possibility of
taining exponential growth of photons in modes that are
in resonance with the external frequency.

If the spectrum contains some sequence of equidistant
quenciesvpi

separated byV, the corresponding modes wi

4Note that we are not necessarily within the parametric resona
case. The external frequencyV could be or not be twice the fre
quency of some other unperturbed mode.
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be coupled through the conditionsV5vpi 11
2vpi

and V

5vpi
2vpi 21

. One can show that, as long as the modespi

are not coupled to modes outside the sequence, the num
of created photons in each of these modes will be an os
latory function of time.

B. Examples

The first and more important example is the cubic cav
In order to obtain parametric resonance we fixV as twice the
lowest cavity frequency,

V52v (1,1,1)5
2pA3

L
. ~48!

For this example we will assume thatL51 cm. The funda-
mental modek5(1,1,1) will be coupled toj5(5,1,1) be-
causev (5,1,1)53v (1,1,1). Only these two modes are couple
since there does not exist in the spectrum any modes satis-
faying vs55v (1,1,1). The exponential growth for the mode
k andj will be one-half of that expected by previous autho
@12#. Now we can write explicitly Eq.~44! for this particular
case. The result is

Bk
(n)~t!5

dn,k

A2vk

@cos~2.56t!cosh~0.45t!

10.176 sin~2.57t!sinh~0.45t!#

1
dn,j

A2v j

@1.76 sin~2.57t!cosh~0.45t!#, ~49!

Ak
(n)~t!5

dn,k

A2vk

@cos~2.56t!sinh~0.45t!

10.176 sin~2.57t!cosh~0.45t!#

1
dn,j

A2v j

@1.76 sin~2.57t!sinh~0.45t!#, ~50!

Bj
(n)~t!5

dn,k

A2vk

@20.586 sin~2.56t!cosh~0.45t!#

1
dn,j

A2v j

@cos~2.56t!cosh~0.45t!

20.176 sin~2.56t!sinh~0.45t!#, ~51!

Aj
(n)~t!5

dn,k

A2vk

@20.586 sin~2.56t!sinh~0.45t!#

1
dn,j

A2v j

@cos~2.56t!sinh~0.45t!

20.176 sin~2.56t!cosh~0.45t!#. ~52!

ce
8-6
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An important remark is that this solution satisfies the unit
condition for the Bogoliubov transformation~11!,

(
n

uBk
(n)u22uAk

(n)u25
1

A2vk

. ~53!

We can compute the number of created photons in e
mode inserting by Eqs.~50! and ~52! into Eq. ~14!. The
result is

^Nk&5cos2~2.56t f !sinh2~0.45t f !

11.06 sin2~2.56t f !cosh2~0.45t f !

10.088 sin~5.12t f !sinh~0.9t f !, ~54!

^Nj&5cos2~2.56t f !sinh2~0.45t f !

11.06 sin2~2.56t f !cosh2~0.45t f !

20.088 sin~5.12t f !sinh~0.9t f !. ~55!

Whent f>1 these expressions are approximated by

^Nk&'^Nj&'e0.9t f . ~56!

In a previous paper@9# the authors considered two
dimensional cavities, which means that one of the cavit
dimensions is much smaller than the others~say Lz
!Lx ,Ly). We can easily recover this limit by omitting thez
dimension. In what follows we will discuss this case, f
increasing external frequencies.

Let us first assume thatLx5Ly . If V52v (1,1) , then the
fundamental modek5(1,1) does not couple to any othe
mode and it grows exponentially in time. The next reson
tri

rd

01380
y

ch

s

t

frequencies areV52v (1,2) and V52v (2,2) . In both cases
the resonant mode is not coupled. IfV52v (1,3) , the mode
(1,3) will be coupled to the mode (9,3) and both will gro
exponentially in time. However, the mode (3,1) also satisfi
the parametric resonance condition and, being uncouple
other modes, it will grow faster than the previous ones. F
the same frequencyV52v (1,3) , we have found by inspec
tion three equidistant modes,v (13,39)513pA10/L v (27,39)

515pA10/L, andv (37,39)517pA10/L. The number of cre-
ated photons in each mode will oscillate in time.

Now we chooseLx53Ly . This choice causes the funda
mental mode to be coupled in parametric resonance. If we
V52v (1,1) , the mode~9,1! satisfiesv (9,1)53v (1,1) , so both
modes will grow exponentially.

C. Off resonance

In this subsection we study what happens when the ex
nal frequencyṼ is slightly off resonance, i.e.,Ṽ5V1h,
whereV is a resonant frequency andh!V. We assume tha
h5ea, wherea5O(V). We show how to apply MSA to
this case. Off-resonance motions have already been con
ered in the literature@18# using a different approach, and
was shown that there are threshold conditions onh for expo-
nential photon creation.

For small amplitudes of oscillations, the equations for t
modes are still Eq.~16! with V replaced by the externa
frequencyṼ. Sinceh!V, all factors of the forme6 iht may
be regarded as slow oscillations, so that the MSA conditi
to get rid of secularities are exactly the same as in the re
nant case, Eqs.~26!, ~27! and ~28!. However, the equations
for the modes~24!, ~25! do get modified. Their off-resonan
version reads
dAk
(n)

dt
52

p2kx
2

2vkLx
2

eiatBk
(n)d~2vk2V!1(

j
S 2v j1

V1h

2 D d~2vk2v j1V!
V1h

2vk
gkje

iatBj
(n)

1(
j

FeiatS v j1
V1h

2 D d~vk2v j2V!1e2 iatS v j2
V1h

2 D d~vk2v j1V!GV1h

2vk
gkjAj

(n) , ~57!

and

dBk
(n)

dt
52

p2kx
2

2vkLx
2

e2 iatAk
(n)d~2vk2V!1(

j
S 2v j1

V1h

2 D d~2vk2v j1V!
V1h

2vk
gkje

2 iatAj
(n)

1(
j

Fe2 iatS v j1
V1h

2 D d~vk2v j2V!1eiatS v j2
V1h

2 D d~vk2v j1V!GV1h

2vk
gkjBj

(n) . ~58!
Let us solve these equations in the quasi-parame

resonant case, that is, forṼ2h5V52vk . In the case when
there are no coupled modes, we get two coupled first o
differential equations forAk

(n) andBk
(n) . After the change of

variables
c-

er

Ak
(n)5eiat/2ak

(n) ,

Bk
(n)5e2 iat/2bk

(n) , ~59!

the equations take the form
8-7
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dak
(n)

dt
52 i

a

2
ak

(n)2gkxbk
(n) , ~60!

dbk
(n)

dt
5 i

a

2
bk

(n)2gkxak
(n) . ~61!

There will be growing exponential solutions if an eige
value of the corresponding matrix

S 2
ia

2
2gkx

2gkx
ia

2

D ~62!

has a positive real part. The eigenvalues are given by

l56Ag2kx
22

a2

4
~63!

and lead to the following threshold for resonant behavior

uhu,2egkx⇔
uhu
V

,
e

2

~kx /Lx!
2

~kx /Lx!
21~ky /Ly!21~kz /Lz!

2 .

~64!

For this uncoupled, quasiresonant situation, the reso
mode satisfies a Mathieu equation@see Eq.~16!#. The thresh-
old we obtained in Eq.~64! coincides with the one obtaine
for the Mathieu equation using a different method@19#.

As a second example, let us consider the case of
coupled modes, say modesk and j , for which v j53vk .
After the change of variables~59!, and defining

Aj
(n)5e3iat/2aj

(n) ,

Bj
(n)5e23iat/2bj

(n) , ~65!

the off-resonance form of Eqs.~35!, ~36!, ~38!, and~39! is

dak
(n)

dt
52 i

a

2
ak

(n)1g@2kxbk
(n)1~21! j x1kxj xaj

(n)#,

~66!

dbk
(n)

dt
5 i

a

2
bk

(n)1g@2kxak
(n)1~21! j x1kxj xbj

(n)#, ~67!

daj
(n)

dt
523i

a

2
aj

(n)2~21! j x1kx
g j x

3
ak

(n) , ~68!

dbj
(n)

dt
53i

a

2
bj

(n)2~21! j x1kx
g j x

3
bk

(n) , ~69!

where we have neglected terms proportional toh/vk
5O(e) in the right-hand side since they would introdu
only small corrections to the eigenvalues and thresholds.
as in Sec. IV A, we can rewrite these equations in ma
form, and find the solution by diagonalizing such a matr
The corresponding eigenvalues are
01380
nt

o

st
x
.

l56
1

A2
A2U6AV, ~70!

whereU55a2/21g2/3@2 j x
223kx

2# is a positive number@see
Eq. ~37!#, and

V54a414a2g2S kx
21

4

3
j x
2D1g4kx

2S kx
22

4

3
j x
2D . ~71!

For a50, V is negative, so there are two eigenvalues w
positive real part, which corresponds to exponential grow
As uau grows,V will eventually become positive, all eigen
values are purely imaginary forAV,U, and no exponentia
growth is obtained. The condition for exponential growth
V,0, which again sets a threshold for the off-resonance
quency differenceh,

uhu,egA2d11Ad1
21d2, ~72!

with

d15S kx
21

4

3
j x
2D.0, ~73!

d25kx
2S 4

3
j x
22kx

2D.0. ~74!

For the example of the cubic cavity discussed in the S
IV B the threshold isuhu,0.68eg, that is,uhu/V,0.06e.

V. DYNAMICAL CASIMIR EFFECT
AT FINITE TEMPERATURE

Up to this point we have assumed that the field was in
in-vacuum stateT50 @see, for example, Eq.~14!#. It is well
known that the temperature contribution can dominate
pure vacuum effect when computing thestaticCasimir force
@20#. Thus, it is expected that temperature plays an impor
role in the dynamical Casimir effect as well. In what follow
we shall derive an expression for the number of created p
tons inside the cavity equivalent to Eq.~14!, but now assum-
ing an initial state in equilibrium at finite temperature. Aft
that, we apply the result obtained to the resonant vibrat
cavity.

We adopt the scheme of scalar field quantization dev
oped in Sec. II. Fort,0 the wall is at rest, so we assume th
system to be at thermal equilibrium at finite temperatureT
51/b. The state of the system is described by a statist
operatorr which does not evolve in time. We expand th
operator in Fock states of the field att,0,

r5
1

Z (
nk1

>0
(

nk2
>0

•••exp2S b(
i

S nki
1

1

2DEki D
3unk1

nk2
•••&^nk1

nk2
•••u, ~75!

whereEki
5vki

and the normalization factor is given by
8-8
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Z5 (
nk1

>0
(

nk2
>0

•••exp2S b(
i

S nki
1

1

2DEki D . ~76!

At t50 the wall begins to oscillate and the system will
longer remain at thermal equilibrium. Following the ste
given in Sec. II we assume that the wall stops att5tfinal . In
that case, the number of photons in thek mode is the average
value of âk

† outâk
out with respect to the initial stater,

^Nk&r5Tr~râk
† outâk

out!. ~77!

Using Eq.~11! we can write this expression in terms ofâin

and â† in

Tr~r âk
† outâk

out!5(
n j

bn k a j kTr~r ân
inâj

in!

1bn kb j k
! Tr~r ân

inâj
† in!

1an k
! a j k

! Tr~r ân
† inâj

in!

1an k
! b j k

! Tr~r ân
† inâj

† in!. ~78!

With the help of Eqs.~75! and ~76! it is a straightforward
calculation to find that

Tr~r ân
inâj

in!505Tr~r ân
† inâj

† in!, ~79!

Tr~r ân
† inâj

in!5
1

ebEn21
dn j5Tr~r ân

inâj
† in!21. ~80!

Inserting this into Eqs.~78! and ~77! we arrive at

^Nk&r5(
n

ubn ku21(
n

~ ubn ku21uan ku2!
1

ebEn21
.

~81!

Finally, using Eqs.~13! and ~14! we get

^Nk&r5^Nk&T501(
n

~ uBk
(n)u21uAk

(n)u2!
2vk

ebEn21
. ~82!

Let us now apply the results obtained in Sec. IV for t
vibrating cavity to the case in which the field is initially a
thermal equilibrium. In the parametric resonance case w
out coupling the Bogoliubov coefficients are diagonal@see
Eqs.~32! and ~33!#, so Eq.~82! can be reduced to

^Nk&r5^Nk&T50S 112
1

ebEk21
D 1

1

ebEk21
, ~83!

with ^Nk&T50 given by Eq.~34!. We see that the effect of th
temperature is to enhance the amount of created photon
the pure vacuum case by a thermal distribution factor. N
that the second term in expression~83! corresponds to the
average number of photons, in the modek, present in the
cavity whent,0. The same result was obtained in Ref.@12#
for the fundamental mode of a cubic cavity using a differe
01380
-

in
te

t

approach. However, we have seen that in this case the
goliubov coefficients are not diagonal, due to the coupl
between the fundamental modek5(1,1,1) and the modej
5(5,1,1). With the help of Eqs.~49!, ~50!, ~51!, and~52! it
is easy to obtain the number of photons present in the f
damental mode after the wall stops,

^Nk&r5^Nk&T50~112nk!22 sin2~2.56t!cosh2~0.45t!

3~nk2nj !2sin2~2,56t!~nk1nj !1nk , ~84!

wherenk51/(ebEk21) is the Bose mean occupation numb
for t,0. For the modej we find

^Nj&r5^Nj&T50~112nj !22 sin2~2.56t!cosh2~0.45t!

3~nj2nk!2sin2~2.56t!~nj1nk!1nj . ~85!

Again, we obtain the result that the effect of the temperat
is to increase the number of photons in the pure vacuum c
with thermal factors now depending ont. For t f>1 we have
^Nk&T50'^Nj&T50 @see Eq.~56!#. Therefore the total num-
ber of photons created inside the cavity becomes

^Ntotal&r>~11nk1nj !^Ntotal&T50 . ~86!

For a cubic cavity of sizeL51 cm at room temperature
T'290 K, we obtain the result that the total number in c
ated photons is approximately 300 times that of pure vacu
(T50).

VI. CONCLUSIONS

We have calculated the photon production inside a thr
dimensional oscillating cavity, using MSA to deal with th
resonant effects. We have taken into account that, e
though the spectrum of the cavity is nonequidistant, the
ferent modes may be coupled, and this coupling affects
rate of photon creation.

We have found resonant effects when the external
quency is equal to the sum of the frequencies of two unp
turbed modesV5vs1vp . When vsÞvp , the number of
photons in both modes grows exponentially. WhenV
52vk , the usual ‘‘parametric resonance case,’’ the num
of photons in the modek also grows exponentially, along
with the number of photons of other modes coupled tok.
When the modek is coupled to one mode, the rate of photo
creation decreases by a factor of 2 with respect to the
coupled case.

We have also analyzed slightly off-resonance situatio
Using an extension of the MSA we showed that the num
of photons in the relevant modes also increases exponent
if certain threshold conditions are satisfied. These conditi
imply that the external frequency should be almost equa
the resonant frequency.

As an important example, we have described in detail
case of a cubic cavity. The fundamental mode (1,1,1)
coupled to the mode (5,1,1) when the external frequenc
V52v (1,1,1). The number of photons created in both mod
grows ase0.9t. Neglecting the mode coupling, one wou
erroneously conclude that the number of photons in the m
8-9
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(1,1,1) grows ase1.8t, and that there no exponential grow
for the mode (5,1,1). The mode coupling in thre
dimensional cavities has not been taken into account in
previous literature.

We have also computed the enhancement of the dyna
cal Casimir effect for an initial thermal state. The main res
is contained in Eq.~82!. Only when the Bogoliubov coeffi-
cients are approximately diagonal does one recovers
usual result, i.e., the number of photons created in a gi
mode at temperatureT is the T50 result times the therma
distribution factor.

For simplicity, we have considered a quantum scalar fie
The generalization to the case of an electromagnetic fiel
not completely straightforward. We state here the main
sults; the details will be described in a future work. Assu
ing that the potential vector satisfies the gauge condi
“•A50, the Maxwell equations readhA50. The boundary
conditions are the usual~perfect conductors! on the static
walls. On the moving mirror, these boundary conditio
must be imposed in a Lorentz frame in which the mirror
instantaneously at rest~see @10#!. This implies that, atx
5Lx(t), the potential vector must satisfyAy„t,Lx(t),y,z…
5Az„t,Lx(t),y,z…50.

As for the case of the scalar field, one can expand
potential vector in an instantaneous basis, and use MSA
deal with the secular terms. The resonant conditions coin
with Eqs. ~26!–~28! in the present paper. The differenti
,

et

.
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equations for the~now polarization-dependent! Bogoliubov
coefficients are different for the transverse electric~TE! and
transverse magnetic~TM! cases. However, it can be show
that, in the parametric resonant case, the rate of photon
duction in both polarizations TE and TM is the same a
coincides with the rate for the scalar field computed in t
paper.

Finally, we would like to comment briefly about the po
sibility of observing the dynamical Casimir effect expe
mentally. Considering cavities of dimensions of the order
1 cm, the external frequency should be at least 1 GHz
order to have resonant photon creation. This is not trivial,
upper limit being around 100 MHz with the present tec
niques @21#. Another serious technical problem is that,
already mentioned, in order to have resonance the exte
frequency should be tuned with high accuracy to the reson
frequency. Although extremely difficult, an experiment
verification of the photon production seems not complet
unrealistic.

ACKNOWLEDGMENTS

We are grateful to Paulo A. Maia Neto for reading th
manuscript. D.D. thanks Luis M. Bettencourt for discussio
The work of M.C. and F.D.M. was supported by Universid
de Buenos Aires, Conicet, and Agencia Nacional de Prom
ción Cientı́fica y Tecnolo´gica, Argentina.
ett.

-

,

@1# H.B.G. Casimir, Proc. K. Ned. Akad. Wet.51, 793 ~1948!; V.
M. Mostepanenko and N. N. Turnov,The Casimir Effect and
Its Applications~Clarendon, Oxford, 1997!; M. Bordag, The
Casimir Effect 50 Years Later~World Scientific, Singapore
1999!; P. Milonni, The Quantum Vacuum~Academic Press,
San Diego, 1994!.

@2# S.K. Lamoreaux, Phys. Rev. Lett.78, 5 ~1997!.
@3# U. Mohideen and A. Roy, Phys. Rev. Lett.81, 4549~1998!.
@4# J. Schwinger, Proc. Natl. Acad. Sci. U.S.A.90, 958~1993!; 90,

2105 ~1993!; 90, 4505~1993!; 90, 7285~1993!.
@5# A. Lambrecht, M.T. Jaekel, and S. Reynaud, Phys. Rev. L

77, 615 ~1996!.
@6# J.Y. Ji, H.H. Jung, J.W. Park, and K.S. Soh, Phys. Rev. A56,

4440 ~1997!; V.V. Dodonov et al., Phys. Lett. A149, 225
~1990!.

@7# D.A.R. Dalvit and F.D. Mazzitelli, Phys. Rev. A57, 2113
~1998!; 59, 3049~1999!.

@8# C.K. Cole and W.C. Schieve, Phys. Rev. A52, 4405 ~1995!;
V.V. Dodonov, A.B. Klimov, and D.E. Nikonov, J. Math
Phys.34, 2742~1993!.

@9# V.V. Dodonov and A.B. Klimov, Phys. Rev. A53, 2664
t.

~1996!.
@10# D.F. Mundarain and P.A. Maia, Phys. Rev. A57, 1379~1998!.
@11# J.-Y. Li et al., J. Phys. A31, 457 ~1998!.
@12# G. Plunien, R. Schu¨tzhold, and G. Soff, Phys. Rev. Lett.84,

1882 ~2000!.
@13# A. Lambrecht, M.T. Jaekel, and S. Reynaud, Europhys. L

43, 147 ~1998!.
@14# C.K. Law, Phys. Rev. A51, 2537~1995!.
@15# C. M. Bender and S.A. Orszag,Advanced Mathematical Meth

ods for Scientists and Engineers~McGraw-Hill, New York,
1978!.

@16# L.Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. E54, 376
~1996!.

@17# V.V. Dodonov, Phys. Lett. A213, 219 ~1996!.
@18# V.V. Dodonov, Phys. Rev. A58, 4147 ~1998!; Phys. Lett. A

244, 517 ~1998!.
@19# L. D. Landau and E. M. Lifshitz,Mechanics~Pergamon Press

Oxford, 1987!.
@20# G. Plunien, B. Muller, and W. Greiner, Phys. Rep.134, 87

~1986!.
@21# R. Onofrio ~private communication!.
8-10


