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Finite-temperature hydrodynamic modes of trapped quantum gases
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The hydrodynamic equations of an ideal fluid formed by a dilute quantum gas in a parabolic trapping
potential are studied analytically and numerically. Due to the appearance of internal modes in the fluid
stratified by the trapping potential, the spectrum of low-lying modes is found to be dense in the high-
temperature limit, with an infinitely degenerate set of zero-frequency modes. The spectrum for Bose fluids and
Fermi fluids is obtained and discussed.
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I. INTRODUCTION
The successful trapping of dilute Bose and Fermi gase

magnetic traps, and their subsequent cooling to temperat
below quantum degeneracy@1–3#, has made the study o
their hydrodynamics a subject of high current interest. T
basic hydrodynamic equations for a fluid formed by su
gases in local thermodynamic equilibrium are well known.
the limit where the fluid can be considered ideal, they are
continuity equation for the mass-densityr and velocity field
uW ,

]r

]t
1¹W •ruW 50, ~1.1!

the Euler equation for the velocity field,

]uW

]t
1uW •¹W uW 52

1

r
¹W P1 fW~xW !, ~1.2!

with the external force per unit massfW52(1/m)¹W V(xW ) and
the pressureP related to the internal energy density« by P
5 2

3 «. This satisfies

]P

]t
1uW •¹W P52

5

3
@¹W ~uW P!2ruW • fW#. ~1.3!

The thermodynamic equilibrium distributions of the dens
r0(xW ) and pressureP0(xW ) with ¹W P05r0fW are given by the
ideal quantum-gas expressions at constant temperatub
51/kBT and chemical potentialm,

r0~xW !5mE d3k

~2p!3
f 7~kW ,xW !,

P0~xW !5
2

3E d3k

~2p!3

\2k2

2m
f 7~kW ,xW !, ~1.4!

with the single-particle distribution

f 7~kW ,xW !5
1

eb[(\2k2/2m)1V(xW )2m]71
. ~1.5!
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of the Bose-Einstein~upper sign! or Fermi-Dirac ~lower
sign! form.

The derivation of these equations from the Boltzma
equation is well known, see Ref.@4#. In recent years a num
ber of papers have been devoted to the study of solution
these equations linearized around the equilibrium state
parabolic traps. Griffin, Wu and Stringari@5# derived a
closed equation for the velocity fluctuations, and gave
plicit solutions for surface waves of a Bose gas in an isot
pic trap and those of a classical gas, also in the axially sy
metric anisotropic trap. In the latter case they also ga
solutions for modes corresponding to irrotational flow. A fu
ther study of the hydrodynamic regime of a trapped Bo
gases was presented in Ref.@6#. Fermi gases were considere
by Bruun and Clark@7#. Besides considering the low
temperature limit for a degenerate Fermi gas, these aut
gave an analytical solution for the mode spectrum in an i
tropic trap in the high-temperature limit, and identified o
branch of the dispersion relation as ‘‘internal waves’’ driv
by the inhomogeneous trap potential. This is a point wh
we intend to examine further in the present paper. Amor
et al. @8# also derived special solutions to the linearized h
drodynamic equations for the low-temperature limit of t
degenerate Fermi gas. In a recent paper@9#, we also studied
this low-temperature regime for Fermi gases, and gave s
tions for the completely anisotropic parabolic trap. T
present paper will therefore concentrate on temperature
the order of the degeneracy temperature or above it. I
number of papers effects beyond the scope of Eqs.~1.1!–
~1.5! were also considered. Vichi and Stringari@10# consid-
ered the effects of mean field due to interactions on the
lective oscillations of Fermi gases in a trap, while Peth
and co-workers@11–13#, Vichi @14#, and Gue´ry-Odelinet al.
@15# discussed the collisional damping of collective modes
Bose gases and Fermi gases respectively. In Refs.@11,12# a
simple interpolation formula was proposed between
mode frequenciesvc in the collisionless regime and the hy
drodynamic regime,vh , of the form

v25vc
21

vh
22vc

2

12 ivt
, ~1.6!

wheret215(8pa2/m)^r0v& is the mean collision rate. This
©2001 The American Physical Society19-1
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description was further examined in Ref.@15#. Equation~1.6!
is based on general considerations of nonequilibrium ther
dynamics @16#. Damping of the hydrodynamics in Bos
gases was also studied by Griffin and co-workers in a se
of papers; see Ref.@17#, where further references can b
found.

In the present paper we will not be concerned with dam
ing effects. Instead our goal is to study further the collisio
dominated dissipationless hydrodynamic regime in harmo
traps with arbitrary anisotropy. We do this by giving a sy
tematic treatment of the linearized hydrodynamic equati
based on Eqs.~1.1!–~1.5!, applicable~within our basic as-
sumptions! in the whole temperature range from the hi
temperature domain, where the Boltzmann limit

f 7.expF2bS \2k2

2m
1V~xW !2m D G

applies, to the regime close to the degeneracy tempera
for bosons and down to nearly vanishing temperature
fermions. We shall discuss a class of exact solutions of
dissipationless equations applicable to the whole tempera
domain covered by the theory, generalizing results pre
ously obtained for traps with axial symmetry. It can
shown that in the high-temperature limit of a classic
Boltzmann gas the linearized hydrodynamic equations i
completely anisotropic trap are integrable and separabl
elliptic coordinates, just like their low-temperature count
parts @18,9#. However, at lower temperatures where effe
of quantum statistics become important, the integrability a
separability are lost, which manifests itself, e.g., in effects
avoided level crossings.

Of special interest in the present paper, besides the c
mon sound modes, will be the phenomenon of inter
waves, which are characteristic of fluids whose equilibriu
state is stratified by an external potential. Internal waves
trapped Fermi gases were mentioned in Ref.@7#, but have not
yet been investigated in detail for trapped quantum ga
For the discussion of internal waves in classical contexts
waves in the atmosphere see Ref.@19#.

II. LINEARIZED HYDRODYNAMIC EQUATIONS AND
HILBERT SPACE OF THEIR SOLUTIONS

In the present section we give the five linearized hyd
dynamic equations whose solution is the central theme
this paper. In previous work on these equations they w
reduced to a set of three wave equations for the velo
field, which we shall also give for completeness, and so
special solutions of this latter set of equations were giv
However, appropriate boundary conditions are hard to
mulate for the velocity field, and therefore it is not clear,
far, what function space is spanned by the solutions,
whether a scalar product can be placed on this func
space, and if so which it is. This question is of particu
practical and theoretical relevance for the present probl
because in general the solutions have to be constructed
merically by converting the differential operators to matric
using a basis and the scalar product in the solution spac
01361
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is important to choose the correct scalar product becaus
we shall see, the problem possesses a dense-lying dis
spectrum of low-lying states; it isa priori far from clear
whether all these states are needed to span the com
space of solutions, and if not, how the correct states are t
distinguished. It is our aim here to devote particular attent
to this open problem, and to present an answer. The wa
achieve this will be to deviate from the previous line of a
proach by deriving, instead of three coupled wave equati
for the components of the velocity field, two coupled wa
equations for the pressure and the density. For these we
construct a scalar product in which the wave operator is s
adjoint, so that its eigenfunctions form a complete set in
well-defined Hilbert space.

A. Linearized hydrodynamic equations

Let us introduce small deviationsdr and dP of density
and pressure from equilibrium,

r5r0~xW !1dr~xW ,t !,P5P0~xW !1dP~xW ,t !, ~2.1!

wherer0(xW ) andP0(xW ) solve the time-independent hydrody
namic equations with vanishing velocity fielduW 050,
namely,¹W P0(xW )5r0(xW ) fW(xW ), which defines the mechanica
equilibrium condition. In principle there are many equilib
rium profilesr0(xW ),P0(xW ) satisfying this requirement. In ou
present context the physically relevant one is the thermo
namic equilibrium of maximum local entropy. The entrop
maximum is achieved by the special profilesr0(xW ) and
P0(xW ) corresponding to a state with a uniform temperaturT

and a chemical potentialm. Using Eqs.~1.4! r0(xW ) and
P0(xW ) can be written as

r0~xW !5A7mS mkBT

2p\2D 3/2

F7S 3

2
,
V~xW !2m

kBT
D ,

P0~xW !5A7kBTS mkBT

2p\2D 3/2

F7S 5

2
,
V~xW !2m

kBT
D , ~2.2!

where the upper~lower! sign refers to bosons~fermions! and
A251,A152. Equations~2.2!, but with space-dependen
T(xW ) andm(xW ), also apply to states of local thermodynam
equilibrium, in which the system is always in the hydrod
namic limit. They can then be taken to define two of the fo
fields P(xW ), r(xW ), T(xW ), andm(xW ) in terms of the other two.
In the fermionic case we need to assume the presence of
equally populated hyperfine sub-states, the collisions
tween which can then ensure the local thermodynamic e
librium. The Bose-Einstein integralsF2(s,z) and Fermi-
Dirac integralsF1(s,z) are defined by

F7~s,z!5
1

G~s!
E

0

` xs21

ex1z71
dx, ~2.3!
9-2
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FINITE-TEMPERATURE HYDRODYNAMIC MODES OF . . . PHYSICAL REVIEW A 64 013619
satisfying the familiar recursion relation]F7(s,z)/]z5
2F7(s21,z). In the present casez, and therefore also
F7(s,z), is space dependent viaz5z(xW )5@V(xW )2m#/kBT.
However, we shall usually suppress thez andxW dependences
in our notation for simplicity, and just writeF7(s).

Let us see under what conditions this thermodynam
equilibrium state is stable against mechanical perturbatio
Displacing a volume element of fluid mechanically in t
direction of increasing pressure, i.e., in the direction offW , its
volume is compressed adiabatically, so that its density
increased, per unit displacement, by (]r0 /]P0)S¹W P0,
whereas the density in the ambient equilibrium-gas chan
by ¹W r0 in the same displacement. A restoring force per u
volume in the direction opposite to the displacement,

fW•@~]r0 /]P0!S¹W P02¹W r0#,0, ~2.4!

must result for a mechanically stable state.1 Using the rela-
tion (]r0 /]P0)S53r0/5P0, valid for ideal quantum gases
and Eqs.~2.2! and ~2.3! we may rewrite Eq.~2.4! as

fW2
m2

~kBT!2F 3

5

F7
2 S 3

2D
F7S 5

2D 2F7S 1

2D G,0. ~2.5!

This condition is satisfied for bosons forz5(V(xW )
2m)/kBT.0, and for fermions for all positive and negativ
values ofz.

The hydrodynamic equations linearized inuW , dr, anddP
are then given by

r0~xW !] tuW 52¹W dP1dr fW~xW !, ~2.6!

] tdP52
5

3
¹W •„P0~xW !uW …1

2

3
r0~xW ! fW~xW !•uW , ~2.7!

] tdr52¹W •„r0~xW !uW …. ~2.8!

Eliminating dP from Eqs. ~2.6! and ~2.7!, then using the
continuity equation~2.8! to eliminatedr, and finally using
the fact that¹W r0 is parallel tofW , one immediately obtains th
closed wave equation for the velocity field,

] t
2uW 5

5

3

P0~xW !

r0~xW !
¹W ~¹W •uW !1¹W ~uW • fW !1

2

3
fW~¹W •uW !, ~2.9!

which has been the starting point of previous wor
@5,7,11,12#. As already mentioned, we do not find this to

1A restoring force does not result if the whole fluid-layer on
equipotential surface is displaced in the same way orthogonal to
equipotential surface; because then no ambient fluid remains, w
could give rise to the buoyancy force@Eq. ~2.4!#. Instead a new
mechanical equilibrium is reached. This mechanism gives ris
the zero-frequency modes discussed later.
01361
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the most convenient starting point for our present study
the boundary conditions on the velocity field at infinity, th
nature of the function space formed by the solutions,
hermiticity or self-adjointness of the wave operator, a
hence the nature of the spectrum of eigenvalues all rem
unclear, even if some particular solutions, e.g., those sati
ing ¹W 3uW 50, can be constructed. To circumvent this o
stacle, we therefore proceed by eliminating the velocity fi
from Eqs.~2.6!–~2.8! by taking the time derivative of Eqs
~2.8! and ~2.7! and inserting Eq.~2.6!.

It is convenient to define the function

F7~z!5

F7S 5

2
,z D

F7S 3

2
,z D . ~2.10!

The bosonic functionF2(z) is only defined forz.0. It
increases monotonically from 0.513... atz50, where it has
an infinite slope, to 1 forz→`. The fermionic function
F1(z) is defined for all realz. It is monotonically decreasing
toward 1, first with a slope of roughly20.4 for large nega-
tive z then exponentially for positivez.

In terms ofF7(z) and its derivativeF78 (z), with respect
to its argumentz, we can write

P0~xW !

r0~xW !
5

kBT

m
F7„~V~xW !2m!/kBT…. ~2.11!

In the following we suppress the subscript7 and also the
argument (V(xW )2m)/kBT of F and F8 for notational sim-
plicity; after some calculation we obtain

] t
2dr5¹2dP2 fW•¹W dr2~¹W • fW !dr, ~2.12!

] t
2dP5

5

3

kBT

m
F¹2dP2S 5

3
F81

2

3D fW•¹W dP

2
5

3

kBT

m
F fW•¹W dr1F S 5

3
F81

2

3D fW2

2
5

3

kBT

m
F~¹W • fW !Gdr. ~2.13!

So far we have gained in simplicity compared to Eq.~2.9!,
because we have now only two coupled wave equations
stead of three. More important, however, is the fact that i
physically clear that the density and pressure perturbat
must go to zero in the limit of large distances from the cen
of a confining trap. It should be noted that the same can
be said for the velocity field. Indeed, it is clear from Eq.~2.6!
that for uxW u→` wherer0(xW )→0 the velocity fielduW is not
necessarily bounded by the hydrodynamic equations. H
ever, in spite of the improvement of the formulation of th
linearized hydrodynamics we have achieved so far, the s
adjointness of the wave operatorH defined by writing Eqs.
~2.12! and ~2.13! in the form

he
ch

to
9-3
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] t
2S dP

dr D52H•S dP
dr D ~2.14!

remains to be clarified. Can a scalar product be found
which the operatorH is Hermitian? This is the question t
which we turn next.

B. Scalar product and hermiticity of the wave operator

In order to find a useful scalar product on the space
solutions of Eqs.~2.12! and ~2.13! we proceed as follows
First we find a Lagrangian for Eqs.~2.12! and ~2.13!, which
must be a quadratic functional ofdr(xW ,t) and dP(xW ,t). It
can be found by making a general ansatz and comparing
coefficient-functions of the resulting Euler-Lagrange eq
tions with those in Eqs.~2.12! and~2.13!. From the Lagrang-
ian density we can pass to the associated ‘‘energy dens

H5~] tdr!
]L

]~] tdr!
1~] tdP!

]L
]~] tdP!

2L, ~2.15!

whose space integral

E5E d3xH ~2.16!

must be conserved by time-translation invariance. We s
then define the scalar product^P1uP2& in such a way that the
conserved energy takes the form

E5^PuHP& ~2.17!

for vectorsP satisfying the time-independent wave-equati
HP5v2P. For the Lagrangian density, after some calcu
tion we find

L5
b

2
~] tdP!21a~] tdP!~] tdr!2

5

3

kBT

m

Fa

2
~] tdr!2

1~ terms without time derivatives!, ~2.18!

with the coefficientsa,b

a52
K

~215F8!F7S 3

2
,
V2m

kBT D , b52
m

kBT

11F8

F
a.

~2.19!

The coefficientK in the relation fora is arbitrary, and can be
used for normalization. The kinetic energy contained inH is
the same as inL. It is now useful to employ the vecto
notation already defined in Eq.~2.14! by defining

P~xW ,t !5S dP~xW ,t !

dr~xW ,t !
D . ~2.20!

With the harmonic time dependence

P~xW ,t !5P~xW !cos~vt1w!, ~2.21!
01361
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the conserved quantityE can be written as

E5v2 sin2~vt1w!E d3xFb2 ~dP!21adPdr

2
5

3

kBT

m

Fa

2
~dr!2G

1@ terms proportional to cos2~vt1w!#. ~2.22!

In order to meet our goal@Eq. ~2.17!#, we should define the
scalar product̂P1uP2& in such a way that the coefficients o
sin2 and cos2 in Eq. ~2.22! both become equal tov2^PuP&.
We therefore need only the coefficient of the sin2 term to
conclude that the norm becomes

^PuP&5E d3xFb2 dP21adPdr2
5

6

kBT

m
Fa~dr!2G .

~2.23!

~That the coefficient of the cos2 term is the same follows
without further calculation from the fact that in a harmon
system the average values of the kinetic and potential e
gies are always the same.! Using relations~2.19! for a and
b, it can be checked that the norm is positive, as required
a,0, ~which can always be achieved by the choice of t
constantK), and b.0, which requires the inequality 1
1F8.0, and2 5

3 (kBT/m)Fab2a2.0, which in turn re-
quires the stronger inequality

5F8„~V~xW !2m!/kBT…12.0. ~2.24!

Using definition~2.10! of F5F7 , it is easy to check tha
Eq. ~2.24! is equivalent to the stability condition@Eq. ~2.4!#
of the thermodynamic equilibrium state.

It is useful for numerical purposes to transform the sca
product@Eq. ~2.23!# to the more symmetrical form

^P1uP2&5E d3x~u1* u21v1* v2! ~2.25!

by the linear transformation

P5S dP
dr D

5S A 25kBTF

am~5F812!
0

A 29m

a5kBTF~5F812!
A 23m

a5kBTF

D S u
v D ,

~2.26!

diagonalizing and normalizing the kinetic term in the L
grangianL ~and hence also in the energy densityH). In the
new variablesu andv, the wave equation now reads
9-4



2
]2

]t2 S u
v D5S 2

5

3

kBT¹W •F¹W

m
1

~¹W • fW !

6
1

m

60kBT

fW2

F

¹W •A5F812 fW

A3
1

A3m

30kBT

A5F812 fW2

F

W W W2 W2 D S u
v D , ~2.27!
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2
A5F812 f •¹

A3
1

A3m

30kBT

A5F812 f

F
m

5kBT

~5F812! f
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with a matrix wave operator which is manifestly Hermitia
in the scalar product@Eq. ~2.25!#, provided the surface inte
gral

E dSW •F2
5

3

kBT

m
~u1* F¹W u22u2F¹W u2* !

1A5F812

3
fW~u1* v22u2v1* !G ~2.28!

vanishes atuxW u→`. Since the coefficient functionsa andb

in Eq. ~2.23! grow for uxW u→` like exp(V(xW)2m/kBT), the
fluctuationsdP(xW ) and dr(xW ) for all solutions must vanish
sufficiently rapidly foruxW u→`.

C. Zero-frequency modes and isothermal modes

For arbitrary temperatureT and trap potentialV(xW ), Eqs.
~2.12! and ~2.13! possess a class of exact time-independ
solutions, which depend on an arbitrary functionG„V(xW )…,
and its derivativeG85dG/dV, namely

dr~xW !52«G8~V~xW !!, dP~xW !5
«

m
G„V~xW !….

~2.29!

« is a parameter which is sufficiently small to make t
linearized theory consistent. The norm@Eq. ~2.23!# of these
solutionsuP0& is

^P0uP0&5«2E d3x
uau
2m F11F8

kBTF
G212GG81

5

3
kBTFG82G .

~2.30!

Since all functions under the integral depend onxW only via
V(xW ), the integration *d3x . . . can be replaced by
const*dVAV . . . , if V is a homogeneous function of secon
order of xW , e.g., a parabolic potential. The scalar produ
exists and is positive under condition~2.24!, if G(V) van-
ishes sufficiently rapidly, e.g., like exp(2V/kBT), for V→`.
Then these solutions belong to the Hilbert space and hav
be considered. Physically, they appear because of the c
istence of a continuum of mechanical equilibrium states
the thermodynamic equilibrium. As we shall see in Sec.
these states are not isolated from all the other states bu
cur, for any local wave number, as the end point of a spec
branch of states if the local wave number is turned in
direction of fW52(1/m)¹W V.
01361
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For harmonic potentials there are some further exact
lutions of wave equations~2.12! and ~2.13! which hold for
all temperatures in the fermionic case and the tempera
T.Tc in the bosonic case. They are obtained by extend
ansatz~2.29! for the zero-frequency modes according to

S dP~xW ,t !

dr~xW ,t !
D 5exaybzgS 1

m
G~V~xW !!

2G8~V~xW !!
D e2 ivt, ~2.31!

with a, b, g50 or 1. Inserting this ansatz into Eq.~2.12!,
and using the property that fora5b5g50 Eq. ~2.31! is a
zero-frequency mode, after a simple calculation we find

~v22av1
22bv2

22gv3
2!G8~V!50. ~2.32!

Next we also insert the ansatz into Eq.~2.13! and by a simi-
lar calculation obtain

@v21~av1
21bv2

21gv3
2!~ 5

3 F81 2
3 !#G~V!1 5

3 kBT~av1
2

1bv2
21gv3

2!FG8~V!50. ~2.33!

Equation~2.32! determines the mode frequencies as

vabg5Aav1
21bv2

21gv3
2, ~2.34!

while Eq. ~2.33!, for a, b, andg not all equal to zero, fixes
the yet undetermined functionG(V) in ansatz~2.31! as

G~V!5constFS 3

2
,
V~xW !2m

kBT
D . ~2.35!

It follows from Eq.~2.31! thatdP(xW ,t) anddr(xW ,t) for these
modes are related by

dP~xW ,t !5
kBT

m

FS 3

2
,
V~xW !2m

kBT
D

FS 1

2
,
V~xW !2m

kBT
D dr~xW ,t !, ~2.36!

which is the relation between changes of pressure and
sity implied by the local thermodynamic equilibrium@Eq.
~2.2!# if the temperature is kept constant. These isotherm
modes were already found in Ref.@5# for the special case o
isotropic and axially symmetric parabolic trap potentials.

Mode ~2.34! contains as special cases, the three Ko
modesv1005v1 , v0105v2, andv0015v3, corresponding to
oscillations of the center of mass of the trapped gas. I
9-5
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interesting to note that collisionless Kohn modes of the fo
dr(xW ,t)5e(]r0(xW )/]xi)e

2 ivt, with the same frequencie
v i , also exist. It therefore follows from the phenomenolo
cal formula@Eq. ~1.6!# that these modes are not damped
the relaxation mechanisms present in the system, in ag
ment with the general statement made by the Kohn theor

For fermions, results~2.34!, ~2.35!, and~2.31! for the fre-
quencies and mode functions apply to all temperatures,
can therefore also be extrapolated toT→0. Indeed, forT
→0, modes with the frequency~2.34! were found in Ref.@9#.
In order also to compare the mode functions, we use
Bethe-Sommerfeld expansion to evaluate the Fermi-integ
asymptotically,F1(s,z);(2z)s/s! for z→2`, and for T
→0 find that

dP5
2

3

m2V~xW !

m
dr;xaybzg

„m2V~xW !…3/2, ~2.37!

in agreement with Ref.@9#.
Finally, another set of solutions for arbitrary temperatu

is found by generalizing an ansatz of Ref.@5# for a trap
without axial symmetry by puttingui(xW ,t)5Aixie

2 ivt with
three constantsAi . Inserting directly into Eqs.~2.7! and
~2.8!, we obtain the density and pressure modes:

dr~xW ,t !52
im

v S mkBT

2p\2D 3/2FFS 3

2D(
i 51

3

Ai

2FS 1

2D m

kBT(
i 51

3

Aiv i
2xi

2Ge2 ivt ~2.38!

dP~xW ,t !5
ikBT

v S mkBT

2p\2D 3/2F2
5

3
FS 5

2D(
i 51

3

Ai

2FS 3

2D m

kBT(
i 51

3

Aiv i
2xi

2Ge2 ivt. ~2.39!

A comparison of Eqs.~2.38! and ~2.39! with the local equi-
librium relations Eqs.~1.4!# reveals that the temperature o
cillates in these modes with a spatially constant amplitu
f

in
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e-
m.

nd

e
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e

e

proportional to( i 51
3 Ai . Finally, using the results~2.38! and

~2.39! in Eq. ~2.6! for momentum conservation, we arrive
the eigenvalue problem

v2Ai52Aiv i
21

2

3
v i

2(
j 51

3

Aj , i 51,2,3. ~2.40!

The eigenvectorAW and the eigenvaluev2 are clearly tem-
perature independent, and follow from the cubic secu
equation

~v2!32
8

3
~vx

21vy
21vz

2!~v2!21
20

3
~vx

2vy
21vx

2vz
2

1vy
2vz

2!v2216vx
2vy

2vz
250. ~2.41!

In the special case of an axially symmetric trap, the cu
equation can be reduced to a quadratic one, and a result
obtained in Ref.@5# is recovered.

III. SHORT WAVELENGTH SOLUTIONS

The two coupled wave equations derived in Sec. II
various forms are difficult to solve for arbitrary temperatu
in a system which is made spatially inhomogeneous by
external potentialV(xW )Þ0. An exception, however, are
waves of wavelengths, which are short on the spatial scal
which V(xW ), and hence alsoP0(xW ),r0(xW ), vary. Such waves,
in the representation withu(xW ,t),v(xW ,t), can be written as

S u~xW ,t !

v~xW ,t !
D 5e2 ivtS a0~xW !

b0~xW !
D eiS(xW ,t). ~3.1!

The eikonalS(xW ,t) defines the local wave vector by the r
lation kW (xW ,t)5¹W S(xW ,t). The amplitudesa0 ,b0, and kW vary
slowly in space, on the same scale asV(xW ), P0(xW ), and
r0(xW ). The frequencyv is independent ofxW and t. Inserting
the ansatz into Eq.~2.27!, and neglecting derivatives o
a0 ,b0, andkW , and also assuming thatv2@u¹W • fW u, we obtain
the secular equation as the vanishing of the determinant
U 5

3

kBT

m
FkW21

1

60

m

kBT

fW2

F
2v2

i

A3
A5F812~kW• fW !1

A3

30

A5F812

F

m

kBT
fW2

2
i

A3
A5F812~kW• fW !1

A3

30

A5F812

F

m

kBT
fW2

5F812

5F

m

kBT
fW22v2

U50. ~3.2!
tly

r

We note that terms withfW2 andkW• fW are essential to retain in

this approximation, together with thek2 terms, becauseu fW u
grows at large distances from the trap center, at least

parabolic traps, and provides the physically crucial confin
or

g

mechanism. On the other hand,a0(xW ),b0(xW ), and¹W • fW do not
grow in a similar way, and are therefore consisten
negligible.

From Eq. ~3.2!, we deduce the local dispersion law fo
waves of short wavelength 2p/k:
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v25v6
2 ~kW ,xW !

5
1

2 F5

3

kBT

m
Fk21

m

kBT S 1

60F
1

5F812

5 D fW2G6A1

4 F5

3

kBT

m
Fk21

m

kBT S 1

60F
1

5F812

5 D fW2G2

2
1

3
~5F812!~ fW3kW !2.

~3.3!
s
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in

i
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i-
On the same level of approximation the pressure and den
oscillations are related by

dP~kW ,x!5
1

k2
@v22 i fW•kW #dr~kW ,x!, ~3.4!

as follows from Eq.~2.12!.
The dispersion law@Eq. ~3.3!# contains a great deal o

physics, and will now be discussed. First we note that fofW
Þ0 there are two branches of the dispersion law, one of h
frequency and another one of lower frequency, which
both physical. Thus there are two different types of waves
these systems. Both branches correspond to frequenciev2

>0 for all kW , i.e. to stable oscillation waves. Another simp
observation is that the local dispersion relation is anisotro
and depends on the angle betweenfW and kW . The physical
nature of the two branches is most easily seen by assum
that the angle betweenfW andkW is sufficiently small to permit
the expansion of the square-root in Eq.~3.3! in the second
term of its radicand. We then obtain to lowest nonvanish
order,

v1
2 5

5

3

kBT

m
Fk21

m

kBT S 1

60F
1

5F812

5 D fW2, ~3.5!

v2
2 5

5F812

3

~ fW3kW !2

5

3

kBT

m
Fk21

m

kBT S 1

60F
1

5F812

5 D fW2

.

~3.6!

The high-frequency branch is easily recognized in this lim
as an adiabatic sound mode, in particular if the identity
the adiabatic sound velocity,

cs
25

]P0

]r0
U

s

5
5

3

P0

r0
5

5

3

kBT

m
F, ~3.7!

is used, which is valid for the ideal quantum gases, with
definition of F5F7 by Eqs. ~2.10! and ~2.11!. The low-
frequency branch reaches its lowest frequencyv250, in the
present approximation, for all waves traveling locally in t
direction parallel to the force of the trapfW , so thatfW3kW50.
The existence of such zero-frequency modes was already
cussed in Sec. II. Looking at exact solutions at high tempe
ture in Sec. II, we shall see them appear again.

The low-frequency branch for givenukW u achieves its high-
est frequency if the wave propagates locally in directio
01361
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orthogonal to fW . The maximum frequency for modes o
thogonal tofW is then reached for short wavelengths,

cs
2k2@

m

kBT S 1

60F
1F81

2

5D fW2, ~3.8!

and given by

v2
max5A5F812

3

u fW u
cs

. ~3.9!

Waves with the properties of the low-frequency branch
lutions found here are typical of media which are stratifi
by an external force, and are called ‘‘internal waves.’ One
their surprising and counterintuitive properties is that in
gions where Eq.~3.8! applies the group velocity¹W kv2(kW ) is
orthogonal to the wave vectorkW . For a textbook discussion o
such waves, see Ref.@19#. Indeed, the dispersion relation
~3.5! and~3.6! can, e.g., be directly compared with Eqs.~53!
and ~54! given there.

IV. SOLUTION IN THE HIGH-TEMPERATURE REGION

The high-temperature regime is defined byT@Tdeg,
where Tdeg is the degeneracy temperature at which the
Broglie wavelength becomes of the order of the mean p
ticle distance. In this regime we can approximate

f 7~pW ,xW !5e2[( p2/2m)1V(xW )2m]/kBT ~4.1!

and r0(xW )5r0(0)e2V(xW )/kBT, P0(xW )5(kBT/m)r0(xW ). It is
useful to introduce new dimensionless variablesP1(xW ) and
r1(xW ) via the definitions

dP~xW ,t !5
kBT

m
r0~xW !P1~xW ,t !,

dr~xW ,t !5r0~xW !r1~xW ,t !, ~4.2!

and to rewrite the coupled wave equations fordP anddr as
coupled equations forP1 and

P12r15T15
dT

T
, ~4.3!

wheredT(xW ,t) is the deviation of the temperature from equ
librium. Separating the time dependencee2 ivt, we arrive at
9-7
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kBT
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5

3
¹22 fW•¹W 2v2 2

5

3
@~¹W • fW !1 fW•¹W #2
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kBT
fW2

S P1

P 2r D50. ~4.4!

ANDRÁS CSORDÁS AND ROBERT GRAHAM PHYSICAL REVIEW A64 013619
S
2

kBT

m

2

3
¹2 2

2

3
@~¹W • fW !1 fW•¹W #2v2

D 1 1
ar

E
th

s

s
or
ls
n

uc
ac

r
cil

er

us
ecu-

n
the

eir
fore

es

ro-

arly
nte-

and

the
be
-
se
ish
c-

-

e

We specialize these equations to a harmonic potential:

V~xW !5
m

2
~vx

2x21vy
2y21vz

2z2!. ~4.5!

It is then clear, via term by term inspection, that there
polynomial solutions of Eq.~4.4!, in which P1 is polynomial
in the Cartesian components ofxW of total ordern and P1
2r1 is a corresponding polynomial of total ordern22. This
is so because then each term on the right-hand side of
~4.4! either decreases the total order of the polynomial on
left-hand side by 2 via the operation of¹2, or keeps the same
order of the polynomial. It follows that we can pick freely a
the highest total power an integern for P1, and determine the
eigenvaluesvn

2 by comparing the coefficients of all term
with this highest total power, imposing the condition f
nontrivial solvability. It is clear that we obtain polynomia
of arbitrary total order in this way. Moreover these solutio
lie in the Hilbert space because, via Eq.~4.2!, dP anddr fall
off sufficiently rapidly for uxW u→`, if P1 andr1 are polyno-
mials in the Cartesian components ofxW .

To see this explicitly, we specialize the scalar prod
@Eq. ~2.23!# for the present high-temperature case by repl
ing F@3/2,„V(xW )2m…/kBT#5exp@2V(xW )2m…/kBT#, F7

51, F78 50 which givesa52(K/2)exp@„V(xW )2m…/kBT#,
b52(m/kBT)a, and the scalar product

^PuP̃&5
K

4

kBT

m
„r0~0!…2e2m/kBTE d3xe2V(xW )/kBT

3FP1P̃12P1r̃12r1P̃11
5

3
r1r̃1G . ~4.6!

It is also now clear that, for harmonic potentialsV(xW ), the
polynomial solutions forP1 andr1 of all orders are complete
in a space with this scalar product, a fact which is ve
familiar from the quantum mechanics of the harmonic os
lator.

To be specific let us consider a polynomial ofx, y, andz
for P1 of total ordern. It then has terms of highest total ord
of the form

P15 (
n1 ,n2 ,n3

An1n2n3
xn1yn2zn31~ lower order!, ~4.7!

with n11n21n35n, and (2
n12)5(n12)(n11)/2 different

coefficientsAn1n2n3
. For the same modeP12r1 must be a
01361
e

q.
e

s
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polynomial of total ordern22, with ( 2
n)5n(n21)/2 terms

xn1yn2zn3 of highest total ordern11n21n35n22 with co-
efficientsBn1n2n3

.
The solvability condition for the linear homogeneo

equations connecting all these coefficients then gives a s
lar equation for the eigenvaluesvn

2 of ordern21n11 with
just as many solutions. (n11)(n12)/2 of these modes ca
be considered as modes of sound waves, modified by
external potential, while the remainingn(n21)/2 can be
considered as modes of internal waves, modified by th
coupling to sound waves. The second kind of mode there
exists only forn>2.

How many linearly independent zero-frequency mod
appear at a given total ordern? If n is odd, the polynomials
for P1 and r1 have odd parity and cannot describe a ze
frequency mode, which must have even parity by Eq.~2.29!.
If n is even, on the other hand, there is precisely one line
independent zero-frequency mode associated with that i
ger, which may be written in the form

S dP~xW !

dr~xW !
D 5const

r0~xW !

m
FV~xW !

kBT
Gn/221S V~xW !

n/2 D . ~4.8!

The solution for the isotropic casevx5vy5vz5v0 in
the high-temperature regime was already given by Bruun
Clark @7# based on the velocity equation~2.9!. It is not clear,
however, how the Hilbert space is defined in terms of
velocity variables. Indeed, the velocity-field turns out to
polynomial like r1 and P1, and is therefore not a square
integrable field. It is therefore worthwhile to check this ca
again, using our present description. In addition we also w
to find the mode functions for this case explicitly. Introdu
ing a dimensionless frequency and space coordinate viaV2

5v2/v0
2 ,rW5(mv0

2/kBT)1/2xW , and imposing a polynomial an
satz

P1~rW !5r lYlm~Q,w!Qnr
~r 2!,

P1~rW !2r1~rW !5r lYlm~Q,w!Tnr21~r 2!, ~4.9!

with n52nr1 l , and withQnr
andTnr

polynomials of order

nr and Ylm(Q,w) the spherical harmonics, we obtain th
following.

~i! For nr50,

Q0~r 2!5A0
(0) , T21~r 2!50, ~4.10!

V25 l . ~4.11!
9-8
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These isothermal modes were first found by Griffin, Wu, a
Stringari @5#

~ii ! For nr>1,

Qnr
~r 2!5(

i 50

nr

Ai
(nr )r 2i , Tnr21~r 2!5(

i 50

nr -1

Bi
(nr )r 2i ,

~4.12!

V1,2
2 5

v1,2
2

v0
2

5
1

2 F5

3 S l 12nr1
2

5D
6A25

9 S l 12nr1
2

5D 2

2
8

3
l ~ l 11!G . ~4.13!

This result was first obtained by Bruun and Clark@7#. For the
casenr50 we find that only one branch of solution~4.13!
exists, namely the branch which yieldsV25 l , as seen from
Eqs.~4.10! and ~4.11!. This fact also follows from a prope
solution of Eq.~13! of Ref. @7# for nr50. In the casenr
>1,l 50 one of the solutions@Eq. ~4.13!# vanishes. This
gives the zero-frequency solutions discussed in previous
tions. The other solution atV25v1

2/v0
25 5

3 (2n1 2
5 ) behaves

normally, and describes a sound mode, as can, e.g., be
from the factor 5/3 which is characteristic of the inverse
the adiabatic compressibility in ideal gases.

The coefficients of the polynomials defining the mo
functions are obtained recursively, beginning with the te
of the highest power. We obtain the confluent hypergeom
ric functions

Tnr21~r 2!5B0
(nr )

1F1S 12nr ,
2l 13

2
;
r 2

2 D , ~4.14!

which is proportional to the generalized Laguerre polynom
Lnr21

[ l 1(1/2)](r 2/2), and

Qnr
~r 2!5B0

(nr )H 3

4nr
FV1,2

2 1
2l

3 G 1F1S 2nr ,
2l 13

2
;
r 2

2 D
2

2l 11

2nr
1F1S 2nr ,

2l 11

2
;
r 2

2 D J , ~4.15!

which is proportional to (3V1,2
2 12l )Lnr

[ l 1(1/2)](r 2/2)22(1

12l 12nr)Lnr

[ l 2(1/2)](r 2/2). The physical modes are then

dP~xW ,t !5
kBT

m
r0~xW !r lYlm~Q,w!Qnr

~r 2!,

dT~xW ,t !

T
5r lYlm~Q,w!Tnr21~r 2!. ~4.16!

It is quite remarkable that the spatial perturbation of the te
perature in the two physically very different branches of
spectrum, the sound modes and the internal modes, is ex
01361
d
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een
f
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l

-
e
tly

the same, becauseTn21(r 2) is independent ofv6
2 and there-

fore the same for both branches.~We note, however, that this
is strictly true only in the Boltzmann limit.! The spatial dis-
tribution of the pressure and the density, on the other han
very different for both kinds of modes as, one would expe

For l 50 and arbitrarynr , we obtain the mode function
of the zero-frequency modes. They form the bottom o
ladder of rotational modes for each value ofn. The mode
functions are given by combinations of Hermite polynomia
of the radial variable (mv0

2xW2/kBT)1/2 and form a complete
set in the Hilbert space of radial functions defined by t
scalar product@Eq. ~4.6!#. This simply means that anarbi-
trary radial, i.e., an angle independent, mode function with
our Hilbert space, is a zero-frequency mode.

Let us now turn to the case of an anisotropic harmo
trapping potential. Then the generator of rotations1LW 5

2 i1(xW3¹W ) no longer commutes with the wave operatorH
defined by the matrix-differential operator on the right-ha
side of Eq.~4.4!. On the other hand, as already discussed,
harmonic trapping potentials polynomial solutions contin
to exist. Therefore, one must strongly suspect that a comp
set of operators exists commuting withH also exists in the
fully anisotropic case. For Bose-Einstein condensed bos
and for fermions at temperatureT50, a similar situation
prevails~but not at temperatures between the high- and lo
temperature limits; cf. the discussion below!, and two opera-
tors commuting with the corresponding wave-operator w
constructed in our previous papers@9,18#. In the present
high-temperature limit, corresponding conserved opera
commuting withH can again be found. In the case of axial
symmetric traps withvx5vy5v' , one of the conserved
operators, namely,1Lz , still follows from symmetry, but one
can check by direct calculation that a second conserved
eratorB commuting withH exists in the explicit forms (R̂

16/5)(P12r1)5B(P12r1) and (R̂24/5)r15Br1, with

R̂5xW•¹W 2
kBT

m S 1

vx
2

]2

]x2
1

1

vy
2

]2

]y2
1

1

vz
2

]2

]z2D ,

~4.17!

wherevx
25vy

25v'
2 . This is sufficient for the system to b

integrable. The eigenvalueB is easily determined asB5n
24/5, wheren is the polynomial order of the eigenfunction
The action of this additional conserved operator onr1 can be
used to show that all hydrodynamic modes satisfying
eigenvalue equations except the mode withn50 are particle
number conserving, and therefore belong to the phys
spectrum. In particular, this also includes all the ze
frequency modes.

Let us also briefly discuss the solutions for axially sym
metric traps, in order to make contact with results in t
literature. It is useful to introduce scaled cylinder coordina
r, z, and w via r25(x1

21x2
2)Mv'

2 /kBT and z2

5x3
2Mlv'

2 /kBT (l5vz
2/v'

2 ). An appropriate ansatz solv
ing the eigenvalue equation now is
9-9
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P15r umueimwzaQ~r2,z2!, P12r15r umueimwzaT~r2,z2!,
~4.18!

whereQ andT are polynomials inr2 andz2 of ordern8 and
n821, respectively,a50,1 determines the parity under in
version of thez axis, andm is the quantum number of angu
lar momentum around thez axis. Let us mention some
simple special cases.

For n850 we haveQ5A0 ,T50, and obtainv25(um
u1la)v'

2 , (umu50,1, . . . ;a50,1). For n851 we obtain
a cubic equation forv2. Specializing further tom50
and the parity classa50, we find the explicit solutionsv1

2

50 with A05lA15(l/2)B0, and v2,3
2 5(v'

2 /3)@4l15
6A16(l21)219#, first obtained in Ref.@5#.

V. NUMERICAL DETERMINATION OF THE
TEMPERATURE-DEPENDENT MODE-SPECTRUM

At intermediate temperatures the coupled wave equat
~2.12! and ~2.13! are generally not separable, and the sp
trum can only be found numerically. Best suited for nume
cal work are the wave equations in the manifestly Hermit
form @Eq. ~2.27!# with the scalar product in the simple form
@Eq. ~2.25!#.

A numerical analysis will be performed for the axial
symmetric case, choosingl5vz

2/v'
2 58, for the anisotropy

parameter, partially for historical reasons, as this was
geometry of the first TOP trap at JILA@20#. The number of
particles is chosen asN5106. First the chemical potential is
determined for the given particle numberN as a function of
temperature. This is done in the standard way, by integra
the first of Eqs.~1.4! to obtain N(m,T), and solving for
m(N,T). We may remark here that it follows from the form
of the potential thatm is a scaling functionS of N,v̄
5(vxvyvz)

1/3, andT of the formm/\v̄5S(kBT/\v̄N1/3).
In order to determine the spectrum, the wave operato

Eq. ~2.27! is represented in the basis of the harmonic os
lator eigenfunctions with widthsAkBT/mvz

2 andAkBT/mv'
2

in axial and radial directions, respectively. The basis is
off at a finite size of order 100 both foru and v, and the
resulting finite-dimensional Hermitian matrix is diagona
ized. The size of the finite basis is varied in order that
eigenvalues obtained can be converged numerically.
truncation of the basis to a finite size introduces some sp
ous eigenmodes and eigenfrequencies, which can be di
guished and subsequently eliminated by the fact that the
not converge, but disappear and reappear somewhere e
the size of the basis is varied.

Some of the results are displayed in Figs. 1–5, which
now discuss. Figure 1 gives an overview, in the domain
,kBT/\v̄,195, of the spectrum of eigenvaluesv2, for a
gas of bosons~but very similar results, not shown here, a
also found for fermions!. For clarity only modes with an
azimuthal quantum numberm50 and even parity are shown
The basis used consists of oscillator eigenfunctions of o
2nz in the z direction and order 2nr in the radial direction,
with an integernr1nz<10. All frequencies obtained by th
diagonalization of the matrix ofH in this basis~except for
01361
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the spurious ones introduced by the truncation of the ba!
are shown in the figure. The chosen temperature domain
tends from the BEC temperature at the chosen particle n
ber to the high-temperature region. In fact, we have chec
that our numerical code applied to the case of an isotro
trap gives a similar result, which forkBT/\v̄5195 coincides
with the analytically known eigenvalues@Eqs.~4.13!# in the

FIG. 1. Dimensionless squared hydrodynamic mode frequen

(v/v̄)2 of a bosonic gas above the BEC transition as a function
the dimensionless temperaturet, for m50 modes of even parity
with up to ten nodal surfaces; the anisotropy parameterl
5(vz /v')258; the number of atomsN5106; the total size of the
basis is 132.

FIG. 2. Squared internal mode frequencies of Fig. 1 below
geometric mean trap frequency as functions of temperature, for
same parameters as in Fig. 1.
9-10



rs
ig
ur

o
ra
ec
-

r

e

a
n
e

By
to

f
um-

ode
hus

e-
f the

gn-
ig.
on

s

ve
m

t
by

hat

the
the

rnal
ncy

e ei-
y
tum

tu
as

si
in

the

FINITE-TEMPERATURE HYDRODYNAMIC MODES OF . . . PHYSICAL REVIEW A 64 013619
high-temperature limit with high precision. This fact offe
us the possibility to assign the quantum numbers of the h
temperature domain to the whole corresponding temperat
dependent branch of frequencies.

An obvious feature of Fig. 1 is the bandlike structure
the spectrum, which is caused by the anisotropy of the t
Because of the higher stiffness of the trap in the axial dir
tion for the assumed value ofl58, nodes of the mode func
tion in the axial direction are more costly in energy\v, for
soundlike modes, than nodes in the radial direction. The
fore, to the ‘‘bands’’ we can assign the quantum numbernz
of nodes of sound-like modes in the axial direction withnz
510 in the highest band~which can consist of a single mod
only in the subspace we consider in Fig. 1! andnz50 in the
lowest band. It should be noted that the two lowest bands
not split, and form a single broad band. Within a given ba
soundlike modes differ only by the radial quantum numb

FIG. 3. Squared mode frequencies increasing with tempera
and level crossings for a Bose gas with the same parameters
Fig. 1, for an isotropic trap.

FIG. 4. Squared mode frequencies of internal waves decrea
with temperature, and an avoided level crossing for a Bose gas
axially symmetric trap with the same parameters as in Fig. 1.
01361
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nr , counting the number of nodes in the radial direction.
our choice of a finite-dimensional basis, we are restricted
modes with quantum numbersnr1nz<10. The presence o
internal waves complicates the assignment of quantum n
bers, because each pair of quantum numbersnz and nr ap-
pears twice, once at higher frequency for a soundlike m
and once at lower frequency for an internal wave mode. T
internal modes with high values ofnz also give frequencies
in the low-lying bands of Fig. 1. The number of eigenfr
quencies in the bands depends, of course, on the size o
basis.

By these considerations we arrive at the following assi
ment of quantum numbers to the frequencies shown in F
1. The mode with the largest frequency forms the band
the top, and must be a sound mode withnz510,nr50. The
next lower band must contain two soundlike modes withnz
59,nr51 andnz59,nr50. We see from the figure that thi
exhausts the number of modes~2! in the second band from
the top, which can therefore not contain an internal wa
mode. Similarly, in the third, fourth, fifth, etc. bands fro
the top, there are 3,4,5, etc. soundlike modes withnz
58,7,6, etc. and 3,4,5, etc. different values ofnr , respec-
tively. In the figure we can follow this counting of differen
frequencies down to the third band from the bottom, there
accounting for all eigenvalues in these bands. It follows t
none of these bands contains any internal wave modes.

On the other hand, the lowest two bands, in particular
lowest one, contain many more different frequencies than
ten and 11 different sound-frequencies withnz51 and 0,
respectively. These must therefore be considered inte
waves. Among the internal waves are also zero-freque
modes. For each even value ofn5nz1nr>1 in our sub-
space there is precisely one zero-frequency mode, so th
genvaluev250 is fivefold degenerate in our subspace. B
their special nature the zero-frequency modes have quan
numbersnz5nr . Internal modes of highn52(nz1nr), for

re
in

ng
an

FIG. 5. Squared mode frequencies for a fermionic gas above

Fermi temperature as function oft5kBT/\v̄ for sound modes~up-
per part! and for internal wave modes~lower part!.
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which nr differs only slightly from nz , have frequencies
close to zero

The discussion of the spectrum we have given depe
on our arbitrary restriction of the number of nodal surfac
to a finite and not very large number. If modes with
arbitrary number of nodal surfaces are permitted, th
the mode spectrum becomes dense, due to the exist
of small internal wave frequencies from modes w
arbitrarily high quantum numbers. This can already be s
from the analytically determined spectrum@Eq. ~4.13!# for
the isotropic case.

Within the subspace of Hilbert space we consider he
there are many internal mode frequencies below the geo
ric mean trap frequency, as can be seen with more clarit
Fig. 2. Only a small number of sound modes can occu
this regime. The mode frequencies displayed in Figs. 1 an
have a surprisingly weak temperature dependence thro
out the range considered. For largeT this can also be see
from the analytical results. For the sound modes the velo
of sound increases with temperature by roughly;AkBT, but
the wavelength of any given mode also increases with t
perature by;AkBT due to the expansion of the size of th
thermal cloud, so that both temperature dependences e
tively cancel. However, for internal modes the compensa
between the speed of sound and the wavelength does
work in the same way, as can, e.g., be seen from Eq.~3.6!. In
Fig. 3 we consider a magnification of a part of the frequen
spectrum~in this instance for the isotropic case!, where one
can see an increase with temperature of some frequen
which freely cross other levels~which must have therefore
different quantum numbersn,l ), which are nearly tempera
ture independent, and which belong to soundlike mod
However, in the axially symmetric case avoided crossin
can also be seen, as shown in Fig. 4 for two internal w
modes at small frequency below the geometric mean
frequency. This indicates that the conserved operatorB of
Sec. IV ceases to exist at intermediate-temperatures. It w
be futile, therefore, to look for analytical solutions of th
spectrum in the intermediate-temperature range, as the
tem appears to be nonintegrable.

Generally, the differences between the results for fer
ons and bosons in the region above the degeneracy tem
ture are qualitatively not very large. One difference due
quantum statistics can be seen in Fig. 5, where the temp
ture dependence of internal wave modes and sound mod
displayed for a Fermi gas. The frequencies of the inter
wave modes curve downwards, and those of the so
modes curve upwards. In the Bose gas case the opp
tendency is found, as shown in Figs. 2 and 3.

VI. CONCLUSIONS

In the present paper we have made a systematic ana
of the hydrodynamic modes of quantum gases in a harm
trap with general anisotropy in the collision-dominat
nondissipative limit. Provided the hydrodynamic limit
applicable, the analysis applies for Fermi gases at
temperatures and for Bose gases at temperatures a
Bose-Einstein condensation. Our results extend prev
01361
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works by allowing for traps with arbitrary anisotropy, an
by treating bosons and fermions side by side on
equal footing. In addition to analytical solutions in certa
special cases and limits, we also present numerical solut
in the whole temperature domain covered by the theo
Our analysis is based on the reduction of the five conse
tion laws for the densities of mass, momentum, and ene
to two coupled wave equations for the mass-density
the pressure. We have constructed a scalar product
a positive L2 norm on the space of solutions, in whic
the two-component wave operator is Hermitian and, beca
of the stability of the hydrodynamic modes which w
demonstrate, non-negative. However, a class of soluti
with vanishing frequencies was found which is
consequence of the existence of mechanical equilibr
states in addition to the unique thermodynamic equilibriu
which maximizes the entropy. A further class of exa
solutions consisting of isothermal modes was identifi
among which are the center-of-mass modes required by
Kohn theorem. These results generalize earlier results
Griffin et al. @5# and Bruun and Clark@7# to traps without
axial symmetry.

We studied the two coupled wave equations for press
and density in the short-wavelength limit. Two differe
branches of solutions could be identified in this way: t
high-frequency branch being associated with pressure-dr
sound waves, the low-frequency branch with potential-driv
internal waves. The explicit dispersion relation of the low
branch found in the short-wavelength limit, and its chara
teristic properties—like the existence of a maximal fr
quency, the anisotropy of the dispersion relation, and
orthogonality of the local group velocity and the local wa
vector—makes the identification with internal waves ma
fest and unambiguous. We also examined the hi
temperature limit of the two coupled wave equations, a
demonstrated the existence of polynomial solutions by
hibiting a conserved operator whose eigenvalues fix the
spective polynomial order, or, equivalently, the number
nodal surfaces of the solutions. We constructed the solut
for density and pressure also explicitly.

The wave equations were finally also solved numerica
Surprisingly, the mode spectrum found turned out to be q
sicontinuous, which can be understood by the overlap of
spectrum of low-frequency internal waves of short wav
lengths with the spectrum of sound waves with large wa
lengths. Within a finite-dimensional subspace of the Hilb
space, defined by restricting from above the number of no
surfaces, we found a bandlike structure of the eigenfrequ
cies in a strongly anisotropic trap, where the bands are
beled by the number of nodal surfaces orthogonal to
more strongly confined direction, while the modes within
given band differ by the number of nodes in the other dir
tions. The number of internal wave modes in such a fin
dimensional subspace is also limited, and these modes
then found primarily in the lowest-lying band. We note th
the restriction to a finite subspace of the Hilbert space is a
physically motivated, since typical excitation mechanism
9-12
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such as the modulation of the trapping potential, will a
only excite modes in a certain subspace with apprecia
amplitude.

The analysis we presented is subject to some obv
limitations which we now discuss briefly. It is clear that on
systems in the collision-dominated hydrodynamic limit ha
been considered here. For bosons a necessary requirem
therefore a large scattering length and a sufficiently la
number density to ensure a large cross section for ela
collisions. For fermions this requires, besides a large num
density, the simultaneous trapping of several hyperfi
states, in order to allow for the interaction of different fe
mionic species by elastic collisions, which would be forb
den for a single species by the Pauli principle. Through
we have neglected spin-wave excitations, which can also
cur in the latter systems; this is permissible, because t
decouple from the density waves by symmetry as long as
external potential is the same for all components. The co
sion rates in degenerate Fermi gases are suppressed
Fermi-blocking factor compared to the classical collisi
rates@21#, and scale in proportion to (T/TF)2. Therefore, at
least in the low-temperature domain, it is necessary to
atomic species with particularly large positive or negat
s-wave scattering lengths. Another limitation of our analy
is the neglect of mean-field effects of the interaction in co
parison to the pressure term. This seems to be a rather
approximation for the experimentally realized trapped qu
tum gases, which behave like ideal quantum gases to a g
approximation. The most severe limitation of our calcu
tions is certainly the neglect of dissipation. The reason
this restriction~which was discussed further in Ref.@5# for
bosons, and in Refs.@7,9# for fermions! lies not so much in
the negligibility of dissipative effects for the physically e
cited modes, but in the particular purpose we set out
achieve in this paper, namely, to give an account of the m
C
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tt

.
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spectrum in the whole temperature domain covered by
theory. This goal cannot be achieved so far with the inc
sion of damping effects, but remains an interesting aim
future work. It seems clear that, with the inclusion of dam
ing, the zero-frequency modes we have found will turn in
purely overdamped modes. However, as exemplified for
Kohn modes, the phenomenological theory behind Eq.~1.6!
also permits one to obtain a result for the damping of so
modes ~with the result that it is vanishing for the Koh
modes! whose hydrodynamic frequencies are only known
the absence of dissipation@11,12#. The requirement is tha
mode frequencies without damping are also known in
collisionless limit. Then an estimate of the collision time c
be used in Eq.~1.6! to obtain an interpolation between th
collision-dominated regime and the collisionless regime,
cluding the damping due to the finite value of the collisi
time @11,12#. In the past this estimate proved to be qu
useful in a comparison of the experimental results for bos
@22#, and it may be hoped that further results along su
lines, not only for bosons but also for rapidly developin
experiments on trapped Fermi gases, may be obtained in
near future.
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