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Finite-temperature hydrodynamic modes of trapped quantum gases
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The hydrodynamic equations of an ideal fluid formed by a dilute quantum gas in a parabolic trapping
potential are studied analytically and numerically. Due to the appearance of internal modes in the fluid
stratified by the trapping potential, the spectrum of low-lying modes is found to be dense in the high-
temperature limit, with an infinitely degenerate set of zero-frequency modes. The spectrum for Bose fluids and
Fermi fluids is obtained and discussed.
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I. INTRODUCTION of the Bose-Einsteinlupper sign or Fermi-Dirac (lower
The successful trapping of dilute Bose and Fermi gases isign form.
magnetic traps, and their subsequent cooling to temperatures The derivation of these equations from the Boltzmann
below quantum degeneradit—3], has made the study of equation is well known, see Rd#]. In recent years a num-
their hydrodynamics a subject of high current interest. Théber of papers have been devoted to the study of solutions of
basic hydrodynamic equations for a fluid formed by suchthese equations linearized around the equilibrium state in
gases in local thermodynamic equilibrium are well known. Inparabolic traps. Griffin, Wu and Stringafb] derived a
the limit where the fluid can be considered ideal, they are thelosed equation for the velocity fluctuations, and gave ex-
continuity equation for the mass-densityand velocity field  plicit solutions for surface waves of a Bose gas in an isotro-
u, pic trap and those of a classical gas, also in the axially sym-
metric anisotropic trap. In the latter case they also gave

ip - - solutions for modes corresponding to irrotational flow. A fur-
E+V'PU=07 (1.D  ther study of the hydrodynamic regime of a trapped Bose
gases was presented in Rf]. Fermi gases were considered
the Euler equation for the velocity field, by Bruun and Clark[7]. Besides considering the low-
temperature limit for a degenerate Fermi gas, these authors
ET 1. .. gave an analytical solution for the mode spectrum in an iso-
m +u-Vu=-— ;VP+f(x), (1.2 tropic trap in the high-temperature limit, and identified one

branch of the dispersion relation as “internal waves” driven
by the inhomogeneous trap potential. This is a point which
we intend to examine further in the present paper. Amoruso
et al. [8] also derived special solutions to the linearized hy-
drodynamic equations for the low-temperature limit of the
5 degenerate Fermi gas. In a recent pd9érwe also studied
4 U.VP=-— _[V*(l]p)_pl]. F]_ (1.3 this low-temperature regime for Fermi gases, and gave solu-
at 3 tions for the completely anisotropic parabolic trap. The

with the external force per unit mags- — (1/m)VV(x) and
the pressurd related to the internal energy densityby P
=Z¢. This satisfies

. _ . .. present paper will therefore concentrate on temperatures of
The thermodynamic equilibrium distributions of the densﬂy,’?he ordel? (?f the degeneracy temperature or ab%ve it Ina

po(X) and pressur®q(x) with VPo=pof are given by the number of papers effects beyond the scope of Efs)—
ideal quantum-gas expressions at constant tempergure (1 5) were also considered. Vichi and StringgtD] consid-

=1/kgT and chemical potentigk, ered the effects of mean field due to interactions on the col-
lective oscillations of Fermi gases in a trap, while Pethick

- d’k - - and co-worker§11—13, Vichi [14], and Guey-Odelinet al.
Po(X)= mj (2m)3 =(kX), [15] discussed the collisional damping of collective modes in

Bose gases and Fermi gases respectively. In Refs12 a
simple interpolation formula was proposed between the

3 21,2
Po(x f d’k A7k fo Ej), (1.4 mode frequencies,. in the collisionless regime and the hy-
(2m)® 2m drodynamic regimeg;,, of the form
with the single-particle distribution wﬁ_ wg
w’= w% —_—, (1.6
1 1-lwT
fo(k,x)= . (1.5

(k.x) Bl V() ] 3 1 ) wherer™ 1= (8ma?/m)(pyv) is the mean collision rate. This
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description was further examined in REE5]. Equation(1.6) is important to choose the correct scalar product because, as
is based on general considerations of nonequilibrium thermowe shall see, the problem possesses a dense-lying discrete
dynamics [16]. Damping of the hydrodynamics in Bose spectrum of low-lying states; it ia priori far from clear
gases was also studied by Griffin and co-workers in a serieswhether all these states are needed to span the complete
of papers; see Refl7], where further references can be space of solutions, and if not, how the correct states are to be
found. distinguished. It is our aim here to devote particular attention

In the present paper we will not be concerned with damp+o this open problem, and to present an answer. The way to
ing effects. Instead our goal is to study further the collision-achieve this will be to deviate from the previous line of ap-
dominated dissipationless hydrodynamic regime in harmoni@roach by deriving, instead of three coupled wave equations
traps with arbitrary anisotropy. We do this by giving a sys-for the components of the velocity field, two coupled wave
tematic treatment of the linearized hydrodynamic equationgquations for the pressure and the density. For these we shall
based on Eqgs(1.1)—(1.5), applicable(within our basic as- construct a scalar product in which the wave operator is self-
sumption$ in the whole temperature range from the highadjoint, so that its eigenfunctions form a complete set in a
temperature domain, where the Boltzmann limit well-defined Hilbert space.

A. Linearized hydrodynamic equations

h2k? -
f+~eX[{—ﬂ(%+V(X)—M)
Let us introduce small deviation§p and §P of density

applies, to the regime close to the degeneracy temperatu?end pressure from equilibrium,

for bosons and down to nearly vanishing temperature for
fermions. We shall discuss a class of exact solutions of the
dissipationless equations applicable to the whole temperature . .
domain covered by the theory, generalizing results previwherepq(x) andPy(x) solve the time-independent hydrody-

ously obtained for traps with axial symmetry. It can benamic equations with vanishing velocity fiekd-iozo,

shown that in the high-temperature limit of a qlaSSiFaInamely,ﬁPo(i)zpo(i)f(f), which defines the mechanical
Boltzmann gas the linearized hydrodynamic equations in quilibrium condition. In principle there are many equilib-
completely anisotropic trap are integrable and separable N m profilespo(X), Po(X) satisfying this requirement. In our
elliptic coordinates, just like their low-temperature counter- Pol*), o f

parts[18,9]. However, at lower temperatures where effectspresfarlt co.n.te>.<t the physic_:ally relevant one Is the thermody-
of quantum statistics become important, the integrability and'amic equilibrium of maximum local entropy. The entropy

separability are lost, which manifests itself, e.g., in effects off@ximum is achieved by the special profilpg(x) and

avoided level crossings. Po(x) corresponding to a state with a uniform temperaflire
Of special interest in the present paper, besides the comind a chemical potentigl. Using Egs.(1.4) po(x) and

mon sound modes, will be the phenomenon of internalpo()z) can be written as

waves, which are characteristic of fluids whose equilibrium

state is stratified by an external potential. Internal waves in

trapped Fermi gases were mentioned in IR&f. but have not

yet been investigated in detail for trapped quantum gases.

For the discussion of internal waves in classical contexts like

waves in the atmosphere see Ré0].

p=po(X)+ 3p(X,1),P=Po(X)+ SP(x,t), (2.1

3 V(X)—u

kaT 3/2
A2 e

wh?

PO()_()) =Azm

Po(X)=A kT(kaT
X)=Ax
0 B 22

, (22

¥

32 5 V()Z)—M
|2 et

Il. LINEARIZED HYDRODYNAMIC EQUATIONS AND
HILBERT SPACE OF THEIR SOLUTIONS

In the present section we give the five linearized hydro-Where the uppeflower) sign refers to bosongermions and

dynamic equations whose solution is the central theme of*-=1A+=2. Equations(2.2), but with space-dependent
this paper. In previous work on these equations they werd (X) and «(x), also apply to states of local thermodynamic
reduced to a set of three wave equations for the velocit@quilibrium, in which the system is always in the hydrody-
field, which we shall also give for completeness, and soméamic limit. They can then be taken to define two of the four
special solutions of this latter set of equations were givenfields P(x), p(x), T(x), andu(x) in terms of the other two.
However, appropriate boundary conditions are hard to forin the fermionic case we need to assume the presence of two
mulate for the velocity field, and therefore it is not clear, soequally populated hyperfine sub-states, the collisions be-
far, what function space is spanned by the solutions, antlveen which can then ensure the local thermodynamic equi-
whether a scalar product can be placed on this functiofibrium. The Bose-Einstein integral_(s,{) and Fermi-
space, and if so which it is. This question is of particularDirac integralsF , (s,{) are defined by

practical and theoretical relevance for the present problem,

because in general the solutions have to be constructed nu- 1 (e xs1

merically by converting the differential operators to matrices Fo(s,{)= _f X—dx (2.3
using a basis and the scalar product in the solution space. It T () Jo etz
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satisfying the familiar recursion relatiodF - (s,{)/d{=
—F+(s—1,{). In the present casé&, and therefore also
F.(s,?), is space dependent via= {(X) =[V(X) — u]/KgT.
However, we shall usually suppress thandx dependences
in our notation for simplicity, and just writé . (s).

Let us see under what conditions this thermodynamic}J
equilibrium state is stable against mechanical perturbationd?9

PHYSICAL REVIEW A 64 013619

the most convenient starting point for our present study, as
the boundary conditions on the velocity field at infinity, the
nature of the function space formed by the solutions, the
hermiticity or self-adjointness of the wave operator, and
hence the nature of the spectrum of eigenvalues all remain
nclear, even if some particular solutions, e.g., those satisfy-

ﬁxﬁzo, can be constructed. To circumvent this ob-

direction of increasing pressure, i.e., in the directiorf dfs

volume is compressed adiabatically, so that its density i

increased, per unit displacement, prélaPo)sﬁPo,

whereas the density in the ambient equilibrium-gas changes
by ﬁpo in the same displacement. A restoring force per unit

volume in the direction opposite to the displacement,
f-[(9pglIPo)sVPo—V po] <O, (2.4)

must result for a mechanically stable statgsing the rela-

tion (dpo/dPg)s=3po/5P, valid for ideal quantum gases,

and Egs.(2.2) and(2.3) we may rewrite Eq(2.4) as

N
M3 712 —F(E) <0 (2.5
(keT)?| 5 F(?) 2 |
12

This condition is satisfied for bosons fog":(V()Z)

—u)/kgT>0, and for fermions for all positive and negative

values of¢.

The hydrodynamic equations linearizedun 8p, and P
are then given by

po(X)du=—V 8P+ spf(X), (2.6)
5. e 2 ..
é’t5P=—§V~(PO(X)U)+ §P0(X)f(x)'uy (2.7

a6p=—V-(po(X)U). (2.9

Eliminating SP from Egs.(2.6) and (2.7), then using the
continuity equation(2.8) to eliminate 6p, and finally using

the fact thatV p, is parallel tof, one immediately obtains the

closed wave equation for the velocity field,
()

V(V-u)+V(u-f)+=f(V-u),
(x)

(2.9

[SIN

. 5P,
P2u= =
3 0

p

from Egs.(2.6)—(2.8) by taking the time derivative of Egs.

§2.8) and(2.7) and inserting Eq(2.6).

It is convenient to define the function

24

FI Evg

Fe(d=—3 -
(24

The bosonic functionF_(¢) is only defined for{>0. It
increases monotonically from 0.513... &0, where it has
an infinite slope, to 1 for—«. The fermionic function
F. (Q) is defined for all real. It is monotonically decreasing
toward 1, first with a slope of roughly- 0.4 for large nega-
tive £ then exponentially for positivé.

In terms of F - ({) and its derivativeF_ ({), with respect
to its argument/, we can write

(2.10

-

Po(x) kgT -
—=—F=((V(X) —u)/kgT). (2.1)
po(x) M

In the following we suppress the subscript and also the

argument ¥(x) — u)/ksT of F and F’ for notational sim-
plicity; after some calculation we obtain

925p=V25P—f.Vp—(V-)dp, (2.12
, 5keT __, 5 2|, .
cKeT et Gapt (SF'+2 f
3 m YOPTII3T T3
SKBTF v.Hls 2.1
3 Tm (V-1)|dp. (2.13

So far we have gained in simplicity compared to E29),
because we have now only two coupled wave equations in-
stead of three. More important, however, is the fact that it is

which has been the starting point of previous worksphysically clear that the density and pressure perturbations

[5,7,11,12. As already mentioned, we do not find this to be must go to zero in the limit of large distances from the center
of a confining trap. It should be noted that the same cannot
be said for the velocity field. Indeed, it is clear from E2}.6)

A restoring force does not result if the whole fluid-layer on an that for |X,|_>°o where p(x)—0 the veIocit.y fieldu _iS not
equipotential surface is displaced in the same way orthogonal to the€cessarily bounded by the hydrodynamic equations. How-

equipotential surface; because then no ambient fluid remains, whicBVer. in spite of the improvement of the formulation of the
could give rise to the buoyancy ford&q. (2.4)]. Instead a new linearized hydrodynamics we have achieved so far, the self-

mechanical equilibrium is reached. This mechanism gives rise t@djointness of the wave operatdr defined by writing Egs.
the zero-frequency modes discussed later. (2.12 and(2.13 in the form
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5P 5P
=—H- (2.19

Sp| op

ﬁf(

remains to be clarified. Can a scalar product be found in
which the operatoH is Hermitian? This is the question to

which we turn next.

B. Scalar product and hermiticity of the wave operator

PHYSICAL REVIEW A64 013619

the conserved quantitiy can be written as

§(5P)2+a5P5p

E=w?sirf(ot+ (p)f d3x

(2.22

+[terms proportional to cééwt+ ¢)].

In order to find a useful scalar product on the space of

solutions of Egs(2.12 and (2.13 we proceed as follows.
First we find a Lagrangian for Eq2.12 and(2.13, which

must be a quadratic functional dip(x,t) and SP(x,t). It

In order to meet our godEq. (2.17)], we should define the
scalar productP,|P,) in such a way that the coefficients of
sir? and co$ in Eq. (2.22 both become equal t@*(P|P).

can be found by making a general ansatz and comparing th&/e therefore need only the coefficient of thestarm to
coefficient-functions of the resulting Euler-Lagrange equa<conclude that the norm becomes

tions with those in Eq92.12) and(2.13. From the Lagrang-

ian density we can pass to the associated “energy density” (PP)= f d3x

aL
H=(010p) 5~~~ +(36P)

Ev
3(16p)

o) £ 21

whose space integral

E=f d3xH (2.16

must be conserved by time-translation invariance. We sha@

then define the scalar produd,|P,) in such a way that the
conserved energy takes the form

E=(P|HP) (2.17

for vectorsP satisfying the time-independent wave-equation

B 5 kgT 5
§6P +adPbp 5 m Fa(dp)-|.
(2.23

(That the coefficient of the cdgerm is the same follows
without further calculation from the fact that in a harmonic
system the average values of the kinetic and potential ener-
gies are always the sameJsing relationg(2.19 for « and

B3, it can be checked that the norm is positive, as required, if
<0, (which can always be achieved by the choice of the
onstantK), and >0, which requires the inequality 1
+F’'>0, and—2(kgT/m)FaB—a?>0, which in turn re-
quires the stronger inequality

5F((V(X) — ) /kgT)+2>0. (2.24

HP=w?P. For the Lagrangian density, after some calcula-Using definition(2.10 of F=F_, it is easy to check that

tion we find
B ) 5kgT Fa )
L=75(06P)"+ a(d,:6P)(015p) — 3 Tm —(9idp)
+ (terms without time derivatives (2.18
with the coefficientsy, 8
K m 1+F’
a= — e § 4
) 3 V—u\’ keT F
(2+5F )F+(E'|(B_T)
(2.19

The coefficienK in the relation fora is arbitrary, and can be
used for normalization. The kinetic energy containe@iis
the same as inC. It is now useful to employ the vector
notation already defined in E¢R.14) by defining

PGLD ( SP(X,1) (220
X,t)= - . .
op(X,t)
With the harmonic time dependence
P(X,t)=P(X)cog wt+ ¢), (2.21)

Eq. (2.29 is equivalent to the stability conditigrEq. (2.4)]
of the thermodynamic equilibrium state.

It is useful for numerical purposes to transform the scalar
product[Eq. (2.23] to the more symmetrical form

<P1|P2>:J d3X(u’1‘u2+v’1’U2) (225)
by the linear transformation
_ [ 6P
P= Sp
| —5kgTF
_ —oKeTF 0
am(5F' +2) u
- ]
\/ —9m —3m
a5k TF(5F' +2) adSkgTF
(2.26

diagonalizing and normalizing the kinetic term in the La-
grangianf (and hence also in the energy density. In the
new variablesu andv, the wave equation now reads

013619-4
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5kgTV-FV (V-f) m f2 V-J5F +2f 3m BF' +2f2

- +
21 3° m 6 60T F NE 3kgT  F ’
_EMZ . - } (U) (2.27
V5F'+2f.V  \3m |5F'+2f m (5F'+2)f
- +
3 30kgT  F 5keT  F

with a matrix wave operator which is manifestly Hermitian ~ For harmonic potentials there are some further exact so-
in the scalar produdtEqg. (2.25], provided the surface inte- lutions of wave equation&.12) and (2.13 which hold for

gral all temperatures in the fermionic case and the temperature
T>T, in the bosonic case. They are obtained by extending
ansatz(2.29 for the zero-frequency modes according to

3 m

5F' 42, | .
+ Tf(ul vy—UovY)

vanishes afx|—. Since the coefficient functions andg  with @, 8, y=0 or 1. Inserting this ansatz into E(2.12),
in Eq. (2.23 grow for |x|— like exp(/(x)—u/kgT), the  and using the property that far=5=y=0 Eq.(2.3D) is a
fluctuationssP(X) and 8p(X) for all solutions must vanish 2€ro-frequency mode, after a simple calculation we find
sufficiently rapidly for|x|—ce. (0?— aw?— Bwi— yw3)G'(V)=0. (2.32

[ 5keT N N
j dS | — 5 —(ufFVuy—u,FVu3)

-> 1 o
(5P(X't))=exayﬁzy EG(V(X)) e—iwt, (2.3

op(x,t) — G/ (V(X))

(2.28

C. Zero-frequency modes and isothermal modes Next we also insert the ansatz into Eq13 and by a simi-
. lar calculation obtain
For arbitrary temperatur€ and trap potential/(x), Egs.
(2.12 and (2.13 possess a class of exact tlme-lndeeendent [0+ (aw?+ Bwi+ ywl) (SF'+2)]G(V) + SkeT(aw?
solutions, which depend on an arbitrary functi@iV(x)), ) 5
and its derivativeG’ =dG/dV, namely + Bwy+ yo3)FG'(V)=0. (2.33

R R . e R Equation(2.32 determines the mode frequencies as
op(x)=—eG"(V(x)), OP(x)= EG(V(X))-

(2.29 ®apy= awi+ i+ yws, (2.34

e is a parameter which is sufficiently small to make theWhile Eq.(2.33, for @, B8, andy not all equal to zero, fixes
linearized theory consistent. The nofigq. (2.23] of these  the yet undetermined functioB(V) in ansatz(2.31) as
solutions|Py) is -
(V)= constF 3 V(X)—u
( )=cons E,kB—T

(2.39

]
2m

LrF G2+2GG' + >
kgTF 3

kBTFG'Z}.

(2.30 It follows from Eq.(2.31) that SP(x,t) and 8p(x,t) for these
modes are related by

<P0|Po>:82f d3x

Since all functions under the integral dependfbnnly via

V(x), the integration fd®x... can be replaced by <§ V(X)—p
cons]de:/V. ..,ifVisa h(_)mogene.ous function of second POt = KeT 12 IiBT Sp(it),  (2.36
order of x, e.g., a parabolic potential. The scalar product m 1 V(X)—pu
exists and is positive under conditidg.24), if G(V) van- F 2 KeT

ishes sufficiently rapidly, e.qg., like expM/kgT), for V—oo.
Then these solutions belong to the Hilbert space and have {ghich is the relation between changes of pressure and den-
be considered. Physically, they appear because of the coexity implied by the local thermodynamic equilibriufg.

istence of a continuum of mechanical equilibrium states ang 2)] if the temperature is kept constant. These isothermal

the thermodynamic eqUIllbrIum As we shall see in Sec. I“,modes were a|ready found in Réﬁ] for the Specia| case of
these states are not isolated from all the other states but Ors'otropic and axia”y Symmetric parabo"c trap potentia]sl

cur, for any local wave number, as the end point of a spectral \ode (2.34 contains as special cases, the three Kohn
branch of states if the local wave number is turned in themodesw,gy= w;, wo10= w5, aNdwgy= w3, corresponding to

direction of f= —(1/m)ﬁv. oscillations of the center of mass of the trapped gas. It is
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mterestlng to note that collisionless Kohn modes of the formproportional to=>_,A; . Finally, using the result€.38 and
5p(X,'[)—6((9po(X)/z9X,)e 't with the same frequencies (2.39 in Eq. (2. 6) for momentum conservation, we arrive at
w;, also exist. It therefore follows from the phenomenologi-the eigenvalue problem
cal formula[Eg. (1.6)] that these modes are not damped by , 3
the relaxation mechanisms present in the system, in agree- on 2 2 o
ment with the general statement made by the Kohn theorem. W A=2A0TE 0] ,Zl A, 12123 (240

For fermions, result§2.34), (2.35, and(2.3]) for the fre-
quencies and mode functions apply to all temperatures, anfihe eigenvectoA and the eigenvalue? are clearly tem-
can therefore also be extrapolatedTe-0. Indeed, forT  perature independent, and follow from the cubic secular
—0, modes with the frequend®.34) were found in Ref[9]. equation
In order also to compare the mode functions, we use the
Bethe-Sommerfeld expansion to evaluate the Fermi-integrals
asymptotically,F , (s,z) ~(—2)%/s! for z— —c0, and forT
—0 find that

8 20
(w2)3— §(w§+ w§+ wg)(wz)z-i- g(w w2+ w 2

+w 1) )w —16(02(0 w5 2-0. (2.4
2 p=V(x) - . . . .
oP= 3 ————— 8p~x2yPz"(u—V(x))*? (2.37) In the special case of an axially symmetric trap, the cubic
m equation can be reduced to a quadratic one, and a result first

in agreement with Ref9]. obtained in Ref[5] is recovered.

Finally, another set of solutions for arbitrary temperature

is found by generalizing an ansatz of R€5] for a trap . SHORT WAVELENGTH SOLUTIONS
without axial symmetry by puttingi(x,t) =Aixje ' with The two coupled wave equations derived in Sec. Il in
three constants\; . Inserting directly into Eqs(2.7) and  various forms are difficult to solve for arbitrary temperature
(2.8), we obtain the density and pressure modes: in a system which is made spatially inhomogeneous by an
T\ 32 3 external potentiaIV()Z)aﬁO. An exception, however, are
Sp(iit)= |m< mkg ) { (_) > A waves of wavelengths, which are short on the spatial scale on
2mh? = which V(x), and hence alsBy(X),po(X), vary. Such waves,

in the representation Witb()?,t),v(i,t), can be written as

( U(i,t)) —eiwt( ag(X)
L ikeT(mkgT|% 5 (5} 3 V(XD bo(X)
PUD=, (m) [‘5 (5)2 The eikonalS(x,t) def
e eikonalS(x,t) defines the local wave vector by the re-
lation E(i,t)=ﬁ8()?,t). The amplitudesag, b, andk vary
( )kBTE Aiw®2le 1t (2.39 slowly in space, on the same scale \a§>_€), Po(x), and
po(X). The frequencyw is independent ok andt. Inserting

A comparison of Eqs(2.38 and (2.39 with the local equi- the ansatz into Eq(2.27, and neglecting derivatives of
librium relations Eqs(1.4)] reveals that the temperature os- ag,by, andk, and also assuming that2>|V f| we obtain
cillates in these modes with a spatially constant amplitude¢he secular equation as the vanishing of the determinant:

—Ia)t (238)

( )kBTEA“’

eiSex). 3.1)

5keT __, 1 m f2 i .. \3\BF'+2 m.
— B - —BF +2(k- )+ 5~ —— —=f2
3m < 0k F ¢ 3 R
=0. (3.2
VBF'4+2 m . 5F'+2 m .
——\/5F +2(k- f)+\/— ——f2 —f2_ 2
3 F kgT 5F  kgT

We note that terms witfiz andk- f are essential to retain in mechanism. On the other hara(x),by(x), andV - f do not

. L . > row in imilar w n re therefor nsistentl
this approximation, together with the? terms, becausg | ge(z;hglblea similar way, and are therefore consistently

grows at large distances from the trap center, at least for From Eq.(3.2), we deduce the local dispersion law for
parabolic traps, and provides the physically crucial confiningvaves of short wavelength2 k:
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1[5 kgT m/ 1 5SF+2
~ 2|3 60F 5

2 +\/1 5kBTFk2+ m /[ 1 +5F’+2
“ V4|3 m kgT | 60F 5

121 ..
fz} —§(5F’+2)(f><k)2.

(3.3

On the same level of approximation the pressure and denSityrthogonm tO'F. The maximum frequency for modes or-
oscillations are related by thogonal tof is then reached for short wavelengths,

5P(E,x)=iz[wZ—if”-E](sp(E,x), (3.4 L T > 3.9
K 7 kT | 60F 5/ -
as follows from Eq.(2.12. and given by
The dispersion lawEq. (3.3)] contains a great deal of
physics, and will now be discussed. First we note thatffor . 5F +2|f]|

#0 there are two branches of the dispersion law, one of high W™ 3 ¢ (3.9

frequency and another one of lower frequency, which are

both physical. Thus there are two different types of waves invaves with the properties of the low-frequency branch so-
these systems. Both branches correspond to frequencies |utions found here are typical of media which are stratified
=0 for all k, i.e. to stable oscillation waves. Another simple by an external force, and are called “internal waves.’ One of
observation is that the local dispersion relation is anisotropictheir surprising and counterintuitive properties is that in re-
and depends on the angle betweernd k. The physical —gions where Eq(3.8) applies the group velocity ,o (k) is
nature of the two branches is most easily seen by assumingrthogonal to the wave vectér For a textbook discussion of
that the angle betweehandk is sufficiently small to permit  such waves, see Ref19]. Indeed, the dispersion relations
the expansion of the square-root in Eg.3) in the second (3.5 and(3.6) can, e.g., be directly compared with E¢83)
term of its radicand. We then obtain to lowest nonvanishingand (54) given there.

order,
IV. SOLUTION IN THE HIGH-TEMPERATURE REGION
, 5keT_ ., m [ 1 5F'+2)_
O =3 Tm K T eE T T B fs, (3.9 The high-temperature regime is defined By Tyeq,
where Tyeq is the degeneracy temperature at which the de
/ Fo 2 Broglie wavelength becomes of the order of the mean par-
5F'+2 (fxk) : ; . . g
w2 = . ticle distance. In this regime we can approximate
3 5KkgT o m/( 1 B5F+2)|_
3 m “TkgTleoF T 5

3.6 f:(5,;):e—[(p2/2m)+V(§)—M]/kBT 4.1)

The high-frequency branch is easily recognized in this limitand pg(X) = po(0)e™VkeT, Po(x)= (ke T/M)po(X). It is

as an adiabatic sound mode, in particular if the identity foryseful to introduce new dimensionless variabRagx) and
the adiabatic sound velocity, p1(>2) via the definitions

, Pg _5P0_5kBTF . Juge ke T o
= no S— 3 3 m D (3.7 (%, 8)= = —=po(X)P1(x,0),
is used, which is valid for the ideal quantum gases, with the 5P(>Z,t)=Po(>z)Pl(>Z,t), 4.2

definition of F=F-. by Egs.(2.10 and (2.11). The low-
frequency branch reaches its lowest frequeacy=0, inthe  and to rewrite the coupled wave equations & and 5p as
present approximation, for all waves traveling locally in thecoupled equations foP, and
direction parallel to the force of the trefp so thatf x k=0.
The existence of such zero-frequency modes was already dis- P T :ﬂ
cussed in Sec. Il. Looking at exact solutions at high tempera- 1= T
ture in Sec. Il, we shall see them appear again.

The low-frequency branch for givek| achieves its high- wheresT(x,t) is the deviation of the temperature from equi-
est frequency if the wave propagates locally in directiondibrium. Separating the time dependeree!, we arrive at

4.3
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kgT 5 .- 5 . . .. m .
_ P “vv2_ _ 2 _ . ___f2
3 ® 3[(V f)+f-V] KaT 5
( ! )zo. (4.4)
Pi—p1
el 25 2L+ V]- 02
™3 gV DrV]me
|
We specialize these equations to a harmonic potential: polynomial of total orden—2, with (3)=n(n—1)/2 terms
x"1y"2z"s of highest total orden;+n,-+n;=n—2 with co-
m efficientsB .
o) — (1 2y2 2,,2 2.2 nyn,ng
V) Z(wxx Tyt w2, (4.5 The solvability condition for the linear homogeneous

equations connecting all these coefficients then gives a secu-
It is then clear, via term by term inspection, that there ardar equation for the eigenvalues; of ordern®+n+1 with
polynomial solutions of Eqi4.4), in which P, is polynomial ~ just as many solutionsn(+1)(n+2)/2 of these modes can
in the Cartesian components gfof total ordern and P,  P€ considered as modes of sound waves, modified by the
— p, is a corresponding polynomial of total ordes 2. This exter_nal potential, while t_he remaining(n— 1)/2_ can be _
is so because then each term on the right-hand side of E§Onsidered as modes of internal waves, modified by their
(4.4 either decreases the total order of the polynomial on th&°Upling to sound waves. The second kind of mode therefore
left-hand side by 2 via the operation Bf, or keeps the same €XiSts only fom=2.
order of the polynomial. It follows that we can pick freely as ~How many linearly independent zero-frequency modes
the highest total power an integefor P;, and determine the @PPear at a given total ordef If nis odd, the polynomials
eigenvaluesw? by comparing the coefficients of all terms for P1 andp, have odd parity and cannot describe a zero-
with this highest total power, imposing the condition for freguency mode, which must have even parity by €g9.
nontrivial solvability. It is clear that we obtain polynomials !f NS even, on the other hand, there is precisely one linearly
of arbitrary total order in this way. Moreover these solutions"dependent zero-frequency mode associated with that inte-

lie in the Hilbert space because, via E4.2), 5P andsp fall ~ 9€f, which may be written in the form

off sufficiently rapidly for|x|—c°, if P, andp, are polyno- - - ~ 1n/2— -
' sulciently rapicly X =, i 1 andpy are poy oP(x) go(X) vix)|" ! V(X)

mials in the Cartesian componentsxof - | =cons . (4.8
Sp(X) m | kgT n/2

To see this explicitly, we specialize the scalar product

[Eqg. (2.23)] for the present high-temperature case by replac- The solution for the SOrOpIC Case,= w,=w,=wo in

ing  F[3/12(V(x)— ) keT]=exd—V(x)=w)/keT], F=  ihe high-temperature regime was already given by Bruun and
=1, FL=0 which givesa=—(K/2)exd(V(x) —u)/kgT],  Clark[7] based on the velocity equati¢®.9). It is not clear,
B=—(m/kgT) e, and the scalar product however, how the Hilbert space is defined in terms of the
velocity variables. Indeed, the velocity-field turns out to be
~ gl B el polynomial like p; and P4, and is therefore not a square-
(PIP)=7 ?(PO(O))ze M/kBTf dixe VOOkeT integrable field. It is therefore worthwhile to check this case
again, using our present description. In addition we also wish
| PB P — Bt 20 46 to find the mode functions for this case explicitly. Introduc-
1P1=P1p1= PPt 3 p1p1 |- (4.6 ing a dimensionless frequency and space coordinaté)¥ia
= w? w?,r=(Mw3/ksT)Y*, and imposing a polynomial an-

It is also now clear that, for harmonic potentiat¢x), the  Satz
polynomial solutions foP, andp of all orders are complete

in a space with this scalar product, a fact which is very Pl(F)Zr'Ym(,(P)Qnr(fz),
familiar from the quantum mechanics of the harmonic oscil-
lator. Py =py(N=r"Yn(0,0)T, 1(r3), (4.9

To be specific let us consider a polynomiabofy, andz
for P, of total ordem. It then has terms of highest total order \,ih n=2n +1 and withQ, andT, polynomials of order
r ’ nr nr

f the f . : .
of the form n, and Y,»(®,¢) the spherical harmonics, we obtain the

following.
Pi= > An n,n,X"1y"22"+ (lower ordey, (4.7) (i) Forn,=0,
ni,Ny,Ng
Qo(r?) =AY, T_4(r3)=0, (4.10
with n;+n,+nz=n, and G*?)=(n+2)(n+1)/2 different
coefficientst\nlnzn3. For the same mod®;—p; must be a 02=1. (4.11
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These isothermal modes were first found by Griffin, Wu, ancthe same, becaudg,_;(r?) is independent o&2 and there-
Stringari[5] fore the same for both branché€®/e note, however, that this
(i) Forn,=1, is strictly true only in the Boltzmann limit.The spatial dis-
- tribution of the pressure and the density, on the other hand, is
o (). 2i 2O o). 2i very different for both kinds of modes as, one would expect.
Qn, (1 )_;O AT T a(r )_i:EO By e, For|=0 and arbitraryn, , we obtain the mode functions
(4.1  of the zero-frequency modes. They form the bottom of a
ladder of rotational modes for each value rof The mode

Ny

“’% ) functions are given by combinations of Hermite polynomials
0 =—5 of the radial variable fiw3x?/ksT)"? and form a complete
®o set in the Hilbert space of radial functions defined by the
1[5 2 scalar producfEq. (4.6)]. This simply means that aarbi-
= —[— |+2n,+ —) trary radial, i.e., an angle independent, mode function within
213 S our Hilbert space, is a zero-frequency mode.
25 2 g Let us now turn to the case of an anisotropic harmonic
+ \/3 I+2nr+§ —§I(I+1) . (413 trapping potential. Then the generator of rotatiots=

—i1(xx V) no longer commutes with the wave operakbr
This result was first obtained by Bruun and CIgrk For the  defined by the matrix-differential operator on the right-hand
casen,=0 we find that only one branch of solutidd.13 side of Eq.(4.4). On the other hand, as already discussed, for
exists, namely the branch which yiel@&=1, as seen from harmonic trapping potentials polynomial solutions continue
Egs.(4.10 and(4.11). This fact also follows from a proper to exist. Therefore, one must strongly suspect that a complete
solution of Eq.(13) of Ref. [7] for n,=0. In the casen, set of operators exists commuting with also exists in the
=1]=0 one of the solutiongEq. (4.13] vanishes. This fully anisotropic case. For Bose-Einstein condensed bosons
gives the zero-frequency solutions discussed in previous seend for fermions at temperaturB=0, a similar situation
tions. The other solution aﬁzzza)f/wﬁ: 2(2n+2) behaves prevails(but not at temperatures between the high- and low-
normally, and describes a sound mode, as can, e.g., be semperature limits; cf. the discussion belpwnd two opera-
from the factor 5/3 which is characteristic of the inverse oftors commuting with the corresponding wave-operator were
the adiabatic compressibility in ideal gases. constructed in our previous papef8,18]. In the present
The coefficients of the polynomials defining the modehigh-temperature limit, corresponding conserved operators
functions are obtained recursively, beginning with the termcommuting withH can again be found. In the case of axially
of the highest power. We obtain the confluent hypergeometsymmetric traps withw,=wy,=w, , one of the conserved
ric functions operators, namelyiL ,, still follows from symmetry, but one
o143 12 can check by direct calculation that a second conserved op-
T; %) (4.14 eratorB commuting withH exists in the explicit formsl?@

+6/5)(P,— p1) =B(P1—p;) and R—4/5)p,=Bp;, with

an—l(rz): Bf)nr) 1Fi{1-n;,

which is proportional to the generalized Laguerre polynomial
LU+ Y2)(r2/2), and
n-i (172) . keT[1 2 1 2 1 &2

R=xV-—| S5 —S+5—S+5 |
) , 2l 21+3 r? m | w? ox* ) ay? w2 9z°
Qn, (1) =By " 7| Q12t 7 |1Fe| =M. ——i5 y 41
' o |4n,| "2 3 2 2 (4.17
21+1 21+1 r?
~on tF The i (419 wherew?=w2=w?. This is sufficient for the system to be
r . . . . .

integrable. The eigenvaluB is easily determined aB=n

which is proportional to (87 ,+ 2|)|_L'r+(1’2)1(r2/2)—2(1 —4/5, wheren is the polynomial order of the eigenfunction.

+21+2n) LI W21 2/2) The physical modes are then The action of this additional conserved operatorpQr_u:an be
r) Mr (r°/2) Py used to show that all hydrodynamic modes satisfying the
KT eigenvalue equations except the mode withO are particle
- B - . .
SP(X,t)= — po(X)r'Y (@, 0)Q, (r?), number conserving, and therefore belong to the physical
m r i i i
spectrum. In particular, this also includes all the zero-
frequency modes.
| ) Let us also briefly discuss the solutions for axially sym-
=r Ylm(®"l’)-'—nrl(r ). (4.16 metric traps, in order to make contact with results in the
literature. It is useful to introduce scaled cylinder coordinates
It is quite remarkable that the spatial perturbation of the tem#, z and ¢ via p?=(Xi+x5)Mw?/kgT and 2z
perature in the two physically very different branches of the= x§M )\wf/kBT (\N= wg/wf). An appropriate ansatz solv-
spectrum, the sound modes and the internal modes, is exacilyg the eigenvalue equation now is

ST(X,t)
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P,=plMemez2Q(p2,2%), P,—pi=p/MemezT(p2,2?), 140 T T T T T
(4.18
120 Gy -
whereQ andT are polynomials ip? andz? of ordern’ and
n’'—1, respectivelya=0,1 determines the parity under in- S| I e
version of thez axis, andm is the quantum number of angu- 100 ]

. . TR b b e B ]
lar momentum around the axis. Let us mention some Sl

simple special cases. - B0 s o s i s s s
For n'=0 we haveQ=A,,T=0, and obtainw“=(|m oiimd

|+ a)w?, (m=0,1,...a=0,1). Forn’'=1 we obtain v - srab s R e e e e

a cubic equation forw?. Specializing further tom:(; s e e e e e e

and the parity clasa=0, we find the explicit solutions3

it A (2B and w2 B dn s a0 EEEEEMRRRNEEYRIRR R A ey

+ J16(A— 1)2+ 9], first obtained in Ref[5].
20

V. NUMERICAL DETERMINATION OF THE
TEMPERATURE-DEPENDENT MODE-SPECTRUM 0

100 120 140 160 180

At intermediate temperatures the coupled wave equation:
(2.12 and(2.13 are generally not separable, and the spec-
trum can only be found numerically. Best suited for numeri- FIG. 1. Dimensionless squared hydrodynamic mode frequencies
cal work are the wave equations in the manifestly Hermitianw/w)? of a bosonic gas above the BEC transition as a function of
form [Eq. (2.27] with the scalar product in the simple form the dimensionless temperaturefor m=0 modes of even parity
[Eq. (2.29)]. with up to ten nodal surfaces; the anisotropy parameter

A numerical analysis will be performed for the axially =(w,/®,)?=8; the number of atomli=10°; the total size of the
symmetric case, choosing= w?/w? =8, for the anisotropy basis is 132.
parameter, partially for historical reasons, as this was the
geometry of the first TOP trap at JILJR0]. The number of  the spurious ones introduced by the truncation of the basis
particles is chosen a@$=10°. First the chemical potential is are shown in the figure. The chosen temperature domain ex-
determined for the given particle numhiéras a function of  tends from the BEC temperature at the chosen particle num-
temperature. This is done in the standard way, by integratinger to the high-temperature region. In fact, we have checked
the first of Egs.(1.4) to obtain N(u,T), and solving for that our numerical code applied to the case of an isotropic
©(N,T). We may remark here that it follows from the form 5, gives a similar result, which fégT/% o = 195 coincides
of the potential thatu is a scaling functionS of N,w with the analytically known eigenvalu¢ggs.(4.13] in the
= (wxwyw,)'3 andT of the form u/fw=S(kgT/hwN).

In order to determine the spectrum, the wave operator in 1 e , T T
Eq. (2.27) is represented in the basis of the harmonic oscil-
lator eigenfunctions with widthgksT/mw? and kg T/maw?
in axial and radial directions, respectively. The basis is cut 0.8 b
off at a finite size of order 100 both far andv, and the
resulting finite-dimensional Hermitian matrix is diagonal-
ized. The size of the finite basis is varied in order that the
eigenvalues obtained can be converged numerically. The B
truncation of the basis to a finite size introduces some spuri-_2
ous eigenmodes and eigenfrequencies, which can be distir

ot

R L TN

guished and subsequently eliminated by the fact that they dt 0.9 sz =
not converge, but disappear and reappear somewhere else
the size of the basis is varied. T

Some of the results are displayed in Figs. 1-5, which we 0.2 :‘”"“::'“ -
now discuss. Figure 1 gives an overview, in the domain 94 o
<kgT/hw<195, of the spectrum of eigenvalueg, for a A o
gas of bosongbut very similar results, not shown here, are 0 i . . )
also found for fermions For clarity only modes with an 100 120 140 160 180

azimuthal quantum numben=0 and even parity are shown.
The basis used consists of oscillator eigenfunctions of order
2n, in the z direction and order &, in the radial direction, FIG. 2. Squared internal mode frequencies of Fig. 1 below the
with an integem,+n,<10. All frequencies obtained by the geometric mean trap frequency as functions of temperature, for the
diagonalization of the matrix ofl in this basis(except for same parameters as in Fig. 1.

t
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FIG. 3. Squared mode frequencies increasing with temperature ;

and level crossings for a Bose gas with the same parameters as in

Fig. 1, for an isotropic trap. FIG. 5. Squared mode frequencies for a fermionic gas above the

. . . .. ) Fermi temperature as function bf kgT/%  for sound modesup-
high-temperature limit with high precision. This fact offers per part and for internal wave modeower par.

us the possibility to assign the quantum numbers of the high-
temperature domain to the whole corresponding temperaturer,, counting the number of nodes in the radial direction. By
dependent branch of frequencies. our choice of a finite-dimensional basis, we are restricted to

An obvious feature of Fig. 1 is the bandlike structure of modes with quantum numbers,+n,<10. The presence of
the spectrum, which is caused by the anisotropy of the traghternal waves complicates the assignment of quantum num-
Because of the higher stiffness of the trap in the axial direcbers, because each pair of quantum numierand n, ap-
tion for the assumed value af=8, nodes of the mode func- pears twice, once at higher frequency for a soundlike mode
tion in the axial direction are more costly in enery, for  and once at lower frequency for an internal wave mode. Thus
soundlike modes, than nodes in the radial direction. Thereinternal modes with high values of, also give frequencies
fore, to the “bands” we can assign the quantum numtgr in the low-lying bands of Fig. 1. The number of eigenfre-
of nodes of sound-like modes in the axial direction with  quencies in the bands depends, of course, on the size of the
=10 in the highest ban@vhich can consist of a single mode basis.
only in the subspace we consider in Fig.ahdn,=0 in the By these considerations we arrive at the following assign-
lowest band. It should be noted that the two lowest bands amment of quantum numbers to the frequencies shown in Fig.
not split, and form a single broad band. Within a given bandl. The mode with the largest frequency forms the band on
soundlike modes differ only by the radial quantum numberthe top, and must be a sound mode with=10n,=0. The

next lower band must contain two soundlike modes with
0.6 — . . T T =9,n,=1 andn,=9,n,=0. We see from the figure that this

exhausts the number of modé&d in the second band from
the top, which can therefore not contain an internal wave

0.58 f. ] mode. Similarly, in the third, fourth, fifth, etc. bands from
the top, there are 3,4,5, etc. soundlike modes with
e _...«.,:-:,,'.% | =8,7,6, etc. gnd 3,4,5, etc. differer_lt valuefsngf, respec-
- ' ., tively. In the figure we can follow this counting of different
o°/m; B e — frequencies down to the third band from the bottom, thereby
0.54 [t S accounting for all eigenvalues in these bands. It follows that

none of these bands contains any internal wave modes.

On the other hand, the lowest two bands, in particular the
0.52 . lowest one, contain many more different frequencies than the
ten and 11 different sound-frequencies with=1 and O,
respectively. These must therefore be considered internal

0.5 100 120 140 160 180 waves. Among the internal waves are also.zero—frequency
; modes. For _each even value on,+n,=1 in our sub- _
space there is precisely one zero-frequency mode, so the ei-

FIG. 4. Squared mode frequencies of internal waves decreasingenvalueo?=0 is fivefold degenerate in our subspace. By
with temperature, and an avoided level crossing for a Bose gas in difieir special nature the zero-frequency modes have quantum
axially symmetric trap with the same parameters as in Fig. 1. numbersn,=n,,. Internal modes of higm=2(n,+n,), for
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which n, differs only slightly fromn,, have frequencies works by allowing for traps with arbitrary anisotropy, and
close to zero by treating bosons and fermions side by side on an
The discussion of the spectrum we have given dependsqual footing. In addition to analytical solutions in certain
on our arbitrary restriction of the number of nodal surfacesspecial cases and limits, we also present numerical solutions
to a finite and not very large number. If modes with anin the whole temperature domain covered by the theory.
arbitrary number of nodal surfaces are permitted, therour analysis is based on the reduction of the five conserva-
the mode spectrum becomes dense, due to the existenggn |aws for the densities of mass, momentum, and energy
of small internal wave frequencies from modes withig two coupled wave equations for the mass-density and
arbitrarily high quantum numbers. This can already be seef,q pressure. We have constructed a scalar product with
from the analytically determined spectrurag. (4.13] for a positive L, norm on the space of solutions, in which

the isotropic case. - I,
o . . the two-component wave operator is Hermitian and, because
Within the subspace of Hilbert space we consider here b P

there are many internal mode frequencies below the geome?—f the stability of the hydrodynamic modes which we

. . - -demonstrate, non-negative. However, a class of solutions

ric mean trap frequency, as can be seen with more clarity "\?vith vanishina fre ?Jencies was found which is a

Fig. 2. Only a small number of sound modes can occur in 9 quen . S
onsequence of the existence of mechanical equilibrium

this regime. The mode frequencies displayed in Figs. 1 and p 3 . ; ; .
have a surprisingly weak temperature dependence througftates in addition to the unique thermodynamic equilibrium
out the range considered. For lar§ehis can also be seen Which maximizes the entropy. A further class of exact
from the analytical results. For the sound modes the velocitgolutions consisting of isothermal modes was identified
of sound increases with temperature by roughlykgT, but ~@mong which are the center-of-mass modes required by the
the wavelength of any given mode also increases with temKohn theorem. These results generalize earlier results by
perature by~ ksT due to the expansion of the size of the Griffin et al. [5] and Bruun and Clark7] to traps without
thermal cloud, so that both temperature dependences effegXial symmetry.

tively cancel. However, for internal modes the compensation We studied the two coupled wave equations for pressure
between the speed of sound and the wavelength does nafd density in the short-wavelength limit. Two different
work in the same way, as can, e.g., be seen fron{E§). In  branches of solutions could be identified in this way: the
Fig. 3 we consider a magnification of a part of the frequencyhigh-frequency branch being associated with pressure-driven
spectrum(in this instance for the isotropic casevhere one sound waves, the low-frequency branch with potential-driven
can see an increase with temperature of some frequenci@sternal waves. The explicit dispersion relation of the lower
which freely cross other levelgvhich must have therefore branch found in the short-wavelength limit, and its charac-
different quantum numbers,|), which are nearly tempera- teristic properties—like the existence of a maximal fre-
ture independent, and which belong to soundlike modesguency, the anisotropy of the dispersion relation, and the
However, in the axially symmetric case avoided crossingsrthogonality of the local group velocity and the local wave
can also be seen, as shown in Fig. 4 for two internal wavgector—makes the identification with internal waves mani-
modes at smgll .fre_quency below the geometric mean trag,st and unambiguous. We also examined the high-
frequency. This indicates that the conserved operBt@f  emperature limit of the two coupled wave equations, and

Sec. IV ceases to exist at intermediate-temperatures. It woul§emonstrated the existence of polynomial solutions by ex-
be futile, therefore, to look for analytical solutions of the hibiting a conserved operator whose eigenvalues fix the re-

spectrum in the intermediate-temperature range, as the SYSpective polynomial order, or, equivalently, the number of

tenéappea}lr S tt?] bed_r;fonlntegraglet. th its for f _nodal surfaces of the solutions. We constructed the solutions
enerally, the driierences between the results for termiy, density and pressure also explicitly.

ons and bosons in the region above the degeneracy tempera- ; . .
o 4 The wave equations were finally also solved numerically.
ture are qualitatively not very large. One difference due to,

guantum statistics can be seen in Fig. 5, where the temperg__urpri_singly, the _mode spectrum found turned out to be qua-
ture dependence of internal wave modes and sound modes3igontinuous, which can be u_nderstood by the overlap of the
displayed for a Fermi gas. The frequencies of the interna?pm:trum_Of low-frequency internal waves O_f short wave-
wave modes curve downwards, and those of the sountgnaths with the spectrum of sound waves with large wave-

modes curve upwards. In the Bose gas case the opposi'@“gths- Within a finite-dimensional subspace of the Hilbert
tendency is found, as shown in Figs. 2 and 3. space, defined by restricting from above the number of nodal

surfaces, we found a bandlike structure of the eigenfrequen-
cies in a strongly anisotropic trap, where the bands are la-
beled by the number of nodal surfaces orthogonal to the
In the present paper we have made a systematic analygigore strongly confined direction, while the modes within a
of the hydrodynamic modes of quantum gases in a harmonigiven band differ by the number of nodes in the other direc-
trap with general anisotropy in the collision-dominatedtions. The number of internal wave modes in such a finite-
nondissipative limit. Provided the hydrodynamic limit is dimensional subspace is also limited, and these modes are
applicable, the analysis applies for Fermi gases at althen found primarily in the lowest-lying band. We note that
temperatures and for Bose gases at temperatures abothe restriction to a finite subspace of the Hilbert space is also
Bose-Einstein condensation. Our results extend previoughysically motivated, since typical excitation mechanisms,

VI. CONCLUSIONS
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such as the modulation of the trapping potential, will alsospectrum in the whole temperature domain covered by the
only excite modes in a certain subspace with appreciabléheory. This goal cannot be achieved so far with the inclu-
amplitude. sion of damping effects, but remains an interesting aim for
The analysis we presented is subject to some obviouBiture work. It seems clear that, with the inclusion of damp-
limitations which we now discuss briefly. It is clear that only ing, the zero-frequency modes we have found will turn into
systems in the collision-dominated hydrodynamic limit havepurely overdamped modes. However, as exemplified for the
been considered here. For bosons a necessary requiremenkishn modes, the phenomenological theory behind (Ed)
therefore a large scattering length and a sufficiently largalso permits one to obtain a result for the damping of some
number density to ensure a large cross section for elastimodes (with the result that it is vanishing for the Kohn
collisions. For fermions this requires, besides a large numbenode$ whose hydrodynamic frequencies are only known in
density, the simultaneous trapping of several hyperfinghe absence of dissipatidd1,12. The requirement is that
states, in order to allow for the interaction of different fer- mode frequencies without damping are also known in the
mionic species by elastic collisions, which would be forbid- collisionless limit. Then an estimate of the collision time can
den for a single species by the Pauli principle. Throughoube used in Eq(1.6) to obtain an interpolation between the
we have neglected spin-wave excitations, which can also oeollision-dominated regime and the collisionless regime, in-
cur in the latter systems; this is permissible, because thegluding the damping due to the finite value of the collision
decouple from the density waves by symmetry as long as theéme [11,12. In the past this estimate proved to be quite
external potential is the same for all components. The colliuseful in a comparison of the experimental results for bosons
sion rates in degenerate Fermi gases are suppressed by22], and it may be hoped that further results along such
Fermi-blocking factor compared to the classical collisionlines, not only for bosons but also for rapidly developing
rates[21], and scale in proportion toT{Tg)2. Therefore, at experiments on trapped Fermi gases, may be obtained in the
least in the low-temperature domain, it is necessary to useear future.
atomic species with particularly large positive or negative
s-wave scattering Iengths. Another I|m|tat|_on of our a_naly5|s ACKNOWLEDGMENTS
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