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Collisional frequency shifts of absorption lines in an atomic hydrogen gas
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We consider the effect of interactions on the line shape of the two-photon 1s-2s transition in a~doubly!
spin-polarized atomic hydrogen gas in terms of the interatomic interaction potentials. We show that the
frequency-weighted sum rule for the intensity of the line is not given simply in terms of the pseudopotentials
that describe the interactions between low-energy atoms. The origin of the departures from the simple pseudo-
potential result for the frequency-weighted sum rule is traced to what we refer to as incoherent contributions to
the spectral weight. These arise from more complicated final states of the many-body systems than the ones
usually considered. In particular, we show how the relevant response function may be treated in a manner
similar to the density-density response function for Fermi liquids, and express it as a coherent part coming
from single particle-hole pairs, and an incoherent part coming from other excitations. We argue that in
experiments only the coherent part of the response of the system is observed, and its contribution to the
frequency-weighted sum rule is shown to be given correctly by the pseudopotential approximation. Finally we
calculate the width of the coherent part of the line due to collisional damping.
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I. INTRODUCTION

After two decades of concentrated effort Friedet al. re-
cently succeeded in realizing Bose-Einstein condensatio
spin-polarized atomic hydrogen in a magnetic trap@1#. In
this experiment a key role is played by collisional frequen
shifts, since the density of the atomic hydrogen cloud
monitored by observing the frequency shift of the Doppl
free peak in the two-photon 1s-2s absorption spectrum@2#.
Previously, collisional frequency shifts have also been
served in hydrogen masers@3# and in atomic fountains@4#,
where they lead to a serious limitation on the stability
these devices. A thorough understanding of such shift
therefore central to the interpretation of various experime
results with atomic quantum gases.

In the theory of line shifts that is currently standard@5#,
one considers only the normal state of the gas and us
Boltzmann equation to determine the effect of collisions
the absorption profile. The line shift is then found to be p
portional to the difference of the 1s-2s scattering length,
a1s-2s , and the 1s-1s one,a1s-1s . Recently two papers hav
appeared on the theory of the line shifts, one employing
random phase approximation@6#, and the other using sum
rule arguments@7#. One striking prediction of these calcula
tions is that the line shift in a dilute, fully Bose-Einste
condensed gas should be one-half that for an unconde
gas of the same density. These papers have in common
assumption that the interaction between atoms may be
sumed to be of the usual contact pseudopotential form,
that the interactions may be taken into account in a me
field approach. In this paper we investigate the problem
lowing for a more general interaction. We demonstrate t
the frequency-weighted sum rule is given in terms of
bare interaction potential, not the pseudopotential. By us
microscopic many-body theory we trace the origin of t
discrepancy between the true frequency-weighted sum
and the one calculated using the pseudopotential toincoher-
1050-2947/2001/64~1!/013618~8!/$20.00 64 0136
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ent contributions to the atomic propagators, which ar
when a 1s atom is excited close to another such atom. T
latter processes, while relatively infrequent in a low-dens
gas, give contributions to the spectral weight at frequenc
very different from those for excitation of an atom far aw
from any other atom. However, as we demonstrate in
paper, the shift of thecoherentcontribution to the response
which corresponds physically to excitation of an atom wh
it is relatively far away from other atoms, is given by th
pseudopotential result.

We have organized the paper as follows. In Sec. II
first derive an exact sum rule for the frequency-weigh
spectral weight, and will show that this is not satisfied by t
pseudopotential result. In Sec. III we then study the probl
from a microscopic point of view, and indicate how the a
sorption spectrum can be separated into coherent and i
herent parts. We also argue that the coherent part of
response is of greatest interest experimentally. In Sec. IV
determine the collisional broadening of the coherent abso
tion peak and we sum up in Sec. V with our conclusions

II. SUM-RULE APPROACH

Let us begin by considering a system of hydrogen ato
in the 1s ground state. The effect of applying the laser r
diation is to excite some hydrogen atoms to the metasta
2s state, which has a radiative lifetime 1/G2s of the order of
0.1 s. Experimentally, the hydrogen clouds investigated
inhomogeneous, but since the length scale for density va
tions is large compared with the microscopic lengths in
problem, it is an excellent approximation to take the effe
of inhomogeneity into account in the local-density appro
mation, and consequently in our calculations we conside
spatially uniform system. If the radiation field is spatial
uniform, its interaction with the hydrogen gas may be rep
sented by a perturbing Hamiltonian
©2001 The American Physical Society18-1
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H15
\V

2 E dx@e2 ivtc2s
† ~x!c1s~x!1eivtc1s

† ~x!c2s~x!#,

~1!

wherev is the angular frequency of the pair of photons, t
operatorsca

†(x) andca(x) create and destroy atoms in th
stateua&, andV is the effective Rabi frequency determine
by the strength of the laser field and atomic matrix eleme

The unperturbed partH0 of the Hamiltonian is given by
the sum of the intrinsic atomic energies of isolated atom
rest, the kinetic energy associated with the translation of
oms, and terms that take into account interactions betw
atoms. To an excellent approximation the interaction ene
is given in terms of local two-body potentials dependent o
on the distancer between atoms, and we denote the poten
for two atoms in the 1s state byV1s-1s(r ) and that for one
atom in the 1s state and the other in the 2s state by
V1s-2s(r ). Since we consider the case of weak excitation,
shall not need to specify the interaction between two excit
state atoms. In detail we thus have

H05E dx c1s
† ~x!S 2

\2¹2

2m
1e1sDc1s~x!

1E dx c2s
† ~x!S 2

\2¹2

2m
1e2sDc2s~x!

1
1

2E dxE dx8 c1s
† ~x!c1s

† ~x8!V1s21s~x2x8!

3c1s~x8!c1s~x!1E dxE dx8 c1s
† ~x!c2s

† ~x8!

3V1s22s~x2x8!c2s~x8!c1s~x!, ~2!

wherem is the mass of an atom andea denotes the energy o
the atomic statea. Note that for clarity we have in the firs
instance neglected the effect of the finite lifetime of the e
cited atom. In Sec. III, however, we show how it can
easily incorporated into the theory.

The net rate of transitions may now be calculated fr
Fermi’s Golden Rule, and is given by

I ~v!5
2p

\ (
m,n

u^muH1un&u2d~\v1En2Em!~pn2pm!.

~3!

Herepn is the initial probability for occurrence of the many
body stateun&, which is an eigenstate of the HamiltonianH0
and therefore obeysH0un&5Enun&. We note that for the situ-
ations of interest in the Bose-Einstein condensation exp
ments, initial states containing 2s atoms play essentially no
role, since the probability of 2s atoms being present is ver
small because the energy difference between a 2s atom and a
ground-state one is much larger than the thermal energykBT.
From Eq. ~3! we thus find that the rate of absorption
energy is
01361
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2p

\ (
m,n

~Em2En!u^muH1un&u2

3d~\v2Em1En!pn , ~4!

and the average frequency of the line is given by

v̄5

E dvvI ~v!

E dvI ~v!

5

(
m,n

~Em2En!u^muH1un&u2pn

\(
m,n

^muH1un&u2pn

. ~5!

To evaluate the average frequency we, following the p
cedure adopted by Oktelet al. @7#, again make use o
H0un&5Enun&, and consider the thermal average
H1@H0 ,H1#, or equivalently the double commutato
†H1 ,@H0 ,H1#‡. In contrast to Ref.@7#, we however do not
assume that the interaction may be represented by a pse
potential. The average frequency is then given by

v̄5
^H1@H0 ,H1#&

\^H1
2&

. ~6!

The physical content of this equation is that the average
quency shift is given by the difference in energies of t
expectation value of the energy in the initial state and tha
the state created by operating withH1 on the initial state.
Evaluating the expectation value of the commutator expr
sion above directly, we find for the frequency shift relative
its value for an isolated atom the result

Dv5
n

\E dr @V1s22s~r !2V1s21s~r !#g2~r !, ~7!

wheren is the density of the gas and

g2~r !5
1

n2
^c1s

† ~r !c1s
† ~0!c1s~0!c1s~r !& ~8!

is the pair-distribution function for ground-state atoms in t
initial state of the system. In arriving at this expression
have again neglected the possibility of 2s atoms being
present in the initial state. This result is simple to understa
since the operatorH1 converts a single ground-state atom
the initial state into an excited state one with an amplitu
that does not depend on position. The average energy di
ence between the initial state and the one created by the
is therefore the energy required to convert a 1s atom into a
2s one. Since the masses of the atoms in the two states
the same, there is no contribution from the kinetic ener
and the sole contribution, apart from the energy differen
for an isolated atom, comes from interactions. This situat
should be contrasted with that of an isotopic impurity, like
3He atom in liquid 4He, which is just the opposite, in tha
the masses are different, while the interaction potentials
the same. The sum rule derived here is analogous to
rules for spin response of condensed matter systems, an
spin, isospin, and spin-isospin response of nuclei. In th
8-2
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COLLISIONAL FREQUENCY SHIFTS OF ABSORPTION . . . PHYSICAL REVIEW A64 013618
cases the basic origin of the shifts is terms in the interac
that are not invariant under rotations in spin, and/or isos
space, or, in the present problem, rotations in the pseudo
space corresponding to conversion of a 1s atom into a 2s
atom.

The long-wavelength assumption is appropriate for
two-photon transition when the two photons that are
sorbed have equal and opposite momenta. When the
momentumq of the absorbed photons is nonzero, the p
turbing Hamiltonian depends on space and we need to
eralize the sum rule to spatially varying interactions. This
straightforward and we find that the average frequency s
is given by adding the recoil energy\2q2/2m to the spatially
homogeneous result forq50.

Let us now compare our result in Eq.~7! with that of
earlier work. If the interaction potentials are weak, the c
relation function will vary little over the ranges of the pote
tials, and we may replace the pair-distribution function by
value for zero separation. We then obtain

~Dv!B5
n

\
g2~0!E dr @V1s22s~r !2V1s21s~r !#. ~9!

This is equivalent to the result of Oktelet al. @7#, since for
weak potentials the Born approximation may be applied,
thus the scattering lengthsa are related to the interactio
potentials by 4p\2a/m5*dr V(r ).

The interaction potentials for hydrogen atoms are
weak, and the Born approximation is not valid. Therefore
is important to explore how the pair-distribution functio
behaves at short distances. On length scales larger tha
range of the atomic interactions, correlations should be w
described in terms of mean fields. However, for strong
tentials it is not permissible to assume that the correla
function for small separations varies slowly on distances
the order of the range of the potential. Rather one exp
that the many-body wave function for small particle sepa
tions will behave as that for a pair of atoms interacting
the 1s-1s interaction, since the effects of other atoms w
then be negligible at low densities. Hence, provided the
ergies of elementary excitations of the system are small c
pared with the typical energy scale over which the two-at
relative wave function changes significantly, it will be
good approximation to assume that the pair-distribut
function scales as the square of the scattering wave func
at zero energy, i.e.,uC rel(r )u2. We therefore write

g2~r !.uC rel~r !u2g2
MF~0!, ~10!

where the mean-field correlation functiong2
MF(0) is the pair-

correlation function on length scales that are greater than
range of the interaction but small compared with oth
lengths in the problem, such as the thermal de Broglie wa
length, the particle separation, and, when a condensa
present, the coherence length. We have chosen the nor
ization of the wave function such that at distances large c
pared with the range of the 1s-1s potential it behaves a
C rel(r ).12a1s-1s /r . Note that the above procedure
equivalent to assuming a wave function of the Jastrow fo
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to describe the correlations at short distances, the Jas
factor being taken to be of the form of the relative wa
function of two atoms at zero energy@8#.

The final result for the shift is thus

Dv5
n

\
g2

MF~0!E dr @V1s22s~r !2V1s21s~r !#uC rel~r !u2.

~11!

This expression cannot be simply rewritten in terms of sc
tering lengths. A simple example that demonstrates this
1s-1s interaction with a hard core at a radiusr c . The ex-
pression for the frequency shift does not depend on
1s-2s potential at distances less thanr c , since the relative
wave function for two atoms in theu1s& state vanishes there
However, the 1s-2s scattering length is sensitive to the b
havior of the 1s-2s potential at distances less thanr c , and
therefore this is incompatible with the frequency shift bei
expressible solely in terms of scattering lengths. We exp
the Jastrow form of the wave function to be accurate ir
spective of whether or not the gas is Bose condensed,
consequently in a completely Bose-condensed gas the s
are predicted to be a factor of 2 smaller than in a gas of
same density with no condensate, reflecting the usual 2!
duction factor for two-body processes@9#.

The result of this calculation is that the frequenc
weighted sum rule is quite different from what one predi
if one uses the pseudopotential. To understand the origi
these differences it is convenient to explore the probl
from a microscopic viewpoint.

III. MICROSCOPIC APPROACH

To understand the sum-rule result, it is helpful to thi
about the nature of the final states that can be created f
the initial state by the operator of interest, which in this ca
converts a 1s atom into a 2s one. Relative to the initial state
the simplest excited states have an extra 2s quasiparticle and
an extra 1s quasihole, and will be referred to as sing
quasiparticle-quasihole pair excitations. In the random-ph
approximation these are the only states taken into acco
The physics of the process may be understood by regar
the degree of freedom associated with converting a 1s atom
into a 2s one as a pseudospin. If the commutator of t
pseudospin-raising operator with the unperturbed Ham
tonian is zero, there is a unique frequency for all transitio
Because the interaction between a 1s atom and a 2s atom
differs from that between two 1s atoms, however, the Hamil
tonian is not invariant under rotations in pseudospin spa
and its commutator with the pseudospin-raising operato
not zero. Consequently there can be transitions to states
a range of energies. It is perhaps helpful to consider a s
system in an applied magnetic field. If the interaction b
tween the particles commutes with the spin-raising opera
the raising operator will couple only to states whose ene
differs from that of the original state by\ times the Larmor
frequency. However, if the interaction is not invariant und
spin rotations, other excited states with different energies
be created. In Fermi-liquid theory the first sort of transitio
8-3
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C. J. PETHICK AND H. T. C. STOOF PHYSICAL REVIEW A64 013618
correspond to the creation of a single quasiparticle-quasi
pair, while the more complicated excitations correspond
creation of many pairs. For the problem under study here
n-pair excitation has one extra 2s quasiparticle,n extra 1s
quasiparticles, andn11 extra 1s quasiholes. The differenc
between the results for the frequency-weighted sum rule
culated with the pseudopotential and the actual potentia
due to the multipair excitations. For Fermi liquids an ana
sis of the density response in terms of single-pair and mu
pair states may be found in Ref.@10#. A formulation of the
problem for more general sorts of response was presente
terms of microscopic theory by Leggett@11#, and the results
were discussed in terms of Fermi-liquid theory in Ref.@12#.

Let us begin by expressing the result for the transition r
in terms of the response function for the operator

O5
1

VE dx@e2 ivtc2s
† ~x!c1s~x!1eivtc1s

† ~x!c2s~x!#,

~12!

whereV is the volume of the system. The response funct
is defined in the usual way as the temporal Fourier transf
of the retarded commutator, and is given by

x~v!52
1

VE dxE
0

`

dteivt

3^@c1s
† ~x,t !c2s~x,t !,c2s

† ~0,0!c1s~0,0!#&

5(
m,n

z^muOun& z2pn

\v1 i01En2Em
, ~13!

wherepn is again the probability of the staten being occu-
pied and we neglected the occupancy of the final state c
pared with that of the initial one. The transition rate in E
~3! is therefore given by

I ~v!52
2

\
Im@P~v!#, ~14!

where

P~v!5S \V

2 D 2

x~v! ~15!

is the polarizability of the gas. This is the desired res
because it explicitly shows that the transition rate is rela
to the polarizability of the gas, which is easily accessi
with equilibrium many-body techniques. Indeed, in that la
guage\P(v) is equal to the~retarded! self-energy for the
‘‘effective photon’’ causing the 1s-2s transition and the
imaginary part therefore determines its finite lifetime, whi
physically is due to absorption by 1s atoms in the gas. We
are thus left with the task of calculating the polarizabilit
which theoretically implies that we have to evaluate the d
gram in Fig. 1. We begin by considering two simple calc
lations, the Hartree-Fock approximation and the rando
phase approximation, before discussing the more gen
formulation.
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A. The Hartree-Fock and random-phase approximations

In this section we consider a number of examples wh
only coherent contributions to the response are taken
account. These calculations lead to results identical w
those of Oktel and Levitov@6#. To familiarize ourselves with
the present formulation, let us first consider the ideal Bo
gas. Then Eq.~13! becomes

x~v!52
1

VE dxE
0

`

dt eivt^c1s
† ~x,t !c1s~0,0!&

3^c2s~x,t !c2s
† ~0,0!&. ~16!

Moreover, the single-particle propagator is given by

^c1s
† ~x,t !c1s~0,0!&5

1

V (
k

Nk

3exp@2 ik•x1 i ~ek1e1s2m!t/\#,

~17!

whereek5\2k2/2m is the kinetic energy of a 1s atom,m is
the chemical potential for 1s atoms, andNk51/(eb(ek2m)

21) is the Bose-distribution function withb51/kBT. Simi-
larly we have, including now the finite atomic lifetime of th
2s atom,

^c2s~x,t !c2s
† ~0,0!&

5
1

V (
k

exp@ ik•x2 i ~ek1e2s2 i\G2s/22m!t/\#.

~18!

Substituting the last two results, we find for the polarizabil
in Eq. ~15! the expression

P~v!52 i
nV\V2

8 E
0

`

dt eivtexp@ i ~e1s2e2s1 i\G2s/2!t/\#

5
nV~\V!2

8

1

\v1e1s2e2s1 i\G2s/2
. ~19!

Therefore, we conclude that the absorption line of the
has a profile given by

FIG. 1. The polarization diagram that determines the tw
photon absorption line shape. The thick lines denote the exacs
and 2s propagators, and the small and large black areas denote
bare and exact vertex functions, respectively.
8-4
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I ~v!5N
~\V!2

8

G2s

@\v2~e2s2e1s!#
21~\G2s/2!2

, ~20!

which is just the number of atomsN5nV times the atomic
line profile and exactly centered at the atomic resonanc
this case. Note that diagrammatically we have now cal
lated the lowest-order contribution to the polarizability
Fig. 1, in which the exact 1s and 2s propagators are replace
by the ideal gas ones and there are no vertex correction

At the next level of approximation we dress the 1s and 2s
propagators by including the effect of atom-atom ladder d
grams as shown in Fig 2. This corresponds to a Hartree-F
approximation, in which the effective interaction is taken
be theT matrix for two-body scattering. For a gas with n
condensate, the effect of dressing the propagators in
above calculation is to replaceea by ea1\Sa , where to
lowest order in theT matrix

\S1s5
8pa1s21s\

2n

m
, ~21!

and

\S2s5
4pa1s22s\

2n

m
. ~22!

The factor-of-2 difference between the numerical factors
Eqs.~21! and~22! reflects the fact that both the Hartree a
Fock terms contribute to the energy of a 1s atom, but only
the Hartree term contributes for a pair of unlike atoms. B
cause these interaction corrections to the atomic energie
purely real, the absorption line is of the same shape as in
~20!, but is now centered at a frequency shifted from t
single-atom resonance by an amount

~Dv!HF5
4p\n

m
~a1s22s22a1s21s!. ~23!

This is the ‘‘naive’’ Hartree-Fock result for the collisiona
frequency shift due to the mean-field interaction that as
and a 2s atom experience from the surrounding gas ofs
atoms. Most important for our purposes is that if we rep
the above calculation for a fully Bose-condensed gas ofs
atoms, we find that now

~Dv!HF5
4p\n

m
~a1s22s2a1s21s!, ~24!

FIG. 2. The 1s and 2s propagators in theT-matrix approxima-
tion. The thin lines represent the bare propagators and the da
lines the interactions.
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which shows that only the contribution from the 1s-1s
mean-field interaction is reduced by a factor of 2, in agr
ment with the fact that 1s and 2s atoms are distinguishable

We have called the above Hartree-Fock approximat
naive, because it is well known that for an approximation
satisfy the conservation laws, it is necessary to include ve
corrections in addition to the self-energy corrections d
cussed above. For this problem this amounts to including
effects of the mean field self-consistently. Formally, the
two kinds of corrections are related by the condition that
vertex correction must be the functional derivative of t
self-energy corrections with respect to the applied field@13#.
In our case this implies that we also have to calculate
‘‘maximally crossed’’ diagrams shown in Fig. 3. These co
respond to the chains of particle-hole bubble diagrams
culated in the random-phase approximation and in Fer
liquid theory. This is easily achieved since it corresponds
summing the geometric series

1

\v2~Dv!HF1e1s2e2s1 i\G2s/2

1
1

\v2~Dv!HF1e1s2e2s1 i\G2s/2

3
4pa1s22s\

2n

m

1

\v2~Dv!HF1e1s2e2s1 i\G2s/2

1•••.

In the end we thus find that

I ~v!5N
~\V!2

8

3
G2s

@\v2~Dv!RPA2~e2s2e1s!#
21~\G2s/2!2

,

~25!

with

~Dv!RPA5~Dv!HF1
4pa1s22s\n

m

5
8p\n

m
~a1s22s2a1s21s!. ~26!

Moreover, in the fully Bose-Einstein condensed case the v
tex corrections are absent and we recover the Hartree-F
result,

~Dv!RPA5~Dv!HF5
4p\n

m
~a1s22s2a1s21s!. ~27!

ed

FIG. 3. The vertex corrections in theT-matrix approximation.
8-5
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We therefore conclude that for a fully condensed Bose
the collisional frequency shift is indeed reduced by an ov
all factor of 2, in agreement with our sum-rule result in S
II and the work of Ref.@6#.

B. Coherent and incoherent contributions to response
functions

To explore the physics in greater detail, it is convenien
adopt an approach exploited in the context of Fermi-liq
theory@11#. We first express the single-particle propagator
a many-body system as the sum of a coherent part com
from an intermediate state with a single quasiparticle exc
tion, and an incoherent part coming from more-complica
excitations. Mathematically this implies that

G(2)~p,e!5Gcoh
(2)~p,e!1Ginc

(2)~p,e!, ~28!

wherep is the momentum, ande is the energy. The coheren
part, which corresponds to the quasiparticle, is given by

Gcoh
(2)~p,e!5

Z~p!

e2e~p!
, ~29!

where Z(p) is the renormalization factor or quasipartic
residue, ande(p) is the quasiparticle energy. Both of the
quantities depend on the atomic species considered. Th
coherent contribution to the propagator corresponds to t
sient effects due to the dressing of a free atom to make it
a quasiparticle. Likewise the two-particle propaga
G(4)(p,e;p8,e8) for a pseudospin fluctuation may be e
pressed in terms of a coherent part, corresponding to a si
quasiparticle-quasihole pair, plus an incoherent part com
from multipair excitations, i.e.,

G(4)~p,e;p8,e8!5
Z1s~p!

@e2e1s~p!#

Z2s~p8!

@e82e2s~p8!#

1Ginc
(4)~p,e;p8,e8!. ~30!

We next analyze the diagrams for the response functiox
by separating the single-particle propagators into their co
ent and incoherent contributions, as was done by Legge
the context of Fermi systems. We then divide these diagr
into two classes. The first class contains those diagrams
are reducible with respect to the coherent contributions
two ~one 1s and one 2s) single-particle propagators. W
refer to these as the coherent contribution. The second c
contains all diagrams that are not reducible in this sense
we call this the incoherent contribution. We remark th
since the operatorO does not change the total particle num
ber, the two coherent particle lines must have their arrow
opposite directions, and therefore correspond to
quasiparticle-quasihole pair.

Expressed in a formal matrix notation, the response fu
tion may be written as

x5Tr@G(4)~12G (4)G(4)!21#, ~31!
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whereG (4) is the two-particle vertex function that is irreduc
ible with respect to two particle lines with oppositely d
rected arrows, i.e., it is irreducible in the particle-hole cha
nel. Separating out the terms that contain only incoher
contributions toG(4) from the others, we find

x5x inc1xcoh, ~32!

where

x inc5Tr@Ginc
(4)~12G (4)Ginc

(4)!21# ~33!

and

xcoh5Tr@~12G (4)Ginc
(4)!21Gcoh

(4)~12Gcoh
(4)Gcoh

(4)!21

3~12G (4)Ginc
(4)!21#. ~34!

The factor (12G (4)Ginc
(4))21 corresponds to a vertex reno

malization and the quantity

Gcoh
(4)5G (4)~12Ginc

(4)G (4)!21 ~35!

is a renormalization of the interactions between the cohe
parts of a particle-hole excitation due to intermediate sta
with incoherent particle-hole pairs. For the present proble
an important feature of this result is the existence of
incoherent contribution tox, since this is what is responsibl
for the difference between the sum rule evaluated with
pseudopotential and the true sum rule.

We turn now to the coherent contribution to the respon
function. The coherent part ofG(4) has the same form as fo
two particles with energies modified by the medium, ap
from the renormalization factorsZ. However, if one multi-
plies the matrix element for coupling of the two photons
the excitations by a factor (12G (4)Ginc

(4))21(Z2sZ1s)
1/2 and

uses for the effective interaction between a quasiparticle
a quasihole the quantityZ1sZ2sG

(4), the coherent contribu-
tion to the response has precisely the same form as in
random-phase approximation calculation above. This mo
fied interaction plays a role analogous to that of t
quasiparticle-quasiparticle interaction introduced in Ferm
liquid theory by Landau.

Let us now analyze the consequences of the above f
low-density gas. In that case the renormalization factors t
to unity, and the two-particle vertex reduces to theT matrix.
The quasiparticle energies reduce to the Hartree-Fock o
and the mean-field interaction is also just theT matrix. Thus
the coherent contribution to the response has precisely
form predicted by the mean-field theory calculation in S
III A. Observe that in calculating the average frequency
sociated with the coherent part of the response, the renor
ization factor for the effective two-photon matrix eleme
cancels out. What implications does our calculation have
experiment? In addition to a sharp peak in the absorption
to the excitation of a single quasiparticle-quasihole pair,
calculation predicts a broad background due to creation
more complicated final states. However, because the b
ground is expected to be a rather smoothly-varying funct
of frequency that extends over a large frequency range,
difficult to detect. Consequently, the part of the absorpt
8-6
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spectrum that is investigated experimentally is only that d
to the coherent contribution to the response function.

IV. COLLISIONAL BROADENING

We now consider how collisions broaden the coher
part of the line. One effect is that the self-energy of t
atoms acquires an imaginary part, and the coherent par
the propagators become

Gcoh
(2)~p,e!5

Z~p!

e2e~p!1 i\S9„p,e~p!…
, ~36!

whereS9(p,e) is the imaginary part of the self-energy. An
other effect is that there are vertex corrections analogou
those responsible for the contributions to the line shift
yond what is predicted by the Hartree-Fock approximati
The total width is most easily calculated by observing t
the propagation of a 2s atom and a 1s hole is determined by
the difference between the 1s-2s interaction and the 1s-1s
interaction. For definiteness, let us consider a gas with
condensate. In the absence of the 1s-2s interaction, the only
contribution to the width comes from the imaginary part
the self-energy of the 1s atom, which is given in the dilute
limit by @14#

\S1s9 ~p,ep!522pS 4pa1s21s\
2

m D 2 1

V2 (
p8p9

d~ep1ep8

2ep1p92ep82p9!@Np8~11Np82p9!

3~11Np1p9!2~11Np8!Np82p9Np1p9#,

~37!

the factor of 2 being the result of the Bose enhancemen
the cross section, which is due to the exchange proc
Since the imaginary part of the self-energy is moment
dependent, the absorption line of the gas is in principle
exactly Lorentzian. Nevertheless, the typical width of t
line is determined by the average2(2/N)(pNpS1s9 (p,ep)
and thus equals

DG2s5
~4p\!3~a1s21s!

2

nm2

1

V3 (
pp8p9

d~ep1ep82ep1p9

2ep82p9!Np@Np8~11Np82p9!~11Np1p9!

2~11Np8!Np82p9Np1p9#. ~38!

When the 1s-2s interaction is included, the result is simpl

DG2s5
~4p\!3~a1s21s2a1s22s!

2

nm2

1

V3 (
pp8p9

d~ep1ep8

2ep1p92ep82p9!Np@Np8~11Np82p9!~11Np1p9!

2~11Np8!Np82p9Np1p9#. ~39!

In the classical limit, this reduces to
01361
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DG2s58pn~a1s21s2a1s22s!
2^v rel&, ~40!

where ^v rel&54(kT/pm)1/2 is the average relative velocit
between two 1s atoms in the atomic hydrogen gas. The to
width of the line is the sum of the natural width and th
collisional contribution, and it is therefore equal toG2s
1DG2s . The width is of order (a1s-2s2a1s-1s)/lT times the
shift, wherelT5\/(2pmkBT)1/2 is the thermal de Broglie
wavelength. When a condensate is present, the above c
lation can be easily generalized. In the first approximat
we only need to take into account explicitly the macrosco
occupation of the zero-momentum state by substitutingNp
→ncVdp,01Np , with nc the condensate density. At the ne
level of approximation we also need to incorporate the B
goliubov coherence factors.

V. CONCLUSIONS

In this paper we have considered the effect of interacti
on the two-photon absorption line profile in spin-polariz
atomic hydrogen by means of a frequency-weighted sum
and by means of microscopic many-body theory. We ha
shown that the line profile consists of a narrow coherent p
on top of a broad incoherent background. For typical atom
potentials this background, in principle, has sufficient sp
tral weight that the pseudopotential approximation does
give an accurate estimate of the total contribution to
frequency-weighted sum rule. However, the frequency of
narrow peak, which is the feature most easily seen exp
mentaly, may be expressed in terms of the low-ene
pseudopotentials.

We have also shown that the collisional frequency shift
the absorption line is reduced by a factor of 2 if the gas
fully Bose condensed. We have pointed out that for t
factor-of-2 reduction it is crucial to take many-body corre
tion effects into account that go beyond the Hartree-Fo
approximation commonly used for these dilute atomic gas
At this point it is worth mentioning that the Bose-Einste
condensation experiments by Friedet al. apparently do not
see this effect. Their results seem to be consistent with
Hartree-Fock theory, which, due to the fact thata1s-1s
!ua1s-2su for atomic hydrogen, basically predicts no redu
tion at all @1#. At present we have no explanation for th
cause of this discrepancy.
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