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Collisional frequency shifts of absorption lines in an atomic hydrogen gas
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We consider the effect of interactions on the line shape of the two-phatets Iransition in a(doubly)
spin-polarized atomic hydrogen gas in terms of the interatomic interaction potentials. We show that the
frequency-weighted sum rule for the intensity of the line is not given simply in terms of the pseudopotentials
that describe the interactions between low-energy atoms. The origin of the departures from the simple pseudo-
potential result for the frequency-weighted sum rule is traced to what we refer to as incoherent contributions to
the spectral weight. These arise from more complicated final states of the many-body systems than the ones
usually considered. In particular, we show how the relevant response function may be treated in a manner
similar to the density-density response function for Fermi liquids, and express it as a coherent part coming
from single particle-hole pairs, and an incoherent part coming from other excitations. We argue that in
experiments only the coherent part of the response of the system is observed, and its contribution to the
frequency-weighted sum rule is shown to be given correctly by the pseudopotential approximation. Finally we
calculate the width of the coherent part of the line due to collisional damping.
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[. INTRODUCTION ent contributions to the atomic propagators, which arise

when a k atom is excited close to another such atom. The

After two decades of concentrated effort Frietal. re-  latter processes, while relatively infrequent in a low-density

cently succeeded in realizing Bose-Einstein condensation igas, give contributions to the spectral weight at frequencies
spin-polarized atomic hydrogen in a magnetic tfdp. In  very different from those for excitation of an atom far away
this experiment a key role is played by collisional frequencyfrom any other atom. However, as we demonstrate in this

shifts, since the density of the atomic hydrogen cloud ispaper, the shift of theoherentcontribution to the response,

monitored by observing the frequency shift of the Doppler-which corresponds physically to excitation of an atom when

free peak in the two-photonsi2s absorption spectrurf?]. it is relatively far away from other atoms, is given by the
Previously, collisional frequency shifts have also been obpseudopotential result.
served in hydrogen masef8] and in atomic fountain4], We have organized the paper as follows. In Sec. Il we

where they lead to a serious limitation on the stability offirst derive an exact sum rule for the frequency-weighted
these devices. A thorough understanding of such shifts igpectral weight, and will show that this is not satisfied by the
therefore central to the interpretation of various experimentahseudopotential result. In Sec. |1l we then study the problem
results with atomic quantum gases. from a microscopic point of view, and indicate how the ab-
In the theory of line shifts that is currently standdfd,  sorption spectrum can be separated into coherent and inco-
one considers only the normal state of the gas and usestgrent parts. We also argue that the coherent part of the
Boltzmann equation to determine the effect of collisions onresponse is of greatest interest experimentally. In Sec. IV we
the absorption profile. The line shift is then found to be pro-getermine the collisional broadening of the coherent absorp-

portional to the difference of thesi2s scattering length, tjon peak and we sum up in Sec. V with our conclusions.
ais0s, and the 5-1s one,a;¢ 5. Recently two papers have

appeared on the theory of the line shifts, one employing the

random phase approxima_tic_[ﬁ], and_th_e other using sum- Il. SUM-RULE APPROACH

rule argument$7]. One striking prediction of these calcula-

tions is that the line shift in a dilute, fully Bose-Einstein  Let us begin by considering a system of hydrogen atoms
condensed gas should be one-half that for an uncondenséuthe 1s ground state. The effect of applying the laser ra-
gas of the same density. These papers have in common tlaation is to excite some hydrogen atoms to the metastable
assumption that the interaction between atoms may be ags state, which has a radiative lifetimel’L of the order of
sumed to be of the usual contact pseudopotential form, an@.1 s. Experimentally, the hydrogen clouds investigated are
that the interactions may be taken into account in a meannhomogeneous, but since the length scale for density varia-
field approach. In this paper we investigate the problem altions is large compared with the microscopic lengths in the
lowing for a more general interaction. We demonstrate thaproblem, it is an excellent approximation to take the effects
the frequency-weighted sum rule is given in terms of theof inhomogeneity into account in the local-density approxi-
bare interaction potential, not the pseudopotential. By usingmation, and consequently in our calculations we consider a
microscopic many-body theory we trace the origin of thespatially uniform system. If the radiation field is spatially
discrepancy between the true frequency-weighted sum ruleniform, its interaction with the hydrogen gas may be repre-
and the one calculated using the pseudopotentiaddoher-  sented by a perturbing Hamiltonian
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wherew is the angular frequency of the pair of photons, the
operatorswz(x) and ¢,(x) create and destroy atoms in the
state| ), and() is the effective Rabi frequency determined

and the average frequency of the line is given by

by the strength of the laser field and atomic matrix elements. f dool () % (Em—En)[(m[H4|n)[?p,

The unperturbed pait, of the Hamiltonian is given by = =_ (5)
the sum of the intrinsic atomic energies of isolated atoms at f dol 7 mlH-InyI2
rest, the kinetic energy associated with the translation of at- wl(@) mzn (mlH )Py

oms, and terms that take into account interactions between
atoms. To an excellent approximation the interaction energy To evaluate the average frequency we, following the pro-
is given in terms of local two-body potentials dependent onlycedure adopted by Oktett al. [7], again make use of
on the distance between atoms, and we denote the potentiaHo|n)=E,|n), and consider the thermal average of
for two atoms in the & state byV,.,4(r) and that for one H;[Ho,H1], or equivalently the double commutator
atom in the 5 state and the other in thes2state by [Hi1,[Hq,H]]. In contrast to Ref[7], we however do not
V1s2s(r). Since we consider the case of weak excitation, weassume that the interaction may be represented by a pseudo-
shall not need to specify the interaction between two excitedpotential. The average frequency is then given by
state atoms. In detail we thus have

(Hi[Ho,H4])

©®
h(H)

w:
2v2

h
HOZJ' dX lr/f;[s(x)( - _+elS

2m (//ls( X)

The physical content of this equation is that the average fre-
quency shift is given by the difference in energies of the
Pas(X) expectation value of the energy in the initial state and that in
the state created by operating withy on the initial state.
1 : . Evaluating the expectation value of the commutator expres-
+ EJ dXJ dX" ¢ry(X) ¢h1(X")V1s-15(X—X") sion above directly, we find for the frequency shift relative to
its value for an isolated atom the result

h2y2
+J dx I#;s(x)(—WJrfzs

X (X ) o) + f dx f dx’ 100 W)

E: gf dr[Vig_os(r)—Vis_1s(r)192(r), (7)
XV1572S(X_X,)$23(X’)¢1s(x)a (2)

wheren is the density of the gas and

wherem s the mass of an atom arqg denotes the energy of
the atomic stater. Note that for clarity we have in the first
instance neglected the effect of the finite lifetime of the ex-
cited atom. In Sec. Ill, however, we show how it can be
easily incorporated into the theory. is the pair-distribution function for ground-state atoms in the
The net rate of transitions may now be calculated frominitial state of the system. In arriving at this expression we
Fermi’'s Golden Rule, and is given by have again neglected the possibility o Zatoms being
present in the initial state. This result is simple to understand,
o since the operatdd; converts a single ground-state atom in
(w)= " > [(m[H|nY|28(Fiw+En—Em)(Pn—Prm)- the initial state into an excited state one with an amplitude
mn that does not depend on position. The average energy differ-
(3) ence between the initial state and the one created by the laser
is therefore the energy required to convertsaatom into a
Herep, is the initial probability for occurrence of the many- 2s one. Since the masses of the atoms in the two states are
body statgn), which is an eigenstate of the Hamiltonibly ~ the same, there is no contribution from the kinetic energy,
and therefore obeyid|n)=E,|n). We note that for the situ- and the sole contribution, apart from the energy difference
ations of interest in the Bose-Einstein condensation experifor an isolated atom, comes from interactions. This situation
ments, initial states containings 2atoms play essentially no should be contrasted with that of an isotopic impurity, like a
role, since the probability of<2atoms being present is very 3He atom in liquid *He, which is just the opposite, in that
small because the energy difference betwees at@m and a the masses are different, while the interaction potentials are
ground-state one is much larger than the thermal enlgs@y  the same. The sum rule derived here is analogous to sum
From Eg. (3) we thus find that the rate of absorption of rules for spin response of condensed matter systems, and for
energy is spin, isospin, and spin-isospin response of nuclei. In these

1
gz<r>=les(r)wmwls(owls(r» ®)
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cases the basic origin of the shifts is terms in the interactioo describe the correlations at short distances, the Jastrow
that are not invariant under rotations in spin, and/or isospifactor being taken to be of the form of the relative wave
space, or, in the present problem, rotations in the pseudospfanction of two atoms at zero energg].
space corresponding to conversion of & dom into a 3 The final result for the shift is thus
atom.
The long-wavelength assumption is appropriate for the — n - )
two-photon transition when the two photons that are ab- A®= 702 (O)J dr[Vis os(r) =Vis 1s(N]| W e(r)]%.
sorbed have equal and opposite momenta. When the total (11)
momentumq of the absorbed photons is nonzero, the per-
turbing Hamiltonian depends on space and we need to gerfhis expression cannot be simply rewritten in terms of scat-
eralize the sum rule to spatially varying interactions. This istering lengths. A simple example that demonstrates this is a
straightforward and we find that the average frequency shifis.1s interaction with a hard core at a radius. The ex-
is given by adding the recoil enerdy?q®/2m to the spatially  pression for the frequency shift does not depend on the
homogeneous result far=0. 1s-2s potential at distances less thap, since the relative
Let us now compare our result in E7) with that of  wave function for two atoms in thids) state vanishes there.
earlier work. If the interaction potentials are weak, the cor-However, the $-2s scattering length is sensitive to the be-
relation function will vary little over the ranges of the poten- havior of the &-2s potential at distances less thap, and
tials, and we may replace the pair-distribution function by itstherefore this is incompatible with the frequency shift being
value for zero separation. We then obtain expressible solely in terms of scattering lengths. We expect
the Jastrow form of the wave function to be accurate irre-
— _N _ spective of whether or not the gas is Bose condensed, and
(Aw)B_%gZ(O)f drVis—2s(N = Vis-as(D]- (9 consequently in a completely Bose-condensed gas the shifts
are predicted to be a factor of 2 smaller than in a gas of the
This is equivalent to the result of Oktet al. [7], since for  same density with no condensate, reflecting the usual 2! re-
weak potentials the Born approximation may be applied, andluction factor for two-body processgg).
thus the scattering lengthes are related to the interaction The result of this calculation is that the frequency-
potentials by 4ri2a/m= [dr V(r). weighted sum rule is quite different from what one predicts
The interaction potentials for hydrogen atoms are noif one uses the pseudopotential. To understand the origin of
weak, and the Born approximation is not valid. Therefore itthese differences it is convenient to explore the problem
is important to explore how the pair-distribution function from a microscopic viewpoint.
behaves at short distances. On length scales larger than the
range of the atomic interactions, correlations should be well
described in terms of mean fields. However, for strong po-
tentials it is not permissible to assume that the correlation To understand the sum-rule result, it is helpful to think
function for small separations varies slowly on distances ofibout the nature of the final states that can be created from
the order of the range of the potential. Rather one expectthe initial state by the operator of interest, which in this case
that the many-body wave function for small particle separaconverts a $ atom into a 2 one. Relative to the initial state,
tions will behave as that for a pair of atoms interacting viathe simplest excited states have an exisaj@asiparticle and
the 1s-1s interaction, since the effects of other atoms will an extra 5 quasihole, and will be referred to as single
then be negligible at low densities. Hence, provided the enguasiparticle-quasihole pair excitations. In the random-phase
ergies of elementary excitations of the system are small comapproximation these are the only states taken into account.
pared with the typical energy scale over which the two-atonThe physics of the process may be understood by regarding
relative wave function changes significantly, it will be a the degree of freedom associated with converting atbm
good approximation to assume that the pair-distributioninto a 2s one as a pseudospin. If the commutator of the
function scales as the square of the scattering wave functiopseudospin-raising operator with the unperturbed Hamil-

Ill. MICROSCOPIC APPROACH

at zero energy, i.e|¥ (r)|?. We therefore write tonian is zero, there is a unique frequency for all transitions.
e Because the interaction between & dtom and a 8 atom
02(1)=| ¥ o(r)]?g5"(0), (100 differs from that between twoslatoms, however, the Hamil-

tonian is not invariant under rotations in pseudospin space,
where the mean-field correlation functighl™(0) is the pair-  and its commutator with the pseudospin-raising operator is
correlation function on length scales that are greater than theot zero. Consequently there can be transitions to states with
range of the interaction but small compared with othera range of energies. It is perhaps helpful to consider a spin
lengths in the problem, such as the thermal de Broglie wavesystem in an applied magnetic field. If the interaction be-
length, the particle separation, and, when a condensate i&een the particles commutes with the spin-raising operator,
present, the coherence length. We have chosen the normahe raising operator will couple only to states whose energy
ization of the wave function such that at distances large comdiffers from that of the original state by times the Larmor
pared with the range of theslls potential it behaves as frequency. However, if the interaction is not invariant under
V. (r)=1—ays1s/r. Note that the above procedure is spin rotations, other excited states with different energies can
equivalent to assuming a wave function of the Jastrow fornbe created. In Fermi-liquid theory the first sort of transitions
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correspond to the creation of a single quasiparticle-quasihole 2s
pair, while the more complicated excitations correspond to

creation of many pairs. For the problem under study here, an

n-pair excitation has one extrasjuasiparticlen extra 1s

guasiparticles, and+ 1 extra Is quasiholes. The difference

between the results for the frequency-weighted sum rule cal-

culated with the pseudopotential and the actual potential is 1s
due to the multipair excitations. For Fermi liquids an analy- N . .
sis of the densiti)/ response in terms of singlg—pair and mu)I/ti— FIG. 1. Th? po.lar'zat'on d'agra"? th‘f"t determines the two-

. - . photon absorption line shape. The thick lines denote the exact 1
pair states may be found in Refl0J. A formulation of the and X propagators, and the small and large black areas denote the
problem for more ggneral sorts of response was presented Bire and exact vertex functions, respectively.
terms of microscopic theory by Leggéfitl], and the results
were discussed in terms of Fermi-liquid theory in Ré®)].

Let us begin by expressing the result for the transition rate
in terms of the response function for the operator In this section we consider a number of examples where

only coherent contributions to the response are taken into
1 ot ot ot account. These calcu!ations lead to r_esults identical_ with
0= vj dx[e™" ihae(X) h1s(X) + €' ih1o(X) has(X) ], those of Oktel and Levito{6]. To familiarize ourselves with
(12  the present formulation, let us first consider the ideal Bose
gas. Then Eq(13) becomes
whereV is the volume of the system. The response function 1
is defined in the usual way as the temporal Fourier transform __ = F oty t
of the retarded commutator, and is given by X(@) Vf dxfo dte(y1s(x0 415000

x(w)=— %J dexdtei‘“‘
0
X[l o(X, ) tas(X,1), 1754(0,0) 4414(0,0) 1)

1
B KKm|OIn)Ppy, (WX D Y10,0)== > N,
T & RwtiOtE,—E, (13 VX

A. The Hartree-Fock and random-phase approximations

X (1has(X,1) 34(0,0)). (16)

Moreover, the single-particle propagator is given by

Xexd —ik-x+i(ectes— p)t/h],
wherep, is again the probability of the statebeing occu-

pied and we neglected the occupancy of the final state com- 17)
pared with that of the initial one. The transition rate in Eq. 212 , L i
(3) is therefore given by where e, =7%°k“/2m is the kinetic energy of adatom, u is

the chemical potential for sl atoms, andN,= 1/(e?(¢~#)

2 —1) is the Bose-distribution function wit8=1/kgT. Simi-
l(w)=— %Im[H(a))], (14 larly we have, including now the finite atomic lifetime of the
2s atom,
where i
<‘/’23(th)‘/’23(010)>
- _(ﬁQ 2 15 1
(0)=| 5| x(@) (15 =3 > exik-x—i( e+ €x— AT g2— w)t/A].
k
is the polarizability of the gas. This is the desired result, (18)

because it explicitly shows that the transition rate is related

to the polarizability of the gas, which is easily accessibleghstituting the last two results, we find for the polarizability
with equilibrium many-body techniques. Indeed, in that lan-;, Eq. (15) the expression

guagerll(w) is equal to the(retarded self-energy for the
“effective photon” causing the §-2s transition and the NV 02
imaginary part therefore determines its finite lifetime, which 1 ()= —j
physically is due to absorption byslatoms in the gas. We 8
are thus left with the task of calculating the polarizability, V(70?2 1

which theoretically implies that we have to evaluate the dia- = i )
gram in Fig. 1. We begin by considering two simple calcu- 8  fiwtes—extiilyyf2
lations, the Hartree-Fock approximation and the random-

phase approximation, before discussing the more generdherefore, we conclude that the absorption line of the gas
formulation. has a profile given by

f dt €“lexi(e1s— s+ ihl,/2)t/1]
0

(19

013618-4



COLLISIONAL FREQUENCY SHIFTS OF ABSORPTION . .. PHYSICAL REVIEW 84 013618

oln OO

Is Is FIG. 3. The vertex corrections in tiiematrix approximation.

which shows that only the contribution from thes-1s

FIG. 2. The 5 and X propagators in th@-matrix approxima- mean-field interaction is reduced by a factor of 2, in agree-
tion. The thin lines represent the bare propagators and the dashé&dent with the fact that 4 and s atoms are distinguishable.

lines the interactions. We have called the above Hartree-Fock approximation
naive, because it is well known that for an approximation to

(h Q)2 Ty satisfy the conservation laws, it is necessary to include vertex

I(w)=N , (20)  corrections in addition to the self-energy corrections dis-

8 [ho—(ex—€19)]°+ (AT 542)° cussed above. For this problem this amounts to including the

o ] ~ effects of the mean field self-consistently. Formally, these
which is just the number of atom¥=nV times the atomic g kinds of corrections are related by the condition that the
line profile and exactly centered at the atomic resonance iertex correction must be the functional derivative of the
this case. Note that dlagrarr_lma_tmally we have now _Cal9USeIf-energy corrections with respect to the applied fiafl.
lated the lowest-order contribution to the polarizability in | our case this implies that we also have to calculate the
Fig. 1, in which the exactdand Z propagators are replaced “maximally crossed” diagrams shown in Fig. 3. These cor-
by the ideal gas ones and there are no vertex CoITections. respond to the chains of particle-hole bubble diagrams cal-

At the next level of approximation we dress thednd 2 cyjated in the random-phase approximation and in Fermi-

propagators by including the effect of atom-atom ladder diajjquid theory. This is easily achieved since it corresponds to
grams as shown in Fig 2. This corresponds to a Hartree-Focymming the geometric series

approximation, in which the effective interaction is taken to

be theT matrix for two-body scattering. For a gas with no 1

condensate, the effect of dressing the propagators in the fro— (Aw) et €qa— €pat 15T 5o/2
above calculation is to replace, by €,+#%3,, where to S Sl T 2
lowest order in thel matrix 1

+h(1)_(A(l))HF+ €15 625+iﬁF25/2

87Tal -1 hzn
Bt @ —— 1
X

m
m hﬁ)_(A(J))HF+ElS_623+iﬁF23/2

and
4.

4’7Ta.ls_ 2sﬁ2n

h3os= (22)  In the end we thus find that

2
The factor-of-2 difference between the numerical factors in | (»)=N (h0)
Egs.(21) and(22) reflects the fact that both the Hartree and 8
Fock terms contribute to the energy of a atom, but only I
the Hartree term contributes for a pair of unlike atoms. Be- % 2s
cause these interaction corrections to the atomic energies are [ho—(Aw)gpa— (€25~ €15) 12+ (AT ,/2)2
purely real, the absorption line is of the same shape as in Eq.

(20), but is now centered at a frequency shifted from the (29
single-atom resonance by an amount with
4mhn Amas pghn
(Aw)HF:T(alsfzs_ 2a55-15). (23) (Aw)gpp=(Aw) et 1STZS
This is the “naive” Hartree-Fock result for the collisional 8mhn
frequency shift due to the mean-field interaction thatsa 1 “m (815-25~ 815-15)- (26)

and a Z atom experience from the surrounding gas sf 1

atoms. Most important for our purposes is that if we repeaiMoreover, in the fully Bose-Einstein condensed case the ver-
the above calculation for a fully Bose-condensed gas<f 1tex corrections are absent and we recover the Hartree-Fock
atoms, we find that now result,

47hn T
(Aw)HF:T(als—Zs_ A1s-18)s (24) (Aw)RPA:(Aw)HF:T(alsfzs_ Ais-15).  (27)
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We therefore conclude that for a fully condensed Bose gawherel'® is the two-particle vertex function that is irreduc-

the collisional frequency shift is indeed reduced by an overible with respect to two particle lines with oppositely di-

all factor of 2, in agreement with our sum-rule result in Sec.rected arrows, i.e., it is irreducible in the particle-hole chan-

Il and the work of Ref[6]. nel. Separating out the terms that contain only incoherent
contributions toG from the others, we find

B. Coherent and incoherent contributions to response

functions X= Xinct Xcohs (32
To explore the physics in greater detail, it is convenient tovhere
adopt an approach exploited in the context of Fermi-liquid _ ()1 @) (4 -1
theory[11]. We first express the single-particle propagator in Xinc= T Gine(1-1""Gjrc) "] (33

a many-body system as the sum of a coherent part comingnd
from an intermediate state with a single quasiparticle excita-
tion, ar_wd an mcoherer_lt part c_on_nng_from more-complicated Xeor= T (1-TWGH) 1A (1 —THGE)N -1
excitations. Mathematically this implies that

X (1-TMWGM)~17. (34)

GP(p,e)=GE)(p.e)+GiR(p,e), (28)
The factor (TG ~! corresponds to a vertex renor-
wherep is the momentum, ané is the energy. The coherent Malization and the quantity
art, which corresponds to the quasiparticle, is given b _

P P P e P=rea-aire) ! @9

G@)(p, €)= Z(p) (29) is a renormalization of the interactions between the coherent
com™ e—¢€(p)’ parts of a particle-hole excitation due to intermediate states
with incoherent particle-hole pairs. For the present problem,
where Z(p) is the renormalization factor or quasiparticle an important feature of this result is the existence of the
residue, and(p) is the quasiparticle energy. Both of these incoherent contribution tg, since this is what is responsible
quantities depend on the atomic species considered. The ifer the difference between the sum rule evaluated with the
coherent contribution to the propagator corresponds to trarPseudopotential and the true sum rule.
sient effects due to the dressing of a free atom to make it into Ve turn now to the coherent contribution to the response
a quasiparticle. Likewise the two-particle propagatorfunction. The coherent part @ has the same form as for
G¥(p,e;p’,€') for a pseudospin fluctuation may be ex- two particles with energies modified by the medium, apart
pressed in terms of a coherent part, corresponding to a singfeom the renormalization factorg. However, if one multi-
quasiparticle-quasihole pair, plus an incoherent part cominglies the matrix element for coupling of the two photons to

from multipair excitations, i.e., the excitations by a factor (A G{) ~%(Z,5Z;5)"? and
uses for the effective interaction between a quasiparticle and
Z,4(p) Z5(D') a quasihole the quantity;Z,JI"*), the coherent contribu-
G¥W(p,ep’ €)= S 2s tion to the response has precisely the same form as in the
[e=€1s(P)] [€ — exs(p")] random-phase approximation calculation above. This modi-
+Gi(r?c)(p7€;p,!6’)' (30) fied interaction plays a role analogous to that of the

quasiparticle-quasiparticle interaction introduced in Fermi-
liquid theory by Landau.

We next analyze the diagrams for the response fungtion | et us now analyze the consequences of the above for a
by separating the single-particle propagators into their cohelipw-density gas. In that case the renormalization factors tend
ent and incoherent contributions, as was done by Leggett iy unity, and the two-particle vertex reduces to Thmatrix.
the context of Fermi systems. We then divide these diagramshe quasiparticle energies reduce to the Hartree-Fock ones,
into two classes. The first class contains those diagrams thghd the mean-field interaction is also just thenatrix. Thus
are reducible with reSpeCt to the coherent contributions the coherent contribution to the response has precise]y the
two (one Is and one 3) single-particle propagators. We form predicted by the mean-field theory calculation in Sec.
refer to these as the coherent contribution. The second clag$ A. Observe that in calculating the average frequency as-
contains all diagrams that are not reducible in this sense af’gbciated with the coherent part of the response, the renormal-
we call this the incoherent contribution. We remark thatjzation factor for the effective two-photon matrix element
since the operato® does not change the total particle num- cancels out. What implications does our calculation have for
ber, the two coherent particle lines must have their arrows irxperiment? In addition to a sharp peak in the absorption due
opposite directions, and therefore correspond to o the excitation of a single quasiparticle-quasihole pair, the

quasiparticle-quasihole pair. calculation predicts a broad background due to creation of
~ Expressed in a formal matrix notation, the response funcmore complicated final states. However, because the back-
tion may be written as ground is expected to be a rather smoothly-varying function
of frequency that extends over a large frequency range, it is

x=TIGH(1-TWG®)~1], (31) difficult to detect. Consequently, the part of the absorption
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spectrum that is investigated experimentally is only that due AT ,e=87n(ays_ 1s_als—25)2<vrel>v (40)
to the coherent contribution to the response function.

where (v,e)=4(kT/7m)*2 is the average relative velocity
IV. COLLISIONAL BROADENING between two § atoms in the atomic hydrogen gas. The total

W ider h lisi broad h h width of the line is the sum of the natural width and the
e now consider how collisions broaden the coherent,jisiong| contribution, and it is therefore equal 10,

part of the line. One effect is that the self-energy of theJFAF The width is of order —a /N~ times the
atoms acquires an imaginary part, and the coherent parts gf i 2\;/here)\T=ﬁ/(27-rkaT)1$liSs;2§he tlﬁé??”nalT de Broglie

the propagators become wavelength. When a condensate is present, the above calcu-
lation can be easily generalized. In the first approximation
G(Z%](p €)= Z(p) (36) We only need to take into account explicitly the macroscopic
O e—e(p) ik (pe(p)) occupation of the zero-momentum state by substitubihg
—NcVép 0t Ny, with n. the condensate density. At the next
where"(p,€) is the imaginary part of the self-energy. An- level of approximation we also need to incorporate the Bo-
other effect is that there are vertex corrections analogous tgoliubov coherence factors.
those responsible for the contributions to the line shift be-
yond what is predicted by the Hartree-Fock approximation.
The total width is most easily calculated by observing that
the propagation of akatom and a & hole is determined by In this paper we have considered the effect of interactions
the difference between thes®s interaction and the §1s  on the two-photon absorption line profile in spin-polarized
interaction. For definiteness, let us consider a gas with natomic hydrogen by means of a frequency-weighted sum rule
condensate. In the absence of tre2Zk interaction, the only and by means of microscopic many-body theory. We have
contribution to the width comes from the imaginary part of shown that the line profile consists of a narrow coherent peak
the self-energy of the 4 atom, which is given in the dilute on top of a broad incoherent background. For typical atomic
limit by [14] potentials this background, in principle, has sufficient spec-
tral weight that the pseudopotential approximation does not

V. CONCLUSIONS

Arags 1ch2\2 1 give an accurate estimate of the total contribution to the

hZi(p,€p)=—2m T) — 2 deyte, frequency-weighted sum rule. However, the frequency of the

Vo narrow peak, which is the feature most easily seen experi-

— €pspr— €pr—pr) [N (1 Npr ) mentaly, may be expressed in terms of the low-energy
pseudopotentials.

X(1+Npypr) = (1+Np)Npr Ny o], We have also shown that the collisional frequency shift of

(37) the absorption line is reduced by a factor of 2 if the gas is
fully Bose condensed. We have pointed out that for this

the factor of 2 being the result of the Bose enhancement dgfictor-of-2 reduction it is crucial to take many-body correla-
the cross section, which is due to the exchange proceson effects into account that go beyond the Hartree-Fock
Since the imaginary part of the self-energy is momentunfPProximation commonly used for these dilute atomic gases.
dependent, the absorption line of the gas is in principle nof\t this point it is worth mentioning that the Bose-Einstein

exactly Lorentzian. Nevertheless, the typical width of thecondensation experiments by Frietal. apparently do not
line is determined by the average(2/N)S N34 (p,ep) see this effect. Their results seem to be consistent with the

and thus equals Hartree-Fock theory, which, due to the fact thais s
<|ayq.0¢ for atomic hydrogen, basically predicts no reduc-

3 2 tion at all [1]. At present we have no explanation for the

(4mh)*(as-15)° 1 e i

AT 5= — S(€p+ €y — €pipy cause of this discrepancy.

nm? V3 o
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