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Dark solitons and their head-on collisions in Bose-Einstein condensates
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The evolution and collision of dark solitary waves~solitons! appearing in cigar-shaped Bose-Einstein con-
densates with repulsive atom-atom interaction are here considered using a Boussinesq-Korteweg–de Vries
description. We provide theoretical predictions and computer experiment evidence about their phase shifts or
change of trajectories, in the space-time plot, corresponding upon collisions. Details are also given about a
suggested experiment that could assess their genuine solitonic nature.
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I. INTRODUCTION

The remarkable experimental realization of the Bo
Einstein condensation in trapped clouds of alkali-ato
@1–4# has stimulated experimental and theoretical investi
tions on the physics of dilute ultracold bosonic gases@5–7#.
One of the important aspects in this area is the exploratio
nonlinear properties of matter waves. Nonlinear excitatio
such as vortices and solitons, have been observed in B
Einstein condensates~BEC’s! @8–10# and the four-wave
mixing has also been recently realized.@11# These studies are
significant for nonlinear atom optics and for other areas
condensed-matter physics and fluid dynamics@12–21#.

In a BEC, in addition to the atom-atom interaction,
atoms move in an external trap potential, i.e., the system
inhomogeneous, and the behavior of the solitons is very r
For the BEC’s with rubidium and sodium atomic vapors in
trap, the solitary excitations in the condensates are of
dark type since the interaction between atoms is repulsive
recent experiments by Burgeret al. @9# and by Denschlag
et al. @10#, dark solitons were generated by a phase impr
ing method in a cigar-shaped BEC of87Rb and in a nearly
spherical BEC of23Na, respectively. In both experiments a
interesting phenomenon was found, i.e., in addition to a d
sity minimumof the condensate traveling at lower veloci
than the speed of sound, which is identified as subsoni
subcritically moving dark soliton, another density minimu
traveling in opposite direction may appear. Multidark so
tons were also created by applying higher imprinted ph
values. These findings imply that one can observe a collis
between two dark solitons in BEC’s, and hence, the poss
ity of experimentally assessing their genuine solitonic nat
@20,21#.

On the other hand, it seems interesting to further ext
the available theory on solitons in BEC’s@22–34# with a
repulsive atom-atom interaction. Recently, an interest
new approach has been proposed@35# for the soliton propa-
gation in a cigar-shaped BEC. In this approach, beside
Thomas-Fermi~TF! approximation for the ground state an
also for the nonlinear excitations, the assumption of the
istence of an interface~elastic cylindrical shell! for the con-
densate is also made. The interface is further assume
obey Newton’s second law. Under these assumptions
1050-2947/2001/64~1!/013617~11!/$20.00 64 0136
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Boussinesq-Korteweg–de Vries~B-KdV! equation@36# was
derived using a reductive perturbation method if the exc
tion from the condensate is weakly nonlinear. Instead o
dark soliton, a supercritical bump~i.e., densitymaximum!
soliton is obtained, hence traveling supersonically@35#. Such
a result is at variance with those obtained in most of
studies, using different approaches@22–34# for solitons in
BEC’s with repulsive interactions. Since in the experime
of Burger et al. @9# and Denschlaget al. @10#, the solitons
observed are small-amplitude gray ones, which belong to
type of weakly nonlinear excitations on a condensate ba
ground, it is reasonable to use a B-KdV theory to descr
such weakly nonlinear excitations. On the other hand, in
scheme of the B-KdV description, the collision property
the solitons is well established@19–21#. Thus, it appears nec
essary to reconsider the above-mentioned description to
out the reason of the indicated inconsistency and study
colliding property of the solitons in BEC’s in detail.

In this paper, we investigate the dynamics of solitons i
cigar-shaped BEC by developing a B-KdV description wit
out using the TF approximation. Then we pay attention to
head-on collision between two dark solitons in the BEC a
give their expected change of trajectories, in the correspo
ing space-time plot, or phase shifts upon collision. The pa
is organized as follows. In Sec. II, starting from the Gros
Pitaevskii~GP! equation, a B-KdV equation is derived by
multiple-scales method without using the TF approximatio
The dark-soliton solutions are also provided and discuss
A head-on collision between two dark solitons traveling
opposite directions is considered in Sec. III. The phase s
of each soliton due to the collision is explicitly calculate
using the Poincare´-Lighthill–Kuo ~PLK! method @37#. In
Sec. IV we report the results of our numerical investigati
of soliton propagation and collisions. Finally, Sec. V co
tains a discussion and summary of our results.

II. A B-KDV DESCRIPTION FOR DARK SOLITON
EXCITATIONS

The dynamic behavior of interacting bosonic gases at z
temperature is well described by the time-dependent Gr
Pitaevskii~GP! equation for the order parameter@6#
©2001 The American Physical Society17-1
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i\
]C

]t
5F2

\2

2m
¹21Vext~r !1guCu2GC, ~1!

where*dr uCu25N is the number of atoms in the conde
sate,g54p\2a/m is the interacting constant withm the
mass of the atom, anda the s-wave scattering length (a.0
for repulsive interactions!. As in experiment@9#, we consider
a cigar-shaped harmonic trap with the elongated axis in thx
direction. Thus, we haveVext(r )5(m/2)@vx

2x21v'
2 (y2

1z2)# with vx!v' , wherevx andv' are the frequencies
of the trap in thex direction and the transverse directio
respectively. Expressing the order parameter in terms o
modulus and phase,C5An exp(if), we obtain a set of
coupled equations forn and f. By introducing (x,y,z)
5a'(x8,y8,z8), t5v'

21t8, n5n0n8 with a'5A\/(mv')
and n05N/a'

3 , we have the following dimensionless equ
tions of motion~after dropping the primes, expecting no co
fusion in the reader!:

]n

]t
1“•~n“f!50, ~2!

]f

]t
1

1

2 S vx

v'
D 2

x21
1

2
~y21z2!1Qn

1
1

2 F ~¹f!22
1

An
¹2AnG50, ~3!

with Q54pNa/a' , ¹5(]/]x,]/]y,]/]z) and *drn51.
The last term on the left-hand side of Eq.~3! ~i.e.,
21/2An“2An) is called the quantum pressure, which pr
vides the dispersion necessary to form a dark soliton in
BEC, as we shall see below.

Equations~2! and ~3! are ~311!-dimensional, nonlinear
and dispersive equations with a variable coefficient, and
have not yet been able to find an exact solution. For
reason we turned to an effective approach with some rea
able approximations. Since in experiment@9#, vx /v' is
small ('0.03), one can expect that the variation of the p
file of the order parameter is slow in the elongated~i.e., x)
direction. On other hand, due to the strong confinemen
the transverse directions, the motion of the order param
in the x andy directions behaves like a standing wave, i.
the system is similar to a wave guide in which the excitat
from the ground state propagates in the elongated direc
@23,27,35,38#. The strong confinement also ensures the
namical stability of a dark soliton excitation@27#. Therefore,
we assumeAn5A(x,t)G(y,z) andf52mt1w(x,t). Then
G(y,z) satisfies

2
1

2 S ]2

]y2
1

]2

]z2D G1
1

2
~y21z2!G5nG. ~4!

Equation~4! is the eigenvalue problem of a two-dimension
quantum harmonic oscillator. Its ground-state solution
G0(y,z)5exp@2(y21z2)/2# with the eigenvaluen5n051.
With these substitutions, Eqs.~2! and ~3! are transformed
into
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]A

]t
1

]A

]x

]w

]x
1

1

2
A

]2w

]x2
50, ~5!

2
1

2

]2A

]x2
1

1

2 S vx

v'
D 2

x2A1~2m11!A

1F]w

]t
1

1

2 S ]w

]x D 2GA1
1

2
QA350. ~6!

As in Ref. @38#, to obtain Eq.~6! we have used Eq.~4! with
G5G0 and multiplied Eq.~3! by G0* and then integrated
once with respect toy andz. This procedure is equivalent t
assume that the excitation is quasi-one-dimensio
@23,31,35,38,39#.

Let A5u01a(x,t) ~without loss of generality, we assum
thatu0, a quantity characterizing the condensate backgrou
is positive! with (a,w)5(a0 ,w0)exp@i(kx2vt)#1c.c. with
u0 , a0, andw0 constants, when the trapping potential in t
x direction is neglected, we obtain the linear dispersion re
tion of Eqs.~5! and ~6!

v56
1

2
k~2Qu0

21k2!1/2, ~7!

where the positive~respectively, negative! sign corresponds
to the wave propagating to the right~respectively, left!. We
stress that thek2-term in the bracket of Eq.~7! comes from
the quantum pressure, given by the term2(1/2)]2A/]x2 in
Eq. ~6!. Equation~7! is the Bogoliubov-type linear excitation
spectrum of our system for sound propagation. We see
to get the Bogoliubov excitation spectrum, the quantum pr
sure of the system plays a significant role. From Eq.~7! we
obtain the sound speed of the systemc5(dv/dk)uk50

56AQ/2u0. For an homogeneous system@i.e., Vext(r )
50] the corresponding sound speed isc056AQu0 in our
notation. Thus, we havec/c051/A2. The factor 1/A2 is due
to the transverse confinement of the system. This resu
consistent with the experiment by Andrewset al. @40# and
the theoretical approaches in Ref.@23# for sound propagation
in BECs with repulsive atom-atom interactions. In additio
we see that the wave may propagate in two opposite di
tions and displays dispersion. This is also the case obse
in the experiment@40#.

Now we consider the weakly nonlinear excitations on t
condensate background~i.e., the ground state! of the system.
We note that in the experiment of Burgeret al. @9# the sound
speed isc5A4pan0\/m'3.7 mm/s, wheren0 is the density
of the condensate. Thus, the healing lengthl 051/A4pan0 is
about 0.2mm. For a gray soliton, with grayness@see Eq.~15!

below# Ã050.1, its width is about 0.9mm. Hence, their
width may be larger than the healing length, and the size
the gray solitons may be large enough for easy observat
The harmonic oscillator length in the elongated direction
Ref. @9# is about 3mm, which is much larger than the healin
length of the system. This means that the variation of
order parameter is slow in thex direction, as mentioned
above. For simplicity in the analytical approach, we th
7-2
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DARK SOLITONS AND THEIR HEAD-ON COLLISIONS . . . PHYSICAL REVIEW A 64 013617
neglect the second term on the left side of Eq.~6! ~we shall
discuss the effect of the inhomogeneity in thex direction in
Sec. IV!.

Using the asymptotic expansion

A5u01e2@a(0)1e2a(1)1•••#, ~8!

w5e@w (0)1e2w (1)1•••#, ~9!

and assuming thata( j ) and w ( j ) ( j 50, 1,•••) are functions
of the multiple-scale variablesj5e(x2ct) and t5e3t,
wheree is a smallness parameter characterizing the rela
amplitude of the excitation, and then substituting them
Eqs.~5! and ~6!, we obtain

c
]a( j )

]j
2

1

2
u0

]2w ( j )

]j2
5a ( j ), ~10!

Qu0
2a( j )2cu0

]w ( j )

]j
5b ( j ). ~11!

The explicit expressions ofa ( j ) and b ( j ) ( j 50, 1,•••) are
not needed here.

In the leading order (j 50), we obtain w (0)

5(2c/u0)*dja(0) with a(0) a function yet to be determined
The solvability condition demandsc5d1AQ/2u0 with d1
561. At the next order (j 51), the solvability condition
results in the closed equation fora(0):

]a(0)

]t
1

3c

u0
a(0)

]a(0)

]j
2

1

8c

]3a(0)

]j3
50. ~12!

Equation~12! is the B-KdV equation for the wave travelin
to the right~left! for the cased1511 (d1521). Note that
we refer to disturbances upon the pedestal profile offered
the cigar-shaped background condensate and that acco
to the signs in Eq.~12!, we can consider eithert→` or t
→2` for evolutionary purposes. Note also that the disp
sion term in Eq.~12! is due to the contribution of the quan
tum pressure of Eq.~3!. Let w5e2a(0) and use the definition
of j andt. Then we obtain

]w

]t
1

3c

u0
w

]w

]X
2

1

8c

]3w

]X3
50, ~13!

with X5x2ct. The single-soliton solution of Eq.~13! is
given by

w52A0 sech2FA2c2A0

u0
S X1c

A0

u0
t2x0D G

52A0 sech2FA2c2A0

u0
H x2cS 12

A0

u0
D t2x0J G ,

~14!
01361
e
o

y
ing

-

whereA0 is apositiveconstant,x0 is a constant denoting th
initial position of the soliton on the pedestal backgroun
Exact to the first order, the condensed-state wave func
takes the form

C5u0 ~12Ã0 sech2@A2c2Ã0$x2c~12Ã0!t2x0%#!

3expF2
y21z2

2 Gexp@ i ~2mt1w!#, ~15!

with Ã05A0 /u0 , m511Qu0
2/2. The constantÃ0 can be

taken as the grayness of the soliton. The phase function r

w52A2Ã0 tanh@A2c2Ã0$x2c~12Ã0!t2x0%#. ~16!

Let us emphasize the results obtained above:

~i! From Eq. ~15! we see that the excitation is adark
soliton ~i.e., density minimum of the condensate!, consistent
with most of the studies on soliton dynamics in BEC with
repulsive interaction using different approaches@23–25,31–
34#.

~ii ! The velocity of the dark soliton isvs5c(12Ã0)
hence directly dependent on the depth of the depression
low the background pedestal level. Accordingly, the dee
this depth, the lower is the soliton velocity. Thus,vs is al-
ways lower than the sound speedc of the system~see also
the result in Ref.@25#!. This ensures its stability and is con
sistent with known results fordark solitons. In fact, it is just
this property that makes Burgeret al. @9# and Denschlag
et al. @10# to identify the density minima in their BEC ex
periments asdark solitons rather than mere sound waves.

~iii ! The formation of thedark soliton given in Eq.~15! is
due to the balance between the nonlinearity and the dis
sion in Eq.~12!. Consequently, the quantum pressure play
significant role in the formation of the dark soliton in th
BEC, in agreement with the results obtained in Re
@23,25,31#.

~iv! From Eq.~16! we obtain

U]w

]xU52cÃ0 sech2@A2c2Ã0$x2c~12Ã0!t2x0%#.

~17!

It reveals that, indeed, when the phase gradient is increa
the soliton becomes darker and indeed travels slower; w
the phase gradient is lowered, the soliton becomes shallo
and propagates faster, agreeing with the observation in
experiments@9,10#.

~v! The velocity of the dark soliton may have two diffe
ent signs@vs56AQ/2u0(12Ã0)#, i.e., it may propagate in
either the positive or the negativex direction. Recall that, as
we noted earlier, in view of the signs in Eq.~12! we can also
considert→2` rather thant→`. This may provide a pos-
sible explanation of the appearance of two density mini
~i.e., two dark solitons! traveling in opposite directions, ob
served in the experiments by Burgeret al. @9# and by Den-
schlaget al. @10#
7-3
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III. HEAD-ON COLLISIONS OF TWO DARK SOLITONS

In a one-~or quasi-one-! dimensional system, there ar
two distinct soliton interactions. One is theovertakingcolli-
sion and the other one is thehead-oncollision @41–46#. The
overtaking collision of the dark solitons in the BEC can
studied with the B-KdV Eq.~12!. Its multisoliton solutions
~they travel in the same direction! can be obtained from the
inverse scattering transform@21#. However, for the head-on
collision, we must search for the evolution of waves trav
ing to both sides, and hence, we need to employ a suit
asymptotic expansion to solve the original equations of m
tion ~2! and ~3!, or their simplified form~5! and ~6!.

Starting from Eqs.~5! and ~6!, we assume that in the
condensate, two dark solitons are generated that are, as
totically, far apart at the initial state and proceed toward e
other. After some time they interact, collide, and then dep
We use the PLK method@37,43,45,46# to investigate the
head-on collision between two dark solitons in the BEC. W
anticipate that the collision will result in a change of traje
tory or phase shiftfor each soliton, and hence, assume

j5e~x2cRt !1e2P(0)~h!1e4P(1)~j,h!1•••, ~18!

h5e~x1cLt !1e2Q(0)~h!1e4Q(1)~j,h!1•••, ~19!

which denote the trajectories of the solitons traveling to
right and left, respectively. In Eqs.~18! and ~19! the right-
and left-running wave velocitiescR andcL are related to the
amplitudes of the waves. The functionsP( j ) and Q( j ) ( j
50, 1, 2, . . . ,) are yet to bedetermined. The aim of intro
ducing these functions is to make a uniformly va
asymptotic expansion~i.e., to eliminate secular terms! and at
the same time obtain the change of the trajectories~i.e.,
phase shifts! of the solitons after the collision. Using Eq
~18! and~19!, we get the transformation between derivativ
as

]

]x
5eS ]

]j
1

]

]h D1e3S ]P(0)

]h

]

]j
1

]Q(0)

]j

]

]h D1•••,

~20!

]

]t
5eS 2cR

]

]j
1cL

]

]h D1e3S cL

]P(0)

]h

]

]j
2cR

]Q(0)

]j

]

]h D
1•••. ~21!

Introducing the same asymptotic expansions for the qua
ties A andw as in Eqs.~8! and ~9! and assuming

cR5c1e2R11e4R21•••, ~22!

cL5c1e2L11e4L21•••, ~23!

and then substituting Eqs.~20!–~23! into Eqs.~5! and~6!, we
obtain

cS ]

]j
2

]

]h Da( j )2
1

2
u0S ]

]j
1

]

]h D 2

w ( j )5M ( j ), ~24!
01361
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Qu0
2a( j )2cu0S ]

]j
2

]

]h Dw ( j )5N( j ). ~25!

The expressions forM ( j ) and N( j ) ( j 50,1,2, . . . ,) are not
needed here.

The leading order solution (j 50) of Eqs.~24! and ~25!
reads

a(0)5 f 0~j!1g0~h!, ~26!

w (0)5
2c

u0
S E

1`

j

f 0~j8!dj82E
2`

h
g0~h8!dh8D , ~27!

with a solvability conditionc5AQ/2u0 ~the sound speed!.
Thus, in the leading order we have two sound waves,f 0(j)
and g0(h), which are traveling to the right and to the lef
respectively. The lower limits of the integrations in Eqs.~27!
have been chosen to make the initial phases~before colli-
sion! of the solitonf 0(j) andg0(h) equal to zero.

In the second order (j 51), by Eqs.~24! and~25! one has
the equations fora(1) andw (1). The solvability conditions for
a(1) andw (1) yield

cA0

u0

] f 0

]j
1

3c

u0
f 0

] f 0

]j
2

1

8c

]3f 0

]j3
50, ~28!

cB0

u0

]g0

]h
1

3c

u0
g0

]g0

]h
2

1

8c

]3g0

]h3
50, ~29!

]P(0)

]h
5

1

2
g0~h!, ~30!

]Q(0)

]j
5

1

2
f 0~j!, ~31!

together withR152(c/u0)A0 and L152(c/u0)B0, where
A0 andB0 are two positive constants related, respectively
the one and other of the amplitudes. Equations~28! and~29!
are the two-side traveling wave B-KdV equations in the r
erence frames ofj andh, respectively. Their correspondin
solutions are

f 0~j!52A0 sech2FA2c2A0

u0
jG ~right-running soliton!,

~32!

g0~h!52B0 sech2FA2c2B0

u0
hG ~ left-running soliton!,

~33!

which describe depressions of the background pedestal le
Using Eqs.~30! and ~31! we obtain

P(0)~h!52
1

2c
Au0B0

2 S tanhFA2c2B0

u0
hG11D , ~34!
7-4
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Q(0)~j!52
1

2c
Au0A0

2 S tanhFA2c2A0

u0
jG21D . ~35!

From Eqs.~32!–~35! we can obtain the expressions fora(1)

andw (1). Finally, the solution up toO(e4) order is

A5u02e2@A0 sech2uA~j!1B0 sech2uB~h!#

1e4FA0
2

u0
sech2uA~j!1

B0
2

u0
sech2uB~h!

1
3A0

2

2u0
sech4uA~j!1

3B0
2

2u0
sech4uB~h!

1S 1

u0
2

21D A0B0 sech2uA~j!sech2uB~h!

1 f 1~j!1g1~h!G , ~36!

w5eSA2B0

u0
@ tanhuB~h!11#2A2A0

u0
@ tanhuA~j!21# D

1e3
2c

u0
S E

1`

j

f 1~j8!dj82E
2`

h
g1~h8!dh8D 1O~e5!,

~37!

where uA(j)5A2c2A0 /u0j and uB(h)5A2c2B0 /u0h.
f 1(j) and g1(h) are two functions to be determined in th
next order. The trajectories of the solitonf 0(j) ~denoted by
A! and the solitong0(h) ~denoted by B! are, respectively,
given by

j5e~x2cRt !2e2
1

2c
AB0u0

2
@ tanhuB~h!11#1O~e4!,

~38!

h5e~x1cLt !2e2
1

2c
AA0u0

2
@ tanhuA~j!21#1O~e4!,

~39!

with cR5c(12e2A0 /u0)1O(e4) and cL5c(12e2B0 /u0)
1O(e4), and hence, both are subsonic solitary waves.
sides, once more we see that their velocities are drastic
lowered as their corresponding depression depths increa

The phase shifts after a head-on collision of the two d
solitons can be obtained using Eqs.~38! and~39!. To do this,
let us assume that the solitonsA andB are ~asymptotically!
far from each other at the initial time (t52`); i.e., solitonA
is at j50, h52`, and solitonB is at h50 andj51`,
respectively. After the collision (t51`), the solitonA is far
to the right of solitonB, i.e., solitonA is at j50, h51`,
and solitonB is at h50, j52`. Using Eqs.~38! and ~39!
we obtain their corresponding phase shiftsDA and DB as
follows:
01361
-
lly
e.
k

DA5e~x2cRt !uj50,h51`2e~x2cRt !uj50,h52`

5e2
1

c
AB0u0

2
, ~40!

DB5e~x1cLt !uh50,j52`2e~x1cLt !uh50,j51`

52e2
1

c
AA0u0

2
. ~41!

Since solitonA is traveling to the right and solitonB is
traveling to the left, we see that due to the collision each d
soliton in the condensate has apositive phase shift in its
traveling direction. The magnitude of the phase shift for so
ton A ~B! is proportional to the square root of the greyne
@B0 (A0)] of soliton B (A). This result is at apparent vari
ance with old and recent experiments with collisions a
wall reflections~a virtual collision with the corresponding
mirror image soliton! of solitons in fluids@19–21,42–44#,
where anegativephase shift is observed for elevation so
tons. In fact, the less usual depression solitons may exh
positive phase shifts upon collisions@14#. The positive phase
shift may be due to the role played by the condensate ba
ground in the dynamics of the collision, which becom
dominant upon the actual phase shift occurring asympt
cally in the kinematics of the trajectories after collision. I
deed, the soliton velocities are drastically lowered when th
amplitudes—depressions of the background pedestal lev
increases. Thus, upon approaching each other, the sol
reduce their velocity, and hence, the trajectory change, in
space-time plot, leading to apositive phase shift. In fluid
experiments@42–44#, solitons rather accelerate while collid
ing, and hence, a corresponding negative phase shift occ
Let us note, for the record and with no further discussi
that there are cases of soliton wall reflection@47# and hence,
virtual collisions, as mentioned above, where an expec
negative phase shift appears rather as positive, and this
be attributed to the ‘‘active’’ role played by the wall-wav
interaction that can be considered as a background effe
the BEC terminology. Thus, we have a clear-cut predict
that if observed would assess the genuine solitonic natur
the condensate density minima as nonlinear, soliton wav

IV. NUMERICAL RESULTS

To cross check the above-made statements and ex
analytical results into a wider parameter domain, and als
consider the affect of the trapping potential along the ax
~x! direction, in this section we numerically investigate t
solitonlike solutions of Eqs.~5! and ~6!.

Before proceeding with the direct numerical integratio
for convenience, we change variables

A5A vx

v'Q
r, t5

2v'

vx
t, x5Av'

vx
s, ~42!

wheres andt are new axial coordinate and time, andr is a
new variable proportional to the amplitude of the order p
rameter. Then, Eqs.~5! and ~6! are transformed into
7-5
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]r

]t
522

]r

]s

]w

]s
2a

]2w

]s2
, ~43!

r
]w

]t
5

]2r

]s2
2Fs22 l 21r21S ]w

]s D 2Gr. ~44!

The advantage of the new Eqs.~43! and ~44! is that they
involve one independent constant,l, only, where l
5Avx /v'L, with L being the half length of the condensat
The constantl in Eqs. ~43! and ~44! plays the role of the
problem length. This drastically simplifies the problem f
numerical simulations. We assume that the particle num
in the condensate is big enough, and hence, on the left
right boundaries the order parameter approximately vanis
which means that Eqs.~43! and~44! may be supplied by the
boundary conditionsr(6 l ,t)50 and ws8(6 l ,t)50 in the
simulations.

As we have seen above, as weakly nonlinear excitatio
solitons propagate on some stationary condensate b
ground pedestalu0 that is taken to be approximately consta
for analytic. Now let us find the shape of this backgrou
state@r0(s), w0(s)], when the axial potential is taken int
account. Since in the ground state of the system the ph
w0(s)5constant, we get from Eqs.~43! and ~44! the time-
independent, nonlinear equation forr0

d2r0

ds2
5@s22 l 21r0

2#r0 . ~45!

We have solved the boundary value problem~45! for a num-
ber of different lengthsl 56, 8, 10, 12, and 30 with the
boundary conditionsr0(6 l )50. The highest value,l 530,
corresponds to the approximation used in the theoret
analysis given above, since in this case, the soliton sp
scale is shorter than the scale of the background state.
sides, this value coincides with the condensate length u
by Burger et al. @9#. Figure 1 shows background pedes
profile @solution of Eq.~45!# with l 530. Valuesl 56212
correspond to relatively short condensate lengths or
amount of atoms. We shall use them further to detect
soliton phase shifts due to a head-on collision.

The profiles thus obtained can be used as initial con
tions in the numerical integration of Eqs.~43! and ~44!. All
solutions now can be obtained by applying appropriate p
turbations to the background pedestal solution.

FIG. 1. Stationary background profile@solution of Eqs.~45! with
l 530].
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Let us start with a test on the single soliton propagati
Taking into account approximate solution~15!, ~16! and the
change of variables~42! we have the following initial con-
ditions

r1sol~s,0!5r0~12« sech2@A«r0~s2s0!# !,
~46!

w1sol~s,0!52A2« tanh@A«r0~s2s0!#,

wheres0 is an initial soliton position,« is a constant respon
sible for the corresponding amplitude~grayness! of the soli-
ton, andr0 is the background pedestal solution just fou
~Fig. 1!. We note, however, that the initial conditions give
by Eq. ~46! are not suitable for direct numerical integratio
due to the deviation from the background profile near
boundaries, wherew must be flat andr must approach the
background solutionr0. Such perturbations result in nonde
ired pulses propagating inwards from the boundaries to
center of the interval. To avoid this problem, we correct t
initial conditions~46! in a such a way that they approach th
stationary background solution near boundaries~far from the
initial soliton positions0), and keep the shape of the solito
~46! in the vicinity of s0.

Figure 2 shows results of the numerical integration
Eqs.~43! and~44! providing both amplitude and phase ev
lution. In Fig. 2~a! we have plotted amplitude of the solito
over the background state, since a direct visualization ofr is
complicated due to its curvature~Fig. 1!. The soliton propa-
gates to the right end of the interval. During the propagat
the pedestal heightr0 decreases~Fig. 1!, while the relative
soliton height,r02r, increases, and hence, the soliton b
comes darker, while its velocity decreases. As theory p
dicts, the phase gradient increases as the soliton approa
the boundary@Fig. 2~b!#. Close to the right boundary, w

FIG. 2. Space-time plots of a soliton propagating to the right.~a!
relative amplitude,~b! phase («50.07, s050).
7-6
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have observed a sharp increase of the soliton height
phase difference along soliton,Dw5wbefore2wafter. At cer-
tain critical points (t1* '1.32, s1* '28 and t2* '4.0, s2*
'228 in Fig. 3! the soliton approaches the zero over
amplitude,r(s1,2* ,t1,2* )50, i.e., it becomes plain black. Fo
these instants of timeuDwu5p. Then the phase shift change
its sign, the soliton reveres motion and starts to propagat
the opposite direction with decreasing amplitude and ph
shift ~Fig. 3!. After such ‘‘oscillations’’ between boundaries
at t'5.3, the soliton comes back to the initial state~Fig. 3!.
The theoretical estimate for the soliton velocity gives t
subsonic velocity

vsol5A2r0~12«!. ~47!

The soliton velocity is a function of the position coordinates
due to the inhomogeneity along the elongated axis. Fig
3~b! shows the theoretical estimate~47! and data taken from
the computer simulation. The numerically found soliton v
locity is even lower than Eq.~47!. Similar oscillating behav-
ior of the dark solitons in harmonic traps has also been p
dicted in Ref. @31#, but have not yet been observed
experiment. This may be due to the fact that at finite te
perature, dark solitons are thermodynamical unstable.
interaction of a soliton with the thermal cloud causes dis
pation that accelerates the soliton. In most cases, the so
reaches the sound speed and disappears before reachin
boundary of the condensate@28#. Thus, to observe this oscil

FIG. 3. Soliton ‘‘oscillations’’ between condensate boundari
~a! Soliton path;~b! Soliton velocity vss ~dashed line correspond
to the theoretically predicted value!. Whole cycle corresponds to th
time periodt'5.3. At t1* '1.32, s1* '28 andt2* '4.0, s2* '228
the soliton velocity changes its sign and the soliton reverse pro
gation direction. At these instants of time we haver50 anduDwu
5p. All parameter values are the same as in Fig. 2.
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lation the temperature should be lowered enough to red
the thermal cloud, and hence, to increase the lifetime of
soliton @9#.

Now let us investigate the evolution of two-soliton sol
tions of the system. We focus on the head-on collision a
the theoretically predicted positive phase shift of the solito
after collision. From Eq.~40! the shift of the solitonA ~ini-
tially left! along the axial coordinatex due to interaction with
the solitonB ~initially right! is

Dx5A«R

Q
, ~48!

where «R5e2B0 /u0 is the initial relative amplitude of the
solitonB @analogous to« in ~46!#. Equation~48! involves the
constantQ that depends on the total number of atomsN that,
in turn, determines the condensate lengthL of the system. In
Eqs.~43! and~44! we have used the lengthl as a parameter
To numerically check Eq.~48! a relationship betweenQ and
L is needed.

The solution of Eq.~45! ~Fig. 1! can be approximated a

r0'Al 22s2. ~49!

Hence, the condensate density corresponding to the sta
ary background~i.e., ground state! of the system is

n5
vx

2

Qv'
2 ~L22x2!expF2

y21z2

2 G . ~50!

Using the normalization condition*nd r51 we get

Q5
3v'

2

4pL3vx
2

. ~51!

Thus, from Eq.~48!, the estimate for the change of trajecto
or phase shift of the solitonA due to head-on collision is

Dx5A 3«Rv'
2

4pL3vx
2
,

which yields the phase shift of the solitonA along the coor-
dinates as

Ds}A«R

l 3
. ~52!

Let us now numerically check the relationship~52!. Using
Eqs.~36! and ~37! we have the following initial conditions

r2sol~s,0!5r0~12«L sech2@A«Lr0~s2sL!#

2«R sech2@A«Rr0~s2sR!# !,
~53!

w2sol~s,0!5A2«L~12tanh@A«Lr0~s2sL!# !

1A2«R~11tanh@A«Rr0~s2sR!# !,

.

a-
7-7
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wheresL andsR are initial positions of the left~A! and the
right solitons (B), respectively, and«L , «R are their ‘‘am-
plitudes.’’ Again, like in the case of one soliton, we ha
appropriately corrected at the beginning of computation
solution ~53! to get well-shaped solitons.

Figure 4 shows results of the experimental test. Two s
tons propagate in opposite directions, approach each o

FIG. 4. Space-time plots of two colliding solitons.~a! relative
amplitude,~b! phase («R50.13, «L50.04, sL526, sR58, andl
530).
01361
e
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collide and, asymptotically, separate away. During collisio
one practically motionless composite structure forms
some time interval~actually, it is a depression of the back
ground pedestal level!. Its velocity depends on the initia
soliton heights. For identical solitons such composite str
ture does not move, but changes its shape. Due to the
tively long lengthl we cannot observe any remarkable pha
shift in this experiment. Thus, in accordance to Eq.~52!, to
observe and measure the positive phase shift predicted b
theory we reduce the length tol 56 – 12 and make new com
puter experiments.

We have found two different cases of head-on solit
collision ~Fig. 5!:

~i! ‘‘Gray collision’’ @Fig. 5~a,c!#. If the initial soliton
amplitudes or depression depths are small enough («R5«L
,0.6 for l 58), then during collision, a single composi
structure forms and further increases its amplitude but ne
touches zero, i.e., waves remain always gray. Figure 5~c!
shows the paths of the corresponding solitons. Clea
aroundt50.2, the solitons form a single composite solutio
which survives during some time interval~vertical bar link-
ing two paraboliclike paths!. Then, the solitons separat
away.

~ii ! ‘‘Black collision’’ @Fig. 5~b,d!#. If the initial soliton
amplitudes are large enough, then, while the solitons
proach each other, their amplitudes grow and at some ins
of time, just before collision, the soliton amplitudes vanish
their corresponding depressions touch zero~solitons become
plain black! still remaining on some distance from each oth
@fourth snapshot on Fig. 5~b!#. Thus, in this case, the soliton
FIG. 5. Two different types of soliton colli-
sions. ~a,c! Gray collision («R5«L50.4); ~b,d!
Black collision («R5«L50.75).~a, b! Sequential
snapshots of amplitude distribution,~c, d! soliton
paths~only a piece,sP@21.5,1.5#, of the whole
interval is plotted!. Dotted lines mark soliton path
as if each of them would propagate alone.
7-8
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DARK SOLITONS AND THEIR HEAD-ON COLLISIONS . . . PHYSICAL REVIEW A 64 013617
never form one hump solution@Fig. 5~d!#. This looks similar
to the reflection from the boundary described above. Ho
ever, during collision, solitons exchange energy, hence
the case of solitons with different heights, the propagat
directions are preserved~Fig. 6!, i.e., the small soliton afte
collision continues to propagate to the right, while the b
one runs to the left.

Clearly, Fig. 5~c! and 5~d! showpositivesoliton shifts in
their own traveling directions after the collisions. Let us no
measureDs as a function of«1/2 andl 23/2 and compare with
the theoretically predicted relationship~52! ~Fig. 7!. The

FIG. 6. Black collision of two solitons of different amplitude
(«R50.6, «L50.8).

FIG. 7. Axial soliton shiftDs as a function of~a! initial relative
soliton amplitude,«1/2 ( l 58, «R5«L5«), and ~b! of the length
l 23/2 («50.4).
01361
-
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curve on Fig. 7~a! has two regions. Region I corresponds
the dark type of collision~for which the theory has bee
developed!. In this region the experimental data can be w
fitted with a straight line, that confirms the correctness of
relationship~52!. In the region II~high soliton amplitude! the
effect of the interaction with the ‘‘black ground’’~zero am-
plitude! plays a significant role, and hence,Ds grows much
faster. Figure 7~b! shows results of experiments with th
same«R but varyingl. The value of«R was taken from the
region I @Fig. 7~a!#. Again, the data fits well on a straigh
line, hence confirming well the relationship~52!. We note
that, because of the inhomogeneity along the elongated a
the soliton paths will bend near the boundary of the cond
sate background as we have seen in Fig. 3 for the sin
soliton solution.

V. DISCUSSION AND SUMMARY

We have investigated the evolution of weakly nonline
pulses in a cigar-shaped BEC with a repulsive interaction
consistent description using a Boussinesq-Korteweg
Vries ~B-KDV ! evolution equation for dark soliton propaga
tion has been developed without using the Thomas-Fe
~TF! approximation. We emphasize that the dispersion p
vided by the quantum pressure in the condensate play
significant role in the formation of the dark solitons. Th
head-on collision between two dark solitons traveling in o
posite directions has also been investigated by means o
Poincare-Lighthill–Kuo~PLK! method. The analytical and
computer experiment results show that due to the collis
each soliton displays apositive phase shift in its traveling
direction, whose magnitudes we have obtained. The co
sponding trajectory change is at variance with known res
in fluids dynamics@19–21# but we have shown that in th
BEC case the background plays a dominant role in the
lision events, which is not the case in experiments with fl
ids, unless we consider the less usual case of depres
solitons@14,42–44#.

In the approach presented in Ref.@35#, a TF approxima-
tion for the ground- and also for the excited-state is ma
which disregards the quantum pressure, and hence, the
persion of the system is neglected. Furthermore, the assu
tion was made of an ‘‘interface’’ for the condensate, taken
an elastic cylindrical shell and obeying Newton’s seco
law. Using this assumption, a new equation, not result
from the Gross-Pitaevskii~GP! equation, was introduced
The dispersion of the B-KdV equation obtained in Ref.@35#
follows from this new equation with, however, a differe
sign relative to that obtained when the dispersion origina
from the quantum pressure of the system. This is the rea
why, in Ref.@35#, a bump~‘‘bright’’ ! soliton with its propa-
gating velocity higher than the sound speed of the sys
was obtained. In our approach, the TF approximation is
used. The dark solitons form due to the balance between
quantum pressure-driven dispersion and the nonlinearity
the condensate and we obtain dark, subsonic solitons.

The results presented in this paper can be tested by
periment. For a long enough cigar-shaped condensate w
repulsive atom-atom interaction, one can apply simu
7-9
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neously two far off-resonant laser fields to the condensat
phase imprinting at two different positions, say at a poinA
and at a pointB in the elongated axis direction. At eac
point, a density minimum~dark soliton! can be generated
propagating towards each other in opposite directions. Th
a head-on collision between two dark solitons is expecte
happen and the phase shifts following the collision can
obtained following in a space-time plot their correspond
trajectories before and after the collision. Note that cons
ering the finite soliton lifetime at finite temperatures~due to
the interaction of the soliton with the thermal cloud!, the
distance between pointsA andB should be short enough t
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ensure that they survive long to experience the head
collision.
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