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Dark solitons and their head-on collisions in Bose-Einstein condensates
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The evolution and collision of dark solitary wavésolitong appearing in cigar-shaped Bose-Einstein con-
densates with repulsive atom-atom interaction are here considered using a Boussinesg-Korteweg—de Vries
description. We provide theoretical predictions and computer experiment evidence about their phase shifts or
change of trajectories, in the space-time plot, corresponding upon collisions. Details are also given about a
suggested experiment that could assess their genuine solitonic nature.
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I. INTRODUCTION Boussinesq-Korteweg—de Vri€B-KdV) equation[36] was
derived using a reductive perturbation method if the excita-
The remarkable experimental realization of the Bosedtion from the condensate is weakly nonlinear. Instead of a
Einstein condensation in trapped clouds of alkali-atomsdark soliton, a supercritical bumf.e., densitymaximum
[1-4] has stimulated experimental and theoretical investigasoliton is obtained, hence traveling supersonic3h]. Such
tions on the physics of dilute ultracold bosonic gajdes7). a result is at variance with those obtained in most of the
One of the important aspects in this area is the exploration adtudies, using different approachg2—34 for solitons in
nonlinear properties of matter waves. Nonlinear excitationsBEC’s with repulsive interactions. Since in the experiments
such as vortices and solitons, have been observed in Bosgf Burger et al. [9] and Denschlagt al. [10], the solitons
Einstein condensate(BEC’s) [8-10 and the four-wave observed are small-amplitude gray ones, which belong to the
mixing has also been recently realizgtll] These studies are type of weakly nonlinear excitations on a condensate back-
significant for nonlinear atom optics and for other areas Ofground, it is reasonable to use a B-KdV theory to describe
condensed-matter physics and fluid dynanjc@-21. such weakly nonlinear excitations. On the other hand, in the
In a BEC, in addition to the atom-atom interaction, all scheme of the B-KdV description, the collision property of
atoms move in an external trap potential, i.e., the system ighe solitons is well establish¢d9—21]. Thus, it appears nec-
inhomogeneous, and the behavior of the solitons is very richessary to reconsider the above-mentioned description to find
For the BEC's with rubidium and sodium atomic vapors in agyt the reason of the indicated inconsistency and study the
trap, the solitary excitations in the condensates are of th@olliding property of the solitons in BEC’s in detail.
darktype singe the interaction between atoms is repulsive. In |, this paper, we investigate the dynamics of solitons in a
recent experiments by Burgert al. [9] and by Denschlag cigar-shaped BEC by developing a B-KdV description with-
et al. [10], dark solitons were generated by a phase imprintyyt ysing the TF approximation. Then we pay attention to the
ing method in a cigar-shaped BEC &fRb and in a nearly head-on collision between two dark solitons in the BEC and
spherical BEC of*Na, respectively. In both experiments an gjve their expected change of trajectories, in the correspond-
interesting phenomenon was found, i.e., in addition to a den-mg space-time plot, or phase shifts upon collision. The paper
sity minimumof the condensate traveling at lower velocity js organized as follows. In Sec. II, starting from the Gross-
than the speed of sound, which is identified as subsonic Obitaevskii(GP) equation, a B-KdV equation is derived by a
subcritically moving dark soliton, another density minimum myjtiple-scales method without using the TF approximation.
traveling in opposite direction may appear. Multidark soli- The dark-soliton solutions are also provided and discussed.
tons were also created by applying higher imprinted phas@ head-on collision between two dark solitons traveling in
values. These findings imply that one can observe a collisiogpposite directions is considered in Sec. Ill. The phase shift
between two dark solitons in BEC's, and hence, the possibilyf each soliton due to the collision is explicitly calculated
ity of experimentally assessing their genuine solitonic naturgising the Poincarkighthill-Kuo (PLK) method [37]. In
[20,21]. _ . _ Sec. IV we report the results of our numerical investigation
On the other hand, It seems |nterest|ng to further exten@f soliton propagation and collisions. Fina"y, Sec. V con-

the available theory on solitons in BEC[22-34 with & tains a discussion and summary of our results.
repulsive atom-atom interaction. Recently, an interesting

new approach has been propo$8H] for the soliton propa-
gation in a cigar-shaped BEC. In this approach, besides a
Thomas-FermiTF) approximation for the ground state and
also for the nonlinear excitations, the assumption of the ex-
istence of an interfacéelastic cylindrical shellfor the con- The dynamic behavior of interacting bosonic gases at zero
densate is also made. The interface is further assumed temperature is well described by the time-dependent Gross-
obey Newton’s second law. Under these assumptions, Ritaevskii(GP) equation for the order paramefd]

Il. A B-KDV DESCRIPTION FOR DARK SOLITON
EXCITATIONS
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where [dr|¥|?=N is the number of atoms in the conden-
sate,g=4m#%a/m is the interacting constant witin the 1A 1] wy)? 25 DA
mass of the atom, anathe s-wave scattering lengtiat0 2 52 *3 o) " F(=ptl)
for repulsive interactions As in experimenf9], we consider
a cigar-shaped harmonic trap with the elongated axis ixthe
direction. Thus, we haveV(r)=(m/2)[ w2x?+ w?(y?
+7%)] with w,<w, , wherew, andw, are the frequencies
of the trap in thex direction and the transverse direction, As in Ref.[38], to obtain Eq.(6) we have used Ed4) with
respectively. Expressing the order parameter in terms of it& =G, and multiplied Eq.(3) by G§ and then integrated
modulus and phase¥ =nexp(#), we obtain a set of once with respect tg andz This procedure is equivalent to
coupled equations fon and ¢. By introducing &,y,z) assume that the excitation is quasi-one-dimensional
=a,(x',y",z'), t=w, ', n=ngn’ with a, =\&/(me,)  [23,31,35,38,3p
andny=N/a®, we have the following dimensionless equa- LetA=ugy+a(x,t) (without loss of generality, we assume
tions of motion(after dropping the primes, expecting no con- thatug, a quantity characterizing the condensate background,
fusion in the reader is positive with (a,¢)=(ag,¢g)exdi(kx—wt)]+c.c. with
Ug, 89, and ¢y constants, when the trapping potential in the

2 1
A+ EQAff:o. (6)

do 1(&@

=+ =
at 2\ 9x

an B x direction is neglected, we obtain the linear dispersion rela-
S TV (nV¢)=0, @ tion of Egs.(5) and (6)
dp Llwd?, 1 . 1 2., 1 2\12
Ty = - =+ _-k(2Qug+k , 7
5|2 ey v o=+ 5k(2QU+k?) ™
1 1 where the positivérespectively, negatiyesign corresponds
+3 (V)?- ﬁvz\/ﬁ =0, (3 to the wave propagating to the righespectively, left We

stress that th&?-term in the bracket of E¢(7) comes from
with Q=4mNa/a, , V=(alox,d/ay,dl3z) and fdrn=1. the quantum pressure, given by the tern(1/2)*A/ax” in
The last term on the left-hand side of Eq3) (.e., Ed-(6). Equation(7) is the Bogoliubov-type linear excitation
—1/2\/ﬁV2\/ﬁ) is called the quantum pressure, which pro- spectrum of our system f_or _sound propagation. We see that
vides the dispersion necessary to form a dark soliton in th&® 9et the Bogoliubov excitation spectrum, the quantum pres-
BEC, as we shall see below. sure of the system plays a significant role. From &g.we
Equations(2) and (3) are (3+1)-dimensional, nonlinear, ©btain_the sound speed of the systarr (dw/dK)[c-o
and dispersive equations with a variable coefficient, and we = VQ/2uo. For an homogeneous systefie., Vey(r)
have not yet been able to find an exact solution. For this=0] the corresponding sound speedcis= * Quq in our
reason we turned to an effective approach with some reasomotation. Thus, we have/c,=1/\/2. The factor 1{2 is due
able approximations. Since in experime], w,/w, is  to the transverse confinement of the system. This result is
small (=0.03), one can expect that the variation of the pro-consistent with the experiment by Andrewsal. [40] and
file of the order parameter is slow in the elongated., x) the theoretical approaches in RgZ3] for sound propagation
direction. On other hand, due to the strong confinement irin BECs with repulsive atom-atom interactions. In addition,
the transverse directions, the motion of the order parameteve see that the wave may propagate in two opposite direc-
in the x andy directions behaves like a standing wave, i.e.,tions and displays dispersion. This is also the case observed
the system is similar to a wave guide in which the excitationin the experimenf40].
from the ground state propagates in the elongated direction Now we consider the weakly nonlinear excitations on the
[23,27,35,38% The strong confinement also ensures the dy-condensate backgrouride., the ground statef the system.
namical stability of a dark soliton excitatig@7]. Therefore, We note that in the experiment of Burgetral.[9] the sound
we assume/n=A(x,t)G(y,z) andp=— ut+ p(x,t). Then  speed ix=4manyhi/m~3.7 mm/s, wher@, is the density
G(y,z) satisfies of the condensate. Thus, the healing length 1/\/4many is
about 0.2um. For a gray soliton, with graynepsee Eq(15)

_1 ‘9_2+‘9_2 4) below] A,=0.1, its width is about 0.9xm. Hence, their
2\ gy? 972 width may be larger than the healing length, and the size of
the gray solitons may be large enough for easy observation.
Equation(4) is the eigenvalue problem of a two-dimensional The harmonic oscillator length in the elongated direction in
quantum harmonic oscillator. Its ground-state solution isRef.[9]is about 3um, which is much larger than the healing
Go(y,2) =exd —(y?+79)/2] with the eigenvaluev=v,=1. length of the system. This means that the variation of the
With these substitutions, Eq$2) and (3) are transformed order parameter is slow in the direction, as mentioned
into above. For simplicity in the analytical approach, we thus

1
G+ E(y2+zz)G= vG.
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neglect the second term on the left side of E).(we shall ~ whereA, is apositiveconstantx, is a constant denoting the
discuss the effect of the inhomogeneity in theirection in  initial position of the soliton on the pedestal background.

Sec. V. Exact to the first order, the condensed-state wave function
Using the asymptotic expansion takes the form
A=ugtefa®+e%aM+ .. ], ®) W =ug (1— Ay sech] V2c2Agx—c(1—Ag)t—Xol])
2+22
o= 0@+ 2ot .. ], ) Xex%_y 2 et (— it 1, 15

and assuming tha) and ¢ (j=0,1,---) are functions 5 5

of the multiple-scale variableg=e(x—ct) and =%,  With Ag=Ag/uy, u=1+Qug/2. The constanA, can be
wheree is a smallness parameter characterizing the relativéaken as the grayness of the soliton. The phase function reads
amplitude of the excitation, and then substituting them to

Egs.(5) and(6), we obtain o=—\2A,tant V2cZAs{x—c(1—Ag)t—Xo}]. (16)
gad 1 520 ) Let us emphasize the results obtained above:
C&——EUO—ZZOI(]), (10)
§ 9& (i) From Eq. (15 we see that the excitation is dark
soliton (i.e., density minimum of the condenspateonsistent
2 (i) e 0 with most of the studies on soliton dynamics in BEC with a
Quga'’—cug g€ =p. (1D repulsive interaction using different approacli28—25,31—
34].
The explicit expressions a&) and g0) (j=0,1,---) are (i) The velocity of the dark soliton isvs=c(1—A0_)
not needed here. hence directly dependent on the depth of the depression be-
In the leading order j=0), we obtain ¢© low the background pedestal level. Accordingly, the deeper

= (2¢c/ug) fd£a® with a® a function yet to be determined. this depth, the lower is the soliton velocity. Thus, is al-

o i _ ; lower than the sound speedf the system(see also
The solvability condition demands= 8,\/Q/2u, with §,  Ways lowe ; . > .
==+1. At the next order j=1), the solvability condition the resuIF LnkRef[ZS]). T:’]IngﬂnSLlil’eSI.ItS sta|b|I]|cty af?d.'s. con-
results in the closed equation faf): sistent with known results faark solitons. In fact, it is just

this property that makes Burget al. [9] and Denschlag

et al. [10] to identify the density minima in their BEC ex-

periments aslark solitons rather than mere sound waves.
(iii) The formation of thedark soliton given in Eq(15) is

due to the balance between the nonlinearity and the disper-

Equation(12) is the B-KdV equation for the wave traveling s@on_i_n Eq.(12). Consequently_, the quantum pressure _plays a

to the right(left) for the cases;=+1 (8,=—1). Note that S|gn|f|c§1nt role in the fqrmatlon of the dark §0I|tor] in the

we refer to disturbances upon the pedestal profile offered bE%jEZC' in agreement with the results obtained in Refs.

the cigar-shaped background condensate and that accordi ’_25’3]]' .

to the signs in Eq(12), we can consider eithér—o or t (iv) From Eq.(16) we obtain

— —oo for evolutionary purposes. Note also that the disper-

9a® 3c_gal® 1 5%al” 0 1
+— - =0.
ar uoa 9§ 8c g8 (12

. . . L. 9
sion term in Eq.(12) is due to the contribution of the quan- 7¢ = 2¢hn sechT V2c2Ax—c(1— At —xal 1.
tum pressure of Eq3). Letw= e?a®) and use the definition Ix Ao [ olx~c( o)t~ %o}
of £ and 7. Then we obtain (17)

N It reveals that, indeed, when the phase gradient is increased,
&_W 3_CWO7_W_ i 0_W: (13) the soliton becomes darker and indeed travels slower; when
gt up X 8cgxd the phase gradient is lowered, the soliton becomes shallower

and propagates faster, agreeing with the observation in the

with X=x—ct. The single-soliton solution of Eq13) is  €Xperiment$9,10]. _ .

given by (v) The velocity of the dark soliton may have two differ-

ent signgvs= = /Q/2ux(1—Ap)], i.e., it may propagate in
/2c2A0( Ao )
X+c—t—Xq
Uo Uo

either the positive or the negativedirection. Recall that, as
w=—A, secht
2¢%A, Ao
X—c|1l——|t—Xg
Uog Uo

we noted earlier, in view of the signs in Ed.2) we can also
considert— —oo rather thart— . This may provide a pos-
sible explanation of the appearance of two density minima
, (i.e., two dark solitonstraveling in opposite directions, ob-
served in the experiments by Burgeral. [9] and by Den-
(14  schlaget al.[10]

=—A,sech
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IlI. HEAD-ON COLLISIONS OF TWO DARK SOLITONS

In a one-(or quasi-one- dimensional system, there are
two distinct soliton interactions. One is tlwwertakingcolli-
sion and the other one is ttead-oncollision [41-4§. The

PHYSICAL REVIEW A 64 013617

Quza)—cuj (25

0 ) .
=N
3 M)go N

The expressions foM () andN® (j=0,1,2...,) are not

overtaking collision of the dark solitons in the BEC can beneeded here.

studied with the B-KdV Eq(12). Its multisoliton solutions
(they travel in the same directipan be obtained from the
inverse scattering transforf21]. However, for the head-on

collision, we must search for the evolution of waves travel-

ing to both sides, and hence, we need to employ a suitab

asymptotic expansion to solve the original equations of mo-

tion (2) and(3), or their simplified form(5) and (6).
Starting from Egs.(5) and (6), we assume that in the

condensate, two dark solitons are generated that are, asymp
totically, far apart at the initial state and proceed toward eacq.
other. After some time they interact, collide, and then depart

We use the PLK methodl37,43,45,4% to investigate the
head-on collision between two dark solitons in the BEC. W
anticipate that the collision will result in a change of trajec-
tory or phase shiffor each soliton, and hence, assume

é=e(x—cpt)+ 2P+ *PB(g,m)+---, (18

n= €(X+CLt)+62Q(O)( 7])+64Q(1)(§17])+ T (19)

which denote the trajectories of the solitons traveling to the

right and left, respectively. In Eq$18) and (19) the right-
and left-running wave velocitiesg andc, are related to the
amplitudes of the waves. The functio¥?) and QW) (]
=0,1,2,...,) are yet to bdetermined. The aim of intro-
ducing these functions is to make a uniformly valid
asymptotic expansiofi.e., to eliminate secular termnand at
the same time obtain the change of the trajectofies,
phase shifts of the solitons after the collision. Using Egs.

(18) and(19), we get the transformation between derivatives

as
J (7+a +3&P(°)&+&Q(°)0 .
ox_ \og anl S\ Tay o9& et ang
(20)
d J . J L aP© ¢ QO 4
gt €| TR T T T g SR o gy

T (21)

Introducing the same asymptotic expansions for the quanti-

tiesA and ¢ as in Egs(8) and(9) and assuming

CR:C+ €2R1+ 64R2+ ey, (22)

CL:C+62L1+E4L2+"', (23)

and then substituting Eq&0)—(23) into Egs.(5) and(6), we

obtain
d Jd .

dE dn

1

2

1% Jd
_—

2
=m0
7% 577) V=MV (24

The leading order solutionj €0) of Egs.(24) and (25)
reads
a@=1o(&)+go(m), (26)
le
&

QD(O)ZZ_C f
UO +

ith a solvability conditionc=/Q/2u, (the sound speéd
hus, in the leading order we have two sound wa¥g&s)
and gq(7), which are traveling to the right and to the left,
respectively. The lower limits of the integrations in E(&7)

ave been chosen to make the initial phadsfore colli-
sion) of the solitonfy(£) andgg(#) equal to zero.

In the second orderj& 1), by Egs.(24) and(25) one has

the equations foa™) and¢(*). The solvability conditions for
a® and ¢™@ yield

7
fo(&)dé" - f_wgo(n’)d 77') . (27

cAgdfg 3c afg 1

U a§+u_0 0GE ga—§3—0, (28)
cBy 9 3c 9 148
€50 %o _goﬂ__&zo, (29)
Uo (;'7] UO 57] 8C (97]3

oP© 1

Q@ 1

a—g—ifo(@, (31

together withR;= —(c/ug)Ag and L= —(c/ug) By, where

A, andBg are two positive constants related, respectively, to
the one and other of the amplitudes. Equati(® and(29)

are the two-side traveling wave B-KdV equations in the ref-
erence frames of and 7, respectively. Their corresponding

solutions are
2¢°Ag . ) .
J &|  (right-running soliton,
0

fo(é)=—A,sech

(32)
[2c?B, . .
go(7)=—Bgsechk J 77} (left-running soliton,
0
(33

which describe depressions of the background pedestal level.

Using Eqgs.(30) and (31) we obtain

o

1
2¢

UoBo 2¢%B,

PO(7)=— >

n|+1], (34
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1 [uA 2c?A
Q&)= 02 O(tanr{ \/ ™ O

From Egs.(32)—(35) we can obtain the expressions faf)
and ¢V, Finally, the solution up t®(e*) order is

—-1]. (35

A=Uy— €’[AgSecR (&) +Byseckog( )]

AZ B3
+ e 2secRon(¢)+ — sech6g( 7)
Upg Ug
3A2 3B}
+ 2—u§secH0A( &)+ Z—U((:secl‘ieB( 7)
1
+| -1 AoBg secld,(£)sechbg( 7)
Up
+f1(8)+91(7n) |, (36)
[2B, [2Aq
o=¢€ u—[tanh93(7;)+1]— u—[tanl‘ﬂA(é)—l])
0 0
2c| (¢
+63u—0(f+wf1(§')d§’_f_nwgl(ﬂ’)dﬂ' +0(€%),
(37

where 0,(&)=2c?Ay/ugé and 6g(7)=2c?By/ug7.
f1(§) andg4(#n) are two functions to be determined in the
next order. The trajectories of the solitdg(¢) (denoted by
A) and the solitongy(7) (denoted by B are, respectively,
given by

§=e(x—cplt) — 622_10 \! Bozuo [tanh¥g(7) +1]+O(€),

(39
n=e(x+c t)— 62%\ /A‘;uo [tanhga(&)— 1]+ O(€b),
(39

with CR: C(l_ 62A0/U0) + 0(64) and CL: C(l_ 6280/U0)

PHYSICAL REVIEW A 64 013617

Ap=e(x— CRt)|§:O,7;: oo €(X— CRt)|§:0,n: —

1 [Boug
= 2=
€3 5 (40

Ag=e(X+CLt)])=0¢= o~ €(XFCLD)|m0= 4

1 AQUQ
= — 2
€ C\/ 5 (42

Since solitonA is traveling to the right and solitoB is
traveling to the left, we see that due to the collision each dark
soliton in the condensate haspasitive phase shift in its
traveling direction. The magnitude of the phase shift for soli-
ton A (B) is proportional to the square root of the greyness
[Bo (Ag)] of soliton B (A). This result is at apparent vari-
ance with old and recent experiments with collisions and
wall reflections(a virtual collision with the corresponding
mirror image soliton of solitons in fluids[19-21,42—-44
where anegativephase shift is observed for elevation soli-
tons. In fact, the less usual depression solitons may exhibit
positive phase shifts upon collisiof4]. The positive phase
shift may be due to the role played by the condensate back-
ground in the dynamics of the collision, which becomes
dominant upon the actual phase shift occurring asymptoti-
cally in the kinematics of the trajectories after collision. In-
deed, the soliton velocities are drastically lowered when their
amplitudes—depressions of the background pedestal level—
increases. Thus, upon approaching each other, the solitons
reduce their velocity, and hence, the trajectory change, in the
space-time plot, leading to positive phase shift. In fluid
experiment§42-44, solitons rather accelerate while collid-
ing, and hence, a corresponding negative phase shift occurs.
Let us note, for the record and with no further discussion,
that there are cases of soliton wall reflectjd] and hence,
virtual collisions, as mentioned above, where an expected
negative phase shift appears rather as positive, and this can
be attributed to the “active” role played by the wall-wave
interaction that can be considered as a background effect in
the BEC terminology. Thus, we have a clear-cut prediction
that if observed would assess the genuine solitonic nature of
the condensate density minima as nonlinear, soliton waves.

IV. NUMERICAL RESULTS

To cross check the above-made statements and extend

+0(€%), and hence, both are subsonic solitary waves. Beanalytical results into a wider parameter domain, and also to

sides, once more we see that their velocities are drasticallgonsider the affect of the trapping potential along the axial

lowered as their corresponding depression depths increaselX) direction, in this section we numerically investigate the
The phase shifts after a head-on collision of the two dariolitonlike solutions of Eqs(5) and (6).

solitons can be obtained using E¢38) and(39). To do this,
let us assume that the solitoAsand B are (asymptotically
far from each other at the initial timé€ —); i.e., solitonA
is até=0, »=—o, and solitonB is at =0 and &=+,
respectively. After the collisiont& + ), the solitonA is far
to the right of solitonB, i.e., solitonA is até=0, n= +x,
and solitonB is at =0, ¢= —. Using Eqs.(38) and(39)
we obtain their corresponding phase shiftg and Ag as
follows:

Before proceeding with the direct numerical integration,
for convenience, we change variables

] o 20 oy
A= wLQp’ t= o T, X= ” S, (42

X

wheres and = are new axial coordinate and time, ands a
new variable proportional to the amplitude of the order pa-
rameter. Then, Eq$5) and (6) are transformed into
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FIG. 1. Stationary background profilsolution of Eqs(45) with
1=30].

ap dp do é’zgo

91 %as s Byg “3
de (92p 2 de 2
—=——|s2=12+p%+ | —] |p. a4
Por= o2 |3 Pt o5] [P (44)

The advantage of the new Eqg&l3) and (44) is that they
involve one independent constant], only, where |
=+wyx/w, L, with L being the half length of the condensate.
The constant in Egs. (43) and (44) plays the role of the ) ) ) )
problem length. This drastically simplifies the problem for _ F!G- 2. Space-time plots of a soliton propagating to the right.
numerical simulations. We assume that the particle numbéf'2tive amplitude(b) phase ¢=0.07, s,=0).
in the condensate is big enough, and hence, on the left and
right boundaries the order parameter approximately vanishe%a
which means that Eq$43) and(44) may be supplied by the
boundary conditiong(=1,7)=0 and ¢ (*Il,7)=0 in the

Let us start with a test on the single soliton propagation.
king into account approximate soluti¢hb), (16) and the
change of variable$42) we have the following initial con-

. . ditions
simulations.
As we have seen above, as Wea}kly nonlinear excitations, preol($,0)= po(1—e sech[ \/;Po(S— o)),
solitons propagate on some stationary condensate back- (46)
ground pedestal, that is taken to be approximately constant P1e0((S,0)=— \/Ztank[ \/gpo(S— so)],

for analytic. Now let us find the shape of this background

state[ po(S), ¢o(s)], when the axial potential is taken into \yheres, is an initial soliton positiong is a constant respon-

account. Since in the grOUnd state of the System the pha%|e for the Corresponding amp”tu(ﬂgraynes)sof the soli-

@o(s) =constant, we get from Eq$43) and (44) the time-  ton, andp, is the background pedestal solution just found

independent, nonlinear equation fey (Fig. 1). We note, however, that the initial conditions given
by Eq. (46) are not suitable for direct numerical integration

d2p, due to the deviation from the background profile near the
——=[s?—1%+ pg]po. (45) boundaries, wher@ must be flat an¢gp must approach the
ds? background solutiopy. Such perturbations result in nondes-

ired pulses propagating inwards from the boundaries to the

We have solved the boundary value probletf) for a num-  center of the interval. To avoid this problem, we correct the
ber of different lengthd =6, 8, 10, 12, and 30 with the initial conditions(46) in a such a way that they approach the
boundary conditiongy(=1)=0. The highest valud,=30, stationary background solution near boundatfas from the
corresponds to the approximation used in the theoreticahitial soliton positionsy), and keep the shape of the soliton
analysis given above, since in this case, the soliton spad@6) in the vicinity of s;.
scale is shorter than the scale of the background state. Be- Figure 2 shows results of the numerical integration of
sides, this value coincides with the condensate length usegqgs.(43) and(44) providing both amplitude and phase evo-
by Burgeret al. [9]. Figure 1 shows background pedestallution. In Fig. Aa) we have plotted amplitude of the soliton
profile [solution of Eq.(45)] with |=30. Valuesl=6—12  over the background state, since a direct visualization isf
correspond to relatively short condensate lengths or lovcomplicated due to its curvatuf€ig. 1). The soliton propa-
amount of atoms. We shall use them further to detect thgates to the right end of the interval. During the propagation
soliton phase shifts due to a head-on collision. the pedestal heighi, decreases$Fig. 1), while the relative

The profiles thus obtained can be used as initial condisoliton height,pq— p, increases, and hence, the soliton be-
tions in the numerical integration of Eq&L3) and (44). All comes darker, while its velocity decreases. As theory pre-
solutions now can be obtained by applying appropriate perdicts, the phase gradient increases as the soliton approaches
turbations to the background pedestal solution. the boundanyFig. 2(b)]. Close to the right boundary, we
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5 lation the temperature should be lowered enough to reduce
e (a) the thermal cloud, and hence, to increase the lifetime of the
4 soliton[9].

Now let us investigate the evolution of two-soliton solu-
tions of the system. We focus on the head-on collision and
2 the theoretically predicted positive phase shift of the solitons
after collision. From Eq(40) the shift of the solitorA (ini-
tially left) along the axial coordinatedue to interaction with
0 the solitonB (initially right) is

A
Ax= \/%, (48

where eg=€?B, /U, is the initial relative amplitude of the
solitonB [analogous te in (46)]. Equation(48) involves the
constaniQ that depends on the total number of atoxhthat,
in turn, determines the condensate lengthf the system. In
Egs.(43) and(44) we have used the lengthas a parameter.
To numerically check Eq48) a relationship betwee® and
40 - , L is needed.

% 20 -0 0 10 20 30 The solution of Eq(45) (Fig. 1) can be approximated as

'Usol

-204

~ 122
FIG. 3. Soliton “oscillations” between condensate boundaries. Po 17=s% (49

(a) Soliton path;(b) Soliton velocity vss (dashed line corresponds h d d . di h .
to the theoretically predicted valu@Vhole cycle corresponds to the Hence, the condensate density corresponding to the station-

time periodr~5.3. At 7% ~1.32, s} ~28 and7§ ~4.0, s;~—2g Ay backgroundi.e., ground stafeof the system is
the soliton velocity changes its sign and the soliton reverse propa-

gation direction. At these instants of time we hawve0 and|A ¢| w5 . s 2+ 272

= 7. All parameter values are the same as in Fig. 2. n= Q_wf(L —x7)exp - > (50
have observed a sharp increase of the soliton height angsjng the normalization conditiofindr=1 we get
phase difference along solitod,¢ = @pefore— Pafter- At CEI-

tain critical points ¢7~1.32, s;~28 and 75~4.0, s; 302

~—28 in Fig. 3 the soliton approaches the zero overall (51

. e . T Anl302
amplitude,p(sT ,,77,) =0, i.e., it becomes plain black. For 4l o)

these instants of tim\ ¢| = 7. Then the phase shift changes _ ,
its sign, the soliton reveres motion and starts to propagate ih "US: rom Eq(48), the estimate for the change of trajectory
the opposite direction with decreasing amplitude and phas@’ Phase shift of the solitoA due to head-on collision is

shift (Fig. 3). After such “oscillations” between boundaries, 5
at 7~5.3, the soliton comes back to the initial stéfég. 3). Ax— 3erw]
The theoretical estimate for the soliton velocity gives the X= A7 302
subsonic velocity X

which yields the phase shift of the soliténalong the coor-

Usol= \/§p0(1— ). (47) dinates as
The soliton velocity is a function of the position coordinate Asor &R 52
due to the inhomogeneity along the elongated axis. Figure S |_3 (52)

3(b) shows the theoretical estimai47) and data taken from
the computer simulation. The numerically found soliton ve- | ot us now numerically check the relationsl§®). Using

locity is even lower than Eq47). Similar oscillating behav- Egs.(36) and (37) we have the following initial conditions
ior of the dark solitons in harmonic traps has also been pre-

dicted in Ref.[31], but have not yet been observed in s.0)=pn(1—g, sechRl Ve, on(S—s
experiment. This may be due to the fact that at finite tem- P2sol(80)=po(1 =L [Vewpols=su)]
perature, dark solitons are thermodynamical unstable. The —ersech[ Verpo(s—sr)1),
interaction of a soliton with the thermal cloud causes dissi- (53)

pation that accelerates the soliton. In most cases, the soliton . (s 0)=/2¢ (1—tanH Ve _po(S—5S.)])
reaches the sound speed and disappears before reaching the
boundary of the condensdi28]. Thus, to observe this oscil- ++2eRr(1+tani \/S—RpO(S— sr) D),
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collide and, asymptotically, separate away. During collision,
one practically motionless composite structure forms for
some time intervalactually, it is a depression of the back-

(2)

4 _0'8 T ground pedestal level Its velocity depends on the initial
Q 04 soliton heights. For identical solitons such composite struc-
I 2 I A ture does not move, but changes its shape. Due to the rela-
< oF Hi—" 2 00 tively long lengthl we cannot observe any remarkable phase
30 20 -0 0 10 30 shift in this experiment. Thus, in accordance to Esp), to

S observe and measure the positive phase shift predicted by the
theory we reduce the length te-6—12 and make new com-
puter experiments.

T We have found two different cases of head-on soliton

- 04 collision (Fig. 5):

(b)

34 0.8

—
I M 00
e

0
- 20 30
S

=g

(i) “Gray collision” [Fig. 5a,9]. If the initial soliton
amplitudes or depression depths are small enougl+E,
< 0.6 for 1=8), then during collision, a single composite
structure forms and further increases its amplitude but never
touches zero, i.e., waves remain always gray. Figuym 5
shows the paths of the corresponding solitons. Clearly,
aroundr=0.2, the solitons form a single composite solution,
which survives during some time intervalertical bar link-
ing two paraboliclike paths Then, the solitons separate
away.
wheres; andsg are initial positions of the leftA) and the (i) “Black collision” [Fig. 5b,d)]. If the initial soliton
right solitons B), respectively, and, , g are their “am- amplitudes are large enough, then, while the solitons ap-
plitudes.” Again, like in the case of one soliton, we have proach each other, their amplitudes grow and at some instant
appropriately corrected at the beginning of computation thef time, just before collision, the soliton amplitudes vanish as
solution (53) to get well-shaped solitons. their corresponding depressions touch z@aitons become
Figure 4 shows results of the experimental test. Two soliplain blacK still remaining on some distance from each other
tons propagate in opposite directions, approach each othdfpurth snapshot on Fig.(B)]. Thus, in this case, the solitons

-

FIG. 4. Space-time plots of two colliding soliton®) relative
amplitude,(b) phase £r=0.13, ¢, =0.04, s, = —6, sg=8, andl
=30).

FIG. 5. Two different types of soliton colli-
sions. (a,0 Gray collision gg=¢,=0.4); (b,d)
Black collision g=¢,=0.75).(a, b Sequential
snapshots of amplitude distributioft, d) soliton
paths(only a piecese[—1.5,1.5, of the whole
interval is plottedl. Dotted lines mark soliton path
as if each of them would propagate alone.

5] 15 40 05 00 05 10 15
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curve on Fig. 7a) has two regions. Region | corresponds to
/AVW—\ the dark type of collision(for which the theory has been
developedl In this region the experimental data can be well
//-v\/’\ fitted with a straight line, that confirms the correctness of the
relationship(52). In the region li(high soliton amplitudethe
m effect of the interaction with the “black ground(zero am-
plitude) plays a significant role, and hencks grows much
/’_V/\ faster. Figure {b) shows results of experiments with the
sameeg but varyingl. The value ofeg was taken from the
region | [Fig. 7(a)]. Again, the data fits well on a straight

line, hence confirming well the relationshi{f2). We note
that, because of the inhomogeneity along the elongated axis,

o *] the soliton paths will bend near the boundary of the conden-
ot 3 p ] 3 sate background as we have seen in Fig. 3 for the single
s soliton solution.

FIG. 6. Black collision of two solitons of different amplitude.
(er=0.6,¢,.=0.8). V. DISCUSSION AND SUMMARY

We have investigated the evolution of weakly nonlinear
o _ o pulses in a cigar-shaped BEC with a repulsive interaction. A
never form one hump solutidirig. 5(d)]. This looks similar  consistent description using a Boussinesg-Korteweg—de
to the reflection from the bOUndary described above. HOWVrieS (B_KDV) evolution equation for dark soliton propaga-
ever, during collision, solitons exchange energy, hence, ifion has been developed without using the Thomas-Fermi
the case of solitons with different heights, the propagationTF) approximation. We emphasize that the dispersion pro-
directions are preservegFig. 6), i.e., the small soliton after vided by the quantum pressure in the condensate plays a
collision continues to propagate to the right, while the bigsignificant role in the formation of the dark solitons. The
one runs to the left. head-on collision between two dark solitons traveling in op-
Clearly, Fig. %c) and 3d) show positivesoliton shifts in  posite directions has also been investigated by means of the
their own traveling directions after the collisions. Let us nowPoincare-Lighthill-Kuo(PLK) method. The analytical and
measure\s as a function ot¥? andl %2 and compare with computer experiment results show that due to the collision
the theoretically predicted relationshij2) (Fig. 7). The €ach soliton displays positive phase shift in its traveling
direction, whose magnitudes we have obtained. The corre-
sponding trajectory change is at variance with known results
in fluids dynamicg19—-21] but we have shown that in the

“ 02 () : BEC case the background plays a dominant role in the col-
< 020 : lision events, which is not the case in experiments with flu-
ids, unless we consider the less usual case of depression
0.154 solitons[14,42—-44.
In the approach presented in RE35], a TF approxima-
0.101 tion for the ground- and also for the excited-state is made,
which disregards the quantum pressure, and hence, the dis-
0051 persion of the system is neglected. Furthermore, the assump-
02 04 05 06 07 08 09 10 tion was made of an “interface” for the condensate, taken as
& an elastic cylindrical shell and obeying Newton’s second
law. Using this assumption, a new equation, not resulting
b from the Gross-PitaevskiiGP) equation, was introduced.
w 217 (b) The dispersion of the B-KdV equation obtained in R&5]
< follows from this new equation with, however, a different
0124 sign relative to that obtained when the dispersion originates
from the quantum pressure of the system. This is the reason
why, in Ref.[35], a bump(“bright” ) soliton with its propa-
0.08 . . .
gating velocity higher than the sound speed of the system
was obtained. In our approach, the TF approximation is not
% om0 o obr used. The dark solitops form due to the balance bgtwee_n the
R guantum pressure-driven dispersion and the nonlinearity in
the condensate and we obtain dark, subsonic solitons.
FIG. 7. Axial soliton shiftAs as a function ofa) initial relative The results presented in this paper can be tested by ex-
soliton amplitude,c*? (1=8, eg=¢_ =¢), and (b) of the length  periment. For a long enough cigar-shaped condensate with a
1732 (£=0.4). repulsive atom-atom interaction, one can apply simulta-
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neously two far off-resonant laser fields to the condensate aansure that they survive long to experience the head-on
phase imprinting at two different positions, say at a pdint collision.

and at a pointB in the elongated axis direction. At each

point, a density minimun{dark soliton can be generated ACKNOWLEDGMENTS
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