
PHYSICAL REVIEW A, VOLUME 64, 013611
Classification of phase transitions of finite Bose-Einstein condensates
in power-law traps by Fisher zeros

Oliver Mülken, Peter Borrmann, Jens Harting, and Heinrich Stamerjohanns
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~Received 20 June 2000; revised manuscript received 27 November 2000; published 5 June 2001!

We present a detailed description of a classification scheme for phase transitions in finite systems based on
the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply
this scheme to finite Bose systems in power-law traps within a semi-analytic approach with a continuous
one-particle density of statesV(E);Ed21 for different values ofd and to a three-dimensional harmonically
confined ideal Bose gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein
condensation phase transition sensitively depends on the confining potential.
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I. INTRODUCTION

In 1924, Bose and Einstein predicted that in a system
bosons at temperatures below a certain critical tempera
TC , the single-particle ground state is macroscopically oc
pied @1#. This effect is commonly referred to as Bos
Einstein condensation, and a large number of phenom
such as the condensation phenomena in alkali-metal ato
the superfluidity of4He, and the superconductivity, are ide
tified as signatures of this effect. However, the physical s
ation is very intricate in most experiments.

Recent experiments with dilute gases of alkali-metal
oms in magnetic@2# and optical@3# traps are in some sens
the best experimental approximation up to now of the id
noninteracting Bose-Einstein system in an external pow
law potential. The achievement of ultralow temperatures
laser cooling and evaporative cooling provides the oppo
nity to study Bose-Einstein condensation under system
variation of adjustable external parameters, e.g., the trap
ometry, the number of trapped atoms, the temperature,
by the choice of the alkali-metal atoms the effective interp
ticle interactions. Even in the approximation of nonintera
ing particles, an explanation of these experiments requ
some care, because the number of bosons in these novel
is finite and fixed and the standard grand-canonical treatm
is not appropriate. The effect of the finite particle numb
on the second moments of the distribution function, e.g.,
specific heat and the fluctuation of the ground-state occu
tion number, has been addressed in a number of publicat
@4,5#. In @4,6#, we have presented a recursion method to c
culate the canonical partition function for non-interacti
bosons, and we investigated the dependency of the the
dynamic properties of the condensate on the trap geome

The order of the phase transition in small systems se
tively depends on finite-size effects. Compared to the m
roscopic system, even for systems as simple as the th
dimensional ideal gas, the order of the phase transition m
change for mesoscopic systems where the number of
ticles is finite or for trapped gases with different trap geo
etries.

In this paper, we address the classification of the ph
transition of a finite number of noninteracting bosons in
1050-2947/2001/64~1!/013611~6!/$20.00 64 0136
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power-law trap with an effective one-particle density
states V(E)5Ed21 being formally equivalent to a
d-dimensional harmonic oscillator or a 2d-dimensional ideal
gas. We use a classification scheme based on the distribu
of zeros of the canonical partition function initially deve
oped by Grossmanet al. @7# and Fisheret al. @8#, which has
been extended by us@9# as a classification scheme for finit
systems. On the basis of this classification scheme, we
able to extract a qualitative difference between the orde
the phase transition occurring in Bose-Einstein condens
in three-dimensional traps@10,11# and in two-dimensional
traps that was recently discovered by Safonovet al. in a gas
of hydrogen atoms absorbed on the surface of liquid heli
@12#. Since we do not consider particle interactions, this d
ference is only due to the difference in the confining pote
tial.

We give a detailed review of the classification scheme
Sec. II. In Sec. III, we present a method for the calculation
the canonical partition function in the complex plane a
describe details of the numerical implementation. Our res
for d5126 and particle numbers varying from 10 to 30
are presented in Sec. III as well as calculations for a thr
dimensional parabolically confined Bose gas.

II. CLASSIFICATION SCHEME

In 1952, Yang and Lee showed that the grand-canon
partition function can be written as a function of its zeros
the complex fugacity plane, which, for systems with ha
core interactions and for the Ising model, lie on a u
circle @13#.

Grossmannet al. @7# and Fisher@8# extended this ap-
proach to the canonical ensemble by analytic continuation
the inverse temperature to the complex planeb→B5b
1 i t. Within this treatment, all phenomenologically know
types of phase transitions in macroscopic systems can
identified from the properties of the distribution of zeros
the canonical partition function.

In @9#, we presented a classification scheme for finite s
tems that has its macroscopic equivalent in the scheme g
by Grossmann. As usual, the canonical partition funct
reads
©2001 The American Physical Society11-1
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Z~B!5E dEV~E!exp~2BE!, ~2.1!

which we write as a productZ(B)5Zlim(B)Zint(B), where
Zlim(B) describes the limiting behavior ofZ(B) for T→`,
imposing that limT→`Zint(B)51. This limiting partition
function will only depend on the external potential applied
the system, whereasZint(B) will depend on the specific in
teraction between the system particles. For example, fo
N-particle system in a d-dimensional harmonic trap
Zlim(B)5B 2dN and thus the zeros ofZ(B) are the same a
the zeros ofZint(B). Since the partition function is an integra
function, the zerosBk5B2k* 5bk1 i tk(kPN) are complex
conjugate and the partition function reads

Z~B!5Zlim~B!Zint~0!exp„B]BlnZint~0!…

3 )
kPN

S 12
B
Bk

D S 12
B
Bk*

D expS B
Bk

1
B
Bk*

D .

~2.2!

The zeros ofZ(B) are the poles of the Helmholtz fre
energyF(B)52(1/B)lnZ(B), i.e. The free energy is ana
lytic everywhere in the complex temperature plane excep
the zeros ofZ(B).

Different phases are represented by regions of holom
phy that are separated by zeros lying dense on lines in
complex temperature plane. In finite systems, the zeros
not squeeze on lines, which leads to a more blurred sep
tion of different phases. We interpret the zeros as bound
posts between two phases. The distribution of zeros cont
the complete thermodynamic information about the syst
and all thermodynamic properties are derivable from
Within this picture, the interaction part of the specific hea
given by

CV, int~B!52kBB 2(
kPN

F 1

~Bk2B!2
1

1

~Bk* 2B!2G .

~2.3!

The zeros of the partition function are poles ofCV(B). As
can be seen from Eq.~2.3!, a zero approaching the real ax
infinitely close causes a divergence at real temperature.
contribution of a zeroBk to the specific heat decreases w
increasing imaginary parttk . Thus, the thermodynami
properties of a system are governed by the zeros ofZ close to
the real axis.

The basic idea of the classification scheme for phase t
sitions in small systems presented in@9# is that the distribu-
tion of zeros close to the real axis can be described appr
mately by three parameters, where two of them reflect
order of the phase transition and the third merely the size
the system.

We assume that the zeros lie on straight lines~see Fig. 1!
with a discrete density of zeros given by

f~tk!5
1

2 S 1

uBk2Bk21u
1

1

uBk112Bku
D , ~2.4!
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with k52,3,4, . . . , and weapproximate for smallt the den-
sity of zeros, by a simple power lawf(t);ta. Considering
only the first three zeros the exponenta can be estimated a

a5
ln f~t3!2 ln f~t2!

ln t32 ln t2
. ~2.5!

The second parameter to describe the distribution of zero
given by g5tann;(b22b1)/(t22t1), where n is the
crossing angle of the line of zeros with the real axis~see Fig.
1!. The discretenessof the system is reflected in the imag
nary partt1 of the zero closest to the real axis.

In the thermodynamic limit, we have alwayst1→0. In
this case, the parametersa andg coincide with those defined
by Grossmannet al @7#, who have shown how different type
of phase transitions can be attributed to certain values oa
and g. They claimed thata50 andg50 correspond to a
first-order phase transition, second-order transitions co
spond to 0,a,1 with g50 or gÞ0, third-order transitions
to 1<a,2 with arbitrary values ofg, and that all higher
order phase transition correspond toa.1. For macroscopic
systems~with t1→0), a cannot be smaller than zero, be
cause this would cause a divergence of the internal ene
However, in small systems with a finitet1 this is possible.

In our classification scheme, we therefore define ph
transitions in small systems to be of first order fora<0,
while second- and higher-order transitions are defined
complete analogy to the Grossmann scheme augmente
the third parametert1. The definition of a critical tempera
ture bC in small systems is crucial and ambiguous since
thermodynamic properties diverge. Thus, different defi
tions are possible. We define the critical temperature
bcut5b12gt1, i.e., the crossing point of the approximate
line of zeros with the real temperature axis. An alternat
definition is the real part of the first complex zerob1. In the
thermodynamic limit, both definitions coincide.

Comparing the specific heats calculated for different d
crete distributions of zeros shows the advantages of this c
sification scheme. Figure 2 shows~a! three distributions of
zeros lying on straight lines corresponding to a first-ord
transition (a50 and g50), a second-order transition (a

FIG. 1. Schematic illustration of the zeros in the complex te
perature plane.
1-2



ll
er
th
m

bl

is
e

pe

er

or

a
n-

th
re

era-
ge
not

ser
is

to
the

he

ape
all

ar-

n-
on

-

r-

a-
ver,
ole
tial

icle

re-

els.
ce

to

pe

CLASSIFICATION OF PHASE TRANSITIONS OF . . . PHYSICAL REVIEW A 64 013611
50.5 andg520.5), and a third-order phase transition (a
51.5, andg521) and~b! the pertinent specific heats. In a
cases the specific heat exhibits a hump extending ov
finite-temperature region and cannot be used to classify
phase transition. In contrast, even for very small syste
~large t1), the order of the phase transition is extracta
from the distribution of zeros.

The zeros of the canonical partition function have a d
tinct geometrical interpretation, which explains the smooth
curves of the specific heat and other thermodynamic pro
ties in finite systems.

Figure 3 shows~a! the ground-state occupation numb
uh0(B)u/N in the complex temperature plane and~b! the
ground-state occupation number at real temperatures f
finite ideal Bose gas ofN5120 particles, whereh0(B) is
given by the derivative of the logarithm of the canonic
partition functionZ(B) with respect to the ground-state e
ergy e0, i.e., h0(B)52(1/B)]e0

Z(B)/Z(B).

Zeros of the partition function are poles ofh0(B) and are
indicated by dark spots, which influence the value of
ground-state occupation number at real temperatures imp

FIG. 2. Plot of ~a! generated zeros lying on straight lines
simulate first- (a50 andg50), second-, (a50.5 andg520.5),
and third- (a51.5 andg521) order phase transitions and~b! the
appropriate specific heats per particle.

FIG. 3. Comparison of~a! uh0u/N with ~b! the appropriate value
of h0 at real temperatures for a 120-particle harmonically trap
ideal Bose gas~note that\5kB5v51).
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sively. Every pole seems toradiate onto the real axis and
therefore determines the occupation number at real temp
tures. Thisradiation extends over a broad temperature ran
so that the occupation number for real temperatures does
show a discontinuity but rather a smoothed curve. A clo
look at Eq.~2.3! gives the mathematical explanation for th
effect. The discrete distribution of zeros, i.e.,t1.0, inhibits
the specific heat and all other thermodynamic properties
show a divergency at some critical temperature because
denominators of the arguments of the sum remain finite.

Without going into a detailed analysis, we note that in t
thermodynamic limit the parametera is connected to the
critical index for the specific heat by

CV;~b2bc!
a21. ~2.6!

However, since critical indices are used to describe the sh
of a divergency at the critical point, an extension to sm
systems seems to be more or less academic.

The introduction of complex temperatures might seem
tificial at first sight, but, in fact, the imaginary partstk of the
complex zerosBk have an obvious quantum-mechanical i
terpretation. We write the quantum-mechanical partiti
function as

Z~b1 i t/\!5Tr„exp~2 i tĤ/\!exp~2bĤ !… ~2.7!

5^Ccanuexp~2 i tĤ/\!uCcan& ~2.8!

5^Ccan~ t50!uCcan~ t5t!&, ~2.9!

introducing a canonical stateas a sum over Boltzmann
weighted eigenstatesuCcan&5(kexp(2bek/2)ufk&. We ex-
plicitly write the imaginary part ast/\ since the dimension
is 1/@energy# and the imaginary part therefore can be inte
preted as time. Then the imaginary partstk of the zeros
resemble those times for which the overlap of the initial c
nonical state with the time-evoluted state vanishes. Howe
they are not connected to a single system but to a wh
ensemble of identical systems in a heat bath with an ini
Boltzmann distribution.

III. BEC IN POWER-LAW TRAPS

In this section, we assume a continuous single-part
density of statesV(E)5Ed21 as an approximation for a
d-dimensional harmonic oscillator or a 2d-dimensional ideal
gas. For example, for the harmonic oscillator this cor
sponds to the limit of\v→0 and taking only the leading
term of the degeneracy of the single-particle energy lev
The one-particle partition function is given by the Lapla
transformation

Z1~B!5E dEEd21exp~2BE!5~d21!!B 2d. ~3.1!

The canonical partition function forN noninteracting bosons
can be calculated by the following recursion@6#:

d

1-3
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ZN~B!5
1

N (
k51

N

Z1~kB!ZN2k~B!, ~3.2!

where Z1(kB)5( iexp(2kBe i) is the one-particle partition
function at temperaturekB andZ0(B)51. For small particle
numbers, this recursion works fine, even though its num
cal effort grows proportional toN2.

With Eq. ~3.1! as Z1, Eq. ~3.2! leads to a polynomial of
order N in (1/B)d for ZN , which can be easily generate
usingMAPLE or MATHEMATICA . The zeros of this polynomia
can be found by standard numerical methods.

Figure 4 displays the zeros of theN-particle partition
function for d5126 in the complex temperature plane f
particle numbersN525, 50, and 100. Ford5226, the ze-
ros approach the positive real axis with increasing part
number and are shifted to higher temperatures, which is
ready an indicator of phase transitions. Ford51, the zeros
approach the real axis only at negative temperature. T
behavior is consistent with the usual prediction that ther
no Bose-Einstein condensation for the one-dimensional
monic oscillator and the two-dimensional ideal Bose g
@10#.

The symmetry of the distributions of zeros is due to t
fact thatZN is a polynomial inB 2d. For this reason, it can b
inferred that ford→` the zeros lie on a perfect circle.

FIG. 4. Distribution of zeros for Bose-Einstein condensates w
continuous one-particle density of statesV(E)5Ed21 for d51
26.
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Figure 5 shows the corresponding specific heats ca
lated using Eq.~2.3!. As expected, ford51 the specific heat
has no hump and approaches with increasing temperatur
classical value. We therefore expel the analysis ofd51 from
the discussions below. Ford5226, the specific heats show
humps or peaks, which get sharper with increasingd and
increasing particle number. However, from these smo
curves the orders of the phase transition cannot be dedu

In Fig. 6, the classification parametersa,g,t1 defined
above are plotted for two to six dimensions and parti
numbers up toN5100. For all values ofd, the parametera
is only a slightly varying function ofN and approaches ver
fast an almost constant value. Sincea is the primary classi-
fication parameter, from Fig. 6~a! we can directly infer that
the d52 system exhibits a third-order phase transitiona
.1) while the transition for all higher dimensions is of se
ond order (0<a<1). ForN550, the dependence ofa on d
is plotted in Fig. 7~a!. Sincea decreases rather rapidly wit
increasingd, it can be speculated that systems correspond
to a larged exhibit a phase transition that is almost of fir
order. As mentioned above, for finite systems even val
a<0 cannot be excluded for mathematical reasons. We n
that two-dimensional Bose gases are an interesting
growing field of research. As is well known, the ideal fre
Bose gas in two dimensions (d51) does not show a phas

h
FIG. 5. Specific heat scaled bydN of Bose-Einstein condensate

with continuous one-particle density of states ford5126.
1-4
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CLASSIFICATION OF PHASE TRANSITIONS OF . . . PHYSICAL REVIEW A 64 013611
transition due to thermal fluctuations that destabilize the c
densate@14#. Switching on a confining potential greatly in
fluences the properties of the gas, the thermal fluctuations
suppressed, and the gas will show Bose-Einstein conde
tion. Recent experiments@12# have shown that Bose-Einste

FIG. 6. Classification parametersa, g, and t1 for d5226
versus particle numbersN.

FIG. 7. Classification parameters forN550 for different densi-
ties of statesV(E)5Ed21 andd52210.
01361
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condensation is possible even though it is called a quasic
densate. In our notion, the quasicondensate is just a th
order phase transition. Thus, our results are in comp
agreement with recent experiments and earlier theoret
work. An interesting question in this respect is whether t
order of the transition changes ford52 in the limit N→`.
Additional calculations for largerN, which are not printed in
Fig. 6, indicate thata approaches 1 or might even ge
smaller. Note thatd52 is equivalent to a hypothetical four
dimensional ideal Bose gas or bosons confined in a tw
dimensional parabolic trap. Our results indicate that the or
of the phase transition depends sensitively ond for values
around 2. This might be the reason why phase transition
three space dimensions are sometimes classified as sec
and sometimes as third-order phase transitions.

The parametert1 is a measure of the finite size of th
system, i.e., the scaling behavior oft1 as a function ofN is a
measure of how fast a system approaches a truenth-order
phase transition in the Ehrenfest sense. TheN dependence of
t1 is displayed in Fig. 6~c!. The scaling behavior can be
approximated byt1;N2d with d ranging between 1.06 and
1.12 ford5226.

The d dependence of the classification parameter is vi
alized in Fig. 7 for 50 particles. For this system size, w
found a;d24/3 andt1;d24/3.

The results presented above for continuous single-part
densities of statesV(E)5Ed21 are obtained within semiana
lytical calculations. In order to compare these results to s
tems with a discrete level density, we adopt as a refere
system the three-dimensional harmonic oscillator with t
partition function given by

Z~B!5 (
n50

~n12!~n11!

2
exp„2B~n13/2!…, ~3.3!

with \5v5kB51.
Figure 8~a! displays the zeros of the partition functio

~3.1! for d52 andd53. Figure 8~b! displays a contour plot
of the absolute value of the ground-state occupation num
h0(B)52(1/B)]e0

Z(B)/Z(B) with Z given by Eq.~3.3! cal-
culated using an alternative recursion formula@4#. The zeros
of Z are poles ofh0 and are indicated by dark spots in th
figure.

FIG. 8. Comparison between calculated zeros of the canon
partition function for three-dimensional trap geometries with~a! a
continuous single-particle density of states and~b! discrete energy
levels forN540.
1-5



ur
n
e

on
ia

ke
e
o
i

a
r
ir

on

en
a

he

e
ha
w

ss
fo

co

The

re-
heat
ca-

the
lex
e
heat
y.
ses
r of
ticle
he

ase

de-
.
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Analyzing the distribution of zeros consolidates o
speculation that the order of the phase transition depe
sensitively ond. The distribution of zeros behaves like th
above calculated values ford52 but quantitatively liked
53. Since the degeneracy of the three-dimensional harm
cally confined ideal Bose gas is a second-order polynom
the quadratic term is not the only term that must be ta
into account. The linear term becomes dominant for low
temperatures, so for very low temperatures the best appr
mation of a continuous one-particle density of states
V(E)5E. The parametera supports this statement@9#, i.e.,
a resides in a region above 1, whereas the parameterg be-
haves like thed53 case. Finally, the parametert1, which is
a measure for the discreteness of the system, showst1
;N20.96 dependence that is comparable to the one fod
52. Thus, for small systems the phase transition is of th
order; it can be speculated whether it becomes a sec
order transition in the thermodynamic limit.

Our calculations are in very good agreement with rec
theoretical works, not only qualitatively but also quantit
tively @15,16#. Comparing thecritical temperature, which we
defined in Sec. II, with the usually utilized temperature of t
peak of the specific heatb(CV,max) or the grand canonically
calculatedTC;N1/3 confirms our approach. In Fig. 9, thre
possible definitions of the critical temperature are given t
all coincide in the thermodynamic limit. All definitions sho
a b;N2r dependence withr ranging between25 and 1

3 .

IV. CONCLUSION

Starting with the old ideas of Yang and Lee and Gro
mannet al., we have developed a classification scheme
phase transitions in finite systems. Based on the analytic
tinuation of the inverse temperatureb into the complex
.
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plane, we have shown the advantages of this approach.
distribution of the so-called Fisher zerosBk draws enlighten-
ing pictures even for small systems, whereas the usually
ferred to thermodynamic properties such as the specific
fail to classify the phase transitions properly. The classifi
tion scheme presented in this paper enables us to name
order of the transition in a nonambiguous way. The comp
partstk of the zerosBk resemble times for which a whol
ensemble of identical systems under consideration in a
bath with an initial Boltzmann distribution loses its memor

We have applied this to ideal noninteracting Bose ga
confined in power-law traps. We have found that the orde
the phase transition sensitively depends on the single-par
density of states generated by the confining potential. T
distribution of zeros exactly reveals the order of the ph
transition in finite systems.

FIG. 9. Comparison between three different approaches to
fine a critical temperature for phase transitions in finite systems
-
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