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Conserving and gapless model of the weakly interacting Bose gas
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The dielectric formalism is used to set up an approximate description of a spatially homogeneous weakly
interacting Bose gas in the collisionless regime, which is both conserving and gapless, and has coinciding poles
of the single-particle Green’s function and the density autocorrelation function in the Bose-condensed regime.
The approximation takes into account the direct and exchange interactions in a consistent way. The fulfillment
of the generalized Ward identities related to the conservation of particle number and the breaking of the gauge
symmetry is demonstrated. The dynamics at long wavelengths is considered in detail below and above the
phase transition, numerically and in certain limits also in analytical approximations. The explicit forms of the
density autocorrelation function and the Green’s function are exhibited and discussed.
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I. INTRODUCTION

The observation of Bose-Einstein condensation@1# in
trapped systems has given rise to extensive experime
@2,3# and theoretical@4# study of weakly interacting dilute
Bose-condensed gases. Recent measurements of the ele
tary excitations@5,6# permit a detailed comparison with dif
ferent theoretical approaches. Due to the existence of a n
ber of essential experimental parameters in the trap
systems, e.g., the trap frequencies, scattering length, siz
the condensate, and temperature, the validity of different
proximations depending on these conditions can be ex
ined. Most of the theoretical approaches go back to
1960s, and were originally derived for spatially homog
neous systems in view of their application to superfluid
lium. For their application to the modern Bose-Einstein co
densates in traps many of these approaches are now b
extended to inhomogeneous systems and other approa
are also being developed. In the present paper we wis
explore such an approximation scheme. It is of interest
modern Bose-Einstein condensates, because measure
of quasihomogeneous properties can also be made there@7#.

From the theoretical point of view taking the homog
neous limit implies a great simplification. Due to the tran
lation symmetry complicated integral equations reduce to
gebraic equations; essential requirements like a gap
single-particle spectrum~which applies only in the homoge
neous system! and particle number conservation can be e
pressed in the form of algebraic identities~Hugenholtz-Pines
theorem@8#, generalized Ward identities@9#, compressibility
sum rule@10#, etc.!. In this form they provide important test
for the consistency of approximations obtained by selec
certain subsets of Feynman diagrams. Having defined an
proximation or ‘‘model’’ in this way analytical or numerica
solution is possible in the spatially homogeneous case w
out the need for further approximation, and all branches
the collective modes—damped, strongly damped, and e
overdamped~purely damped!—can be exhibited. This is a
great advantage over the corresponding calculations for
spatially inhomogeneous system, where further approxi
1050-2947/2001/64~1!/013609~14!/$20.00 64 0136
tal

en-

m-
d
of

p-
-

e
-
-
-
ing
hes
to
r

ents

-
l-
ss

-

g
p-

h-
f

en

he
a-

tions are unavoidable and a similarly complete picture u
ally cannot be attained.

The purpose of this paper is to examine the homogene
limit of an approximation previously derived for and applie
to the inhomogeneous case@11#. In contrast to the previous
perturbative solution in the case of a harmonic trap@11# we
shall now avoid all further approximations, after setting
the model by selecting the relevant class of Feynman
grams, and derive and study all the excitation branches
pearing in the homogeneous model. Furthermore, a num
of exact theorems for the homogeneous system will
checked for their validity within our model approach.

For example, in general the poles of the density autoc
relation function and the single-particle Green’s functi
must coincide in the Bose-condensed region~see, e.g.,@12#!.
Physically this is a consequence of the existence of the o
parameter describing the spontaneously broken gauge s
metry. In our approximation the required coincidence of t
poles is a direct consequence of the derivation of the mo
within the dielectric formalism, which is designed to ensu
just that. In contrast to a previous model studied within t
formalism ~@13,12# and references therein! and therefore
sharing this crucial property, the approximation or mod
studied here~and in @11# for the trapped system! takes into
account the contributions of both the Hartree termsand the
Fock ~exchange! terms in the selected graphs. Both types
term are in fact of equal magnitude for the interaction v
s-wave scattering in the experimentally realized dilu
weakly interacting Bose condensates.

In the next section we present the basic diagramm
building blocks within the dielectric formalism as an a
proximation of the full system. The basic relations of t
dielectric formalism are then used to obtain the final dens
autocorrelation and Green’s functions determining the ex
tation spectrum. We also state there the generalized W
identities, which are exact relations ensuring the parti
number conservation law in cases of spontaneously bro
symmetries. We prove in the Appendix that these identit
continue to hold in our model, which is a cornerstone of o
model building, because it provides an important consiste
©2001 The American Physical Society09-1
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check. A further consistency check is the fulfillment of t
compressibility sum rule, which is demonstrated at the e
of Sec. II. In Sec. III we present the numerical results for
excitation branches at long wavelengths. In addition to
modes we studied previously for the inhomogeneous sys
we find further excitation branches belonging to excitatio
mainly of the thermal density. The behavior of these therm
branches is studied in detail. For weak interaction they
be accurately approximated by simple analytic expressio
which is done in Sec. IV. For stronger interaction only n
merical results are obtainable. They may suggest expla
tions for the appearance of the two different branches m
sured by Jinet al. @14#. Section V contains some conclusion
and further remarks.

II. THE MODEL

A. The dielectric formalism

Here we shall give some necessary background on
so-called dielectric formalism at finite temperature, whi
was introduced for analyzing interacting Bose-conden
systems@15,16,13,17–19,12#. An excellent exposition of the
formalism and a complete list of references is given by G
fin @12#. The presence of a Bose condensate breaks the g
symmetry of the system. As a consequence the density
tuation spectra appear in the one-particle excitation spe
and vice versa. In the dielectric formalism the correspond
coupling mechanism is explicitly exhibited.

For the sake of simplification we adopt the natural u
\51 throughout the paper. In the Bose-condensed phase
usual decomposition of the Bose field operatorĈ into a con-
densate wave functionF05^Ĉ(r)& and the fluctuation op-
eratorF̂ with vanishing expectation value

Ĉ5F01F̂ ~2.1!

is made.̂ •••& denotes the thermal averaging

^Â&5
Tr Âe2b(Ĥ2mN̂)

Tr e2b(Ĥ2mN̂)
. ~2.2!

The condensate wave function can in general be comp
but in the absence of vortices it can be chosen as real, w
out restriction of generality, and we shall consider this c
in the following, for simplicity. The value of the chemica
potentialm is fixed by the average number of particles in t
system and is connected with the density of particles in
condensateuF0u2 by requiring^F̂&50. ImposingF0Þ0, we
have the additional appearance of anomalous Green’s f
tions and it is useful to introduce the matrix Green’s functi

Gab~r,t;r8,t8!52^Tt@F̂a~r,t!F̂b
†~r8,t8!#& ~2.3!

with field operators in Matsubara representationF̂1(r,t)
[F̂(r,t) and F̂2(r,t)[F̂†(r,t). In addition to these one
particle correlation functions we need the density autoco
lation function
01360
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xnn~r,t;r8,t8!52^Tt@ ñ~r,t!ñ~r8,t8!#&. ~2.4!

Here ñ5n̂2^n̂& denotes the density deviation operator. T
exact Green’s functionGab can be obtained from Dyson’
equation, i.e., by summing up a geometric series in term
the Green’s functionGab

0 of the noninteracting system an
the self-energySab :

Gab5Gab
0 1Gag

0 SgdGdb . ~2.5!

The self-energy insertions are by definitionirreducible, i.e.,
they cannot be split into two parts by cutting a single parti
line. Different model approximations can be classified by
different kinds of interaction processes included inSab .

Beyond the definition of irreducible quantities it is equa
useful to consider theproper contributions. Diagrams are
called proper if they cannot be split into two parts, ea
connected to an external vertex or line, by cutting a sin
interaction line. They will be denoted by an additional tild
The total density autocorrelation functionxnn can be easily
recovered from the proper contributionsx̃nn by just summing
up a geometric series:

xnn~q,v!5
x̃nn~q,v!

12gx̃nn~q,v!
. ~2.6!

Here v on the one hand denotes the Matsubara freque
@20# v5 ivn5 i (2np/b). On the other hand it is understoo
that the analytic continuation inv from the positive imagi-
nary axis yields the retarded correlation functions, and the
fore, if this is our purpose,v will in the following always be
assumed to lie in the upper half of the complex planeg
denotes the two-particleT matrix. In the whole temperature
domain of relevance here it can be taken as independen
q,v and be expressed by thes-wave scattering lengtha as

g5
4pa

m
. ~2.7!

The importance of the use of theT matrix in place of the bare
interaction was first stressed in this context in Beliaev’s wo
@21#. ~See@17# for a discussion of ladder diagrams within th
dielectric formalism at finite temperature.! As is well known
since then the use of the two-particleT matrix in place of the
bare interaction implies that a sum is implicitly performe
over the ladder diagrams of the two-particle interaction, a
care has to be taken not to sum up the same class of diag
again later on,~see, e.g.,@22#!.

In the dielectric formalism the approximations forSab

and for x̃nn are related to each other via irreducible vert
functionsLa describing single processes of excitations o
of the condensate and of relaxations into the conden
where the energy and momentum transfer is described b
additional outgoing interaction line. Unlike the usual Green
function approach, where approximations are defined by
diagrams kept in the self-energies andx̃nn as basic building
blocks, in the dielectric formalism an approximation~or
‘‘model’’ ! is defined by introducing building blocks for th
9-2
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CONSERVING AND GAPLESS MODEL OF THE WEAKLY . . . PHYSICAL REVIEW A64 013609
proper and irreducible parts of the three quantitiesSab , xnn,
and La . In the following we call irreducible and prope
quantitiesregular and denote them with anr in parentheses

Thus we start by specifying the building blocksxnn
(r ) ,

Sab
(r ) , and La

(r ) and expressing all necessary quantities
terms of these three basic quantities; see, e.g.,@12#. We begin
with the decomposition of the proper quantitiesG̃ab and
x̃nn. Since a Green’s function is proper if and only if all th
self-energy insertions are proper we get

G̃ab
21~q,v!5~Gab

0 !21~q,v!2Sab
(r ) ~q,v! ~2.8!

with (Gab
0 )21(q,v)5dab@av2(q2/2m2m)# where m is

the mass of the atoms and we use the abbreviationa51 or
21 if the indexa takes the value 1 or 2, respectively. Ne
we consider the contributions tox̃nn, which can be written in
the form

x̃nn5xnn
(r )1La

(r )G̃abLb
(r ) . ~2.9!

Here we have irreducible contributionsxnn
(r ) and reducible

contributions that contain at least one proper Green’s fu
tion G̃ab .

The expressions forxnn and Sab are obtained by sum
ming up the corresponding geometric series. The result
xnn was already given in Eq.~2.6!, and we can immediately
turn to the elements ofSab , which we decompose into the
proper and their improper parts as follows:

Sab~q,v!5Sab
(r ) ~q,v!1La

(r )~q,v!

3
g

12gxnn
(r )~q,v!

Lb
(r )~q,v!. ~2.10!

^F̂&50 implies thatS1
(r )(0,0)50, whereS1

(r )(q,v) is the
sum of the regular diagrams with one external line~tadpole
diagrams!.

In addition the conservation laws and corresponding s
rules must be woven into the formalism by ensuring that
approximate expressions for the regular parts still satisfy
exact generalized Ward identities. The identities we wan
consider in the following are a consequence of particle nu
ber conservation which becomes nontrivial because of
broken gauge symmetry. Within the dielectric formalism t
corresponding Ward identities were first introduced by Wo
and Gould@9# at temperatureT50 and later developed fur
ther for finite temperature~see, e.g.,@18,12#, and further ref-
erences given there! and used as exact relations between
building blocks of the dielectric formalism to be satisfied
any consistent approximation. They can be obtained by
serting the continuity equation

]n̂~q,t!

]t
52

q

m
• Ĵ~q,t! ~2.11!

into the expressions for various time-ordered correlat
functions@9,12# and read
01360
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vLa
(r )~q,v!5

uqu
m

La
l (r )~q,v!1AncFv2aS q2

2m
2m D G

2Anc@S1,a
(r ) ~q,v!2S2,a

(r ) ~q,v!#, ~2.12!

vxnn
(r )~q,v!5

uqu
m

xJn
l (r )~q,v!2Anc@L1

(r )~q,v!2L2
(r )~q,v!#,

~2.13!

vxJn
l (r )~q,v!5

uqu
m

@xJJ
l (r )~q,v!1m~nc1nth!#

2Anc@L1
l (r )~q,v!2L2

l (r )~q,v!#.

~2.14!

The demonstration that Eqs.~2.12!–~2.14! are satisfied by
our model approximation is crucial for ensuring its cons
tency and is given in the Appendix.

A further important requirement for the consistency
any approximation is the compressibility sum rule@10#

lim
uku→0

xnn~k,0!52
]ntot

]m U
T

. ~2.15!

To these exact requirements should in our opinion be ad
a further one, which is a consequence of Galilei invarian
and will be discussed in the final section.

B. The Model

We shall now introduce and motivate the particular a
proximation~or model! within the framework of the dielec-
tric formalism we wish to study in this paper. Our aim here
to give a self-consistent Hartree-Fock theory of the Bose g
not a perturbation theory in the coupling constant to a
given order. This aim seems legitimate in view of the succ
of the Hartree-Fock approximation in many-body physics
general, its limitations as a mean-field theory notwithsta
ing.

Let us first consider the Bose gas in the nonconden
phase. Previously this system was studied in the framew
of the dielectric formalism within the Hartree approximatio
@13#, which corresponds to the self-consistent theory su
ming all the bubble diagrams, but neglecting exchange c
tributions in the thermal cloud.. Here we would like to go
step further and study the self-consistent Hartree-Fock the
summing the bubble diagramsand the exchange bubble dia
grams. For the uncondensed phase this approximation i
course, standard, both for the single-particle Green’s fu
tion, where it corresponds to the standard Hartree-Fock
proximation, and for the density response function, wh
the summing of the exchange bubbles is discussed, e.g
@20#.

The dynamics of the thermal cloud is described by
Hartree-Fock Green’s function, which takes the form

Gab
HF~k,v!5

dab

av2EHF~k!
~2.16!
9-3
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with

EHF~k!5
k2

2m
12gntot2m. ~2.17!

With these Green’s functions the lowest order contrib
tions to the regular density autocorrelation functionxnn

(r ) ~see
Fig. 1! are given by the so-called bubble diagram

xnn
0 ~q,v!52

1

b(
n

1

~2p!3E dpG11
HF~p,ivn!

3G22
HF~q2p,v2 ivn!. ~2.18!

For the sake of better readability we will use the abbreviat
p[(p,ivn) representing the momentump and the Matsubara
frequencyivn .

In order to treat the exchange contribution of the tw
particle scattering inxnn on the same footing as the dire
contribution we have to sum up the diagrams forxnn

(r ) as in
Fig. 1, which define a simple geometric series. Since
interactiong is given here just by a constant the result can
written in terms of the expression~2.18! in the form

x̃nn~q!5
xnn

0 ~q!

12gxnn
0 ~q!

. ~2.19!

When this result forx̃nn is substituted in Eq.~2.6! it yields
simply

xnn~q!5
xnn

0 ~q!

122gxnn
0 ~q!

, ~2.20!

i.e., a doubling of the effective coupling constant in the d
nominator. Concerning this treatment one may legitimat
ask why the Hartree-Fock Green’s functions rather than
free-particle Green’s functions are used for the inter
propagators in the bubble and exchange bubble diagra
The reason is one of consistency. Without the use of Hart
Fock propagators one could not achieve consistency betw
statics and dynamics, which is incorporated in the compre
ibility sum rule ~2.15! ~nor, as we may add, consistency wi
Galilei invariance, as we discuss in the final section!.

Let us now turn to the description of our approximatio
or model, for the condensed phase also. It is defined as
natural extension of the Hartree-Fock model we use in
uncondensed phase. Thus, for the internal lines we use a
the Hartree-Fock propagators. In this way we again achi
consistency with the compressibility sum rule as will

FIG. 1. Diagrams contributing toxnn
(r ) .
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shown later. Furthermore, we again sum up the bubble
exchange bubble diagrams for all proper quantities, wh
now also include the proper vertex functionL (r ). Therefore
we find

xnn
(r )~q!5

xnn
0 ~q!

12gxnn
0 ~q!

, ~2.21!

which is almost the same expression as found in the unc
densed phase; see also@23#.

For the proper vertex functionLa
(r )(q) the zero-loop dia-

gram is given by the trivial vertex functionLa
05F0. By the

same reasoning as forxnn
(r ) we obtain a further geometric

series:

L (r )~q!5
F0

12gxnn
0 ~q!

, ~2.22!

illustrated in Fig. 2.
The regular self-energy contributions given bySab

(r ) (q)
5Sab

0 (r )(q)1Sab
1 (r )(q) are presented in Fig. 3, where

Sab
0 (r )5~guF0u212gnth!S 1 0

0 1D
ab

, ~2.23!

Sab
1 (r )~q!5S gF0

2

12gxnn
0 ~q!

2gF0
2D S 1 1

1 1D
ab

. ~2.24!

We now simply insert the expressions~2.23!, ~2.24!, ~2.22!,
and ~2.21! in Eq. ~2.10!, and obtain straightforwardly the
expressions forSab(q) of our approximation, which are no
written out here to conserve space. Using our results forS11
and S12 it can be easily checked that the Hugenholtz-Pin
theorem@20# m5S11(0)2S12(0) is satisfied.

The tadpole diagrams are given in Fig. 4. The condit
S1

(r )50 leads to a relation that can be solved for the che
cal potential,

FIG. 2. Diagrams contributing toLa
(r ) .

FIG. 3. Contributions toSab
(r ) .
9-4
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m5gnc12gnth1m (0), ~2.25!

where we added the chemical potentialm (0) of the ideal Bose
gas, which vanishes in the Bose-condensed phase, in ord
make the expression valid also in the uncondensed ph
and where we define

nth52(
n
E d3p

~2p!3
GHF~p,ivn!. ~2.26!

FIG. 4. Contributions toS1
(r ) .
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That nth is consistently interpreted as the thermal density
the particles in our approximation will be shown by checki
the Ward identities and the compressibility sum rule.

One might raise the question why in the diagrams forS1
(r )

and the diagonal elementsSaa
(r ) exchange ladder terms wit

two condensate lines at the same interaction line are not
included. The reason is that because of our use of Hart
Fock propagators in the internal lines these exchange
grams are already contained in the first-order proper
change diagram. As a result the chemical potentialm in Eq.
~2.25! is simply given by the lowest order terms, but
course these must be evaluated with the Hartree-Fock pr
gators.

Using the building blocks we have specified it is no
straightforward to obtain the explicit expressions for t
Green’s function, namely,
G11~k,v!5
~v1k2/2m2m (0)!@122gxnn

0 ~k,v!#1gnc@112gxnn
0 ~k,v!#

D~k,v!
,

G12~k,v!52
gnc@112gxnn

0 ~k,v!#

D~k,v!
, ~2.27!

with the denominator

D~k,v!5Fv22S k2

2m
2m (0)D 2G@122gxnn

0 ~k,v!#22gnc

k2

2m
@112gxnn

0 ~k,v!#. ~2.28!

The density autocorrelation function can be given similarly as

xnn~k,v!5
@v22~k2/2m2m (0)!2#xnn

0 ~k,v!12nc~k2/2m!@11gxnn
0 ~k,v!#

D~k,v!
. ~2.29!
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The poles of the Green’s function and the density autoco
lation function are given byD(k,v)50. In the uncondensed
phase we can putnc50 and the result~2.29! reduces to Eq.
~2.20! with the poles given bygxnn

0 (k,v)51/2. These dis-
persion relations will be analyzed in Sec. III.

It is manifest from our explicit expressions that the po
of the Green’s function in the Bose-condensed phase are
deed the same as those of the density autocorrelation f
tion. On the other hand, becausenc50 the poles ofxnn(k,v)
and G11(k,v) become different in the uncondensed pha
the factor (v1k2/2m2m (0))@122gxnn

0 (k,v)# then cancels
from the numerator and denominator ofG11(k,v) and the
remaining single-particle poles atv5(k2/2m)2m (0) are
those of the free Bose gas.

It is important to remark here that summing up the bub
and exchange bubble diagrams, after a suitable rearra
ment of the resulting expressions, has not led us to term
higher than the first loop order in the numerator and deno
nator, in either the condensed or the uncondensed phas
note is made of the fact that the quantitygnc is of zeroth
e-

s
in-
c-

:

e
e-

of
i-
, if

loop order in the condensed phase. However, our treatme
not a perturbation theory in the couplingg, i.e., loop order is
not the same as order in the couplingg, because a self-
consistently determined propagator, namely, the Hartr
Fock propagator, is used in the bubble diagram definingxnn

0 ,
which itself depends ong. Rather, we claim that the theor
given here is a self-consistent Hartree-Fock theory also in
condensed phase. This claim is based on the fact that
theory satisfies all consistency checks, namely, the iden
of the poles of the Green’s and density response functio
the Ward identities, which also contain thef-sum rule, the
compressibility sum rule, and of course the Hugenho
Pines theorem. In addition it satisfies a consistency ch
derived from Galilei invariance, as discussed in the final s
tion. It should be noted that, apart from the Hugenholtz-Pi
theorem, none of these consistency checks are satisfied i
usual Popov approximation.~But it is interesting to remark
that they can also be shown to be satisfied in the sim
Hartree model@13,19# within the dielectric formalism, for
which our treatment therefore provides the logical consist
extension that includes exchange.!
9-5
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Surprisingly for us the comparison of our result~2.29! for
the density autocorrelation function with corresponding
sults given by Minguzzi and Tosi@24# yields complete agree
ment. This is nontrivial, since the theories are formulated
quite different ways and arrive at the result for the dens
autocorrelation function in very different manners and af
considerable rearrangements. It is interesting to learn f
this agreement that the theory formulated by Minguzzi a
Tosi @24# has a foundation within the dielectric formalis
and permits a description in terms of the Feynman diagra
from which we derived our results. This is a strong hint th
there is just one consistent Hartree-Fock theory not only
the uncondensed but also in the condensed phase.

An obvious advantage of the dielectric formalism over t
r

f

-
p

n

xi
s.
l

a-

01360
-

n
y
r
m
d

s
t
n

linear response theory used in@24# is the fact that besides th
density response function the Green’s function is also
tained explicitly as displayed above, which would be outs
the scope of the theory given in@24#. With the Green’s func-
tion our theory gives explicit expressions for autocorrelat
functions of the amplitude and phase of the order parame
The former equals2G1 , the latter2G2 , with

G1~k,v!5G11~k,v!1G12~k,v!

5
~v1k2/2m2m (0)!@122gxnn

0 ~k,v!#

D~k,v!
,

~2.30!
G2~k,v!5G11~k,v!2G12~k,v!5
~v1k2/2m2m (0)!@122gxnn

0 ~k,v!#12gnc@112gxnn
0 ~k,v!#

D~k,v!
. ~2.31!
sity
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ity,
val-
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-
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play-
We still need to evaluate the thermal densitynth , the
chemical potentialm, andnc . By integrating the Bose facto

f 0„E
HF~k!…5

1

exp@bEHF~k!#21
~2.32!

over the momenta we getnth5g3/2(z)/l th
3 , whereg3/2(z) is

the Bose function@20#, z is the fugacity, defined in terms o
an effective chemical potentialm̄5m22gntot via z

5exp(bm̄), andl th5A2p/mkBT denotes the thermal wave
length. In the uncondensed region the effective chemical
tential m̄ coincides with the chemical potentialm (0) of the
ideal Bose gas. For the condensed phase, usingm5gnc

12gnth , the effective chemical potential ism̄5m22g(nth
1nc)52gnc and z5e2bgnc. For a given total densityntot
5nc1nth the equation of state in the condensed phase
therefore given by the implicit equation, which is equivale
to the equation of state derived first by Huanget al. @25#,

ntot5nc1
1

l th
3

g3/2~e2bgnc!. ~2.33!

It can be seen from this equation that within our appro
mation forGHF the phase transition is no longer continuou1

For example, forT5Tc , whereTc is defined as the critica

1A discontinuity is also found in the familiar Popov approxim
tion @26,27#; see, e.g.,@28,29,22,30#.
o-

is
t

-

temperature of the free Bose gas for the same particle den
by ntot5g3/2(1)/l th

3 (Tc), there are two solutionsnc50 and
nc5Dnc , with

Dnc~Tc!~l th
c !35

4pg~l th
c !23/kBTc

@12z~1/2!g~l th
c )23 /kBTc#

2

1OS S g~l th
c !23

kBTc
D 5/2D . ~2.34!

l th
c denotes the thermal wavelength at the critical tempe

ture. Even for comparably weak interactiongntot /kBTc
50.1 this jump already amounts to 16% of the total dens
so it cannot be neglected by any means. The coexisting
ues of the total density for given values of the chemi
potential in the two-phase region have to be determined fr
the Maxwell construction and will be discussed below.

Let us first consider the correlation functions in the sta
limit, i.e., at v50, in more detail. We find with or withou
condensate that

G2~k,0!52
1

k2/2m2m (0)
. ~2.35!

With a condensatem (0)50 and this correlation function dis
plays the usual infrared singularity;k22 associated with the
spontaneously broken gauge symmetry. For the amplit
autocorrelation function atv50 we obtain in the uncon-
densed and the condensed phase, respectively, and dis
ing also the asymptotics foruku→0,
9-6
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G1~k,0!55 2
1

k2/2m2m (0)
→ 1

m (0)
, T.Tc

2
122gxnn

0 ~k,0!

~k2/2m!@122gxnn
0 ~k,0!#12gnc@112gxnn

0 ~k,0!#
→ 21

2S12~k,0!
, T,Tc

~2.36!
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1

S12~k,0!
5

122gxnn
0 ~k,0!

gnc@112gxnn
0 ~k,0!#

. ~2.37!

We examine the stability of the model belowTc . As can
be seen from the results forG1(k,0) an instability may occur
if for small uku→0 we satisfygxnn

0 (k,0)521/2. In order to
see where this condition for instability is satisfied we eva
atexnn

0 (0,0)5 limuku→0xnn
0 (k,0) from Eq.~2.18!, finding

gxnn
0 ~0,0!52

gb

l th
3

g1/2~e2bgnc!. ~2.38!

This is a negative quantity, which, for sufficiently low tem
perature lies in the interval@21/2,0#, but which moves
monotonically in the direction of the instability at21/2 with
decreasing condensate density for fixed temperature. Th
stability conditiongxnn

0 (0,0)521/2 is equivalent to the con
dition that for fixed temperature the chemical potentialm
exhibits a minimumm (min) as a function ofnc . In Fig. 5 we
plot this functional behavior. The fact that the instabili
condition, which we have obtained here from the dynam
described byGab , fits completely the form of the equatio
of state~2.33! underscores the consistency between sta
and dynamics in our model.

In Fig. 6 we plot the branch corresponding to the chem
cal potential of the uncondensed Bose gas in the Hart
Fock approximation together with the branch for the co

FIG. 5. The chemical potentialm of the condensed phase i
units ofkBT as a function of the condensate fractionnc /n for fixed
temperature. The plot is made for the coupling strengthg
50.3l th

3 kBT/z(3/2). The horizontal long-dashed lines represent
borders of multistability, the upper one given bym (max)

52glth
23z(3/2) and the lower onem (min) by the instability condition

gx(0,0)521/2. The stable part of the curve is plotted as a so
line changing to a long-dashed line in the region of instability.
01360
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in-

s

s
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densed system. We get solutions for the uncondensed B
gas only if m̄5m (0)<0 or equivalently m<m (max)

52glth
23z(3/2). Combining these results due to the first ord

transition we find a region of multistability between the co
densed and the uncondensed Bose gas for chemical pote
valuesm (min)<m<m(max). In this region there are actually tw
possible nonvanishing values for the condensate densitnc
Þ0 for given temperature and chemical potential, but due
the stability conditiongxnn

0 (0,0)>21/2 only one of these
solutions proves to be stable. The coexisting values ofntot at
a given temperature are fixed by the Maxwell construct
for them(ntot) curve. The resulting valuemcoexof the chemi-
cal potential then also determines the value ofnc coexisting
with nc50 from Fig. 5.

The equation of state as obtained from Eq.~2.33! and
plotted in Fig. 6 is fully consistent with the density-densi
correlation function~2.29!: the compressibility sum rule
~2.15! makes this connection between statics and dynam
With our present result forxnn(k,0) it takes the form

]ntot

]m
uT5

1

g

11gxnn
0 ~0,0!

112gxnn
0 ~0,0!

. ~2.39!

That the derivative (]ntot /]m)T can indeed be written in this
form can be checked by a short calculation using the iden
(]/]m̄)g3/2(e

m̄b)52bg1/2(e
m̄b) and Eqs.~2.33! and ~2.38!.

Thus, from the right-hand side of Eq.~2.39!, which is ob-
tained from the dynamics, a static property on its left-ha
side, namely, the equation of state, can be rederived by i
gration with respect tom.

The slope (]m/]ntot)uT for ntot→` equals the coupling
constantg according to both sides of Eq.~2.39!. The border

e FIG. 6. The chemical potentialm of the condensed and th
uncondensed Bose gas in units ofkBT as a function of the particle
densityn in units of z(3/2)l th

23 for the same value of the couplin
constantg as in Fig. 5. The long-dashed curve represents the
stable part of the branch of the condensed phase.
9-7
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of instability (]m/]ntot)uT50 occurs where the density auto
correlation function has its pole, i.e., for 2gxnn

0 (0,0)521. It
should be noted that this is the same point where the lo
tudinal order-parameter response functionG1(k,0) has its
singularity, and also where (]nc /]m)T becomes singular, a
follows from the relation]m/]nc5g„112gxnn

0 (0,0)…, which
can be easily proven. The infinite slope (]m/]ntot)uT5` of
the unstable branch occurs wherexnn(0,0) vanishes, i.e., for
gxnn

0 (0,0)521.

III. DYNAMICS AT LONG WAVELENGTHS

Now we want to investigate the dynamics at long wav
lengths. We consider the limitv→0 and uku→0 and intro-
duce the complex velocity of sound byv/uku5c. The disper-
sion relation in the condensed phase, given by the pole
the density autocorrelation function and the Green’s fu
tion, takes the form

~c22cB
2 !5~c21cB

2 !2gxnn
0 ~k,v!, ~3.1!

where we introduced the Bogoliubov speed of soundcB

5Agnc /m. Equation~3.1! is the central equation we sha
analyze in this section. The response function~2.18! for a
homogeneous system can be rewritten in the well-kno
form

xnn
0 ~k,v!5E d3p

~2p!3

f 0„E
HF~p!…2 f 0„E

HF~p1k!…

v2@EHF~p1k!2EHF~p!#
,

~3.2!

where f 0(EHF)5$exp@b(EHF)#21%21 is the Bose distribu-
tion. For T<Tc we have EHF(k)5k2/2m1gnc and m̄
52gnc .

The dispersion relation for the density fluctuations in t
uncondensed phase is formally also contained in Eq.~3.1! if
we put cB50 there and has one branch withc50, corre-
sponding to the fact that the single-particle dispersion law
the uncondensed phase is proportional tok2, and another
branch given by

152gxnn
0 ~k,v!. ~3.3!

The response function~3.2! in that region is evaluated with
the effective fugacityz5ebm̄, according tom̄5m22gntot
5m (0), where the chemical potentialm is determined ther-
modynamically as described above.

For long wavelengths, i.e., for wave vectors withukul th
!1, we can approximate in the denominator of the respo
function ~3.2! EHF(p1k)2EHF(p)'k•p/m. The mean-field
interactions for our two models cancel in this difference. T
difference of the Bose factors in the numerator can be
proximated by a gradient. To evaluate Eq.~3.2! after these
approximations we choosek in the x direction and integrate
first in py ,pz with the result

xnn
0 ~kx ,v!5

1

~2p!2E dpx

px

v/uku2px /m
f 0„E

HF~px!….
01360
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The response function depends only on the ratiov/uku,
which is the~generally complex! ‘‘speed of sound’’ defined
by the ratioc5v/uku in the long wavelength limit. So Eq
~3.1! is an implicit equation forc. Scalingpx by A2mkBT
and measuringc in units of the thermal velocitycT

5A2kBT/m, the response function reads

xnn
0 ~c!5

l th
23

kBT
x̃nn

0 ~c/cT! ~3.4!

with the dimensionless response function

x̃nn
0 ~s!5

1

Ap
E

2`

`

dt
t

s2t

z

et22z
, ~3.5!

defined in the upper half of the complexs plane, where the
variables denotes the quotients5v/(cTuku). The tempera-
ture dependence resides in the prefactor in Eq.~3.4! and in
the fugacityz.

The integral can be evaluated by the method of residu
~see@13#!, and we refer to that paper for further details of t
calculation. The result is the expression for the dimensi
less response function

x̃nn
0 ~s!52g1/2~z!2Ap i

sz

es2
2z

1Ap

g

s2

s21g

1Ap i (
n51

`
s2

s22an
2

1

an
1

s2

s22bn
2

1

bn
~3.6!

with poles at

an

bn
J 5 iA4 4p2n21g2 e6 ifn/2

and with g52bm̄5ubm̄u52 ln(z), andfn5arctan(2pn/g)
for n>0. In the Hartree model@13# g was 0 in the con-
densed phase, while here it is nonzero in the condensed
uncondensed phases. This may seem like a small differe
but it is not, because a nonzero value ofg, even if it is small,
leads to qualitative and by no means small differences in
response function in the limitk→0. For smallg one can
expandg1/2(e

2g)5Ap/g1z(1/2)1O(g).
When we ask for solutions of Eqs.~3.1! and~3.3!, we are

looking for eigenmodes of the system, which, for physic
reasons, have to decay~rather than grow! exponentially and
the poles we look for have therefore to be located in
lower complex half plane. In Eq.~3.1! the analytical continu-
ation of the integral~3.5! from the upper to the lower com
plex half plane ofs has therefore to be used.

With this explicit representation of the response functi
we are now able to determine the solutions of Eqs.~3.1! and
~3.3! below and above the phase transition numerica
Since the terms in the sum in Eq.~3.6! decay only asn23/2,
the sum converges very slowly and it is not possible to
the sum at some large finitencut. Instead we can use a con
9-8
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FIG. 7. Real part~left! and imaginary part~right! of the different branches of the velocity of soundc5v/uku from Eqs.~3.1! and ~3.3!
in units of AkBTc /m for the interactiongntot /kBTc50.1 depending on the temperatureT/Tc .
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tinuum approximation integrating over all terms in the ran
nP@ncut,`#. As a numerical check we have reproduced
our data with the alternative representation of the respo
function by performing integral~3.5! numerically withs in
the lower complex half plane and subtracting the term for
analytical continuation:

x̃nn
0 ~s!5

1

p1/2E2`

`

dt
t

s2t

z

et22z
22Ap i

sz

es2
2z

. ~3.7!

The numerical solutions are plotted in Figs. 7 and 8. Th
figures show the real and imaginary parts ofc for various
branches of damped modes as a function of tempera
above and below the phase transition, and how th
branches bifurcate as the poles corresponding to these m
move in the complex plane. For the weakest interact
strength, shown in Fig. 7, various approximations are p
sible to permit an analytical understanding of most of
structure shown. This will be described in the following se
tion. Here we discuss the numerical results shown in
figures. We use the condensation temperaturekBTc of the
ideal Bose gas as a convenient energy scale near which
phase transition occurs.

Let us begin with the case of weak interaction w
gntot /kBTc50.1 for our two models, shown in Fig. 7. A
high temperaturesT@Tc we typically get complex solutions
for c with ucu@cT , and with finite real and imaginary part
Then, at a certain temperatureT0, which is aboveTc for very
weak interaction but moves belowTc for stronger ones as

FIG. 8. Real part and imaginary part of the different branches
the velocity of soundc in units of AkBTc /m for the interaction
gntot /kBTc50.3.
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seen in Fig. 8, the real part of the velocity of sound vanish
the mode becomes overdamped belowTc , and the imaginary
part bifurcates into two different branches, as seen in Fig
Density waves with a certain wave vector no longer pro
gate, but decay as a mere relaxation with two different de
rates describing a short-time decay and a long-time de
Both damping rates are proportional to the wave vector.
analytical understanding of the bifurcation based on a s
able approximation to the response function for large ar
mentsusu@1 will be provided in the next section.

The finite jump ~2.34! of the condensate density at th
first order transition in the model results in discontinuities
the two purely imaginary thermal branches. The disconti
ity in the lower branch is visible in Fig. 7, while in the uppe
branch it is very small and not discernible. Even at low
temperatures this upper branch hardly deviates from the
sult aboveTc as can be seen in Fig. 7. The reason for this
that for weak interaction Eq.~4.2! below also impliesucu
@cB , and the dispersion relation~3.1! below Tc reduces to
Eq. ~3.3! aboveTc . Soc from Eq. ~4.2! turns out to be also
a solution of Eq.~3.1! belowTc and can be seen in Fig. 7 a
the solution independent of the temperature for the wh
condensed region.

Below the phase transition a new propagating branch w
nonvanishing real part ofc appears, which is the Bogoliubo
mode and, as discussed in the next section, has a velo
close tocB , as is also visible in Fig. 7. In the units chosen
the figures this Bogoliubov branch forT→0 converges to the
valueAgntot /kBTc.

Let us now turn to the case of slightly stronger interacti
in Fig. 8. The most remarkable new feature compared to
very weakly interacting case is that the bifurcation of t
thermal branch occurs now at some temperatureT0 below
the phase transition. We can see the real parts of the pr
gating thermal branch and the Bogoliubov branch crossin
some temperature betweenT0 and Tc . Although the mode
described by the thermal branch is still propagating it
strongly damped, its real part being smaller than its ima
nary part. Again the smaller of the two damping rates t
have bifurcated from the thermal branch is still larger th
the damping of the Bogoliubov sound. However, the disc
tinuity in the condensate density at the phase transition
ready amounts to 40% of the total density, so this behav
nearTc has only a restricted physical meaning.

f

9-9
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IV. ANALYTICAL SOLUTION OF THE DISPERSION
RELATION FOR WEAK INTERACTION

A. Thermal branch

The bifurcation shown in Fig. 7 can be understood by
following approximation to the response function. For lar
argumentsusu@1 we can expand the integrand in Eq.~3.7! in
powers of (t/s)2 and get as the dominant behavior for lar
usu

x̃nn
0 ~s!5

g3/2~z!

2s2
22Ap i

sz

es2
2z

1OS 1

usu4
D . ~4.1!

For weak interactiongntot!kBT and forT.Tc the real part
of s is much smaller than the imaginary part, as seen num
cally, and the full response function can be approximated
the second term in Eq.~4.1! only. This approximate respons
function, taken as a function of a purely imaginary argume
is a real convex function, and only if condition~3.3! is ful-
filled at its minimum, is a purely imaginary solution possib
From the temperature dependence of the chemical pote
aboveTc it follows that this is possible only below som
temperatureT0, which one can determine asT0 /Tc53.37 for
gntot /kBTc50.1, for example. AboveT0 the approximate re-
sponse function gives rise to the characteristic growth of
real part ofc, ~see Fig. 7!. In the limit usu@1 we can even
approximatex̃nn

0 (s)'2Ap is, and the simple solution inde
pendent of the temperature follows as

c52
i

4Ap

kBT

gl th
23

cT52
ip

m2g
. ~4.2!

This can be seen as the upper branch of the bifurcated im
nary part for small temperatures in Fig. 7. The lower bran
decreases linearly with temperature and finally enters the
posite region withusu5uc/cTu!1. In this region the behavio
can be described by a different approximation of the
sponse function@13#. The first three leading terms of Eq
~3.6! in s,g ordered by magnitude can be summarized as

x̃nn
0 ~s!5

2 iAp

s1 iAg
2zS 1

2D1
iAps

2
1O~ usu2!. ~4.3!

From the dominant first two terms the approximate so
tion in the limiting caseucu!cT above the phase transitio
follows as

c52 i
A22m/m1gl th

23A8p/mkBT

11~2gl th
23/kBT!zS 1

2D . ~4.4!

Except at high temperatures this expression agrees very
with the numerically determined data in Fig. 7. The behav
linear in T2Tc is given by the first term in the numerato
since the chemical potential can be expanded as2m
5z(3/2)29kB(T2Tc)

2/16pTc1O„(T2Tc)
3
…; the offset is

given by the second term in the numerator.
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Finally we note that the bifurcations discussed above
also be followed analytically if use is made of the appro
mation ~4.3! for the density response function.

B. Bogoliubov branch

Let us turn to the region belowTc and show that in both
of our models we have a branch withc very close tocB . In
the limit ucu!cT we can use again the approximate respo
function ~4.3!. According to the Bogoliubov theory at van
ishing temperature sound propagates with the Bogoliu
speedcB . Using this in Eq.~4.3! we see thatgxnn

0 (cB) is of

the order ofO(sB ,g1/2)!1 with sB5cB /cT5Ag/2. So with
gxnn

0 (cB)!1 it follows from Eq. ~3.1! that one solution is
near the Bogoliubov speed of soundcB . The corresponding
numerically determined solutions can be seen in Fig. 7.

Being close tocB the Bogoliubov branch can be dete
mined analytically from perturbation theory. To this purpo
we consider the right hand side in Eq.~3.1! with the response
function ~4.3! as a perturbation to the Bogoliubov speed
soundc5cB . We get the complex correction

c2cB52cB

gl th
23

kBT F 2Ap i

sB1 iAg
2zS 1

2D1
iApsB

2 G . ~4.5!

The first term gives the leading order ing and is proportional
to the temperature. The damping rate of Bogoliubov sou
waves with wave vectorq due to this term is

G15
4

3
kBTaq, ~4.6!

with the s-wave scattering lengtha from g54pa/m. This
damping rate is of the same order as the damping previo
determined in@13#, which differs only in the numerical pref
actor of 1 instead of 4/3, and it also agrees approxima
with the damping rate in the Beliaev approximation extend
to finite temperatures by Shi and Griffin@22#, but obtained
also by other methods in the intermediate temperature re
@31–34#. The difference is that in Eq.~4.6! the prefactor 4/3
should be replaced by 3p/8. For the frequency shift we ob
tain Dv52A2G, a result that is in good agreement with th
result of Fedichev and Shlyapnikov@33#, who obtainDv/G
52(28/3p3/2)51.67 . . . , andalso of Giorgini @35#, who
getsDv/G'21.8. This shift, which is negative and linear i
the temperature, reduces the speed of sound compared t
Bogoliubov approximation. These results are in agreem
with the measurements of temperature dependent frequ
shifts of discrete modes@14#, which were found to have
negative sign for them52 mode, and also for them50
mode at intermediate temperatures. Using the full respo
function and taking the inhomogeneity of the system in
account an explanation of these frequency shifts and
damping rates was already given in@11#.

V. DISCUSSION AND CONCLUSION

Let us briefly summarize the results of this paper and th
draw some further conclusions. We have presented h
9-10
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CONSERVING AND GAPLESS MODEL OF THE WEAKLY . . . PHYSICAL REVIEW A64 013609
within the framework of the dielectric formalism a consiste
microscopic model of the weakly interacting Bose gas
cluding exchange. We have shown that a consistent tr
ment of exchange processes is achieved by using Har
Fock propagators for the internal lines of diagrams a
summing up thesameclasses of diagrams fordifferentquan-
tities. As far as the density correlation function is concern
we obtain results which, on the general level, are equiva
to earlier results by Minguzzi and Tosi@24#. This agreement
is nontrivial, because our starting point is quite differe
from theirs. However, our treatment is more general than
in @24# because it also gives the single-particle Green’s fu
tions, which by construction have the same poles as the
sity correlation function, displaying a gapless single-parti
spectrum, i.e., satisfying the Hugenholtz-Pines theorem.
agreement of our result for the density correlation with t
in @24# uncovers the diagrammatic basis of the equati
written down there and therefore opens up the possibility
future systematic improvements. The rational basis of
‘‘model’’ or approximation is its consistency with gener
requirements, which are nontrivial to satisfy simultaneous
Thus we demonstrated explicitly that the compressibi
sum rule is satisfied, ensuring the consistency between st
and dynamics of the model; and the Ward identities w
checked, ensuring the consistency between particle num
conservation~and thef-sum rule! and the spontaneously bro
ken gauge symmetry.

To these consistency checks, which were discussed in
tail, a further one may be added which we have not
discussed, but which we deem to be of no less importa
because it derives from a further symmetry of the system
Galilei invariance. Galilei invariance is most easily cons
ered in a spatially confined system, because it then sim
implies the free motion of the center of mass, if the confin
system as a whole moves. In Bose-condensed systems s
confinement is naturally achieved by imposing an exter
but spatially fixed trapping potential. The system can th
not move as a whole, but can still move in the external
tential. The motion of the center of mass is then no lon
free, and in general it is not even separable from the o
degrees of freedom in quantum mechanics. However, in
special case of an external harmonic potential the cente
mass motion is separable and is simply a harmonic osc
tion in the external potential. This fact is the content of t
Kohn theorem@36#. In the limit where the spring constants o
the external harmonic potential are set to zero the harm
oscillation of the center of mass tends to the free mot
required by Galilei invariance. Therefore, if the system s
isfies the Kohn theorem in a fixed external harmonic pot
tial ~possibly with infinitesimal spring constants!, Galilei in-
variance is ensured if the external potential is switched
We wish to point out here that in addition to the other co
sistency checks already discussed this check also is pa
by the approximate model discussed in the present pa
This was shown in@37#, where the fulfillment of the Kohn
theorem within the approximate model was explicitly de
onstrated. It can be seen from the proof given there that
test is quite sensitive and would fail if; e.g., another defi
tion of nth were chosen, say by using in the definition the f
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Green’s function rather than the Hartree-Fock propagat
or if propagators different from the Hartree-Fock propagat
were used in the internal lines.

Let us briefly discuss also the limits of validity of ou
treatment. The theory we have given is a mean-field the
and therefore restricted to the collisionless domainvtcoll
@1, wheretcoll@1 is the mean collision time. It is also
restricted to sufficiently high temperaturekBT*gnc , be-
cause in the low temperature domainkBT<gnc scattering
processes at wave number smaller than the inverse Bog
bov coherence lengthjB5(8pnca)21/2 make an important
contribution, and our use of the Hartree-Fock propagator
the internal lines would lead to a qualitatively wrong tem
perature dependence. The mean-field character of our th
also prohibits its application close to the phase transiti
which occurs at a temperature close toTc for the weakly
interacting Bose gas. The Ginzburg criterion for the valid
of a mean-field description here takes the form@33# uT
2Tcu/Tc*(ntota

3)1/3. Indeed, our model, if extrapolated t
temperatures nearTc , would predict a first-order transition
within the transition region specified by this criterion, b
since this is clearly outside the limit of validity, it is o
course not a prediction of the model. For some purposes,
following the fate of the various excitation branches as
phase-transition temperature is crossed, it would certainly
nice to have also a mean-field model including exchange
satisfying all the consistency checks we have discussedand
also giving a second-order mean-field transition at a criti
temperature near that of the ideal Bose gas. This goal, h
ever, is not met by the approximation we have discus
here, and further work may be required to achieve
eventually.

In summary, the results obtained here identify the mo
we introduce as a rather satisfactory while still managea
microscopic description of a weakly interacting Bose gas
the collisionless regime, except at very low temperatures
very near toTc .

As well as checking in detail the consistency of our a
proximations, we have presented and discussed a det
numerical and partially also analytical study of the disp
sion relation of thejoint single-particle and density fluctua
tion modes below and theseparatesingle-particle and den
sity fluctuation modes aboveTc . The results for the complex
ratio c5v/uku have been summarized in Figs. 7 and 8. T
dispersion relation found depends qualitatively on t
strength of the coupling. If the latter is weak as in Fig.
then purely damped modes exist from a region aboveTc
down to the low temperature regime, in addition to t
propagating and weakly damped Bogoliubov mode wh
exists only belowTc . For stronger coupling, as in Fig. 8
there is a propagating, damped mode from aboveTc down to
a finite temperatureT0 somewhat belowTc . Only belowT0
does this mode also become purely overdamped, as for
weak-coupling case. The Bogoliubov mode in the conden
phase exists also for strong coupling, only with higher f
quency and larger damping.

Although the main purpose of the present work was
theory for the homogeneous Bose gas it is interesting to c
trast the results presented here with the measurements o
9-11
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theoretical results for the temperature dependence of disc
frequencies for trapped condensates@14,38,39#. The results
for the real part of the velocity of sound in Fig. 8 are simil
to measurements of the frequency shifts and damping r
for the m50 andm52 modes at intermediate temperatur
@14#. The measured frequency of them50 mode was found
to first decrease with increasing temperatures for low te
peratures, but then it suddenly increased again at higher
peraturesT*0.6Tcrit . It was suggested that the increa
might be due to the crossing of the Bogoliubov mode
another mode of the thermal cloud@14,38,39#. Such a second
mode was actually found in@38,39# using a solution of the
kinetic equations. Here we also found a second branch of
velocity of sound for the homogeneous system~see Fig. 8!,
but it is found to be strongly damped, in qualitative distin
tion from what is found in the trapped system. However
measurement along the lines of@7#, testing the local proper
ties of the Bose gas, could actually check our results for
thermal branch of the collective modes in the homogene
system. In fact it was already remarked in@7# that aboveTc
there was no clear evidence for a propagating sound w
which is in qualitative agreement with the nonpropagat
nature of the collective mode aboveTc that we have found in
the present paper.
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APPENDIX

We wish to show here that the identities~2.12!–~2.14! are
indeed satisfied in our model approximations. The spec
choice of the building blocks for the vertex functionsLa

(r )

andLa
l (r ) simplifies the structure of these identities consid

ably. First, the second term on the right-hand side of
second Ward identity vanishes due to the agreement ofL1

(r )

andL2
(r ) . Second rewritingLa

(r ) andLa
l (r ) in the forms

La
(r )5La

01La
15Anc1gxnn

(r )Anc, ~A1!

La
l (r )5La

l01La
l15a

uqu
2

Anc1gxJn
l (r )Anc ~A2!

~compare Figs. 2 and Fig. 9!, we obtainAnc@L1
l (r )2L2

l (r )#
5Anc@L1

l02L2
l0#5uqunc and the third Ward identity reduce

to

vxJn
l (r )~q,v!5

uqu
m

@xJJ
l (r )~q,v!1mnth#. ~A3!
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Furthermore, in the first Ward identity the termsAncv and
(21)Ancaq2/2m appearing in the bracket on the right-han
side are canceled by the contributionsvLa

0 and uqu/mLa
l0 ,

respectively. Since the contributions ofSab
1(r ) are independen

of a and b the differenceS1a
1(r )2S2a

1(r ) vanishes. Addition-
ally we note that the differences of the Gross-Pitaevskii s
energies are given byS1a

0 2S2a
0 5am, resulting in a simpli-

fied expression for the first Ward identity

vLa
1~q,v!5

uqu
m

La
l1~q,v!. ~A4!

Recalling the decomposition in Eqs.~A1! and ~A2! and di-
viding La

1 andLa
l1 by their common factorgAnc the proof of

the first and second Ward identities is reduced to a chec
the relation

vxnn
(r )5

uqu
m

xJn
l (r ) . ~A5!

Using the decompositions~Figs. 1 and 10!

xnn
(r )5xnn

0 ~11gxnn
(r )!, ~A6!

xJn
l (r )5xJn

l0 ~11gxnn
(r )!, ~A7!

we just have to demonstrate the equivalent relationvxnn
0

2(uqu/m)xJn
l0 50, which can be done in a similar way as

@12# ~see also@18#! by replacing the free-particle Green
functions used there by the Hartree-Fock Green’s functi
GHF of Eq. ~2.16!. In completing this proof we only need a

FIG. 9. Diagrams contributing toLa
l (r ) . The symbolj denotes

the longitudinal component of the gradient.

FIG. 10. Regular current-density autocorrelation functionxJn
l (r )

corresponding toxnn
(r ) .
9-12
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energy dispersion law of the form«(p);@p2/2m1const#
valid for the free-particle Green’s function and the Hartre
Fock Green’s function used by us.

The third Ward identity can be simplified by the decom
positions~Figs. 10 and 11!

xJn
l (r )5xJn

l0 1xJn
l0 g

~12gxnn
0 !

xnn
l0 , ~A8!

xJJ
l (r )5xJJ

l 01xJn
l0 g

~12gxnn
0 !

xnJ
l0 , ~A9!

FIG. 11. Regular current-current autocorrelation functionxJJ
l (r )

corresponding toxnn
(r ) .
an
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-

which reduce its proof to a check of the condition

vxJn
l0 ~q,v!2

uqu
m

xJJ
l0~q,v!5uqunth . ~A10!

After multiplication by uqu/m we obtain

v
uqu
m

xJn
l0 ~q,v!2

q2

m2
xJJ

l0~q,v!

5E dp3

~2p!3 Fv2
q

m S p1
q

2D G
3F f 0„«~p!…2 f 0„«~p1q!…

v2~q/m!~p1q/2! G q

m S p1
q

2D
5E dp3

~2p!3

q

m S p1
q

2D @ f 0„«~p!…2 f 0„«~p1q!…#

5
q2

m
nth ,

which completes the proof.
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