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The dielectric formalism is used to set up an approximate description of a spatially homogeneous weakly
interacting Bose gas in the collisionless regime, which is both conserving and gapless, and has coinciding poles
of the single-particle Green'’s function and the density autocorrelation function in the Bose-condensed regime.
The approximation takes into account the direct and exchange interactions in a consistent way. The fulfillment
of the generalized Ward identities related to the conservation of particle number and the breaking of the gauge
symmetry is demonstrated. The dynamics at long wavelengths is considered in detail below and above the
phase transition, numerically and in certain limits also in analytical approximations. The explicit forms of the
density autocorrelation function and the Green’s function are exhibited and discussed.
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[. INTRODUCTION tions are unavoidable and a similarly complete picture usu-
ally cannot be attained.
The observation of Bose-Einstein condensat[dh in The purpose of this paper is to examine the homogeneous

trapped systems has given rise to extensive experimentéimit of an approximation previously derived for and applied
[2,3] and theoretica[4] study of weakly interacting dilute to the inhomogeneous cagEL]. In contrast to the previous
Bose-condensed gases. Recent measurements of the elemperturbative solution in the case of a harmonic frap] we
tary excitationg5,6] permit a detailed comparison with dif- shall now avoid all further approximations, after setting up
ferent theoretical approaches. Due to the existence of a nunthe model by selecting the relevant class of Feynman dia-
ber of essential experimental parameters in the trappedrams, and derive and study all the excitation branches ap-
systems, e.g., the trap frequencies, scattering length, size p&aring in the homogeneous model. Furthermore, a number
the condensate, and temperature, the validity of different apef exact theorems for the homogeneous system will be
proximations depending on these conditions can be exanehecked for their validity within our model approach.
ined. Most of the theoretical approaches go back to the For example, in general the poles of the density autocor-
1960s, and were originally derived for spatially homoge-relation function and the single-particle Green’s function
neous systems in view of their application to superfluid he-must coincide in the Bose-condensed redisee, e.g.;12)).
lium. For their application to the modern Bose-Einstein con-Physically this is a consequence of the existence of the order
densates in traps many of these approaches are now beipgrameter describing the spontaneously broken gauge sym-
extended to inhomogeneous systems and other approach@aetry. In our approximation the required coincidence of the
are also being developed. In the present paper we wish tpoles is a direct consequence of the derivation of the model
explore such an approximation scheme. It is of interest fomwithin the dielectric formalism, which is designed to ensure
modern Bose-Einstein condensates, because measurements that. In contrast to a previous model studied within this
of quasihomogeneous properties can also be made [tiere formalism ([13,12 and references thergirand therefore
From the theoretical point of view taking the homoge- sharing this crucial property, the approximation or model
neous limit implies a great simplification. Due to the trans-studied herdand in[11] for the trapped systentakes into
lation symmetry complicated integral equations reduce to alaccount the contributions of both the Hartree teamsl the
gebraic equations; essential requirements like a gaple$sock (exchanggterms in the selected graphs. Both types of
single-particle spectrurtwhich applies only in the homoge- term are in fact of equal magnitude for the interaction via
neous systejnand particle number conservation can be ex-swave scattering in the experimentally realized dilute
pressed in the form of algebraic identiti¢sugenholtz-Pines weakly interacting Bose condensates.
theorem[8], generalized Ward identitig®], compressibility In the next section we present the basic diagrammatic
sum rule[10], etc). In this form they provide important tests building blocks within the dielectric formalism as an ap-
for the consistency of approximations obtained by selectingoroximation of the full system. The basic relations of the
certain subsets of Feynman diagrams. Having defined an aplielectric formalism are then used to obtain the final density
proximation or “model” in this way analytical or numerical autocorrelation and Green’s functions determining the exci-
solution is possible in the spatially homogeneous case withtation spectrum. We also state there the generalized Ward
out the need for further approximation, and all branches ofdentities, which are exact relations ensuring the particle
the collective modes—damped, strongly damped, and evenumber conservation law in cases of spontaneously broken
overdampedpurely dampeg—can be exhibited. This is a symmetries. We prove in the Appendix that these identities
great advantage over the corresponding calculations for theontinue to hold in our model, which is a cornerstone of our
spatially inhomogeneous system, where further approximamodel building, because it provides an important consistency

1050-2947/2001/64)/01360914)/$20.00 64 013609-1 ©2001 The American Physical Society



FLIESSER, REIDL, SilE’FALUSY, AND GRAHAM PHYSICAL REVIEW A 64 013609

check. A fu_r';her consistency chgck is the fulfillment of the YT 70 7)) = —(Tf[ﬁ(r,r)ﬁ(r’,r’)]). 2.4
compressibility sum rule, which is demonstrated at the end

of Sec. Il. In Sec. Ill we present the numerical results for thel—lereﬁ=ﬁ—<ﬁ) denotes the density deviation operator. The
excitation branches at long wavelengths. In addition to th%xact Green's functioi®,; can be obtained from Dyson’s
modes we studied previously for the inhomogeneous SySte'@quation, i.e., by summicrzg up a geometric series in terms of

we find further excitation branches belonging to excitation h ) N ; ;

. : . reen’s functi f the noninteractin m an

mainly of the thermal density. The behavior of these thermaj e Green's fu th,nG“ﬁ of the noninteracting system and
he self-energy. ,z:

branches is studied in detail. For weak interaction they can
be accurately approximated by simple analytic expressions, _ 0 0
which is done in Sec. IV. For stronger interaction only nu- Cap=Cupt CayysCop- 29
merical results are obtainable. They may suggest explange self-energy insertions are by definitioreducible, i.e.,
tions for the appearance of the two different branches meaney cannot be split into two parts by cutting a single particle
sured by Jiret al.[14]. Section V contains some conclusions jine, Different model approximations can be classified by the
and further remarks. different kinds of interaction processes includedip; .
Beyond the definition of irreducible quantities it is equally
Il. THE MODEL useful to consider theroper contributions. Diagrams are
called proper if they cannot be split into two parts, each
connected to an external vertex or line, by cutting a single
Here we shall give some necessary background on thimteraction line. They will be denoted by an additional tilde.
so-called dielectric formalism at finite temperature, whichThe total density autocorrelation functign,, can be easily
was introduced for analyzing interacting Bose-condensegecovered from the proper contributiogs, by just summing
systemq15,16,13,17-19,12An excellent exposition of the 5 geometric series:
formalism and a complete list of references is given by Grif-

A. The dielectric formalism

fin [12]. The presence of a Bose condensate breaks the gauge Yol G @)
symmetry of the system. As a consequence the density fluc- Xm(Qw)y=———". (2.6
tuation spectra appear in the one-particle excitation spectra 1-gxni(g o)

and vice versa. In the dielectric formalism the correspondin

coupling mechanism is explicitly exhibited q—|ere o on the one hand denotes the Matsubara frequency

For the sake of simplification we adopt the natural unit[20] @ =iw,=i(2nm/B). On the other hand it is understood

f=1 throughout the paper. In the Bose-condensed phase ghgat the_ an_alytic continuation is fro”_‘ the po;itive imagi-

Id -, fthe B field aioi nary axis yields the retarded correlation functions, and there-
usua ecomposmor? ofthe >0se Tield oper mto ‘_5‘ CON= " fore, if this is our purposep will in the following always be
densate wave functio,=(¥(r)) and the fluctuation op- assumed to lie in the upper half of the complex plage.

erator® with vanishing expectation value denotes the two-particl& matrix. In the whole temperature
R R domain of relevance here it can be taken as independent of
V=0y+d (2.1)  q,0 and be expressed by tlsavave scattering length as

is made- - -) denotes the thermal averaging 4ma

. TrAe AH-&N)
(A= (2.2 The importance of the use of tHematrix in place of the bare
interaction was first stressed in this context in Beliaev’'s work
21]. (Se€[17] for a discussion of ladder diagrams within the
ielectric formalism at finite temperaturés is well known

ince then the use of the two-partidlanatrix in place of the

. . A 385§ are interaction implies that a sum is implicitly performed

in the .f°”°W'r!9’ for simplicity. The value of the _Che”_"ca' over the ladder diagrams of the two-particle interaction, and
potentialu is fixed by the average number of particles in thecare has to be taken not to sum up the same class of diagrams
system and is connected with the density of particles in th%gain later on(see, e.g.[22]).

condensatg®,|? by requiring(d)=0. Imposing®,+#0, we In the dielectric formalism the approximations far, 5

have the additional appearance of anomalous Green's fuméfnd for ., are related to each other via irreducible vertex

tions and it is useful to introduce the matrix Green’s funCtionfunctionsAa describing single processes of excitations out
o, - st of the condensate and of relaxations into the condensate
Gup(r,mir’,7)=—(T [P (r,)Pp(r',7)]) (23 \here the energy and momentum transfer is described by an
. additional outgoing interaction line. Unlike the usual Green'’s
with field operators in Matsubara representatidn(r, ) function approach, where approximations are defined by the
=d(r,7) and iz(r,r)zﬁﬁ(r,r). In addition to these one- diagrams kept in the self-energies apg, as basic building
particle correlation functions we need the density autocorreblocks, in the dielectric formalism an approximatidar
lation function “model”) is defined by introducing building blocks for the

" Tre BH-uN)

The condensate wave function can in general be comple
but in the absence of vortices it can be chosen as real, witI’g
out restriction of generality, and we shall consider this cas
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proper and irreducible parts of the three quanti®gs, xnn. ( o ”
and A,. In the following we call irreducible and proper @TMomT
guantitiesregular and denote them with anin parentheses.

Thus we start by specifying the building blockg") —nZ{(qw) -3 qw)], (212
2‘;};, and Ag) and expressing all necessary quantities in
te.rms of these three.t')asm quantities; see, ELQ]., 'VNVe begin Mxh,(f)(q,w) — AP (G @)~ AD(g )],
with the decomposition of the proper quantiti€s,; and m
Ynn. Since a Green'’s function is proper if and only if all the (2.13
self-energy insertions are proper we get Idl

I(r) =11,
G.A@w=(G2) Haw-30aw) @8 oxn ()= Lo e mne o)

_ I(r) _ AL
with (G2 ;) X(0,w) = 8,4l aw— (GZ/2m— )] where m is Y 41(g0) = A0(q )],
the mass of the atoms and we use the abbreviatieri or (2.149
—1 if the index« takes the value 1 or 2, respectively. Next

we consider the contributions #@,,, which can be written in The demonstratio_n th"."t E'q$2.12'—(2.l4) are ;atisfied by.
the form our model approximation is crucial for ensuring its consis-

tency and is given in the Appendix.
T D ANE ) A further important requirement for the consistency of
Xon=Xnn T Ao Gaplp” 2.9 any approximation is the compressibility sum r{i€]

|al

0AD(gw)="—A(gw)+Vng

ox(q0)=

Here we have irreducible contributiong”) and reducible n
contributions that contain at least one proper Green’s func- lim xno(k,00=— tot
tion G- Ikl—0 In |
The expressions fok,, and X ,; are obtained by sum- , , .
ming up the corresponding geometric series. The result fof © these exact requirements should in our opinion be added
Yo Was already given in Eq2.6), and we can immediately & furth_er one, which is a consequence of Galilei invariance
turn to the elements o, 5, which we decompose into their and will be discussed in the final section.
proper and their improper parts as follows:

(2.19

B. The Model

=3 )
2ap(Q0) =2 (0 0) + Ay (0, w) We shall now introduce and motivate the particular ap-

proximation(or mode) within the framework of the dielec-
9 o tric formal ish to study in thi Our aim here |
P(qo). (210 ric formalism we wish to study in this paper. Our aim here is
1- Qxffn)(q,w) to give a self-consistent Hartree-Fock theory of the Bose gas,
not a perturbation theory in the coupling constant to any
<CT>):O implies thatE(lr)(0,0)zo, WhereE(lr)(q,w) is the  given order. This aim seems legitimate in view of the success
sum of the regular diagrams with one external litedpole of the Hartree-Fock approximation in many-body physics in
diagrams. general, its limitations as a mean-field theory notwithstand-
In addition the conservation laws and corresponding suning.
rules must be woven into the formalism by ensuring that the Let us first consider the Bose gas in the noncondensed
approximate expressions for the regular parts still satisfy th@hase. Previously this system was studied in the framework
exact generalized Ward identities. The identities we want t®f the dielectric formalism within the Hartree approximation
consider in the following are a consequence of particle numf13], which corresponds to the self-consistent theory sum-
ber conservation which becomes nontrivial because of thening all the bubble diagrams, but neglecting exchange con-
broken gauge symmetry. Within the dielectric formalism thetributions in the thermal cloud.. Here we would like to go a
corresponding Ward identities were first introduced by Wongstep further and study the self-consistent Hartree-Fock theory
and Gould[9] at temperaturd =0 and later developed fur- summing the bubble diagranasdthe exchange bubble dia-
ther for finite temperaturésee, e.g.;18,12, and further ref- grams. For the uncondensed phase this approximation is, of
erences given therand used as exact relations between thecourse, standard, both for the single-particle Green'’s func-
building blocks of the dielectric formalism to be satisfied by tion, where it corresponds to the standard Hartree-Fock ap-
any consistent approximation. They can be obtained by inproximation, and for the density response function, where

serting the continuity equation the summing of the exchange bubbles is discussed, e.g., in
[20].
an(q, ) q . The dynamics of the thermal cloud is described by the
o mdan (2.1)  Hartree-Fock Green’s function, which takes the form
into the expressions for various time-ordered correlation GHE(k,w): Sap (2.16

functions[9,12] and read aw—E"F(K)
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FIG. 1. Diagrams contributing tg(!) . Xon
with FIG. 2. Diagrams contributing ta. " .
k2 shown later. Furthermore, we again sum up the bubble and
ERF(k)= >m F29Mo— m. (2.17  exchange bubble diagrams for all proper quantities, which

now also include the proper vertex functiai”. Therefore

With these Green’s functions the lowest order contribu-e find
tions to the regular density autocorrelation functidfl (see

0
Fig. 1) are given by the so-called bubble diagram (O (q) = Xnn(Q) , (2.21)
L " 1-gxnd@)
X(@w)=— 22 ——| dpGif(piwy) ich | . -
nn B4 (2m)3 1 n which is almost the same expression as found in the uncon-
densed phase; see al23].
X G (q—p,w—iwy). (218 For the proper vertex function{(q) the zero-loop dia-

B ) _ . gram is given by the trivial vertex functioﬁ‘;:(bo. By the
For the sake of better readability we will use the abbrewatlorwgame reasoning as foy(")

p=(p,i w,) representing the momentuorand the Matsubara m We obtain a further geometric
frequencyi w,.
In order to treat the exchange contribution of the two-

particle scattering iny,, on the same footing as the direct A (q)= 5 ,
contribution we have to sum up the diagrams & as in 1-9xn(Q)
Fig. 1, which define a simple geometric series. Since the N
interactiong is given here just by a constant the result can béllustrated in Fig. 2. o ) N
written in terms of the expressid®.18) in the form The regular self-energy contributions given By,(q)
=390(q)+3L{(q) are presented in Fig. 3, where

series:

P

(2.22

Xgn(q)

A (2.19
1-gx3(a)

~ 10
Xnr(0) Zgg):(g|<bo|2+2gnth)(o 1) : (2.23

B
When this result fory,, is substituted in Eq(2.6) it yields

. 2
simply

gd§ 11
2i‘”<q)=(——g<1>2)( ) . (224
s 1-gxS(a ~ °J\1 1),

Xgn(Q)
1-2gx°(q) ' (2.20 We now simply insert the expressiof&23), (2.24), (2.22),
nn and (2.21) in Eq. (2.10, and obtain straightforwardly the

i.e., a doubling of the effective coupling constant in the de-expressions fok ,5(q) of our approximation, which are not
nominator. Concerning this treatment one may legitimately/ritten out here to conserve space. Using our result far
ask why the Hartree-Fock Green’s functions rather than th@nd 21, it can be easily checked that the Hugenholtz-Pines
free-particle Green's functions are used for the internatheorem[20] p=3,(0)—215(0) is satisfied.
propagators in the bubble and exchange bubble diagrams. The tadpole diagrams are given in Fig. 4. The condition
The reason is one of consistency. Without the use of Hartreet§’ =0 leads to a relation that can be solved for the chemi-
Fock propagators one could not achieve consistency betwe@al potential,
statics and dynamics, which is incorporated in the compress-
ibility sum rule (2.195 (nor, as we may add, consistency with ®
Gallilei invariance, as we discuss in the final section

Let us now turn to the description of our approximation,
or model, for the condensed phase also. It is defined as the
natural extension of the Hartree-Fock model we use in the Y =
uncondensed phase. Thus, for the internal lines we use again
the Hartree-Fock propagators. In this way we again achieve
consistency with the compressibility sum rule as will be FIG. 3. Contributions t& ).

Xnn(Q) =

013609-4
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© My o, @, Onr 7 Thatny, is consistently interpreted as the thermal density of
Z — o+ e+ Y4 } the particles in our approximation will be shown by checking
1 - - - - the Ward identities and the compressibility sum rule.
FIG. 4. Contributions t& " . One might raise the question why in the diagramsEféjP.
and the diagonal elemenk") exchange ladder terms with
w=gne+ 2gny+ M(O)' (2.25 two condensate lines at the same interaction line are not also

included. The reason is that because of our use of Hartree-

Fock propagators in the internal lines these exchange dia-
where we added the chemical potenjid?’ of the ideal Bose grams are already contained in the first-order proper ex-
gas, which vanishes in the Bose-condensed phase, in order ¢aange diagram. As a result the chemical potentiah Eq.
make the expression valid also in the uncondensed phasg.25 is simply given by the lowest order terms, but of

and where we define course these must be evaluated with the Hartree-Fock propa-
gators.
e Using the building blocks we have specified it is now
Np=— 2, f P GHF(piw,). (2.26  straightforward to obtain the explicit expressions for the
n (2m)3 " Green'’s function, namely,
|
. )_(w+k2/2m—u“’))[l—2gx2n<k,w>]+gnc[1+29x2n<k,w>]
alloe)= Alkw) |
gnd[ 1+2gxny(k, )]
GlZ(kaw)__ A(k,w) 3 (227)
with the denominator
k2 2 k2
A(k,w)= w2_<%_ <°>) [1-20)7n(k,©)]— 29N 5 [ 1+ 2gxp(k,w) . (2.29

The density autocorrelation function can be given similarly as

2 (k2/2m— p©)2]x %, (k ) + 2no(K/2m)[ 1+ gx%(k,
R i (Ll <szk>w) (KF2m)[1 + 9wl k)] (2.29

The poles of the Green'’s function and the density autocorreloop order in the condensed phase. However, our treatment is
lation function are given by (k,w)=0. In the uncondensed not a perturbation theory in the coupliggi.e., loop order is
phase we can put,=0 and the resulf2.29 reduces to Eq. not the same as order in the coupligg because a self-
(2.20 with the poles given bygx2 (k,w)=1/2. These dis- consistently determmed propagator, ngmely, thel Hartree-
persion relations will be analyzed in Sec. Ill. Fock propagator, is used in the bubble diagram definiig

It is manifest from our explicit expressions that the polesWhich itself depends og. Rather, we claim that the theory
of the Green’s function in the Bose-condensed phase are diven here is aself-con&stent H_artree-Fock theory also in the
deed the same as those of the density autocorrelation fun pndenseq phase. Th's. claim is based on the fact f[hat '_[he
tion. On the other hand, because=0 the poles ofy,(k, ) theory satisfies all consistency checks, namely, the identity

and Gy,(k,) become different in the uncondensed phase'Of the poles of the Green’s and density response functions,

5 0) 0 the Ward identities, which also contain tfisum rule, the
the factor @+ k/2m—u**)[1-2gx,(k,w)] then cancels

_ compressibility sum rule, and of course the Hugenholtz-
from the numerator and denominator Gf(k,w) and the  pjnes theorem. In addition it satisfies a consistency check

remaining single-particle poles ab=(k*2m)—u(® are  derived from Galilei invariance, as discussed in the final sec-
those of the free Bose gas. tion. It should be noted that, apart from the Hugenholtz-Pines
It is important to remark here that summing up the bubbletheorem, none of these consistency checks are satisfied in the

and exchange bubble diagrams, after a suitable rearrangasual Popov approximatioriBut it is interesting to remark
ment of the resulting expressions, has not led us to terms dahat they can also be shown to be satisfied in the simpler
higher than the first loop order in the numerator and denomiHartree mode[13,19 within the dielectric formalism, for
nator, in either the condensed or the uncondensed phase,which our treatment therefore provides the logical consistent
note is made of the fact that the quant@y. is of zeroth  extension that includes exchange.
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Surprisingly for us the comparison of our res{@t29 for  linear response theory used[2¢] is the fact that besides the
the density autocorrelation function with corresponding re-density response function the Green’s function is also ob-
sults given by Minguzzi and To§24] yields complete agree- tained explicitly as displayed above, which would be outside
ment. This is nontrivial, since the theories are formulated inthe scope of the theory given j24]. With the Green’s func-
quite different ways and arrive at the result for the densitytion our theory gives explicit expressions for autocorrelation
autocorrelation function in very different manners and afterfunctions of the amplitude and phase of the order parameter.
considerable rearrangements. It is interesting to learn frornthe former equals- G, , the latter— G_, with
this agreement that the theory formulated by Minguzzi and
Tosi [24] has a foundation within the dielectric formalism

and permits a description in terms of the Feynman diagrams Gt (k) =Gk w) + GiAk 0)

from which we derived our results. This is a strong hint that (o+k?2m—u©@)[1-2gx% (k,w)]
there is just one consistent Hartree-Fock theory not only in = AK.o) ;
the uncondensed but also in the condensed phase. '
An obvious advantage of the dielectric formalism over the (2.30

(@+Kk22m—uO)[1-2gx7(k @)1+ 2gn L+ 2gxpy(k, )]

Ako) (2.3)

G,(k,(l)):Gll(k,(U)_Glz(k,(l)):

We still need to evaluate the thermal density, the temperature of the free Bose gas for the same particle density
chemical potential, andn, . By integrating the Bose factor by n,=gs(1)/A3(T.), there are two solutions,=0 and
n.=An., with

1
fo(E"F (k)= (2.32 4mg(NS) " /ksT
eXF[,BEHF(k)]_l AI’IC(TC)()\?h)3= g( Ih)c 738 c .
[1-2(12)g(Ng) °/keTe]
over the momenta we get,= g3,2(z)/)\t3h, wheregs(2) is g\ 3 512
the Bose functio20], z is the fugacity, defined in terms of +0 TkeT. | ) (2.39
— Cc

an effective chemical potentialu=p—2gny via z

=exp(Bu), and\y,= v27/mkgT denotes the thermal wave- \§, denotes the thermal wavelength at the critical tempera-
length. In the uncondensed region the effective chemical paure. Even for comparably weak interactiogn/kgT,
tential x coincides with the chemical potentigl® of the ~ =0.1 this jump already amounts to 16% of the total density,
ideal Bose gas. For the condensed phase, ugirggn, so it cannot be neglected by any means. The coexisting val-
+2gny,, the effective chemical potential E=u—29(nm ues of th_e total density for given values of the c;hemlcal
+n.)=—gn, andz=e 49, For a given total density, potential in the two—ph_ase region have Fo be determined from
=n.+ny, the equation of state in the condensed phase igwe Maxwell construction and will be discussed below.

therefore given by the implicit equation, which is equivalent Let us first consider the correlation functions in the static

to the equation of state derived first by Huaetggl. [25], limit, i.e., at w=0, in more detail. We find with or without
d y [25] condensate that

1
Niot=Nc+ —5 Gz @ P9%). (2.33 =- ;
0 c )\?h G,(k,O) K2/2m— M(O) ) (235)

It can be seen from this equation that within our approxi-

mation forG"F the phase transitio_n is no longer contin.u_éus. With a condensatg(®=0 and this correlation function dis-

For example, folT=T., whereT, is defined as the critical jays the usual infrared singularityk 2 associated with the
spontaneously broken gauge symmetry. For the amplitude
autocorrelation function ab=0 we obtain in the uncon-

IA discontinuity is also found in the familiar Popov approxima- densed and the condensed phase, respectively, and display-

tion [26,27]; see, e.9.[28,29,22,30 ing also the asymptotics fdk| —0,
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1 1
~ o — Pl T>T,
G. (k0= (2.36
: 1-2gxp(k,0) -1
— o o — . T<T,
(K22m)[1—-2gx0,(k,0)]+2gn 1+2gx0(k,0)]  2212K0)
|
with densed system. We get solutions for the uncondensed Bose
o gas only if u=u®<0 or equivalently p<pu(m™
1 1-2gxp(k0) 03 =29\, 3£(3/2). Combining these results due to the first order
312k0) and 1+2gx2(k0)]’ (230 ransition we find a region of multistability between the con-

densed and the uncondensed Bose gas for chemical potential
We examine the stability of the model beldw. As can  Valuesu™V<gu<p ™, In this region there are actually two
be seen from the results fax, (k, 0) an instability may occur  Possible nonvanishing values for the condensate dengity
if for small |[k| —0 we satisfygx2 (k,0)= —1/2. In order to #0 for given temperature and chemical potential, but due to
see where this condition for instability is satisfied we evalu-the stability conditiongxp(0,0)=—1/2 only one of these

ate x° (0,0)= ||m\k|—>0Xnn(k!O) from Eq.(2.18), finding solutions proves to be stable. The coexisting valuespht
a given temperature are fixed by the Maxwell construction
98 for the w(nyy) curve. The resulting valug ey Of the chemi-
gx2(0,0=— —3gl,z(e*/39”c), (2.39  cal potential then also determines the valueptoexisting
th with n;=0 from Fig. 5.

The equation of state as obtained from EB.33 and
This is a negative quantity, which, for sufficiently low tem- piotted in Fig. 6 is fully consistent with the density-density
perature lies in the intervgl—1/2,0], but which moves correlation function(2.29: the compressibility sum rule
monotonically in the direction of the instability at1/2 with (2.15 makes this connection between statics and dynamics.
decreasing condensate density for fixed temperature. The ifith our present result fox,,(k,0) it takes the form
stability condltlongxnn(o 0)=—1/2 is equivalent to the con-

dition that for fixed temperature the chemical potenfial e 1 1+9x2(0,0
exhibits a minimumu (™" as a function of,. In Fig. 5 we lr== 5 ) (2.39
plot this functional behavior. The fact that the instability I 9 14+29x,,(0,0

condition, which we have obtained here from the dynamics
described byG,;, fits completely the form of the equation That the derivative {ny,/du) can indeed be written in this
of state(2.33 underscores the consistency between staticform can be checked by a short calculation using the identity

and dynamics in our model. (91 911) g3(e*P) = — Bgy(€*P) and Egs(2.33 and(2.39.
In Fig. 6 we plot the branch corresponding to the chemi-Thys, from the right-hand side of E¢2.39, which is ob-
cal potential of the uncondensed Bose gas in the Hartreaained from the dynamics, a static property on its left-hand
Fock approximation together with the branch for the con-side, namely, the equation of state, can be rederived by inte-
gration with respect tqu.
0.65 The slope §u/dny) |t for n— = equals the coupling
/ constantg according to both sides of ER.39. The border

0.60

0.55 0.65

M /

0.50 0.60

0.45 055
"

0.40

0.0 0.2 0.4 0.6 0.8 0.50
n/n
0.45
FIG. 5. The chemical potentigk of the condensed phase in
units ofkgT as a function of the condensate fractiogy/n for fixed 0'4%_5 10 N 15

temperature. The plot is made for the coupling strength

:0.3>\l3thT/{(3/2). The horizontal long-dashed lines represent the FIG. 6. The chemical potentigk of the condensed and the
borders of multistability, the upper one given by (M uncondensed Bose gas in unitskafT as a function of the particle
=Zg)\t;3{(3/2) and the lower ong(™" by the instability condition  densityn in units of {(3/2))\‘},3 for the same value of the coupling
gx(0,0)= —1/2. The stable part of the curve is plotted as a solidconstantg as in Fig. 5. The long-dashed curve represents the un-
line changing to a long-dashed line in the region of instability. stable part of the branch of the condensed phase.
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of instability (9u4/dny)|+=0 occurs where the density auto- The response function depends only on the rabigk|,
correlation function has its pole, i.e., fog2°,(0,0)=—1.1t  Which is the(generally complex*“speed of sound” defined
should be noted that this is the same point where the longiby the ratioc=w/[k| in the long wavelength limit. So Eq.
tudinal order-parameter response functién (k,0) has its  (3.1) is an implicit equation forc. Scalingp, by v2mkgT
singularity, and also wherei(./du)t becomes singular, as and_measuringc in units of the thermal velocitycr
follows from the relationsu/dn.=g(1+2gx°(0,0)), which = v2kgT/m, the response function reads

can be easily proven. The infinite slopéu(/ny)|r=c of s

the unstable branch occurs wherg(0,0) vanishes, i.e., for 0 Mh~g
ng(-)m(Ovo): — 1 Xnn(c) - kBTXnn(C/CT) (34)
[ll. DYNAMICS AT LONG WAVELENGTHS with the dimensionless response function
Now we want to investigate the dynamics at long wave- 1 (e i .
lengths. We consider the limib—0 and|k|—0 and intro- Y(s)=—=| dt— —— (3.5
; . Xnn(S Tt .
duce the complex velocity of sound ky |k| =c. The disper- Jal = s—tet'—z

sion relation in the condensed phase, given by the poles of
the density autocorrelation function and the Green’s funcdefined in the upper half of the complexlane, where the

tion, takes the form variables denotes the quotiers=w/(c+|k|). The tempera-
. — 0 ture dependence resides in the prefactor in Bg) and in
(c°—cg)=(c“+Ccg)20xn(k w), (3.1)  the fugacityz.

) ) The integral can be evaluated by the method of residuals
where we introduced the Bogoliubov speed of sourd (seg[13]), and we refer to that paper for further details of the

=\gn./m. Equation(3.1) is the central equation we shall calculation. The result is the expression for the dimension-
analyze in this section. The response functi@r8 for a  |ess response function
homogeneous system can be rewritten in the well-known

form 2
~ . Sz T S
3 HF HF Xo(S) = —gua(2)— V7 2 +\ﬁ -
O(kaﬁ=if dp fo(E"F(p)—fo(E"F(p+k)) e 79ty
) @m o B () o2 1 @
+mi —+ 3.6
( \/;lnz1 Sz_aﬁ a, Sz—bﬁ b, (3.9

where fo(E"F)={exd B(E™)]-1}"* is the Bose distribu-
tion. For T<T. we have EMF(k)=k?2m+gn, and x  Wwith poles at

=—gn;.
The dispersion relation for the density fluctuations in the a 4 .
. . K . —i 2,2 2 Atipn/2
uncondensed phase is formally also contained in(Eq) if by, =iY4m*n®+y*e* "

we putcg=0 there and has one branch witl0, corre-
sponding to the fact that the single-particle dispersion law in

- : and with y=— Bu=|8u|=—In(z), and ¢,= arctan(2m/)
Lhrgnlézcgiggins;d phase is proportionakfo and another for n=0. In the Hartree mod€]13] y was 0 in the con-

densed phase, while here it is nonzero in the condensed and
1=29Xﬂn(k,w)- (3.3 uncpndensed phases. This may seem like a'sr.ngll difference,
but it is not, because a nonzero valueyokven if it is small,

: . ” . — tion in the limk—0. For smally one can
the effective fugacityz=eP*, according tou=u—2gn response func a
= 4(©, where the chemical potential is determined ther- €XPandgip(€ )=/ y+{(1/2)+ O(y).
modynamically as described above. When we qsk for solutions of Eq&3.1) and(3.3), we are
For long wavelengths, i.e., for wave vectors witi\, looking for eigenmodes of the system, which, for physical

<1, we can approximate in the denominator of the respons pasons, have to decgsather than groyexponentially a_nd
function (3.2) EFF(p+k) — EMF(p) ~k- p/m. The mean-field the poles we look for have therefore to bellocated.m the
interactions for our two models cancel in this difference. TheIOWer complex half plane. In Eq3.1) the analytical continu-

difference of the Bose factors in the numerator can be apgltlec:(nh?—;fﬂ;?alr?etgegf;ar[]z?trtreorg‘;?: tgpgeerutsoe;he lower com-

roximated by a gradient. To evaluate Eg.2) after these piex | . - ; .
gpproximatiozs W% choodein the x directioan and integrate With this explicit representation of the response function
first in with the result we are now able to determine the solutions of Egsl) and

Py.Pz (3.3 below and above the phase transition numerically.
1 Since the terms in the sum in E@.6) decay only as1 %2
X2 Ky, 0) = _f dprfo(EHF(px))_ the sum converges very slowly and it is not possible to cut
(27)? w/[K|—py/m the sum at some large finite,;. Instead we can use a con-
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1.5 . . " " 6.0
__\/-5.0
1.0 4 1 . La.o
Relc] _ l3.0 Im[c]
0.5 2.0
'\ . L1.0
eI 20 3I.0: 2.0 0o 1o Zo 50 1o 54"
T/T, T/T,

FIG. 7. Real partleft) and imaginary parfright) of the different branches of the velocity of souae w/|k| from Egs.(3.1) and (3.3
in units of VkgT./m for the interactiorgn,,;/kgT.=0.1 depending on the temperaturér . .

tinuum approximation integrating over all terms in the rangeseen in Fig. 8, the real part of the velocity of sound vanishes,
nel[nqy,*]. As a numerical check we have reproduced allthe mode becomes overdamped belw and the imaginary
our data with the alternative representation of the responsgart bifurcates into two different branches, as seen in Fig. 7.
function by performing integral3.5 numerically withsin  Density waves with a certain wave vector no longer propa-
the lower complex half plane and subtracting the term for thgjate, but decay as a mere relaxation with two different decay
analytical continuation: rates describing a short-time decay and a long-time decay.
Both damping rates are proportional to the wave vector. An
analytical understanding of the bifurcation based on a suit-
~0 o L [F t z ._S2 able approximation to the response function for large argu-
Xnn(S)= _1IZJ t; 2 _2\/;| ) . 3.7 . . ;i .
T e —z e’ -z ments|s|>1 will be provided in the next section.
The finite jump(2.34) of the condensate density at the
) ) o first order transition in the model results in discontinuities of
The numerical solutions are plotted in Figs. 7 and 8. Thesgne two purely imaginary thermal branches. The discontinu-
figures show the real and imaginary partscofor various i in the lower branch is visible in Fig. 7, while in the upper
branches of damped modes as a function of temperatuiiganch it is very small and not discernible. Even at lower
above and below the phase transition, and how thesgmperatures this upper branch hardly deviates from the re-
branch_es bifurcate as the poles corresponding to these m_od§l§|t aboveT, as can be seen in Fig. 7. The reason for this is
move in the complex plane. For the weakest interactionnat for weak interaction Eqi4.2) below also impliesc|
strength, shown in Fig. 7, various approximations are pos->>CB, and the dispersion relatio8.1) below T, reduces to
sible to permit an analytical understanding of most of theEq. (3.3 aboveT,. Soc from Eq.(4.2) turns out to be also
structure shown. This will be described in the following SeC-5 solution of Eq(%.l) belowT, and can be seen in Fig. 7 as

t@on. Here we discuss the numerical results shown in thgne so|ytion independent of the temperature for the whole

_flgures. We use the condensatlon temperalyE€, of th(_a condensed region.

ideal Bose gas as a convenient energy scale near which the gg|q,y the phase transition a new propagating branch with

phase transition occurs. . ) ..__nonvanishing real part af appears, which is the Bogoliubov
Let us begin with the case of weak interaction with 4o ang as discussed in the next section, has a velocity

9Niot/KpTc=0.1 for our two models, shown in Fig. 7. At ¢)5q6 toc, | as is also visible in Fig. 7. In the units chosen in
high temperature$>T. we typically get complex solutions i, figres this Bogoliubov branch fdr—0 converges to the

for ¢ with |c|>cy, and with finite real and imaginary parts. value \gng /KT

Then, at a cer.taln temperaturg, which is aboveT; for very Let ugs r%wﬁtu?n to the case of slightly stronger interaction
weak interaction but moves beloW, for stronger ones as in Fig. 8. The most remarkable new feature compared to the
very weakly interacting case is that the bifurcation of the
thermal branch occurs now at some temperafiyebelow

—0o0

120
10t Ve —\ the phase transition. We can see the real parts of the propa-
' - / e gating thermal branch and the Bogoliubov branch crossing at
Relc] / 1., "Imlc] some temperature betwediy and T.. Although the mode
o5 g described by the thermal branch is still propagating it is
\“}< - {os strongly damped, its real part being smaller than its imagi-
o N e, nary pgrt. Again the smaller of the two d_amp!ng rates that
00 02 04 06 68 10 12 14 00 02 04 0g 48 10 12 14 have bifurcated from the thermal branch is still larger than

c G

the damping of the Bogoliubov sound. However, the discon-

FIG. 8. Real part and imaginary part of the different branches ofiinuity in the condensate density at the phase transition al-
the velocity of soundc in units of VkgT./m for the interaction ready amounts to 40% of the total density, so this behavior
Nt/ kg T=0.3. nearT,. has only a restricted physical meaning.
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V. ANALYTICAL SOLUTION OF THE DISPERSION Finally we note that the bifurcations discussed above can
RELATION FOR WEAK INTERACTION also be followed analytically if use is made of the approxi-

A. Thermal branch mation (4.3) for the density response function.

The bifurcation shown in Fig. 7 can be understood by the

- . . X B. Bogoliubov branch
following approximation to the response function. For large

argumentgs|>1 we can expand the integrand in £g.7) in Let us turn to the region below, 'and show that in both
powers of ¢/s)? and get as the dominant behavior for large Of 0ur models we have a branch withvery close tocg. In
|s| the limit |c|<ct we can use again the approximate response

function (4.3). According to the Bogoliubov theory at van-
1 ishing temperature sound propagates with the Bogoliubov

@)- (4.1)  speedcy. Using this in Eq.(4.3 we see thagy’(cg) is of

the order ofO(sg,y*?) <1 with sg=cg/cr=\y/2. So with
For weak interactionn<ksT and forT>T, the real part 9xnd(Ce)<1 it follows from Eq.(3.1) that one solution is
of sis much smaller than the imaginary part, as seen numeriear the Bogoliubov speed of soung. The corresponding
cally, and the full response function can be approximated byiumerically determined solutions can be seen in Fig. 7.
the second term in E¢4.1) only. This approximate response  Being close tocg the Bogoliubov branch can be deter-
function, taken as a function of a purely imaginary argumentmined analytically from perturbation theory. To this purpose
is a real convex function, and only if conditidB.3) is ful- ~ we consider the right hand side in E§.1) with the response
filled at its minimum, is a purely imaginary solution possible. function (4.3 as a perturbation to the Bogoliubov speed of
From the temperature dependence of the chemical potentigbundc=cg. We get the complex correction
aboveT, it follows that this is possible only below some . .
temperaturd y, which one can determine ag/T.=3.37 for — i _ 1 l \/;SB
On/ kg T.=0.1, for example. Abové&, the approximate re- Sgti \/; 2 2
sponse function gives rise to the characteristic growth of the
real part ofc, (see Fig. 7. In the limit |s|>1 we can even The first term gives the leading ordergrand is proportional
approximate}gn(s)mz\/?is, and the simple solution inde- to the temperature. The damping rate of Bogoliubov sound

93/2(2)
252

- sz
Xrr(S) = —2\/;|E+O

o’
C—CB=ZCBkB—T

. (4.9

pendent of the temperature follows as waves with wave vectoq due to this term is
: 4
e kﬂ'%:_IW_ 4.2 I;=zkgTag, (4.6
4w ghg® m’g

) ] ~with the swave scattering length from g=4ma/m. This
This can be seen as the upper branch of the bifurcated imagiamping rate is of the same order as the damping previously
nary part for small temperatures in Fig. 7. The lower branchyetermined irf13], which differs only in the numerical pref-
decrease; Ilnegrly with temperature gnd f|.naIIy enters the ORsctor of 1 instead of 4/3, and it also agrees approximately
posite region withs| = |c/c7|<1. In this region the behavior \yith the damping rate in the Beliaev approximation extended
can be described by a different approximation of the reyq finjite temperatures by Shi and Griffj22], but obtained
sponse functior{13]. The first three leading terms of Eq. aiso by other methods in the intermediate temperature region
(3.6 in s,y ordered by magnitude can be summarized as [31-34. The difference is that in Eq4.6) the prefactor 4/3

should be replaced by738. For the frequency shift we ob-
—iym g(l

20 (s)= oy @JrO(IsIZ) 43 tain Aw= — /2T, a result that is in good agreement with the
Xnn s+ivy 2 2 ' ' result of Fedichev and Shlyapnik¢@3], who obtainA /T
=—(28/37%?)=1.67 ..., andalso of Giorgini[35], who
From the dominant first two terms the approximate solu-getsA /I~ —1.8. This shift, which is negative and linear in
tion in the limiting casdc|<cy above the phase transition the temperature, reduces the speed of sound compared to the

follows as Bogoliubov approximation. These results are in agreement
with the measurements of temperature dependent frequency
J=2uim+gh; 3\Br/mkgT shifts of discrete mode§l4|, which were found to have
=—i (4.9 negative sign for then=2 mode, and also for then=0
1+(297\m3/kBT)§(—) mode at intermediate temperatures. Using the full response
2 function and taking the inhomogeneity of the system into

) ) ) account an explanation of these frequency shifts and the
Except at high temperatures this expression agrees very Welamping rates was already given[irl].
with the numerically determined data in Fig. 7. The behavior

linear in T—T, is given by the first term in the numerator,
since the chemical potential can be expanded -ag

=[(3/2)%9kg(T—T.)%167T,+O(T—T,)3); the offset is Let us briefly summarize the results of this paper and then
given by the second term in the numerator. draw some further conclusions. We have presented here

V. DISCUSSION AND CONCLUSION
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within the framework of the dielectric formalism a consistentGreen’s function rather than the Hartree-Fock propagators,
microscopic model of the weakly interacting Bose gas in-or if propagators different from the Hartree-Fock propagators
cluding exchange. We have shown that a consistent treatvere used in the internal lines.
ment of exchange processes is achieved by using Hartree- Let us briefly discuss also the limits of validity of our
Fock propagators for the internal lines of diagrams andreatment. The theory we have given is a mean-field theory
summing up thesameclasses of diagrams falifferentquan- ~ and therefore restricted to the collisionless domain.
tities. As far as the density correlation function is concerned>1, where 7.,>1 is the mean collision time. It is also
we obtain results which, on the general level, are equivalerfiestricted to sufficiently high temperatutgT=gn., be-
to earlier results by Minguzzi and Tog4]. This agreement cause in the low temperature domadigT<gn, scattering
is nontrivial, because our starting point is quite differentprocesses at wave number smaller than the inverse Bogoliu-
from theirs. However, our treatment is more general than thagov coherence lengthig= (87n.a) 2 make an important
in [24] because it also gives the single-particle Green’s funccontribution, and our use of the Hartree-Fock propagator for
tions, which by construction have the same poles as the dethe internal lines would lead to a qualitatively wrong tem-
sity correlation function, displaying a gapless single-particlePerature dependence. The mean-field character of our theory
spectrum, i.e., satisfying the Hugenholtz-Pines theorem. Thalso prohibits its application close to the phase transition,
agreement of our result for the density correlation with thatwhich occurs at a temperature close Tg for the weakly
in [24] uncovers the diagrammatic basis of the equationsnteracting Bose gas. The Ginzburg criterion for the validity
written down there and therefore opens up the possibility foof a mean-field description here takes the fof88] |T
future systematic improvements. The rational basis of our Tc|/Te=(ne@®) Y3 Indeed, our model, if extrapolated to
“model” or approximation is its consistency with general temperatures neaf,, would predict a first-order transition
requirements, which are nontrivial to satisfy simultaneouslywithin the transition region specified by this criterion, but
Thus we demonstrated explicitly that the compressibilitysince this is clearly outside the limit of validity, it is of
sum rule is satisfied, ensuring the consistency between staticourse not a prediction of the model. For some purposes, like
and dynamics of the model; and the Ward identities werdollowing the fate of the various excitation branches as the
checked, ensuring the consistency between particle numb@hase-transition temperature is crossed, it would certainly be
conservatior{and thef-sum rule and the spontaneously bro- nice to have also a mean-field model including exchange and
ken gauge symmetry. satisfying all the consistency checks we have discussed

To these consistency checks, which were discussed in d@lso giving a second-order mean-field transition at a critical
tail, a further one may be added which we have not yetemperature near that of the ideal Bose gas. This goal, how-
discussed, but which we deem to be of no less importancegver, is not met by the approximation we have discussed
because it derives from a further symmetry of the system—here, and further work may be required to achieve it
Gallilei invariance. Galilei invariance is most easily consid-eventually.
ered in a spatially confined system, because it then simply In summary, the results obtained here identify the model
implies the free motion of the center of mass, if the confinedve introduce as a rather satisfactory while still manageable
system as a whole moves. In Bose-condensed systems spatiaicroscopic description of a weakly interacting Bose gas in
confinement is naturally achieved by imposing an externathe collisionless regime, except at very low temperatures and
but spatially fixed trapping potential. The system can thervery near toT.
not move as a whole, but can still move in the external po- As well as checking in detail the consistency of our ap-
tential. The motion of the center of mass is then no longeproximations, we have presented and discussed a detailed
free, and in general it is not even separable from the othenumerical and partially also analytical study of the disper-
degrees of freedom in quantum mechanics. However, in theion relation of thgoint single-particle and density fluctua-
special case of an external harmonic potential the center dfon modes below and thgeparatesingle-particle and den-
mass motion is separable and is simply a harmonic oscillasity fluctuation modes abovk,. The results for the complex
tion in the external potential. This fact is the content of theratio c= w/|k| have been summarized in Figs. 7 and 8. The
Kohn theoreni36]. In the limit where the spring constants of dispersion relation found depends qualitatively on the
the external harmonic potential are set to zero the harmonistrength of the coupling. If the latter is weak as in Fig. 7,
oscillation of the center of mass tends to the free motiorthen purely damped modes exist from a region abdye
required by Galilei invariance. Therefore, if the system satdown to the low temperature regime, in addition to the
isfies the Kohn theorem in a fixed external harmonic potenpropagating and weakly damped Bogoliubov mode which
tial (possibly with infinitesimal spring constapt&Galilei in-  exists only belowT,.. For stronger coupling, as in Fig. 8,
variance is ensured if the external potential is switched offthere is a propagating, damped mode from abbyvdown to
We wish to point out here that in addition to the other con-a finite temperatur@, somewhat below .. Only belowT,
sistency checks already discussed this check also is passddes this mode also become purely overdamped, as for the
by the approximate model discussed in the present papeweak-coupling case. The Bogoliubov mode in the condensed
This was shown if37], where the fulfilment of the Kohn phase exists also for strong coupling, only with higher fre-
theorem within the approximate model was explicitly dem-quency and larger damping.
onstrated. It can be seen from the proof given there that this Although the main purpose of the present work was a
test is quite sensitive and would fall if; e.g., another defini-theory for the homogeneous Bose gas it is interesting to con-
tion of ny, were chosen, say by using in the definition the full trast the results presented here with the measurements of and
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theoretical results for the temperature dependence of discrete
frequencies for trapped condensaf&4,38,39. The results

for the real part of the velocity of sound in Fig. 8 are similar
to measurements of the frequency shifts and damping rates X
for the m=0 andm=2 modes at intermediate temperatures

[14]. The measured frequency of the=0 mode was found §A0
to first decrease with increasing temperatures for low tem- + -

peratures, but then it suddenly increased again at higher tem- x o
peraturesT=0.6T;. It was suggested that the increase
might be due to the crossing of the Bogoliubov mode by FIG. 9. Diagrams contributing ta'". The symboll denotes
another mode of the thermal clo{it¥4,38,39. Such a second the longitudinal component of the gradient.

mode was actually found if838,39 using a solution of the

kinetic equations. Here we also found a second branch of theyrthermore, in the first Ward identity the ternfa.» and
velocity of sound for the homogeneous systes®e Fig. 8 (- 1)./n.aq?/2m appearing in the bracket on the right-hand
but it is found to be strongly damped, in qualitative distinc- 5jje are canceled by the contributions\ and |q|/mA'°
tion from what is found in the trapped system. HOwever, g oqqtively. Since the contributions B} are independent

measurement along the lines|df, testing the local proper- : 1) < 1() . I
ties of the Bose gas, could actually check our results for thé)f a and § the differenceX,’— X, vanishes. Addition

thermal branch of the collective modes in the homogeneougIIy we note thgt the déffe_rer})ce_s of the G:qss-ﬂtae\./sknllself-
system. In fact it was already remarked[#f] that aboveT . energies are given byla. 200= ap, resu ting in a simpli-
there was no clear evidence for a propagating sound wav&€d expression for the first Ward identity

which is in qualitative agreement with the nonpropagating

nature of the collective mode aboVe that we have found in N la |,
the present paper. 0A(Go)=""A(q ). (A4)
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APPENDIX
We wish to show here that the identiti€s12—(2.14) are XS = X1+ axi), (A6)
indeed satisfied in our model approximations. The specific
. . . . I')
choice of the building blocks for the vertex functions' 0=y (14 gx®), (A7)

andA'(" simplifies the structure of these identities consider-
ably. First, the second term on the right-hand side of the ) )
second Ward identity vanishes due to the agreement{df ~We just have to demonstrate the equivalent relatioe,

andA (. Second rewriting " and A'® in the forms — (|cl/m) x5, =0, which can be done in a similar way as in
[12] (see alsd18]) by replacing the free-particle Green’s

(N A0 ALl_ " functions used there by the Hartree-Fock Green’s functions
AD =A%+ AL=Vnc+axVne, (A1) GHF of Eq. (2.16). In completing this proof we only need an
A=A+ A= a%ﬂ?gxb&”dn—c (A2) X Koo 1

<> _ <Z> +x§,‘f

(compare Figs. 2 and Fig.),9we obtain/n A" —AL"]

= JnJ A’ Al%1=|q|n, and the third Ward identity reduces A
to S eee 55 I
1(r) _ H I(r) " FIG. 10. Regular current-density autocorrelation functigfj’
WX gn (qlw) m[XJJ (q,w) mn[h] (A3) Corresponding to(gn)
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% g Xy which reduce its proof to a check of the condition
xJn
¢ : » + G
<> @ wxXn(0,©) = —x (0 @)= ng,. (A10)
+ sew T After multiplication by|g|/m we obtain
xln T xrlﬂo 2
FIG. 11. Regular current-current autocorrelation functigfj’ wﬂx'ﬁ(q, )— —2)( %(q,0)
corresponding to({") . m
e 2 _( dp? q/ g
energy dispersion law of the form(p)~[p“/2m+ consj = w——|pt+=
valid for the free-particle Green’s function and the Hartree- (2m)3 m 2

Fock Green’s function used by us.

The third Ward identity can be simplified by the decom- fole(P) — fole(p+q)) ﬂ(p+9)
positions(Figs. 10 and 11 w=(g/m)(p+g2) |m\" 2
(9’ g
sml Pt [fo(8 P)—fole(pta))]
I(r) _ o9 o A8) (27)
XJn X XJn(l 2n) Xnn» q2
= Enthl
g
X5 = X539+ XJn—OX'nOJ- (A9)
(1-9xm) which completes the proof.
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