
ridge,

PHYSICAL REVIEW A, VOLUME 64, 013605
Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory
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We study the dynamics of a two-mode Bose-Einstein condensate in the vicinity of a mean-field dynamical
instability. Convergence to mean-field theory~MFT!, with increasing total number of particlesN, is shown to
be logarithmically slow. Using a density-matrix formalism rather than the conventional wave-function meth-
ods, we derive an improved set of equations of motion for the mean-field plus the fluctuations, which goes
beyond MFT and provides accurate predictions for the leading quantum corrections and the quantum break
time. We show that the leading quantum corrections appear as decoherence of the reduced single-particle
quantum state; we also compare this phenomenon to the effects of thermal noise. Using the rapid dephasing
near an instability, we propose a method for the direct measurement of scattering lengths.
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I. INTRODUCTION

The effective low-energy Hamiltonian forN interacting
bosons confined in an external potentialVext , is given in
second-quantized form as

Ĥ5E d3r ĉ†F2
\2

2m
“

21V~r !1
g

2
ĉ†ĉ G ĉ, ~1!

whereV(r ) is the external trapping potential,m is the par-
ticle mass,g is a coupling constant proportional to th
s-wave scattering length, andĉ,ĉ† are bosonic annihilation
and creation field operators obeying the canonical comm
tion relation@ĉ(r ),ĉ†(r 8)#5d(r2r 8). ~This Hamiltonian is
an effective low-energy approximation, in the sense t
short-wavelength degrees of freedom have been elimina
it is applicable in the regime of ultracold scattering, whe
short-distance modes are only populated virtually, dur
brief two-body collisions.! At very low temperatures, Bose
Einstein condensation occurs, so that a large fraction of
particles occupy the same single-particle state, character
by the single-particle wave functionC(r ,t). In this regime
one can formulate a perturbative expansion in the sm
quantity N21/2, where N is the number of particles in th
condensate, whose result at leading order is the Gr
Pitaevskii nonlinear Schro¨dinger equation~GPE! governing
the condensate wave function:

i\
]

]t
C~r ,t !5S 2

\2
“

2

2m
1Vext~r !1guC~r ,t !u2DC~r ,t !.

~2!

The Gross-Pitaevskii mean-field theory~MFT! provides a
classical field equation for nonlinear matter waves, which
generally considered as ‘‘the classical limit’’ of the Heise
berg equation of motion for the field operatorĉ ~which is of
precisely the same form!. We can make precise the sense
which it is a classical limit, by reformulating the syste
governed by Eq.~7! in the path-integral representation. W
will not actually use this formulation in this paper; w
merely note the GPE is the saddle-point equation that
1050-2947/2001/64~1!/013605~9!/$20.00 64 0136
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pears in a steepest descents approximation to the path
gral. This is precisely the standard semiclassical approxi
tion, with the exception that 1/N is playing the role usually
played by\. Hence despite the resemblance of the GPE t
Schrödinger equation, complete with finite\, we can indeed
identify MFT as the classical limit, in essentially the sam
sense as in the case\→0 of the quantum field theory. Be
causeN in current trapped dilute alkali gas Bose-Einste
condensate~BEC! experiments is characteristically larg
~typically of the order 1052108 atoms!, qualitatively signifi-
cant quantum corrections to MFT are hard to observe,
the GP theory is highly successful in predicting experimen
results.

The entire field of quantum chaos is founded upon o
property of the classical limit, however, that convergence
classicality as\→0, is logarithmically slow if classical tra-
jectories diverge exponentially. This implies that we mu
expect strong quantum corrections to MFT in the vicinity
a dynamically unstable fixed point. In particular, the qua
tum evolution will depart significantly from the classical a
proximation after a logarithmic ‘‘quantum break time,
which will be ; logN in our case, as it is; log(1/\) in the
standard case. In our case, the nature of this departure is
after the quantum break time, a condensate will become
nificantly depleted, as exponential production of quasipa
cles transfers particles to orthogonal modes@1#. Depletion of
the condensate means, by definition, that the single-par
reduced density matrix~SPDM! becomes quantum mechan
cally less pure. Hence for a condensate, just as the clas
limit of the quantum-field-theory resembles the quantum m
chanics of a single particle, so quantum corrections at
field theory level appear as quantum decoherence in
single-particle picture. Since decoherence is most often c
sidered as enforcing classicality, there is irony in this situ
tion. And it suggests that studying the corrections to MFT
Bose-Einstein condensates may give us some new insi
into decoherence, and that some aspects of decoherence
be useful in understanding condensates beyond MFT. Th
the motivation for the work we now report.

In this paper we provide the details of a previously pu
lished study@2# of the correspondence between mean-fi
©2001 The American Physical Society05-1
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J. R. ANGLIN AND A. VARDI PHYSICAL REVIEW A 64 013605
and exact quantum dynamics of a two-mode BEC. T
model system contains an isolated dynamical instability
certain regions of parameter space. We show that quan
corrections in the vicinity of this unstable state, do inde
become significant on a short log(N) time scale, whereas
quantum effects in other regions of phase space remain s
1/AN corrections. We present a simple theory that goes
yond MFT and provides accurate predictions of the lead
quantum corrections, by taking one further step in the
called Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY!
hierarchy. In accordance with our view of quantum corre
tions as decoherence, we use a density-matrix Bloch pic
to depict the dephasing process. The density-matrix form
ism has the additional advantage of allowing for initial co
ditions that are not covered by the Hartree-Fock-Bogoliub
Gaussian ansatz, and which better correspond to the phy
state of the system.

In Sec. II we briefly review the model system and
experimental realizations. In Sec. III we derive the me
field equations of motion in the Bloch representation, a
illustrate the main features of the produced dynamics
various parameter sets. Quantum corrections to the t
mode MFT are studied in Sec. IV, as well as an improv
theory that predicts the leading corrections. In Sec. V
consider the effect of thermal noise, and show an anal
between the quantum dephasing of the reduced sin
particle density operator and thermal decoherence. In Sec
we present a potential application of the rapid decohere
near the dynamical instability of the two-mode model, f
the measurement ofs-wave scattering lengths. Discussio
and conclusions are presented in Sec. VII.

II. TWO-MODE CONDENSATE

We consider a BEC in which particles can only effe
tively populate either one of two second-quantized mod
Two possible experimental realizations of this model are
lustrated in Fig. 1. The first@Fig. 1~a!# is a condensate con
fined in a double-well trap@3–8# which may be formed by
splitting a harmonic trap with a far off resonance inten
laser sheet@9#. In this case, single-particle tunneling provid
a linear coupling between the local mode solutions of
individual wells, which can in principle be tuned over a wid
range of strengths by adjusting the laser sheet intensity.
two-mode regime is reached when the self-interaction ene

FIG. 1. Two-mode Bose-Einstein condensates:~a! a condensate
in a double-well potential~b! a spinor condensate.
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gn is small compared to the spacing between the trap mo
\v trap :

gn5
4p\2a

m

N

4p l 3
!

\2

ml2
5\v trap , ~3!

where l is the characteristic trap size. Thus the two-mo
condition is

l @Nuau. ~4!

The two-mode condition~4! may be met by double-wel
traps with characteristic frequencies of the order of 100 H
containing several hundred particles. When construc
larger traps will maintain the two-mode limit at higherN.

The second experimental realization of a two-mode B
is the effectively two-component spinor condensate@10,11#
depicted in Fig. 1~b!. In this case the linear coupling betwee
the modes is provided by a near resonant radiation fi
@12,13#. If collisions do not change spin states, the nonline
interactions between the particles depend on three scatte
lengthsai j . In realizations of spinor condensates it is easy
ensurea115a22 by symmetry, in which case the nonlinea
interaction term becomesĤ int5*d3r Ĥint(r ) for

Ĥint}(
i , j

ai j ĉ i
†ĉ i ĉ j

†ĉ j

→ a111a12

2
~ ĉ1

†ĉ11ĉ2
†ĉ2!2

1
a112a12

2
~ ĉ1

†ĉ12ĉ2
†ĉ2!2. ~5!

We can therefore define two healing lengthsj6

51/Ar(a116a12), wherer is the total density, characteriz
ing the effect of the two nonlinear terms on the spatial st
of the condensate. The two-mode regime, in which the s
tial state is fixed and essentially independent of the inter
state, is reached whenj2 becomes larger than the samp
size ~its largest dimension!. Since for available alkali gase
all ai j differ only by a few percent, we havej2!j1 , and
hence the two-mode regime can be reached withN,104

atoms in weak, nearly spherical traps (v trap<100 Hz!. Less
isotropic traps obviously reach the two-mode regime only
smallerN. To extend the internal state two-mode regime
larger N we must make the trap weaker; for fixedN, j2

scales with sample sizeL as L3/2. Hence to ensureL/j2

,1 for fixed N requires a sufficiently large~weak! trap. For
Rb and Na experiments, whose lifetimes are limited
three-body collisions, the slowing down of the two-mo
dynamics at reduced total density should be more than c
pensated for by the extended condensate lifespan.

In both realizations, the many-body Hamiltonian reduc
in the two-mode limit~and in the spinor realization also i
the rotating-wave approximation! to the form
5-2
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DYNAMICS OF A TWO-MODE BOSE-EINSTEIN . . . PHYSICAL REVIEW A64 013605
Ĥ~ t !5
E11E2

2
~ â1

†â11â2
†â2!2

\V

2
~ â1

†â21â2
†â1!

1\g@~ â1
†!2â1

21~ â2
†!2â2

2#, ~6!

whereE1 andE2 are the two condensate mode energies,V is
the coupling strength between the modes,g is the two-body
interaction strength, andâ1 ,â1

† ,â2 ,â2
† are particle annihila-

tion and creation operators for the two modes. The to
number operatorN̂[â1

†â11â2
†â2 commutes withĤ and may

be replaced with thec-numberN. Writing the self-interaction
operators as (â1

†)2â1
21(â2

†)2â2
25@N̂21(â1

†â12â2
†â2)2#/2

and discardingc-number terms, we obtain the two-mod
Hamiltonian

Ĥ52
\V

2
~ â1

†â21â2
†â1!1

\g

2
~ â1

†â12â2
†â2!2. ~7!

We will takeg andv to be positive, since the relative pha
between the two modes may be redefined arbitrarily,
since without dissipation the overall sign ofĤ is insignifi-
cant.

III. TWO-MODE MEAN-FIELD THEORY
IN THE BLOCH REPRESENTATION

The conventional wave-function formalisms consider
evolution of â j and its expectation value in a symmetr
breaking ansatz~where the symmetry being broken is th
associated with the conservation ofN). Instead, we will ex-
amine the evolution of the directly observable quantit
âi

†â j , whose expectation values define the reduced SP

Ri j [^âi
†â j&/N. Writing the Hamiltonian of Eq.~7! in terms

of the SU~2! generators

L̂x[
â1

†â21â2
†â1

2
,

L̂y[
â1

†â22â2
†â1

2i
, ~8!

L̂z5
â1

†â12â2
†â2

2
,

we obtain

Ĥ52\VL̂x1
\g

2
L̂z

2 . ~9!

The Heisenberg equations of motion for the three ang
momentum operators of Eq.~8! read
01360
l

d

e

s
M

r

d

dt
L̂x52

i

\
@ L̂x ,H#52

g

2
~ L̂yL̂z1L̂zL̂y!,

d

dt
L̂y52

i

\
@ L̂y ,H#51VL̂z1

g

2
~ L̂xL̂z1L̂zL̂x!, ~10!

d

dt
L̂z52

i

\
@ L̂z ,H#52VL̂y .

Thus the expectation values of the first-order operatorsL̂ i
depend not only on themselves, but also on the second-o
momentŝ L̂ i L̂ j&. Similarly, the time evolution of the second
order moments depends on third-order moments, and so
Consequently, we obtain the BBGKY hierarchy of equatio
of motion for the expectation-values

d

dt
^L̂ i&5 f ~^L̂ i 8&,^L̂ i 8L̂ j 8&!,

d

dt
^L̂ i L̂ j&5 f ~^L̂ i 8L̂ j 8&,^L̂ i 8L̂ j 8L̂k8&!, ~11!

d

dt
^L̂ i L̂ j L̂k&5 f ~^L̂ i 8L̂ j 8L̂k8&,^L̂ i 8L̂ j 8L̂k8L̂ l 8&!,

A

where i , j ,k, . . . ,i 8, j 8,k8,l 8, . . . 5x,y,z. In order to obtain
a closed set of equations of motion, the hierarchy of Eq.~11!
must be truncated at some stage by approximating theNth
order expectation value in terms of all lower-order momen

The lowest-order truncation of Eq.~11! is obtained by
approximating the second-order expectation values^L̂ i L̂ j& as
products of the first-order moments^L̂ i& and ^L̂ j&:

^L̂ i L̂ j&'^L̂ i&^L̂ j&. ~12!

The equations of motion for the single-particle Bloch vec

s5~sx ,sy ,sz![S 2^L̂x&
N

,
2^L̂y&

N
,
2^L̂z&

N
D , ~13!

then read

ṡx52kszsy ,

ṡy5Vsz1kszsx , ~14!

ṡz52Vsy ,

where k5gN/2. Equations~14! describe rotations of the
Bloch vectors, and so the normusu is conserved in MFT.
Consequently, for a pure SPDM, Eqs.~14! are completely
equivalent to the two-mode Gross-Pitaevskii equation@6#

i
]

]t
a15ka12Va2 , ~15a!
5-3
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i
]

]t
a25ka22Va1 , ~15b!

wherea1 anda2 are thec-number coefficients replacing th
creation and annihilation operators of Eq.~8!

In Fig. 2 we plot mean-field trajectories at four differe
k/V ratios. The nonlinear Bloch equations~14! depict a
competition between linear Rabi oscillations in thesysz
plane and nonlinear oscillations in thesxsy plane. For a non-
interacting condensate@Fig. 2~a!# the trajectories on the
Bloch sphere depict harmonic Rabi oscillations about thesx
axis. Ask increases the oscillations become increasingly
harmonic. As long ask,V the nonlinearities may be treate
as perturbations. However, above the critical valuek5v
@Fig. 2~b!#, there are certain regions in phase space which
dominated by the nonlinear term. The stationary points5
(21,0,0), corresponding to the Josephsonp state ~equal
populations and ap phase difference!, becomes dynamically
unstable and the two trajectories passing asymptotic
close to it form a ‘‘figure eight.’’ The region outside thes
limiting trajectories is dominated by the linear oscillation
whereas inside, the nonlinear term prevails. Starting at
critical value of k52V @Fig. 2~c!# population prepared in
one of the modes remains trapped in the half-sphere it o
nated from, conducting oscillations with a nonvanishi
time-averaged population imbalance^sz& t5” 0. This phenom-
enon was termed ‘‘macroscopic self-trapping’’@6#. Finally,
whenk@V @Fig. 2~d!# the nonlinearity dominates the entir
Bloch sphere, except for a narrow band about thesz50
plain.

IV. QUANTUM CORRECTIONS AND BOGOLIUBOV
BACKREACTION

In the vicinity of the dynamically unstable point, we e
pect MFT to break down on a time scale only logarithmic
N. In order to verify this prediction, we solve the fullN-body
problem exactly, by fixing the total number of particlesN,
thereby restricting the available phase space to Fock stat

FIG. 2. Mean-field trajectories at~a! k50, ~b! k51.02V, ~c!
k52V, and~d! k520V.
01360
-

re

ly

,
e

i-

of

the typeun,N2n& with n particles in one mode andN2n
particles in the other mode,n ranging from 0 toN. Thus we
obtain anN11 dimensional representation for the Ham
tonian ~9! and theN-body density operatorr̂:

Hm,n5^m,N2muĤun,N2n&, ~16!

rm,n5^m,N2mur̂un,N2n&, ~17!

for m,n50,1, . . . ,N. The exact quantum solution is ob
tained numerically by propagatingr̂ according to the Liou-
ville von-Neumann equation

i\ṙ̂5@Ĥ,r̂ #. ~18!

Using the Hamiltonian of Eq.~9! to evaluate the matrix ele
ments of Eq.~16! and substituting into Eq.~18!, we obtain
dynamical equations for theN-body density matrix:

i\ṙm,n52
V

2
@Am~N2m11!rm21,n

1A~m11!~N2m!rm11,n2An~N2n11!rm,n21

2A~n11!~N2n!rm,n11#1
g

4
@m22~N2m!22n2

1~N2n!2#rm,n . ~19!

Equations~19! are solved numerically, using a Runge-Kut
algorithm. In Fig. 3, we plot exact quantum trajectories sta
ing with all particles in one mode, for increasingly largeN ~k
being fixed! versus the corresponding mean-field trajecto
While MFT assumes a persistently pure single-particle st
quantum corrections to MFT appear in the single-parti
picture, as decoherence of the SPDM. When the mean-
trajectory stays away from the instability@Fig. 3~a!# the
quantum trajectories indeed enter the interior of the u
Bloch sphere at a rate that vanishes as 1/AN. However, when
the mean-field trajectory includes the unstable state@Fig.
3~b!#, we observe a sharp break of the quantum dynam
from the mean-field trajectory at a time that only grow
slowly with N.

In accordance with our picture of quantum corrections
decoherence, and in order to obtain a more quantitative v
of the entanglement-induced dephasing process, we plo
von Neumann entropy

S5Tr~R ln R!52
1

2
lnF (11usu)(11usu)(12usu)(12usu)

4 G
~20!

of the exact reduced single-particle density operator, a
function of the rescaled timeVt for the same initial condi-
tions as in Fig. 3. The results are shown in Fig. 4. Since
entropy of mean-field trajectories is identically zero,S may
serve as a measure of the deviation from MFT. When
mean-field trajectory is stable@Fig. 4~a!#, the single-particle
entropy grows at a steady rate, which vanishes asN is in-
creased. The variations in the entropy growth curve ar
5-4
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function of the distance from the instability. Near the ins
bility @Fig. 4~b!# quantum corrections grow rapidly at a ra
that is independent ofN, and the time at which this diver
gence takes place~the quantum break time! evidently grows
only as log(N).

Since MFT can thus easily fail near dynamical instab
ties, it is highly desirable to obtain an improved theory
which Bloch-space trajectories would be allowed to pe
etrate into the unit sphere without having to simulate
entire N-body dynamics. In fact, such an improved nonu
tary theory is easily derived using the next level of t
BBGKY hierarchy. This hierarchy truncation approach is
fact a systematic perturbative approximation; but it is st
dependent. That is, it provides a perturbative approximat
not to the general evolution, but to the evolution of a spec
class of initial states, within which the perturbative para
eter is small. In the case of ultracold bosons, the phen
enon of Bose-Einstein condensation ensures that there
commonly realizable class of states in which the system
mildly fragmented condensate. In our two-mode model, this
means that the two eigenvalues ofR are f and 12 f for f
!1, and from such initial states we can approximate
evolution perturbatively usingf as our small parameter.

To zeroth order inf , R is by definition a pure state, an

FIG. 3. Exact quantum trajectories starting with all particles
one mode, withN550 ~ !, 100 (222), 200 (•••), and 400
(2•2) particles vs the corresponding mean-field trajectory~ !
for ~a! k5V and ~b! k52V.
01360
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e
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e
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e

hence we have the MFT evolution on the surface of
Bloch sphere. Going to next order inf can be achieved by
truncating the BBGKY hierarchy at one order higher. W

take L̂ i5Li1 d̂Li , where the c-numberLi is O(N) and all
the matrix elements ofd̂Li remain smaller thanO(NAf )
throughout the evolution of the system. The second-or
moments

D i j 54N22~^L̂ i L̂ j1L̂ j L̂ i&22^L̂ i&^L̂ j&!, ~21!

will then be of orderf. Writing the Heisenberg equations o
motion for the first- and second-order operatorsL̂ i ,L̂ i L̂ j ,
taking their expectation values and truncating Eq.~11! by
approximating

^L̂ i L̂ j L̂k&'^L̂ i L̂ j&^L̂k&1^L̂ i&^L̂ j L̂k&1^L̂ i L̂k&^L̂ j&

22^L̂ i&^L̂ j&^L̂k&. ~22!

instead of the mean-field approximation~12!, we obtain the
following set of nine equations for the first- and second-or
moments:

FIG. 4. Growth of the von Neumann entropyS of the quantum
reduced single-particle density operator, at~a! k5V and ~b! k
52V, for N510 (2•2), 20 (•••), 40 (222), 80 ~——!, 160
~- . - . -!, and 320~- - - -! particles. Initial conditions are the sam
as in Fig. 3.
5-5
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ṡx52kszsy2
k

2
Dyz ,

ṡy5vsz1kszsx1
k

2
Dxz ,

ṡz52vsy ,

Ḋxz52vDxy2kszDyz2ksyDzz,

Ḋyz5v~Dzz2Dyy!1kszDxz1ksxDzz, ~23!

Ḋxy5~v1ksx!Dxz2ksyDyz1ksz~Dxx2Dyy!,

Ḋxx522ksyDxz22kszDxy ,

Ḋyy52~v1ksx!Dyz12kszDxy ,

Ḋzz522vDyz .

Equations~23! will be referred to as the ‘‘Bogoliubov
backreaction equations’’~BBR!, because they demonstra
how the mean-field Bloch vectors drives the fluctuations
D i j , which is the physics described by the Bogoliub
theory of linearized quantum corrections to MFT, but th
also make the Bloch vector subject, in turn, to backreac
from the fluctuations, via the coupling terms2kDyz/2 and
kDxz/2. This back reaction has the effect of breaking t
unitarity of the mean-field dynamics. Consequently, the B
trajectories are no longer confined to the surface of the Bl
sphere, but penetrate to the interior~representing mixed-stat
Ri j , with two nonzero eigenvalues!. ~Obviously, if the tra-
jectories penetrate the sphere too deeply, so that the sm
eigenvaluef ceases to be small, the entire approach of p
turbing in f will break down.!

In order to demonstrate how the BBR equations~23! im-
prove on MFT, we compare trajectories obtained by th
two formalisms to the exact 50-particle trajectories of Fig.
Both thek5V stable mean-field trajectory and thek52V
unstable mean-field trajectory cases are plotted in Figs.~a!
and 5~b!, respectively. The initial conditions for the BBR
equations are determined by the initial stateuN,0& to be

sz521,

Dxx5Dyy52/N, ~24!

sx5sy5Dxy5Dxz5Dyz5Dzz50.

The approximation of Eq.~22! ignores terms smaller tha
O( f 3/2). It is therefore better than the mean-field approxim
tion ~12! by a factor off 1/2. Consequently, as is clearly ev
dent from Fig. 5~a!, the BBR equations~23! are far more
successful than the mean-field equations~14! in tracing the
full quantum dynamics. However, for any realistic number
particles, the improvement is hardly necessary, as M
would be accurate for very long times. On the other ha
when the mean-field trajectory approaches the instab
01360
n

e

h

ller
r-

e
.

-

f
T
,
y

@Fig. 5~b!#, the BBR theory provides an accurate predicti
of the leading quantum corrections. Of course, since
BBR equations account for only six moments unobserved
MFT, the period of the still quasiperiodic BBR motion
shorter than that of the exact evolution and the BBR traj
tory eventually deviates from the quantum trajectory. Nev
theless, the BBR formalism provides a simple and effici
method to predict the quantum break time in large (.1000
particles! condensates, for which fullN-body simulations are
restricted by available computation power.

The BBR equations~23! are in fact identical to the equa
tions of motion one would obtain, for the same quantiti
using the Hartree-Fock-Bogoliubov Gaussian ansatz,
which second-order momentsD i j are initially factorized as
D i j 5d id j ( i , j 5x,y,z). Using this ansatz, the factorizatio
persists and the time evolution ofdx , dy , anddz is equiva-
lent to that of perturbations of the mean-field equations~14!:

ḋx52k~szdy1sydz!,

ḋy5vdz1k~szdx1sxdz!, ~25!

ḋz52vdy .

Thus our equations forD i j are in a sense equivalent to th
usual Bogoliubov equations. The quantitative advantage
our approach therefore lies entirely in the wider range

FIG. 5. Mean-field (•••), Bogoliubov backreaction (222)
and exact 50 particles~—–! trajectories starting with all particles in
one mode, at~a! k5V and ~b! k52V .
5-6
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initial conditions that it admits, which may more accurate
represent the exact initial conditions. For instance, a Ga
ian approximation will haveDxx5O(1) in the ground state
where in factDxx5O(N21). This leads to an error of orde
N21/2 in the Josephson frequency computed by lineariz
~23! around the ground state, even though the Gaus
backreaction result should naively be accurate at this or
Our SPDM approach does not have this flaw, which is p
sumably the two-mode version of the Hartree-Foc
Bogoliubov spectral gap@14#.

V. DEPHASING DUE TO THERMAL NOISE

Decoherence is generally considered as suppressing q
tum effects@15#. Ironically, in our case the leading quantu
corrections to the effectively classical MFT, are themsel
decoherence of the single-particle state of the condens
Therefore, it is interesting to study the effect of a realis
decoherence process, originating in the coupling to a bat
unobserved degrees of freedom, on the interparticle entan
ment process, described in the previous section.

The main source of decoherence in BEC’s is the ther
cloud of particles surrounding the condensate. Thermal
ticles scattering off the condensate mean field will for e
ample, cause phase diffusion@16# at a rateG proportional to
the thermal cloud temperature. For internal states not
tangled with the condensate spatial state,G may be as low as
1025 Hz under the coldest experimental conditions, wher
for a double well the rate may reach 1021 Hz. Further
sources of decoherence may be described phenomeno
cally with a largerG.

We account for the effect of thermal noise on the tw
mode dynamics by using the quantum kinetic Master eq
tion @5#

ṙ5
i

\
@r,H#2

G

2 (
j 51,2

@ â j
†â j ,~ â j

†â j ,r!#. ~26!

FIG. 6. Growth of the von Neumann entropyS of the quantum
reduced single-particle density operator in the presence of the
noise (G51022 V!, at k52V, for N510 (2•2), 20 (•••), 40
(222), 80 ~——!, 160~- . - !, 320~- - - -…, and 640~. . .! particles.
Bold solid curve corresponds to the mean-field entropy. Initial c
ditions are the same as in Fig. 3.
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Once again, we solve fors(t) using either one of three
methods:

~i! MFT—The decoherence term in Eq.~26! introduces an
exactT251/G transversal relaxation term into the mean-fie
equations of motion:

ṡx52kszsy2Gsx ,

ṡy5vsz1kszsx2Gsy , ~27!

ṡz52vsy .

~ii ! BBR—Evolving the first- and second-order operato
according to Eq.~26!, taking their expectation values an
truncating the hierarchy at the next level, we obtain t
modified BBR equations

ṡx52kszsy2
k

2
Dyz2Gsx ,

ṡy5vsz1kszsx1
k

2
Dxz2Gsy ,

ṡz52vsy ,

Ḋxz52vDxy2kszDyz2ksyDzz2GDxz ,

Ḋyz5v~Dzz2Dyy!1kszDxz1ksxDzz2GDyz , ~28!

Ḋxy5~v1ksx!Dxz2ksyDyz1ksz~Dxx2Dyy!

24G~Dxy1sxsy!,

Ḋxx522ksyDxz22kszDxy22G~Dxx2Dyy22sy
2!,

Ḋyy52~v1ksx!Dyz12kszDxy22G~Dyy2Dxx22sx
2!,

Ḋzz522vDyz .

~iii ! Exact quantum solution—obtained by numerica
propagating the fullN-particle density matrix under Eq.~26!.

In Fig. 6 we compare the Von-Neumann entropy of t
exactN-body density operator as a function of time for e
ponentially increasingN, to the mean-field entropy. Due t
the thermal noise, mean-field trajectories are no longer c
fined to the zero-entropy sphere. However, whereas
quantum break time in the absence of thermal noise
grown as log(N) @see Fig. 4~b!#, it is clear from Fig. 6 that in
the presence of this dephasing mechanism it saturates
finite value. Thus, while we may have naively expected
coherence to reduce quantum corrections and thereby
prove MFT, in fact the addition of thermal dephasing h
significantly damaged classical-quantum correspondence

In Fig. 7, we summarize the results of numerous dyna
cal calculations conducted for various values of the part
numberN and of the thermal noiseG, by plotting the time at
which the entropy reaches a given value. The curves
obtained using the modified BBR equations~28! whereas the

al

-
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circles and squares depict exact quantum results~limited by
computation power toN;103 particles! for two limiting val-
ues ofG. The BBR equations provide accurate predictions
the initial decoherence rate and the quantum break time e
within this limited range ofN ~and the agreement betwee
the exact quantum results and the BBR predictions wo
become still better for higher numbers of particles!. Once
more, we observe the logarithmic growth of the quant
break time withN in the zero temperature (G50) limit.
However, when the temperature is finite, there is a satura
of the quantum break time to values that are well below
mean-field thermal dephasing times, in agreement with
6.

Instead of observing the quantum break time as a func
of the number of particles for a given degree of therm
noise, we can monitor the thermal decoherence time a
function of temperature, for any given number of particl
Viewing Fig. 7 in this way, it is evident that in the mea
field limit (1/AN→0) the purely thermal dephasing tim
also grows only logarithmically with the temperature. Co
paring this result to the log(N) growth of the quantum brea
time in the zero-temperature limit, we can see that ther
noise and quantum noise have essentially similar effects
the system. Figures 6 and 7 together are in complete ag
ment with the prediction that the entropy of a dynamica
unstable quantum system coupled to a reservoir@17#, or of a
stable system coupled to a dynamically unstable reserv
will grow linearly with time, at a rate independent of th
system-reservoir coupling, after an onset time proportiona
the logarithm of the coupling@18,19#. Thus, one can really
consider the Bogoliubov fluctuations as a reservoir@20#,
coupled to the mean field with a strength proportional to 1N.
The N↔1/T analogy is even further extended by the satu
tion for any finiteN, of the thermal dephasing time at lowT,
in the same way that the quantum break time for a finiteT
saturates at highN. Due to this quantum saturation, quantu

FIG. 7. Time at whichS reaches 0.2 as a function of the partic
numberN, according to the BBR equations~23!, modified to in-
clude thermal phase diffusion. Four different values ofG are
shown:G50 ~—–!, G51024 V ~•••!, G51023 V (222), and
G51022 V (2•2). Exact quantum results are presented forG
50 ~circles! andG51022 V ~squares!. Initial conditions,k andV
are the same as in Fig. 6.
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corrections can be experimentally distinguished from or
nary thermal effects, which do not saturate the dephasing
at low temperature.

VI. SCATTERING-LENGTH MEASUREMENTS

After indicating how condensate decoherence at dyna
cal instabilities can connect principles established in diff
ent areas of physics, we briefly note that it can also h
practical applications. Rapid decoherence in the vicinity
the unstablep state of the two-mode condensate may se
for the direct measurement of scattering lengths. As dem
strated in Fig. 8, the mean-field trajectory of a condens
which is prepared initially in one of the modes, would on
pass through the rapidly dephasing unstable point whek
52V. Thus, the self-interactions energyk can be deter-
mined by measuring the entropy at a fixed time as a func

FIG. 8. Mean-field trajectories starting ats5(0,0,21) for k
50 ~ . . . !, k5V (2•2), k52V ~—–!, k53V (222), and
k54V ~—–!. The dot ats5(21,0,0) marks the dynamical insta
bility.

FIG. 9. von Neumann entropyS after 20 ms of propagation
according to the BBR equations~28! with k51 KHz and G
51024 Hz, starting with the entire condensate ofN5105 particles
in one mode, as a function of the coupling frequencyV.
5-8
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of the coupling frequencyV, resulting in a sharp line abou
V5k/2, as depicted in Fig. 9.

Experimentally, the single-particle entropy is measurab
in the internal state realization of our model, by applying
fast Rabi pulse and measuring the amplitude of the ens
Rabi oscillations, which is proportional to the Bloch vect
length usu. ~Successive measurements with Rabi rotatio
about different axes, i.e., by two resonant pulses differing
a phase ofp/2, will control for the dependence on the ang
of s.! In a double-well realization, one could determine t
single-particle entropy by lowering the potential barrier, a
moment when the populations on each side were predicte
be equal, to let the two parts of the condensate interfere.
fringe visibility would then be proportional tousu @9#.

VII. CONCLUSIONS

To conclude, we have shown that significant quant
corrections to the Gross-Pitaevskii MFT, in the vicinity of i
dynamical instabilities, can be measured in a two-mode B
under currently achievable experimental conditions. We h
derived a simple theory that accurately predicts the lead
quantum corrections and the quantum break time. By ap
.
,

hy
-

er

e

.
ll,
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ing to condensate physics some insights from studies of
coherence, we have found evidence that MFT dynamical
stabilities cause linear growth of the single-particle entro
at a rate independent ofN. From condensate physics we ha
learned something about decoherence: we have identifi
form of decoherence that degrades quantum-classical co
spondence, instead of improving it.

Our picture of quantum backreaction in BEC’s as dec
herence suggests the following new lines of investigation
both experiment and theory: measurements of single-par
entropy in condensates, descriptions of condensates
mixed single-particle states~instead of the usual macroscop
wave functions!, and general questions of decoherence un
nonlinear evolution. Exploring these possibilities, beyond
two-mode model considered here, provides many goals
further research.
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