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Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory
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We study the dynamics of a two-mode Bose-Einstein condensate in the vicinity of a mean-field dynamical
instability. Convergence to mean-field thedMFT), with increasing total number of particlég is shown to
be logarithmically slow. Using a density-matrix formalism rather than the conventional wave-function meth-
ods, we derive an improved set of equations of motion for the mean-field plus the fluctuations, which goes
beyond MFT and provides accurate predictions for the leading quantum corrections and the quantum break
time. We show that the leading quantum corrections appear as decoherence of the reduced single-particle
guantum state; we also compare this phenomenon to the effects of thermal noise. Using the rapid dephasing
near an instability, we propose a method for the direct measurement of scattering lengths.
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[. INTRODUCTION pears in a steepest descents approximation to the path inte-
gral. This is precisely the standard semiclassical approxima-
The effective low-energy Hamiltonian fd¥ interacting tion, with the exception that W is playing the role usually
bosons confined in an external potentiél,;, is given in  played by%. Hence despite the resemblance of the GPE to a

second-quantized form as Schralinger equation, complete with finife, we can indeed
) identify MFT as the classical limit, in essentially the same

g:f d3rl"ﬂT _ ﬁ—V2+V(r)+ E&T;ﬂ fp (1) sense as in the cage—0 of the quantum field theory.. Be—.
2m 2 causeN in current trapped dilute alkali gas Bose-Einstein

) . o condensate(BEC) experiments is characteristically large
whereV(r) is the external trapping potential is the par-  (typjcally of the order 18— 10° atoms, qualitatively signifi-
ticle mass,g is a coupling constant proportional to the cant quantum corrections to MFT are hard to observe, and
swave scattering length, angl, 4" are bosonic annihilation the GP theory is highly successful in predicting experimental
and creation field operators obeying the canonical commutaesults.
tion relation[ #(r), ¢ (r')]=8(r —r'). (This Hamiltonian is The entire field of quantum chaos is founded upon one
an effective low-energy approximation, in the sense thaproperty of the classical limit, however, that convergence to
short-wavelength degrees of freedom have been eliminateglassicality asi— 0, is logarithmically slow if classical tra-
it is applicable in the regime of ultracold scattering, wherejectories diverge exponentially. This implies that we must
short-distance modes are only populated virtually, duringeXpect strong quantum corrections to MFT in the vicinity of
brief two-body collisions. At very low temperatures, Bose- a dynamically unstable fixed point. In particular, the quan-
Einstein condensation occurs, so that a large fraction of theum evolution will depart significantly from the classical ap-
particles occupy the same single-particle state, characterizgeioximation after a logarithmic “quantum break time,”
by the single-particle wave functioW (r,t). In this regime  which will be ~logN in our case, as it is-log(1/) in the
one can formulate a perturbative expansion in the smal$tandard case. In our case, the nature of this departure is that
quantity N~ 2 whereN is the number of particles in the after the quantum break time, a condensate will become sig-
condensate, whose result at leading order is the Grossificantly depleted, as exponential production of quasiparti-

Pitaevskii nonlinear Schdinger equationlGPE governing  cles transfers particles to orthogonal mofiels Depletion of
the condensate wave function: the condensate means, by definition, that the single-particle

reduced density matrigSPDM) becomes quantum mechani-
cally less pure. Hence for a condensate, just as the classical
limit of the quantum-field-theory resembles the quantum me-
2 chanics of a single particle, so quantum corrections at the
field theory level appear as quantum decoherence in the
The Gross-Pitaevskii mean-field thediMFT) provides a  single-particle picture. Since decoherence is most often con-
classical field equation for nonlinear matter waves, which issidered as enforcing classicality, there is irony in this situa-
generally considered as “the classical limit” of the Heisen-tjon. And it suggests that studying the corrections to MFT for
berg equation of motion for the field operatgr(which is of  Bose-Einstein condensates may give us some new insights
precisely the same formWe can make precise the sense ininto decoherence, and that some aspects of decoherence may
which it is a classical limit, by reformulating the system be useful in understanding condensates beyond MFT. This is
governed by Eq(7) in the path-integral representation. We the motivation for the work we now report.
will not actually use this formulation in this paper; we In this paper we provide the details of a previously pub-
merely note the GPE is the saddle-point equation that apished study[2] of the correspondence between mean-field
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D gn is small compared to the spacing between the trap modes
hwirap
Qlo Amh?a N h? " 3
n= < =
g m 4713 mp? Wtrap s (3
Lo wherel is the characteristic trap size. Thus the two-mode
condition is
(a) (b)
FIG. 1. Two-mode Bose-Einstein condensatesa condensate I>Nl|al. 4

in a double-well potentialb) a spinor condensate.

The two-mode condition4) may be met by double-well
and exact quantum dynamics of a two-mode BEC. Tharaps with characteristic frequencies of the order of 100 Hz,
model system contains an isolated dynamical instability fofcontaining several hundred particles. When constructed,
certain regions of parameter space. We show that quantufarger traps will maintain the two-mode limit at highir
corrections in the vicinity of this unstable state, do indeed The second experimental realization of a two-mode BEC
become significant on a short ldg( time scale, whereas is the effectively two-component spinor condengdt@, 11]
quantum effects in other regions of phase space remain smalkpicted in Fig. (b). In this case the linear coupling between
1/{N corrections. We present a simple theory that goes bethe modes is provided by a near resonant radiation field
yond MFT and provides accurate predictions of the leading12,13. If collisions do not change spin states, the nonlinear
quantum corrections, by taking one further step in the sointeractions between the particles depend on three scattering
called Bogoliubov-Born-Green-Kirkwood-YvoriBBGKY)  lengthsa;; . In realizations of spinor condensates it is easy to
hierarchy. In accordance with our view of quantum correc-ensurea,;=a,, by symmetry, in which case the nonlinear
tions as decoherence, we use a density-matrix Bloch picturgeraction term becomed; = [d3r 7, (r) for
to depict the dephasing process. The density-matrix formal-
ism has the additional advantage of allowing for initial con-
ditions that are not covered by the Hartree-Fock-Bogoliubov I ot ot
Gaussian ansatz, and which better correspond to the physical Hmtoc%: i iy ¥y
state of the system.

In Sec. Il we briefly review the model system and its _>a11+a12(;,;r;/, + gl ir,)2
experimental realizations. In Sec. Ill we derive the mean- 2 SRR
field equations of motion in the Bloch representation, and a—a
i i i 117 412~ +~ ~tn
illustrate the main features of the produced dynamics for + 5 (lﬂ‘ﬂl_‘/lglﬁz)z- (5)

various parameter sets. Quantum corrections to the two-
mode MFT are studied in Sec. IV, as well as an improved
theory that predicts the leading corrections. In Sec. V weye can therefore define two healing lengths.
consider the effect of thermal n_oise, and show an an_alog)é 1/m1 wherep is the total density, characteriz-
between the quantum dephasing of the reduced singlgng the effect of the two nonlinear terms on the spatial state
particle density opergtor anq thgrmal decohergnce. In Sec. \fJf the condensate. The two-mode regime, in which the spa-
we present a potential application of the rapid decoherencgy) siate is fixed and essentially independent of the internal
near the dynamical instability of the two-mode r_nodel,_forstate, is reached whefi. becomes larger than the sample
the measurement akwave scattering lengths. DISCUSSION g;¢ (its largest dimension Since for available alkali gases
and conclusions are presented in Sec. VII. all a; differ only by a few percent, we have <¢, , and
hence the two-mode regime can be reached Wth10*
atoms in weak, nearly spherical traps;(,,<100 H2. Less
isotropic traps obviously reach the two-mode regime only at
We consider a BEC in which particles can only effec-smallerN. To extend the internal state two-mode regime to
tively populate either one of two second-quantized modedarger N we must make the trap weaker; for fixé &_
Two possible experimental realizations of this model are il-scales with sample size as L¥% Hence to ensurd/¢_
lustrated in Fig. 1. The firdtFig. 1(@)] is a condensate con- <1 for fixed N requires a sufficiently largéveak trap. For
fined in a double-well trap3—8] which may be formed by Rb and Na experiments, whose lifetimes are limited by
splitting a harmonic trap with a far off resonance intensethree-body collisions, the slowing down of the two-mode
laser she€ft9]. In this case, single-particle tunneling provides dynamics at reduced total density should be more than com-
a linear coupling between the local mode solutions of thepensated for by the extended condensate lifespan.
individual wells, which can in principle be tuned over a wide In both realizations, the many-body Hamiltonian reduces
range of strengths by adjusting the laser sheet intensity. Thia the two-mode limit(and in the spinor realization also in
two-mode regime is reached when the self-interaction energghe rotating-wave approximatipmno the form

II. TWO-MODE CONDENSATE
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N E.+E, ... AQ ~n s d. i . O ~ ~ A4
H(t)= 2 (alal+a2a2) (a1a2+a2a1) al-x:_g[l-x’H]:_E(LyLz'l' LzLy)1
+hgl(aj)%ai+(aj)’a3], 6) d; o+ 8 E Lt
dt [Ly,H] +0L,+ 2(L L,+L,Ly, (10
whereE; andE, are the two condensate mode energiess .
the coupling strength between the modgss the two-body EA _ I—[ﬁ H]=—0L
interaction strength, and, ,al,a,,a} are particle annihila- dt 2 &t = v
tion and creation operators for the two modes. The total .
number operatdﬂzé’{éﬁ 5352 commutes withd and may Thus the expectation values of the first-order operdtors

be replaced with the-numberN. Writing the self-interaction  depend not only on themselves, but also on the second-order

operators as &1)2a2+(a})2a2=[N2+(ala,—ala,)2)/2 momentg(L;L;). Similarly, the time evolution of the second-

and discardingc-number terms, we obtain the two-mode order moments depends on third-order moments, and so on.
Consequently, we obtain the BBGKY hierarchy of equations

Hamiltonian . X
of motion for the expectation-values
. AQ . ain G ~in ain d . . ~ A
H=-—-(a1@taza) + > (a1a1-a3)"  (7) gilbo=fLi) Lk,
_ iy . , d .. A IR
We will take g andw to be positive, since the relative phase —(LLy=f(L L) (L Ly L)), (11)

between the two modes may be redefined arbitrarily, and

since without dissipation the overall sign Bff is insignifi-
cant.

Q.lQ_

<|: LD =f((Li L Ly (L Ly Lo o)),

IIl. TWO-MODE MEAN-FIELD THEORY

IN THE BLOCH REPRESENTATION
wherei,j,k, ...’ )", k', I, ...=X,y,z. In order to obtain
The conventional wave-function formalisms consider the, 2 closed set of equations of motlon the hierarchy of (Ed)
evolution of a and its expectatlon value in a symmetry- must be truncated at some stage by approx|mat|ng\uh~e
breaking ansatiwhere the symmetry being broken is that order expectation value in terms of all lower-order moments.
associated with the conservation Nj Instead, we will ex- The lowest-order truncation of Eq]_]_) is obtained by

amine the evolution of the directly observable quantme approximating the second-order expectation va(dtelsj) as
aTaJ, whose expectation values define the reduced SPD'\ﬂroducts of the first-order moment§;) and(L ):

=(a/ a,)/N Writing the Hamiltonian of Eq(7) in terms
of the SU2) generators (LiL)~(Li)(L)). (12

AtnAga The equations of motion for the single-particle Bloch vector
a;a,+asa
|: 192 291

X 2 ' 2(L,) 2(L,) 2(L,)
S:(S)(’Sy’sz)E NX ’ Ny ’ NZ ’ (13)
Apaaga
[yzw, (8)  thenread
i

Sx=—KS;Sy,

. ala,-ala, )

L,= 5 , Sy=1{1S,+ KS;Sy, (14
s,=— sy,

we obtain
where «=gN/2. Equations(14) describe rotations of the
i . hg. Bloch vectors, and so the nornjs is conserved in MFT.
=—hQL,+ 7|_§_ 9 Consequently, for a pure SPDM, Eq4.4) are completely
equivalent to the two-mode Gross-Pitaevskii equaf®h

The Heisenberg equations of motion for the three angular J
—a;=«ka;—Nay, 15
momentum operators of E¢B) read 1520~ a0 (159
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the type|n,N—n) with n particles in one mode and—n
particles in the other mode, ranging from 0 toN. Thus we
obtain anN+1 dimensional representation for the Hamil-

tonian (9) and theN-body density operatqp:

Hpmn={(m,N—m[H|n,N—n), (16)
Pm,n:<m1N_m|;’|nvN_n>v 17)
for m,n=0,1,... N. The exact quantum solution is ob-

tained numerically by propagating according to the Liou-
ville von-Neumann equation

inp=[H,p]. (18)

Using the Hamiltonian of EQ9) to evaluate the matrix ele-
FIG. 2. Mean-field trajectories @) «=0, (b) k=1.021, (c) ments of Eq.(16) and substituting into Eq.18), we obtain

k=20, and(d) k=20Q. dynamical equations for thi¥-body density matrix:
d N
i—a2=Kkap—Qay, @asp  Pmn== 3 [VMIN=mM+1)pm_,

o . +\/(m+1)(N_m)pm+l,n_\/n(N_n"'l)Pm,nfl
wherea, anda, are thec-number coefficients replacing the

creation and annihilation operators of E§) _ \/7_ 92 N2 2
In Fig. 2 we plot mean-field trajectories at four different N+ DN=Mpmnal+ 4[m (N=m)==n

/) ratios. The nonlinear Bloch equatiori$4) depict a )

competition between linear Rabi oscillations in thgs, +(N=n)"Jpmpn- (19
plane and nonlinear oscillations in tBgs, plane. For a non-
interacting condensatgFig. 2(a)] the trajectories on the
Bloch sphere depict harmonic Rabi oscillations aboutghe ing with all particles in one mode, for increasingly langex
axis. Ask increases the oscillation_s begqme increasingly aNpeing fixed versus the correspor,1ding mean-field trajectory.
harmonic. AS, long ag<{) the nonl|near|t|e§ may be treated While MFT assumes a persistently pure single-particle state,
as perturbations. However, above the critical vakre o guantum corrections to MFT appear in the single-particle

Equations(19) are solved numerically, using a Runge-Kutta
algorithm. In Fig. 3, we plot exact quantum trajectories start-

[Fig. 2b)], there are certain regions in phase space which arfjerre. as decoherence of the SPDM. When the mean-field
dominated by the nonl|near term. The stationary paint trajectory stays away from the instabilifiFig. 3a)] the
(~1,0,0), corresponding to the Josephsenstate (equal o ,antum trajectories indeed enter the interior of the unit
populations and ar phase dlfferenoebecomes dynam|ca!ly Bloch sphere at a rate that vanishes ad\L/However, when
unstable and the two trajectories passing asymptotlcall){he mean-field trajectory includes the unstable sffig.

close to it form a "figure eight.” The region outside these 3(b)], we observe a sharp break of the quantum dynamics
limiting trajectories is dominated by the linear oscnlatlons,from the mean-field trajectory at a time that only grows
whereas inside, the nonlinear term prevails. Starting at thglowly with N

critical value of k=20 [Fig. 2(c)] population prepared in In accordance with our picture of quantum corrections as

one of the modes remains trapped in the half-sphere it 0rigigecoperence, and in order to obtain a more quantitative view

r)ated from, conducting Qscillations with a _nonvanishingof the entanglement-induced dephasing process, we plot the
time-averaged population imbalan¢g),# 0. This phenom- von Neumann entropy

enon was termed “macroscopic self-trapping8]. Finally,

when x> [Fig. 2(d)] the nonlinearity dominates the entire 1 [(1+]g)Ar(1—]g)@-Is
Bloch sphere, except for a narrow band about he0 S=Tr(RInR)=-zIn 2
plain. (20)

of the exact reduced single-particle density operator, as a
function of the rescaled tim@t for the same initial condi-
tions as in Fig. 3. The results are shown in Fig. 4. Since the
In the vicinity of the dynamically unstable point, we ex- entropy of mean-field trajectories is identically ze®may

pect MFT to break down on a time scale only logarithmic inserve as a measure of the deviation from MFT. When the
N. In order to verify this prediction, we solve the flltbody =~ mean-field trajectory is stabl€ig. 4@)], the single-particle
problem exactly, by fixing the total number of particlds  entropy grows at a steady rate, which vanishedNds in-
thereby restricting the available phase space to Fock states ofeased. The variations in the entropy growth curve are a

IV. QUANTUM CORRECTIONS AND BOGOLIUBOV
BACKREACTION
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rescaled time

b o

0.5 0 FIG. 4. Growth of the von Neumann entrofyof the quantum
S s reduced single-particle density operator, (at «k= and (b) «
’ -05 -1 ) =2Q, for N=10 (—-—), 20 (--+), 40 (- ——), 80 (—), 160

(-.-.-),and 320(- - - -) particles. Initial conditions are the same
FIG. 3. Exact quantum trajectories starting with all particles inas in Fig. 3.

one mode, withN=50 (—), 100 (———), 200 (---), and 400
(— - —) particles vs the corresponding mean-field trajectory—)
for () k=Q and(b) k=2Q).

hence we have the MFT evolution on the surface of the
Bloch sphere. Going to next order fncan be achieved by

_ . . . . truncating the BBGKY hierarchy at one order higher. We

function of the distance from the instability. Near the insta- ~ - i
bility [Fig. 4(b)] quantum corrections grow rapidly at a rate [@k€ Li=Li+dL;, where the c-numbek; is O(N) and all
that is independent dK, and the time at which this diver- the matrix elements obL; remain smaller tharO(N\f)
gence takes placghe quantum break timesvidently grows throughout the evolution of the system. The second-order
only as logW). moments

Since MFT can thus easily fail near dynamical instabili-
ties, it is highly desirable to obtain an improved theory in A o
which Bloch-space trajectories would be allowed to pen- Ay =aN"2(LiL+ L)y —22(LiXL), (21
etrate into the unit sphere without having to simulate the
entire N-body dynamics. In fact, such an improved nonuni- - ) .
tary theory is easily derived using the next level of theWill then be of orderf. Writing the Heisenberg egua}ugns of
BBGKY hierarchy. This hierarchy truncation approach is inmotion for the first- and second-order operatbssL;L;,
fact a systematic perturbative approximation; but it is statdaking their expectation values and truncating Et) by
dependent. That is, it provides a perturbative approximationgpproximating
not to the general evolution, but to the evolution of a special
class of initial states, within which the perturbative param-
eter is small. In the case of ultracold bosons, the phenom- <|:i|”_j|:k>~<|”_i|:j><|:k>+(|:i)<|”_j|”_k)+<|:i|:k)<|:j>
enon of Bose-Einstein condensation ensures that there is a o
commonly realizable class of states in which the system is a —2(Li)(Lj){Ly)- (22
mildly fragmented condensati our two-mode model, this
means that the two eigenvalues Rfaref and 1—f for f
<1, and from such initial states we can approximate thanstead of the mean-field approximati¢t?), we obtain the
evolution perturbatively usingas our small parameter. following set of nine equations for the first- and second-order

To zeroth order inf, R is by definition a pure state, and moments:
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. K
Sy= — KS;Sy— EAVZ’

. K
Sy= wS,+ KS,S,+ EAXZ’

SZ= —wSy,

A== 0By kS Ay~ k8,0,
Ay=0(A,— Ay + kS, A+ kS A, (23)
Asy=(0+ kS) A= KkSyAy 4 KS( A= Ayy),
Asx=—2KS,A ;= 2KS, Ay,

Ayy=2(0+ kS)Ay,+2kS,Ay,

A=—20Ay,.

Equations(23) will be referred to as the “Bogoliubov
backreaction equations(BBR), because they demonstrate
how the mean-field Bloch vectas drives the fluctuations
Ajj, which is the physics described by the Bogoliubov
theory of linearized quantum corrections to MFT, but they
also make the Bloch vector subject, in turn, to backreaction y 05 -1 x
from the fluctuations, via the coupling termskA, /2 and
kA,,/2. This back reaction has the effect of breaking the FIG. 5. Mean-field --), Bogoliubov backreaction——)
unitarity of the mean-field dynamics. Consequently, the BBRand exact 50 particles—) trajectories starting with all particles in
trajectories are no longer confined to the surface of the BlocRne mode, ata) = and(b) k=20 .
sphere, but penetrate to the intericepresenting mixed-state ) o
R, with two nonzero eigenvalups(Obviously, if the tra- [Fig. 5(b)], the BBR theory provides an accurate prediction

jectories penetrate the sphere too deeply, so that the smallgf the leading quantum corrections. Of course, since the
eigenvaluef ceases to be small, the entire approach of perBBR equations account f0r_ only SIX mpm_ents unobse_rveo_l by
turbing inf will break down) MFT, the period of the still quasiperiodic BBR motion is

In order to demonstrate how the BBR equati¢®3) im- shorter than that of the exact evolution and the BBR trajec-
prove on MFT, we compare trajectories obtained by theséCry eventually deviates from the quantum trajectory. Never-
two formalisms to the exact 50-particle trajectories of Fig. 3.(heless, the BBR formalism provides a simple and efficient
Both the k=0 stable mean-field trajectory and te= 20 method to predict the quantum break time in Iargel()OO
unstable mean-field trajectory cases are plotted in Figs. 5 Particleg condensates, for which ful-body simulations are
and 3b), respectively. The initial conditions for the BBR restricted by available computation power.

equations are determined by the initial stig0) to be The BBR equation$23) are in fact identical to the equa-
tions of motion one would obtain, for the same quantities,

s,=—1, using the Hartree-Fock-Bogoliubov Gaussian ansatz, in
which second-order moments;; are initially factorized as
Ayx=Ayy=2NN, (24  Ajj=9i9; (i,j=x%,y,2). Using this ansatz, the factorization
persists and the time evolution 6§, é,, andd, is equiva-
Sx=Sy=A,,=A,=A,=A,,=0. lent to that of perturbations of the mean-field equati@i:
The approximation of E¢22) ignores terms smaller than 5= — K(S,6,+5,6,),

O(f%?). It is therefore better than the mean-field approxima-

tion (12) by a factor off 2. Consequently, as is clearly evi- '5y= 8,+ Kk(S,0,+5,6,), (25)

dent from Fig. %a), the BBR equationg23) are far more

successful than the mean-field equatioi¥) in tracing the S5,= —wd,.

full quantum dynamics. However, for any realistic number of

particles, the improvement is hardly necessary, as MFTThus our equations fod;; are in a sense equivalent to the
would be accurate for very long times. On the other handusual Bogoliubov equations. The quantitative advantage of
when the mean-field trajectory approaches the instabilityour approach therefore lies entirely in the wider range of
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0.7 ; - - - Once again, we solve fag(t) using either one of three
methods:

(i) MFT—The decoherence term in E@6) introduces an
exactT,=1/T transversal relaxation term into the mean-field
equations of motion:

0.6f

0.5}

%] o —
Sy=—kS;Sy—I's,,
03 X =y X
02l Sy= wS, T kS5 T'sy, (27)
0.1} S,= —ws,.

% (i) BBR—Evolving the first- and second-order operators
according to Eq.(26), taking their expectation values and

FIG. 6. Growth of the von Neumann entrofyof the quantum  truncating the hierarchy at the next level, we obtain the
reduced single-particle density operator in the presence of therma&nodified BBR equations

noise =102 Q), at k=20, for N=10 (—-—), 20 (---), 40

rescaled time

(=—-),80(—), 160(-.-), 320(- - - -), and 64Q. . .) particles. S = kss — EA Ts
Bold solid curve corresponds to the mean-field entropy. Initial con- X e A X
ditions are the same as in Fig. 3.

. K
initial conditions that it admits, which may more accurately Sy= wS; T kS8t 5 Ay~ I'sy,
represent the exact initial conditions. For instance, a Gauss-
ian approximation will have\,,= O(1) in the ground state, s,= ~ s,

where in factA,,=O(N~1). This leads to an error of order

N~2 in the Josephson frequency computed by linearizing
(23) around the ground state, even though the Gaussian
backreaction result should naively be accurate at this order.
Our SPDM approach does not have this flaw, which is pre-
sumably the two-mode version of the Hartree-Fock- )
Bogoliubov spectral gapl4]. Ayy=(0+ kS) Ay, — kSyAy,+ kS, (Ax—Ayy)

— AT (Ayyts,8y),

A= — 0A = kS Ay~ kS, A ,,~T A,

A= 0(A = Ay + kS A+ kSA,,~TA,,  (28)

V. DEPHASING DUE TO THERMAL NOISE

A _ _ _ _ _ 2
Decoherence is generally considered as suppressing quan- Boo= =208y Az 2188,y = 2T (Ao Ayy = 28)),

tum effects[15]. Ironically, in our case the leading quantum . )
corrections to the effectively classical MFT, are themselves Ayy=2(@+«8)Ay;+2k8A,, =21 (A= A= 25)),
decoherence of the single-particle state of the condensate. )

Therefore, it is interesting to study the effect of a realistic A= —20Ay,.

decoherence process, originating in the coupling to a bath of

unobserved degrees of freedom, on the interparticle entangle- (i) Exact quantum solution—obtained by numerically
ment process, described in the previous section. propagating the fulN-particle density matrix under E(6).

The main source of decoherence in BEC's is the thermal In Fig. 6 we compare the Von-Neumann entropy of the
cloud of particles surrounding the condensate. Thermal pa€XactN-body density operator as a function of time for ex-
ticles scattering off the condensate mean field will for ex-ponentially increasind\, to the mean-field entropy. Due to
ample, cause phase diffusifb6] at a ratel’ proportional to the thermal noise, mean-field trajectories are no longer con-
the thermal cloud temperature. For internal states not erfined to the zero-entropy sphere. However, whereas the
tangled with the condensate spatial statenay be as low as quantum break time in the absence of thermal noise has
105 Hz under the coldest experimental conditions, wherea§rown as logl) [see Fig. 4b)], it is clear from Fig. 6 that in
for a double well the rate may reach T0Hz. Further thg presence of this (_jephasing mechani_sm it saturates to a
sources of decoherence may be described phenomenolodidite value. Thus, while we may have naively expected de-
cally with a largerT . coherence to reduce quantum corrections and thereby im-

We account for the effect of thermal noise on the two-Prove MFT, in fact the addition of thermal dephasing has

mode dynamics by using the quantum kinetic Master equasigniﬁc_antly damaged cl_assical-quantum correspondence. _
tion [5] In Fig. 7, we summarize the results of numerous dynami-

cal calculations conducted for various values of the particle
i r numberN and of the thermal noisE, by plotting the time at
b=—[p H]— = ala (ala;.p)]. 26 which the entropy reaches a given value. The curves are
P ﬁ[p ] 2 1:21,2[ 13(a;3.p)] 26 obtained using the modified BBR equatia@$8) whereas the
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10 T ! T

rescaled time at which $=0.2

(=

10° 10! 10° 10° S, -1 -1 S,
number of particles
FIG. 8. Mean-field trajectories starting at(0,0,—1) for «
=0(...), k=Q (=), k=2Q (—), k=30 (-—-), and
k=40 (—-). The dot ats=(—1,0,0) marks the dynamical insta-

FIG. 7. Time at whictSreaches 0.2 as a function of the particle
numberN, according to the BBR equation®3), modified to in-
clude thermal phase diffusion. Four different values Iofare

shown:T'=0 (—-), T=1074 Q (---), =102 Q (- ——), and 2V

=102 Q (—--). Exact quantum results are presented For

=0 (circles andT'=10"2 Q) (squares Initial conditions,x and () corrections can be experimentally distinguished from ordi-
are the same as in Fig. 6. nary thermal effects, which do not saturate the dephasing rate

at low temperature.
circles and squares depict exact quantum reslifisted by
computation power tdl~ 10° particles for two limiting val-
ues ofl". The BBR equations provide accurate predictions of VI. SCATTERING-LENGTH MEASUREMENTS
th.e i.nitial' depqherence rate and the quantum break time even afa, indicating how condensate decoherence at dynami-
within this limited range ofN (and the agreement between 5| ingtapilities can connect principles established in differ-
the exact quantum results and the BBR predictions woulgyt areas of physics, we briefly note that it can also have
become still better for hlghe_r nulmbers of partigle®nce practical applications. Rapid decoherence in the vicinity of
more, we observe the logarithmic growth of the quantumy,e \nstapler state of the two-mode condensate may serve
break time withN in the zero temperaturel'=0) limit. o the direct measurement of scattering lengths. As demon-
However, when the temperature is finite, there is a saturatiogy ated in Fig. 8, the mean-field trajectory of a condensate,
of the quantum break time to values that are well below thg, iy, i prepared initially in one of the modes, would only
mean-field thermal dephasing times, in agreement with F'gpass through the rapidly dephasing unstable point wien

6 =2Q. Thus, the self-interactions energy can be deter-

Instead of observing the quantum break time as a functiop,ineq py measuring the entropy at a fixed time as a function
of the number of particles for a given degree of thermal

noise, we can monitor the thermal decoherence time as a
function of temperature, for any given number of particles.
Viewing Fig. 7 in this way, it is evident that in the mean-
field limit (1//N—0) the purely thermal dephasing time
also grows only logarithmically with the temperature. Com-
paring this result to the lo§l) growth of the quantum break 04t
time in the zero-temperature limit, we can see that thermal
noise and quantum noise have essentially similar effects on
the system. Figures 6 and 7 together are in complete agree- i
ment with the prediction that the entropy of a dynamically
unstable quantum system coupled to a resefdd}, or of a 02f
stable system coupled to a dynamically unstable reservaoir,
will grow linearly with time, at a rate independent of the
system-reservoir coupling, after an onset time proportional to
the logarithm of the coupling18,19. Thus, one can really

consider the Bogoliubov fluctuations as a resen(@o), dos 500 505
coupled to the mean field with a strength proportional 6.1/ oH)

The N« 1/T analogy is even further extended by the satura- FIG. 9. von Neumann entrop$ after 20 ms of propagation
tion for any finiteN, of the thermal dephasing time at ol according to the BBR equation&8) with k=1 KHz and I’
in the same way that the quantum break time for a fiflite =10"* Hz, starting with the entire condensateMf 10° particles
saturates at higN. Due to this quantum saturation, quantumin one mode, as a function of the coupling frequefity

20 ms)

St
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of the coupling frequency), resulting in a sharp line about ing to condensate physics some insights from studies of de-
QO =k/2, as depicted in Fig. 9. coherence, we have found evidence that MFT dynamical in-
Experimentally, the single-particle entropy is measurablestabilities cause linear growth of the single-particle entropy
in the internal state realization of our model, by applying aat a rate independent df. From condensate physics we have
fast Rabi pulse and measuring the amplitude of the ensuinkgarned something about decoherence: we have identified a
Rabi oscillations, which is proportional to the Bloch vector form of decoherence that degrades quantum-classical corre-
length |g. (Successive measurements with Rabi rotationspondence, instead of improving it.
about different axes, i.e., by two resonant pulses differing by Our picture of quantum backreaction in BEC's as deco-
a phase ofr/2, will control for the dependence on the angle herence suggests the following new lines of investigation for
of s) In a double-well realization, one could determine theboth experiment and theory: measurements of single-particle
single-particle entropy by lowering the potential barrier, at aentropy in condensates, descriptions of condensates with
moment when the populations on each side were predicted tmixed single-particle statésstead of the usual macroscopic
be equal, to let the two parts of the condensate interfere. Theave functiong and general questions of decoherence under

fringe visibility would then be proportional tfs| [9]. nonlinear evolution. Exploring these possibilities, beyond the
two-mode model considered here, provides many goals for
VIl. CONCLUSIONS further research.
To conclude, we have shown that significant quantum ACKNOWLEDGMENTS
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