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Nonadiabatic tunnel ionization: Looking inside a laser cycle
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We obtain a simple closed-form analytical expression for ionization rate as a function of instantaneous laser
phasef(t), for arbitrary values of the Keldysh parameterg, within the usual strong-field approximation. Our
analysis allows us to explicitly distinguish multiphoton and tunneling contributions to the total ionization
probability. The range of intermediateg;1, which is typical for most current intense field experiments, is the
regime of nonadiabatic tunneling. In this regime, the instantaneous laser phase dependence differs dramatically
from both quasistatic tunneling and multiphoton limits. For cycle-averaged rates, our results reproduce stan-
dard Keldysh-like expressions.
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Traditionally, beginning with the pioneering paper b
Keldysh@1#, rates of intense-field ionization in both the mu
tiphoton and tunneling limit are averaged over the la
cycle. Today, this is no longer sufficient. Subcycle electr
dynamics is now known to play a key role in such proces
as high harmonic generation and above-threshold ioniza
in intense low-frequency laser fields~see, e.g., Refs.@2,3#!. It
is also crucial for the understanding of correlated dou
multiphoton ionization of atoms in intense laser fields~see,
e.g.,@4# and references therein!. In general, in few-cycle la-
ser pulses, intensity changes from one cycle to the n
making cycle-averaging meaningless, especially for hig
nonlinear processes. Subcycle dynamics of multiphoton
ization is the basis of the proposed approaches in@5,6# to
measure the absolute carrier phasew0 of the electric-field
oscillation under the envelope@7#. For linear polarization,
the absolute phasew0 is defined asEW f (t)cos(vLt1w0) @E is
the amplitude,f (t) is the envelope, andvL is the frequency
of the laser field#. Since pulse-to-pulse stability ofw0 has
now been experimentally achieved@7#, measuringw0 re-
mains the biggest challenge. Our results provide a sim
way of evaluating the feasibility of various approaches
measuringw0, which are based on subcycle intense field io
ization dynamics.

Experimentally, in intense-field multiphoton ionizatio
one is typically dealing with intermediate values of t
Keldysh parameterg;1. Hereg25I p/2Up , I p is the ioniza-
tion potential, andUp5E 2/4vL

2 is the average energy o
electron oscillations in the laser field~atomic units are used
throughout the paper!. It is common to model ionization in
this regime using quasistatic approximation to the rate
tunnel ionization:

Gqs~ t !5An* ,l* Bl ,umuI pS 2~2I p!3/2

Ef ~ t !ucosf~ t !u D
2n* 2umu21

3expS 2
2~2I p!3/2

3Ef ~ t !ucosf~ t !u D . ~1!
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Here f(t)5vLt1w0 is the instantaneous phase of the li
early polarized laser field. The coefficientAn* ,l* comes from
the radial part of the wave function atr @1/A2I p and de-
pends on the effective principal quantum numbern*
5Z/A2I p (Z is the ion charge! and the effective angula
momentuml * . The coefficientBl ,umu comes from the angula
part of the wave function and depends on the actual ang
momentuml and its projectionm on the laser polarization
vector. The corresponding expressions are@8–10#

An* ,l* 5
22n*

n* G~n* 1 l * 11!G~n* 2 l * !
,

~2!

Bl ,umu5
~2l 11!~ l 1umu!!

2umuumu! ~ l 2umu!!
,

whereG(z) is the gamma function. Averaging Eq.~1! over a
laser half-cycle for a sufficiently smooth envelopef (t), one
obtains the well-known tunneling formula from Ref
@8–10#.

Quasistatic approximation Eq.~1!, which includes the ef-
fect of the Coulomb potential, is rigorously valid only in th
limit g!1. The reasons for the frequent use of Eq.~1! for
intermediate values ofg are ~i! computational convenience
~ii ! absence of simple closed-form analytical expressions
instantaneous ionization rates forg;1, and~iii ! good accu-
racy of cycle-averagedtunneling ionization rates up tog
;0.5 @11#. Here we provide simple closed-form analytic
expressions for instantaneous ionization rates for arbitrarg.
We note that for cycle-averaged rates, an analytical exp
sion that is valid in a broad range ofg has been derived in
@8,9#. Its accuracy is excellent for many atoms~He, Ne, Ar,
Kr, Xe! up to g53 –4 @12# and even many small molecule
@13#, and is only restricted by the conditionvL!vexc ~here
vexc is the characteristic energy of electronic excitatio!,
which ensures adiabatic electron dynamics inside the po
tial well.

Dependence of ionization on the instantaneous phas
the laser field is apparent inab initio numerical simulations
and is present in intermediate expressions of many analy
approaches; see, e.g.,@1,8,9,14–18#. These intermediate ex
©2001 The American Physical Society09-1
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pressions are given by multidimensional integrals, which
fuscate the subcycle dynamics of electron appearance in
continuum. The dynamics is revealed by the saddle-p
analysis, which is possible in the low-frequency casevL
!I p and is most straightforward in the limitsg!1 ~quasi-
static tunneling! andg@1 ~multiphoton limit!. Our analysis
for arbitraryg allows us to explicitly distinguish multiphoton
and tunneling contributions to the total ionization probabil
and shows that forg;1, tunneling is still dominant but dif-
fers significantly from its quasistatic limit Eq.~1!.

The population of continuum states at instantt is

W~ t !5E d3vuav~ t !u2, ~3!

where av(t) is the probability amplitude of populating th
field-free continuum state labeled by the velocityuv&.

Using the Dykhne method@19,20# and the strong-field
approximation, with exponential accuracy we obtain

av~ t !;E
2`

t

dt8exp„2 iSv~ t,t8!…, ~4!

where

Sv~ t,t8!5~ I p1 1
2 v'

2 !~ t2t8!1 1
2 E

t8

t

dt9@v i1v0f ~ t !

3sinf~ t !2v0f ~ t9!sinf~ t9!#2 ~5!

is the action integral,v i andv' are the velocity component
parallel and perpendicular toEW, andv05E/vL is the velocity
amplitude of electron oscillations. With exponential acc
racy,v' can be set to zero, since the Gaussian integral o
v' only contributes to the preexponential factor.

Let us first assume thatf (t) is constant,f 51. Generali-
zation for short pulses and the appropriate criterion are gi
below. The integral overt8 contains many saddle pointst8
,t given by the equation

@v i1sinf~ t !2sinf~ t8!#21g250. ~6!

For the saddle point closest tot, denoted ast08 , Re(t08)'t.
Other tn8 are separated fromt08 by the integer number o
cycles, tn85t0822pn, integer n>1. For constantf (t), the
imaginary part of action is the same for all of them,

Im@Sv~ t,tn8!#5Im@Sv~ t,t08!#. ~7!

The physical meaning of these saddle points is as follow
~i! The contribution of the saddle pointt08 describes the

population that has just appeared in the continuum at ins
t; the complext08 is the moment when the electron enters t
classically forbidden region~under the barrier! while t is
‘‘the moment of birth’’ in the continuum.

~ii ! Contributions of the saddle pointstn8 , n>1, describe
the population created in the continuum one or more la
cycles ago; the corresponding action integrals contain co
butions from the free-electron motion in the continuum.
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~iii ! Since we are interested in the contribution to ioniz
tion at instantt, we should only take into account the sadd
point t08. We note that due to Eq.~7!, exponential depen-
dence is determined byt08 , while othertn8 with n>1 contrib-
ute to the preexponential factor.

~iv! Physically, for t08 the velocityv i is the longitudinal
electron velocity at the moment of birth in the continuu
and, as known since@1#, v i

2/2!I p . One can therefore expan
the exponent inav(t) in powers ofv i up to the second orde
near v i50, with the saddle pointt08 of the inner integral
calculated forv i50. Once again, the exponential depe
dence is determined predominantly by the contribution
v i50, while the Gaussian integral overv i adds to the pre-
exponential factor@1,8,9,20#.

For convenience, we introduce the phaseu(t) defined as

u~ t !5f~ t !2pk5vLt1w02pk ~8!

with the integerk chosen to ensure that

2p/2<u~ t !<p/2. ~9!

This phase is always equal to zero at the local peaks of
instantaneous electric field. It is easy to check that if the fi
envelope is constant during the half-cycle, the functi
S0„u(t)…5Sv50(t,t08) has the following properties:

Im@S0~2u!#5Im@S0~1u!#,
~10!

Re@S0~2u!#52Re@S0~1u!#.

Therefore, for constant envelope the instantaneous ioniza
rateG(t);exp(22 Im@S0„u(t)…#) is an even function ofu.

With exponential accuracy, the result forG(t) is

G~ t !;expS 2
E 2f 2~ t !

vL
3

F„g~ t !,u~ t !…D , ~11!

where the Keldysh parameterg(t)5g/ f (t) now includes the
pulse envelope. The functionF(g,u) is given by the follow-
ing expression:

F~g,u!5~g21sin2u1 1
2 !ln c2

3Ab2a

2A2
sinuuu2

Ab1a

2A2
g,

a511g22sin2u,
~12!

b5Aa214g2 sin2u,

c5ASAb1a

2
1g D 2

1SAb2a

2
1sinuuu D 2

.

We have reintroduced the envelope into Eq.~11! by treat-
ing f (t) as nearly constant during one-half of the laser cyc
Compared to such processes as the generation of high
monics, for ionization the requirements of the envelope
less strict. In high harmonic generation, the electron spe
one or more cycles in the continuum before recombin
9-2
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with the parent ion and adiabatic treatment of the envel
requiresf (t) to remain constant during all this time. In ion
ization, f (t) should remain constant only during a mu
shortertunneling timet tun given by the imaginary part oft
2t08 :

vLt tun52Im@arcsin~sinu2 ig!#. ~13!

The phase dependence of

R~g,u!5
F~g,u!

F~g,0!
~14!

@i.e.,F(g,u) normalized tou50# for differentg is shown in
Fig. 1, together with the quasistatic limit 1/cosu.

Several remarks on the results of Eqs.~11! and ~12! and
Fig. 1 are in order.

~i! As expected, there is nou dependence inF(g,u) in
the multiphoton limitg@1.

~ii ! As g decreases, clear phase dependence appear
flecting a tunneling contribution to the total ionization ra
The rate peaks atu50 andF(g,u) is a quadratic function of
u at smallu.

~iii ! The original Keldysh exponent for the cycle-averag
ionization rate is obtained by settingu50 in Eqs.~11! and
~12!. After the previous remark, this is no longer surprisin
Indeed, at largeg@1 ~multiphoton limit!, theu dependence
disappears and one can setu50 in the average rate. At sma
and intermediate,g, the factorE 2/vL

3 in Eq. ~11! is large,
E 2/vL

352I p /(g2vL)@1, and averaging ofG(g,u) over u
can be done using the saddle-point method. Since the co
sponding saddle point isu50 and @F(g,u)2F(g,0)#}u2

for smallu, the exponential dependence is given byF(g,0).
~iv! The multiphoton contribution to the total ionizatio

rate can be defined as the phase-independent backgro
which is given byF(g,6p/2). Forg@1,

FIG. 1. Dependence of the exponentF(g,u) in the instanta-
neous ionization rate on the phaseu5vLt1w02pk. Data are nor-
malized toF(g,0). Labels near the solid curves indicate values
the Keldysh parameterg. Dashed curve shows the quasistatic lim
g/cosu!1.
01340
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F~g,u!'F~g,6p/2!

5~g21 3
2 !ln~2g!2 1

2 g2211
35

16g2
1•••.

~15!

For g<2, the following approximate expression is valid:

F~g,p/2!' 4
5 g2Ag~11 3

50 g2 1
80 g2!. ~16!

The leading term in this expansion is exact forg!1 and is
accurate up tog51 within 5%.

At g;1, the multiphoton contribution remains small, b
tunneling differs significantly from the quasistatic limit. Th
is illustrated in Fig. 2, whereG(t) is calculated for a helium
atom and the laser wavelengthl5780 nm. The curves show
the ionization rate as a function ofu normalized tou50,
G(u)/G(0), for intensity I 5531013 W/cm2 ~when g'2).
Although the multiphoton contribution~phase-independen
background! is small ~approximately 3.3% in the total rat
integrated over a half-cycle!, the instantaneous rate clear
differs from the quasistatic limit.

So far, we have only looked at the exponential dep
dence inG(t). One would like to add the preexponenti
factor,N(t), to the exponential dependence Eq.~11!:

G~ t !5N~ t !expS 2
E 2f 2~ t !

vL
3

F„g~ t !,u~ t !…D . ~17!

The subcycle dependence in the preexponential fa
N(t) can be ignored~up to the electric-field envelope!. In-
deed, at g!1 and g'1, ionization is strongly peaked
around f(t)5vLt1w05pk and we only need to know
N(f5pk). At g@1, the subcycle dependence disappea
and knowingN(f5pk) is again sufficient. Hence, it is suf
ficient to include the time dependence inN(t) via the enve-
lope Ef (t) only.

The simplest way to defineN(t) in Eq. ~17! is to match
our result with the cycle-averaged result of@8#, which is also
valid for g.1. The corresponding preexponential factor i

f

FIG. 2. Dependence of the instantaneous ionization rateG(u) on
u. Data are normalized toG(0). Labels ‘‘QS’’ ~dashed curve! and
‘‘NA’’ ~solid curve! stand for ‘‘quasistatic’’ and ‘‘nonadiabatic.’’
Dotted curve shows instantaneous electric field. Calculations
done for He and laser field with wavelengthl5780 nm and inten-
sity I 5531013 W/cm2.
9-3
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N~ t !5An* ,l* Bl ,umuS 3k

g3 D 1/2

C IpS 2~2I p!3/2

Ef ~ t ! D 2n* 2umu21

,

~18!

k5 ln~g1Ag211!2
g

Ag211
,

whereAn* ,l* andBl ,umu are given by Eqs.~2! and the factor
C5(11g2) umu/213/4Am(vL ,g) is the Perelomov-Popov
Terent’ev ~PPT! correction to the quasistatic limitg!1 of
the Coulomb preexponential factor, withAm given by Eqs.
~55! and ~56! of Ref. @8#.

We would like to stress that the key difference from t
quasistatic tunneling limit is in the exponent. The PPT c
rection C is in practice a slow function ofg. In the limit
g!1, the factorC51, while in the limitg@1 for m50 one
hasA0'1.2/g2 andC'1.2/Ag.

The subcycle ionization dynamics plays the key role
such processes as multiphoton correlated double ioniza
of noble gases~see, e.g.,@4#, and references therein! and
intense-field ionization with single-cycle pulses, where
could be the basis for measuring the absolute carrier ph
@5–7#. Such measurement can also be done with circular
larization where the instantaneous phaseu(t) determines the
r,

v,

01340
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direction of the final drift velocity of the freed electrons. I
this case, instantaneous ionization rates Eqs.~11! and ~12!
have the following phase-independent form:

Gcirc~ t !;expS 2
E 2f 2~ t !

vL
3

Fcirc„g~ t !…D , ~19!

where the functionFcirc(g) is

Fcirc~g!5~g212!cosh21S 11
g2

2 D22gA11
g2

4
.

~20!

In conclusion, simple expressions for the subcycle ioni
tion dynamics derived in this paper can be used as a basi
evaluating the feasibility of different approaches to meas
ing the absolute carrier phase of few-cycle pulses in a typ
experimental regime ofg;1.

We have benefited from valuable and stimulating disc
sions with P. Corkum. We greatly appreciate numerous fr
ful communications with F. Krausz, A. Apolonski, and D
Villeneuve.
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