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Nonadiabatic tunnel ionization: Looking inside a laser cycle

Gennady L. Yudii and Misha Yu. Ivanol/
Femtosecond Science Program, Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive,
Ottawa, Ontario, Canada K1A OR6
(Received 30 November 2000; published 6 June 2001

We obtain a simple closed-form analytical expression for ionization rate as a function of instantaneous laser
phased(t), for arbitrary values of the Keldysh parametgrwithin the usual strong-field approximation. Our
analysis allows us to explicitly distinguish multiphoton and tunneling contributions to the total ionization
probability. The range of intermediate~ 1, which is typical for most current intense field experiments, is the
regime of nonadiabatic tunneling. In this regime, the instantaneous laser phase dependence differs dramatically
from both quasistatic tunneling and multiphoton limits. For cycle-averaged rates, our results reproduce stan-
dard Keldysh-like expressions.
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Traditionally, beginning with the pioneering paper by Here ¢(t) = w t+ ¢q is the instantaneous phase of the lin-
Keldysh[1], rates of intense-field ionization in both the mul- early polarized laser field. The coefficiet. | comes from
tiphoton and tunneling limit are averaged over the lasekhe radial part of the wave function at>1/y21, and de-
cycle. Today, this is no longer sufficient. Subcycle electronpends on the effective principal quantum numbet
dyna_mlcs is now known to play a key role in such processes. Z/\/Tp (Z is the ion chargeand the effective angular
ﬁ\sirr]]tlgrr:szaig]v?frr]:ec ggggr"’}gggre;ineclj (&nggthreRSer}ggdé]c)’nl'tzat'o%omenturr1*. The coefficien8, |, comes from the angular
. . d y e, €.9., =V art of the wave function and depends on the actual angular
is also crucial for the understanding of correlated doubl€,,mentuml and its projectionm on the laser polarization

multiphoton ionization of atoms in intense_ laser fieldee, | eactor. The corresponding expressions [@e1(]
e.g.,[4] and references therginn general, in few-cycle la-

ser pulses, intensity changes from one cycle to the next, p2n*

making cycle-averaging meaningless, especially for highly Apx 5= ,
nonlinear processes. Subcycle dynamics of multiphoton ion- o I(n* I+ D (n* = 1%)

ization is the basis of the proposed approachef5if] to 2
measure the absolute carrier phasg of the electric-field (21+1)(1+|ml)!

oscillation under the envelogg’]. For linear polarization, |,\m\=2\m\|m|!(|_|m|)! '

the absolute phase, is defined asf(t)cos t+ ) [€ is
the amplitudef (t) is the envelope, anad, is the frequency wherel'(z) is the gamma function. Averaging E@.) over a
of the laser fieldl Since pulse-to-pulse stability af, has laser half-cycle for a sufficiently smooth envelofig), one
now been experimentally achievdd], measuringe, re- obtains the well-known tunneling formula from Refs.
mains the biggest challenge. Our results provide a simplg8—10.
way of evaluating the feasibility of various approaches to Quasistatic approximation E@l), which includes the ef-
measuringpg, which are based on subcycle intense field ion-fect of the Coulomb potential, is rigorously valid only in the
ization dynamics. limit y<<1. The reasons for the frequent use of ER. for
Experimentally, in intense-field multiphoton ionization intermediate values of are (i) computational convenience,
one is typically dealing with intermediate values of the (ii) absence of simple closed-form analytical expressions for
Keldysh parametey~ 1. Herey?=| o/2U,, I, is the ioniza-  instantaneous ionization rates fer- 1, and(iii) good accu-
tion potential, andUp=52/4wE is the average energy of racy of cycle-averagedunneling ionization rates up te
electron oscillations in the laser fieldtomic units are used ~0.5[11]. Here we provide simple closed-form analytical
throughout the papgrlt is common to model ionization in expressions for instantaneous ionization rates for arbityary
this regime using quasistatic approximation to the rate ofVe note that for cycle-averaged rates, an analytical expres-
tunnel ionization: sion that is valid in a broad range of has been derived in
. [8,9]. Its accuracy is excellent for many atorttée, Ne, Ar,
2(21,)%2 |2t imi-t Kr, Xe) up to y=3-4[12] and even many small molecules
Ef(t)|cose(t)] [13], and is only restricted by the conditian, < we,. (here
2 weyc 1S the characteristic energy of electronic excitatjon
% ;{_ 2(21y) ) (1) which ensures adiabatic electron dynamics inside the poten-
3&f(t)|cose(t)]) tial well.
Dependence of ionization on the instantaneous phase of
the laser field is apparent @b initio numerical simulations
*Email address: gennady.yudin@nrc.ca and is present in intermediate expressions of many analytical
TEmail address: misha.ivanov@nrc.ca approaches; see, e.¢/1,8,9,14—18 These intermediate ex-

Fqs(t) :An*,|* B|’|m|| p(
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pressions are given by multidimensional integrals, which ob- (iii) Since we are interested in the contribution to ioniza-
fuscate the subcycle dynamics of electron appearance in th®n at instant, we should only take into account the saddle
continuum. The dynamics is revealed by the saddle-poinpoint t;. We note that due to Ed7), exponential depen-
analysis, which is possible in the low-frequency case dence is determined ly;, while othert/, with n=1 contrib-
<l, and is most straightforward in the limitg<1 (quasi- ute to the preexponential factor.
static tunneling and y>1 (multiphoton limif. Our analysis (iv) Physically, fort; the velocityv) is the longitudinal
for arbitraryy allows us to explicitly distinguish multiphoton electron velocity at the moment of birth in the continuum
and tunneling contributions to Fhe '_total_ioniza_tion probapility and, as known sindel], vﬁ/2<|p- One can therefore expand
and shows that foy~1, tunneling is still dominant but dif-  the exponent ir,(t) in powers ofv| up to the second order
fers significantly from its quasistatic limit E4L). nearv =0, with the saddle point) of the inner integral
The population of continuum states at instaig calculated forvy=0. Once again, the exponential depen-
dence is determined predominantly by the contribution at
W(t):f d3v|ay(t)|?, 3 v=0, while the Gaussian integral ovej adds to the pre-
exponential factof1,8,9,20Q.

where a,(t) is the probability amplitude of populating the For convenience, we introduce the phaite) defined as

field-free continuum state labeled by the velodity. 0(t)= (1) — mk= o t+ pg— K (8)
Using the Dykhne method19,20 and the strong-field
approximation, with exponential accuracy we obtain with the integerk chosen to ensure that
t . —m2< 6(t)< /2. 9
a,(t)~ dt’exp(—iSy(t,t")), (4)

This phase is always equal to zero at the local peaks of the
instantaneous electric field. It is easy to check that if the field

where envelope is constant during the half-cycle, the function
t So(6(t))=S, —o(t,t5) has the following properties:
sv(t,t’)=(|p+%vf)(t—t’)+%f/dt"[u‘ptvof(t)
! IM[So(—6)]=1IM[So(+ 0)],
X sing(t) —vof (t")sing(t”)]? (5) (10

Re So(— 0)]=—RE Sp(+0)].

Therefore, for constant envelope the instantaneous ionization
rate"(t) ~exp(—2 Im[ Sy(A(t))]) is an even function of.
With exponential accuracy, the result fB(t) is

is the action integraly| andv, are the velocity components

parallel and perpendicular ) andv,= &/ w, is the velocity

amplitude of electron oscillations. With exponential accu-

racy,v, can be set to zero, since the Gaussian integral over

v, only contributes to the preexponential factor. £2£2(t)
Let us first assume thdi(t) is constantf=1. Generali- F(t)~ex;{ — 3 D (y(1),0(1) |, (11)

zation for short pulses and the appropriate criterion are given o

below. The integral ovet’ contains many saddle points

<t given by the equation where the Keldysh parametg(t) = y/f(t) now includes the
pulse envelope. The functich( vy, 6) is given by the follow-
[vj+sing(t)—sing(t')]*+¥*=0. (6)  ing expression:
For the saddle point closest tpdenoted asg, Re(tg)~t. 2+ sir? g b 3vb—a | Vb+a
Other t/, are separated fromy, by the integer number of O(y,0)=(y +sind+3)lnc— YR sin| 9|——2\/§ s
cycles, t,=t;—2wn, integern=1. For constantf(t), the
imaginary part of action is the same for all of them, a=1+y?—sirto,
) , (12
IM[ S, (t,t7)]=Im[S,(t,t9)]. Y b= \aZ+ 45776,

The physical meaning of these saddle points is as follows. > >
(i) The contribution of the saddle poit§ describes the \/ b+a b-a

population that has just appeared in the continuum at instant ¢~ V T+ Y] 1V T+S'n| ol | -

t; the complext is the moment when the electron enters the

classically forbidden regiorfunder the barrigrwhile t is We have reintroduced the envelope into ELfl) by treat-

“the moment of birth” in the continuum. ing f(t) as nearly constant during one-half of the laser cycle.
(i) Contributions of the saddle point§, n=1, describe Compared to such processes as the generation of high har-

the population created in the continuum one or more lasemonics, for ionization the requirements of the envelope are

cycles ago; the corresponding action integrals contain contriless strict. In high harmonic generation, the electron spends
butions from the free-electron motion in the continuum. one or more cycles in the continuum before recombining
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FIG. 1. Dependence of the exponeh{y,#) in the instanta- NA” (solid curvg St?“d for "quasistatic _an_d nonadlabe_ttlc.
Dotted curve shows instantaneous electric field. Calculations are

neous ionization rate on the phage w, t+ ¢o— k. Data are nor- . A -
malized to®(v,0). Labels near the solid curves indicate values ofdpnejogyfo?gu‘;’fsé field with wavelength=780 nm and inten-

the Keldysh parametey. Dashed curve shows the quasistatic limit sity |

ylcosf<1.
D (y,0)~P(y, = 7/2)

with the parent ion and adiabatic treatment of the envelope

requiresf(t) to remain constant during all this time. In ion- =(¥*+3)In(2y)—3y*— 1+ >+
ization, f(t) should remain constant only during a much 16y
shortertunneling timer,, given by the imaginary part df (15)
—15:
For y<2, the following approximate expression is valid:
| Tyn= — IM[arcsinsin6—iy)]. (13 O (y,m2)~E 21+ S y— & 92). (16)
The leading term in this expansion is exact o1 and is
The phase dependence of accurate up toy=1 within 5%.
At y~1, the multiphoton contribution remains small, but
®(y,0) tunneling differs significantly from the quasistatic limit. This
R(y,0)= ——= (14)  isillustrated in Fig. 2, wher&'(t) is calculated for a helium

atom and the laser wavelength=780 nm. The curves show
the ionization rate as a function & normalized to6=0,

[i.e.,®(y,6) normalized tog= 0] for differenty is shown in ~ I'(8)/T(0), for intensity | =5x 10'* W/cn? (when y~2).

Fig. 1, together with the quasistatic limit 1/c@s Although the multiphoton contributiofiphase-independent
Several remarks on the results of E¢sl) and (12) and  background is small (approximately 3.3% in the total rate

Fig. 1 are in order. integrated over a half-cyclethe instantaneous rate clearly
(i) As expected, there is né dependence i (y,6) in  differs from the quasistatic limit.

the multiphoton limity>1. So far, we have only looked at the exponential depen-

(i) As y decreases, clear phase dependence appears, fience inI'(t). One would like to add the preexponential
flecting a tunneling contribution to the total ionization rate. factor,N(t), to the exponential dependence E#jl):
The rate peaks &=0 and®d(y, 6) is a quadratic function of bes
o2t smallf. PO=NOexd - 2 aGm,00)]. @

(iif) The original Keldysh exponent for the cycle-averaged wﬁ vt :
ionization rate is obtained by settify=0 in Egs.(11) and
(12). After the previous remark, this is no longer surprising. The subcycle dependence in the preexponential factor
Indeed, at largey>1 (multiphoton limit, the # dependence N(t) can be ignoredup to the electric-field envelopeln-
disappears and one can #et0 in the average rate. At small deed, aty<1 and y~1, ionization is strongly peaked
and intermediatey, the factor€%/ w? in Eq. (11) is large,  around d(t)=w t+po=mk and we only need to know
Ezlwf=2Ip/(y2wL)>1, and averaging of'(vy,0) over & N(¢=mk). At y>1, the subcycle dependence disappears,
can be done using the saddle-point method. Since the correand knowingN(¢= k) is again sufficient. Hence, it is suf-
sponding saddle point i8=0 and[®(y,d)—®(y,0)]«#> ficient to include the time dependenceNift) via the enve-
for small 6, the exponential dependence is givendbfry,0).  lope Ef(t) only.

(iv) The multiphoton contribution to the total ionization ~ The simplest way to definki(t) in Eq. (17) is to match
rate can be defined as the phase-independent backgrourar result with the cycle-averaged resulf 8f, which is also
which is given by® (v, = 7/2). Fory>1, valid for y>1. The corresponding preexponential factor is
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1/2

3i 2(2|p)3’2)2”*"m‘1
N(t)=Anx «B —| Cly|l Y7 ,
( ) n* .| I,|m] 73 p( gf(t)
(18)
Y
=In(y+\Vy’+1)— ——,
k=In(y+y*+1) v

whereA.« ;» andB, |, are given by Eqs(2) and the factor
C=(1+y9)IM2+34p (4, 4) is the Perelomov-Popov-
Terent’'ev (PPT) correction to the quasistatic limig<<1 of
the Coulomb preexponential factor, witk,, given by Egs.
(55) and(56) of Ref.[8].

We would like to stress that the key difference from the
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direction of the final drift velocity of the freed electrons. In
this case, instantaneous ionization rates Efj%) and (12)
have the following phase-independent form:

2f2
I‘Icirc(t)’\“(:-'x% - ¢ 3(t)

oy

(Dcirc('}’(t))) ) (19

where the functionb ,(7y) is

2 2
Y Y
2) 2y\/1+ R

(20

P y)= (')’2+ 2)COSh_1( 1+

quasistatic tunneling limit is in the exponent. The PPT cor-

rection C is in practice a slow function ofy. In the limit
y<1, the factorC=1, while in the limity>1 form=0 one
hasAg~1.2/y?> andC~1.2/\/y.

In conclusion, simple expressions for the subcycle ioniza-
tion dynamics derived in this paper can be used as a basis for

_ evaluating the feasibility of different approaches to measur-

The subcycle ionization dynamics plays the key role injng the absolute carrier phase of few-cycle pulses in a typical
such processes as multiphoton correlated double 'On'zat'oé‘xperimental regime of~1.

of noble gasegsee, e.g.[4], and references thergirand

intense-field ionization with single-cycle pulses, where it

We have benefited from valuable and stimulating discus-

could be the basis for measuring the absolute carrier phasgons with P. Corkum. We greatly appreciate numerous fruit-
[5—7]. Such measurement can also be done with circular poful communications with F. Krausz, A. Apolonski, and D.

larization where the instantaneous phagg determines the
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