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Forward degenerate four-wave-mixing spectra of NO in the strong-field
regime including polarization, line coupling, and multipole effects. I. Theory
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In the present paper, we investigate the saturation mechanism of FDEWard degenerate four-wave-
mixing) spectra, observed with different polarizations of the input beams, line coupling, and Doppler effect.
Our theoretical approach uses a nonperturbative resolution of the density matrix equations, decomposed on the
irreducible tensor basis. This formalism greatly simplifies analytical expressions and allows for a correct
treatment of magnetic sublevels structure in a thtdevel system. Systematic calculations of the FDFWM
signal for specific NO lines are performed to characterize intensities and line shapes as a function of saturation.
Relative intensities exhibit strong changes in the intermediate regime of saturation further supporting the
necessity for using such a complete model. Under saturating conditions, line coupling is shown to distort the
spectra, according to the type of transition and the polarization configuration. This effect is observed in the
following paper[V. Krtiger et al,, paper Il, Phys. Rev. /&4, 012717(2001)], where saturated experimental
spectra of NO are presented and interpreted for two polarization configurations of interest for diagnostic
purposes.
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[. INTRODUCTION have numerically solved the wave equation involving arbi-
trary intensities of the incident beams. They have demon-
Degenerate four-wave-mixinddFWM) spectroscopy is a strated that optimum efficiency is achieved using equal in-
widely investigated optical method, used as a diagnostic todensities for the three beams. They have also treated the case
in reactive media. Theoretical models are required to underof strong absorption and spectral line detuning, yielding to
stand the physical mechanisms involved, to evaluate the sefl€ same conclusions as Abrams and Lind in terms of opti-
sitivity of DFWM measurements and to interpret the experi-mum efficiency of the process.
mental results. Quantitative concentration or temperature of !N @ different manner, Ducloy and co-workgfs6] have

reactive species are usually measured by fitting the experf€Vveloped a theory for DFWM, including two strong pump

mental spectrum with the corresponding theoretical simula2€a@ms and the Doppler effect. They have solved in two ways

tion. However, under saturation conditions, quantitative mea%ﬂg C\i;gaslity Toeggxiﬁt%liggggnbylzairgfriﬁ?at;]vaevge;’gllosﬁgggé O;
surements are difficult to obtain because the relativ b ) ' y

intensities of the spectral lines are strongly modifieH On $hreed level atomic system. A numerical solution of the den-

. . ; sity matrix equations is needed in this case. Second, an ana-
the other hand, this behavior can be further exploited to ENftical expression is derived assuming a pair of two-level

Yransitions on which each pump beam saturates. The results

a need for accurate simulation of saturated signal. are found to be similar in line shape and intensity for either
Following these goals, different models have been develiogoution whatever the saturating pump.

oped to properly reproduce the DFWM line shape and inten- Using the dressed-atom formalism, Grynbetgal. [7,8]
sity under saturated conditions. Abrams and Li@B] are  nave analytically treated the case of one saturating quantified
among the first to present a model for saturation of DFWMpump beam in a Doppler-broadened two-level state, whereas
process in absorbing medium. Their model relies on the anahe weak beams are classically treated. Their results are com-
lytical resolution of the wave equation in the phase conjugat@ared with the preceding ones of Ducloy and give a good
scheme, restricted to the steady-state and undepleted stroagreement, with simpler analytical formulas.
pump beams. They have focused on the study of the signal Focusing on the effect of laser bandwidth in saturated
reflectivity for different conditions of saturation, absorption, media, Ewart and co-workerf9—11] have established a
and detuning, in order to optimize the conjugated wave. Thisnodel for two broad strong pumps and a weak narrow probe
basic approach has been used in many other developmeritsa phase conjugate arrangement. They have resolved the
such as the recent model of Ai and Knizd. These authors time-dependent density matrix equation using a perturbative
formalism on a two-level system. The problem is then sim-
plified in a reduced number of terms. A spectral line shape
* Author to whom correspondence should be addressed. Electroniocluding Doppler and finite bandwidth effects is obtained
address: btretout@onera.fr and the variation of efficiency is studied.
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Using a different approach, Luckt al. have investigated been applied to perturbative mode]25-28, restricting
the physics of the DFWM process by direct numerical inte-them to the weak-field limit. This development, applied to
gration of the time- and space-dependent density matrithe resolution of density matrix equations, exploits inherent
equationg 12] using two-level representation. Their calcula- symmetries of the system. Line shape function, molecular
tions assume a phase conjugate geometry and include thréige strength as well as polarization factors are naturally in-
strong beams, as well as the Doppler effect. Saturated preiuded in the system. Yet, it amplifies the physical insights
files obtained in a jet of NQ12] and in a flame for OH13]  of the problem and allows for calculations in the strong-field
have validated the calculated line shape in the saturation reegime.
gime. Their calculations may account for short-pulse effects It is well known that the interaction of the three waves
[14], closely-spaced resonances without couplitf, polar-  with the molecular system generates in the medium a non-
ization spectroscophl6], and recently the forward geometry linear polarization. It contains the source term of the DFWM
for DFWM [17]. The effects of temperatufd8] and short-  signal and is here represented by the polarization operator.
pulse have been discussed in the high-field limit, and appliedhe theoretical mean value of any operafors deduced
to concentration measurements in flames and plasmas. Th&m the density matrix operatqs, using the well-known
recent comparison of the phase conjugate and forward phasgzlation
matched geometries has shown that the signal is stronger for
the forward case in condition of intermediate saturation as it (AY=Tr(pA). (1)
was previously demonstrated for the low-field lifii9,20.

A more recent paper dealing with phase conjugate geometr _ . .
tends to include theM-level degeneracy in the coupling \X/here Tr(- - -) is the notation for the trace operation. All the

scheme up to 22 levels but still disregarding reorien,[ationsigniﬁcant physical information for the system is included in
effects[21]. the density matrix operatgr. We therefore have to evaluate

the density matrix components describing the four-wave-

Focusing on the experimental conditions of flame envi-" "~ . N
ronments, two models were proposed for the DFWM for-MiXiNg process and apply E¢L) to deduce the polarization

ward geometry. In the first one, Attal-Toaitet al.[22] have ~ operatorP responsible for the signal generation. It is related
applied the radiative renormalization method of Bletal.  to the dipole moment operat(ir by

[23] to the DFWM process. Analytical solutions of density
matrix equations were obtained for a three-level system in-
teracting with two strong fields and crossed-polarization
scheme, which is important in the degenerate configuration.
The Doppler effect is also included. A parametric study was A. Irreducible tensor components
achieved to enhance experimental feasibility. In a second
model, Robertsoet al.[24] describe the DFWM interaction

'Cr;utgfsr:i'gg'zg{? IIiIrTItav:\I(;hti?eﬂE)lg qlue arné':f':gt ‘T’Xsdtﬁfrg }el:nm-o-in terms of irreducible tensorial elemer9,3( instead of
pling P PO the more usual basig,J,M,)(ngdsMgl|. In the latter,J

larization configurations. It demonstrates that line coupling isand M. respectively. label the total anaular momenturn and
specially relevant for NO DFWM spectra. The two previous ' P Y, g

models were applied to OH and NO, with due account forits projection over thez axis (direction of propagation n

high intensity of the beams in flame environment. Althoughdenotes the other quantum numbers describing the state. The

. . , , density matrix is written as
these simulations cover the whole saturation regime, some
physical characteristics of the lines were not completely re-

(P)=Tr(pu). @)

In order to simplify the calculation and by using the in-
herent symmetries of the system, it is convenient to expand

covered. Therefore, we present here a new model that will p= 2 pnaJaMaYnBJBMB|naJaMa>(nEJEMB|
properly reproduce the line coupling induced by the three NadaMa NpdpM g @
strong incident fields as well as the different polarization

schemes of the beams. ) .
Our approach combines analytical resolution of the denln the standard basis, and
sity matrix equations and irreducible tensor formalism in or-
der to properly restore the saturation effects in a FDFWM K K
(forward degenerate four-wave-mixingrocess. We do ac- p :a;@ apPQapTQ 4
count for the polarization of each incident field, thielevel '

degeneracy, and the multipole nature of the collisional pa- . ) . . .
rameters. In addition, the line mixing of unresolved rota-'" the irreducible basis, following the notation of Omont

tional structures is taken into account by assuming a taree-L31l- The equivalence between components is given by

level scheme for each line doublghain line and its satel-

lite). k B
PralaManglgMs™ % (NadaMolapTolNgIsM g) apPQ=Pap

Il. THEORY (5)

Up to now in DFWM spectroscopy, the development of
density matrix over irreducible tensor operators has onlywhere
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(nJ .M a|aﬁTg|nBJ5MB) (dp/dt)rei4 contains the phenomenological evolution of
3 3 along different relaxation and transfer processes.

o NIM, el e B Let us develop the interaction Hamiltonian over the irre-

=(=1 2kt 1 -M, Q MB). ©®  gucible representation involvinm,J,) and|ngJs) levels.
. . Recognizingu andE as spherical tensors of ramk1 and
«pTq IS ak-rank tensor and componern@sobey the condi-  applying the Wigner-Eckart theorem, one has
tions —k=Q=k with |J,—Jg|<k=<J,+J;z. The tensorial
operator,;T® forms an orthonormalized basis of the Liou-

. hd = luaﬁ
ville space fop E= > (—1)9,,TE (12)
af \/— aBlq—=—q:
3 q
k k' ty _ R
T CapTQarp Tqr) = Saar Oppr Sk Sy @ with E_ the irreducible component & defined as

and

1
_ E.i=F—=(E,*iE,), Ey=E,, 1
wpTQ=(=1)%a7 %10 5 T o 8) 2= R EER) RTE 13

The mean value of the irreducible tensor is calculatedWith 2 the direction of propagation. and
with Egs. (1) and(7) propag '

(apTNV=Tr(p upTEN = appe=(T(Ja.dplt). (9 - Hap

apT®, (14

We introduce here the so-called state multipole
(T(J, Jp)iq) defined by Blum(32].

. _ ) . .
From a physical point of view, the off-diagonal compo- aghggtaﬁ (Neda #Ingdg). Assuming thatu,, is real,

nent aﬁpg(aaﬁﬂ) is the k-order multipolar coherence be-

tween statefn,,J,M,) and|nzJzM z), whereas the diagonal

elements[mp‘(‘gE «Pq are the orientational components of the Mpa=(— 1)%,3%&[3_ (19

k-order multipolar component of the molecular anisotropy of

level |n,J,). .p& are linear combinations of thiel , popu- Applying Eg. (9) to Eqg. (11) leads to the equation of

lations and apé(QiO) are related to Zeeman coherences.motion in the irreducible basis; we therefore have

The componentsap(lg and apé respectively correspond to

the orientation(polar ordey and alignmentquadrupolar or- Tr(p, Tlg): Y ,')g

den of the angular momenturd, of level |n,J,) [33]. 7 7
Let us note that the classical definition of the density ma- (dp) Kt

trix where Tr(p)=1 is not assumed in this formalism. In- dt ayTQ

stead, we consider an open system where the total number of rel+ir

molecules may vary. The number of molecules in level i - -

In,J.) per volume unit is T (A ey TQ) + 7 T ((1ap E)ppy

i
=—gTr([Ho,p]ayT‘g)+Tr

> — Kkt
_paB(IL‘LBy'E))ayTQ]- (16)
No=Tr(paa) =\2Ja+1apg= 2 No s, (10
“ Then using Eq(5)
B. Density matrix formalism d k

apr) + Ak
ay’*Q

dt rel+tr 7

. . . . "k k
The system evolution is expressed in terms of the Schro ayPQT 1 ®ayayPQ T
dinger equation

[

d +t—= > (~1)%_

d—p> . (11) N !
t rel+tr

dp
e

i
— [HotHi 1A+

k' k K’
. . . . X[t T apTapyTor arTS) prPQy
In this expressionH, is the Hamiltonian of the unperturbed

. . o K’ K’ K

molecular system anH; the interaction HaTlltonlan of the — apPorHpy TH( aBTq,ByTéayTQT)], (17
molecules with classical electromagnetic fieldIn the elec-

tric dipolar approximationH; = — 41 E, wherep is the elec-  where ., is the transition frequency betwe¢n,J,) and

tric dipole moment operatorA is the source term for the |n J,). The trace is calculated with the help of E¢8) and
implementation of initial conditions. The last term (8) as
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k k katy _ J =] k k
TragT o gy ToparTqr ) =(—1)% 7+q3MaMEBMy (NadaM ol T4 N 53 5M g} (N5 M g 5, T2, I, M.)

k
x(n,J,M.| WT_3q3|naJaM ")

k, ki ks \(k; k, K
=\/(2k1+1)(2k2+1)(2k3+1)(—1)236Jw”v*‘h(2 ' 3)[1 2

. (19
d2 01 —0s/|J, J. ‘],8}

And we finally get

. d pk> i k' 1 k
kK _: k @y Q k +Q+J 7
ayPQ= 1 WayayP _( + 4 Ag— 2 _(_l)q “\/(2k+1)(2k +1)E7 '
e e dt rel+tr v k'Q'q h ! Q" a —Q
K 1 k . LKL K
X J J \JB Maﬁﬁpr'+(_l) J J \]B aﬁperu/,By . (19)
a v v a

This last equation is valid whatever the geometrical conincident fields that may have arbitrary unequal individual
figuration if no permanent electric or magnetic field is intensities.
present. It fully incorporates the coupling of degenerate mag- . L
netic sublevelsl inside each rotational level through the E=3(E+E*)
sum overk’ andQ’. To apply it to FDFWM process in a
gas-phase medium described by a thidevel system, we
have to take into account the experimental configuration. i“T53

C. Beam and polarization configuration

Unlike many DFWM simulations in phase-conjugate with E == E. (20)
beam geometry, the present model is concerned with the ' !
folded-Boxcars geometry in which the three incident beam
are traveling in the forward direction alormaxis as shown
in Fig. 1. The subscripts 1, 2, and 3 refer to the three inciden , i
beams, and index 4 represents the signal beam. For line@Pd its scalar amplitudg; .
polarizations of the incident beams ang-polarized signal, The polarization vectok; is expanded either on a real
the different possible polarization arrangements are set inorthonormal basiség(,éy,éz) or on a complex spherical ten-
Fig. 2. They are respectively labeled along ther x polar-  sor basis defined as follows

ization direction, in the conventional ordege;ese, [34].
The yyyy polarization is called the all-parallel case. The
crossed-polarizationgyxx and yxyx are equivalent in the
forward box[20]. In Fig. 2, the different types of gratings
induced by the pump-probe interference have been outlinegith the following properties
in order to recognize the population and polarization gratings
respectively shown as shaded and dotted ellipse. é; =(—1D%_q, éq- é’(;, =8qq’ - (22

We assume plane and degenerated monochromatic waves
and a free propagation of the fields in the medium along th&he three beams are crossing with a very small angle

z axis. The total incident field is the sum of the three (=1°), sothat it is a good approximation to assume almost
collinear beams. The component of all electric fields is

Where the electric field; for i=1,2,3 is specified by its
polarization vectore; , its frequencyw, its wave vectork;

e.1=F——=(8rie,), €=6,, (21)

yyyy yXyX YYXX yxxy
Py @ . B
& 3@% @%jb ‘@G

egge 1111 1) 1¢1) LIEI)C) 1)) 1

FIG. 2. Different linear polarization arrangements and related
FIG. 1. Beam configuration: folded Boxcars. values defined in Eq$29) according to the labeling,e; ;€.
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negligible and we will assume that all their polarization vec- \
tors are in theX,y) plane. Therefore, each field is developed
on either basis, leading to

Ei=(Ex&+ (E),&,=(E) %, +(E)_€*; (23

and according to Eq.13)

1
(Ei):=1—2[(Ei)xii(Ei)y]- (24

N

It is further simplified

) 1
(Ei)i=1—Ei=e”’( r— ) (25)

E
2 V2

ﬁl—\

for polarization along< and . . . :
FIG. 3. Transversal section of the four interacting beams, exhib-
1 iting wave-vector projections.
(Ei)==— Eizeiwz)(—Ei)
ferent(Fig. 2). The quantitie€.. and ¢.. are all depending

i

2 2 20
‘ larizati | h lati h f the th . ‘ onx, y, andz They represent the interference pattern of the
or polarization along. The relative phase of the three input {,ee heams.

beams is not important, merely resulting in a translation of 114 total phase factor d.
the space and time origin. Thus changes of little importanc iy
can be performed on the phase factor to simplify these e

is split between the spatial
®ne ¢. and the temporal one as shown in E¢29). This
XSllows a simplification of ¢ that depends on spatial

pressions. For linear polarization, we can finally write Egs. ositiort
(25) and(26) as P
Prte-  prTo
(Ei)tziEEi (27) 2 2
o A rotation of the axes used for describing the polarization, by
for polarization along« and the angley=(¢.— ¢_)/2 around thez axis, leads to new
. components of the field given by
Ei)-=—=E; 28 ~ .
(E):=5E (28) 2. _E.dn, -
for polarization alongy. Note that in this configuration, the The phase factop, is then the same for both components
contribution to E;) . is always real andK;) .. is positive. and can be suppressed in the equations by a simple change of
According to the geometry of Fig. 3, we define the fol- the time origin. At this stage, according to this phase simpli-
lowing wave-vector projectionk, = — (ki)x=(ks)x, ky= fication, the field expressions of Eq&9) are introduced into
—(ky)y, and k,=(k;), with k,,ky<k,. Introducing the Eq.(19) with
phase vector ex'pif), the total electric field components in . it ot
the spherical basis are written as follows: Eq-+1=E-=3(E.e ' —E;€'"). (32

1 ) ) ) ) The position-dependent phase factors are reintroduced at
E, =—={E;e "+ E e KW+ Egelel (k2 et) the end of the resolutiofsee Sec. Il Gin the expression of
V2 the signal polarization

— —ilot— o, oot
“ee TEReTe (299 piral—gleop, e=1V=p_ gle=, (33)
57:i{lele*ikxerEZEze*ikyij83Eseikx><}ei(kzszt) These phase factors reflect the coherent features of the
V2 incident-field polarizations into the final calculation®f To
=& e 'U=E gle-elot (290
with &;= —1 for x polarization, anc¢:;= +1 for y polariza- we define a new local axis in order to simplify the equation of

tion fori=1,2,3. Depending on the polarization arrangementhe polarization. Neverthelessandy axes are still valid to define
of the incident laser beams, the input parametgrare dif-  the wave vectok; and the position of each point.
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|nch> I',p for B=b,c,. is the mnltipolar dephasing rate or the
|n ] > t_ransyerse relaxation r_at’Ebc is c_ommonly labeled a Raman
b"b linewidth and may be involved in the so-called Raman term
of the density matrix equations.
The pure dephasing contributions to the linewitity are
commonly given by the quantity
InJ, > )
I25(K)=Tap(k) = 3[a(k=0)+T 4(k=0)]. (35
FIG. 4. Threed level scheme of maifa)—|b) and satellite
|a)—|c) transitions. The transfer rate® 4, (k) is related to direct population

and Zeeman coherence transfer froa) to |3), through
account for these coherent effects, an integration of(88).  collisions and spontaneous emission.
is performed on the spatial coordinates as described in Sec.
IIH. E. Final derivation of the equation set

The expressions of the electric field, the relaxation and
D. Collisional modeling transfer terms are now included in E@.9). The nonlinear
The collisional rates of the molecular system are ex-Polarization is calculated by developing the density matrix
pressed by the relaxation and transfer term of @d). The components,,p&, and ,epe, . We first solve the density ma-
multipolar term ¢ Mledt) relerr Of EQ. (19) is its projection  trix equations for a single class of molecular velomtythat
on the ., T® basis. Because of the isotropy of relaxation andis for the Doppler-shifted laser frequenay=wjueo—K- 0.
transfer processes, relaxation rat€gk) | and transfer rates Then the resolution of the system is fully performed for all
[© (k)] do not couple tensorial components of different mul-velocity classes just by changing the laser frequency step by
tipolar order. Moreover’(k) and® (k) do not depend oQ  step. In this treatment, we assume a monochromatic laser
[30]. emission[11]. Numerical integration of the solution over a
In the threed level scheme|a) represents the rotational Maxwell-Boltzmann distribution function is performed in a
ground level|n,J,); |b) and|c) respectively represent the second step. This part of the calculation deals with complex
excited levelgnyJy) and|n.J.) (Fig. 4). In the NO doublet  amplitudes of the DFWM signal, which are added to repro-
structure,|a)—|b) and|a)—|c) correspond respectively to duce the rotational structure of the sped®8]. At this step
the main and satellite transitions originating from a commorof the calculation, the signal intensity can be calculated
level |a). Relaxation of diagonal and off-diagonal compo- (squared complex amplitufiend convoluted by the laser
nents of the multipolar term are yet given by linewidth function that is measured experimentally. This last
4ok step will be calculated effectively in paper[ll] where com-
aPQ B K K K parison with experiments is required.
(d_) e Ta(k) apq t Oan(K) oo+ Oac(k) cpg We use the rotating wave approximati@RWA) that con-
(343 sists in keeping only the nearly resonant contribution into
each density matrix componergpQ, pr, CpQ, and bch
dbpg ) ) are constant with time bugpr and acpg oscillate at the
T =—Tp(K) ppot Opk)cpg (34D frequency w~w,u,~w,. Since harmonic contributions are
rel+tr neglected This approximation leads ;gpQ(t)— apre""t
K and acpQ(t) ache""t The followmg equatlons only deal
(d apr) = —Ty(K) pk (340 with the complex amplltudegbpQ and anQ since temporal
dt | e anttanta phase factor is simplified.
The source term\ can be calculated considering that the
) system is isotropic in the absence of field. Tm/e\'é is only
T ) = —T'pe(K) pepg - (34d  nonzero fork=0 anda=y. Applying Eq. (19) with E=0
rel+tr leads to

The corresponding, cb, andac components are obtained AAS=T,(0)p0—0,,(0)p9-0,,0)p, (363

by interchanging index with ¢ in the former expressions.

tT;)h[egg]otations introduced in Eq&4) are defined according pAS=T (O)P(O)_®bc(o)P(O) (36b)
I' ,(k=0) is the population relaxation rate of the rota- where

tional level |«), i.e., the departure toward other levels is

either by spontaneous emission or by collisional transfer. p9= pd(E=0)=N/\2],+1. (37)
I' ,(k>0) contains in addition the effect of collisional

reorientation of the angular momentud),. Therefore, N'” is the initial population of leve|e) defined asNn(?,

I',(k>0)=TI",(k=0) with the equality fulfilled in the ab- whereN is the total number density anﬂao) is the popula-

sence of collisions. tion fraction of leveln,J,) given by the normalized Boltz-

012716-6



FORWARD DEGENERATE FOUR-WAVE. .. .I. ... PHYSICAL REVIEW A 64 012716

mann exponential. The temperature dependence is included The stationary solution is valid when the laser pulse is
in both n(;’) andN. N is assumed to be constant in the theo-long enough compared to the lifetime of the molecular levels
retical studies. Equation86) allow the elimination ofA in in the collisional and Doppler regime of interest in our case.
Eq. (19). This solution is given by the following set of equations:

i
Ta(k)(ap§= P b0 = Oar(K) (pG~ P Sk ) + OacK) (G p{7 S0 + o7 2 (~ 1) Pay(2k+1) (2K +1)
k'Q'q

o1 ) Kol k 1)9E Kk’ 1k+k/E K’
_ (- ) ’
o q —ollls, 5, 3,/ D Eattabpapq +(~1) qabPor Mbal

k, k ! ’ !
+ 3033 )[(_1)qEqMaccapgr+(_1)k+k Efqackauuca] ) (383
a YJa Jc
) kK (0) i q+Q+23 ; (K1 Kk
Cu 0= = Oncl k) (cply =000+ 3 S (1T P DD o
k'Q’q Q q Q
K 1 k . e
X b Iy Ja [Efqﬂbaaprr"'(_l) EqbaPQfMab]v (38b)
1 [k 1 k
0pe—iTpo(K) ] pept == —1)9Q* e (2k+1)(2k' +1)| _, )
[wbe bel ]bcPQ 2% k’zQ’q( ( ( kQ q -0
k" 1 k) K Kok k" 1 Kk K
X E_ (-1 E , , 38
Jo Jo Jq gMbaad?Q ( ) J I . qbaPqrMac (389
[w—wap—iTan(K)] A > (—1)Qat b (2k+1)(2k’ +1)E N
ab ab apr 2h o' q Q/ q _Q
k" 1 k K 1Rk "1k ) k" 1 k ,
X (= , + /-
Ja Jy b MabbPg ( ) J J. J. aPqMab Ja Jy I Mac chPg
(38d

The equations fogpg and acplé are obtained by exchanging and acplé are the vector components of and ¢(© is the
b andc in Eq. (38b and Eq.(38d). Here, due to the RWA vector of the source term for the initial conditions. The ma-
approximation, the temporal phase factors of the electrigrix is numerically inverted and we get the solutiogs
field have been removed, and the equations only depend o9y ~1p(®) The dipolar term@bpé and acp(lg are derived in

the real amplitude& .. in each point. The only nonzero re- order to calculate the signal polarizatigresulting from the
lations have to satisfy the triangular inequalities betw&en  four-wave-mixing interaction.

Jb. Jc. and thek values Qs odd for ,,p¢ and even for,pg Let us note that an initial anisotropy of the medium could
and bcplé, becauseg=*1 and because the initial state is have been easily included in our calculations. Vacesral.
isotropic (only ,p3 is nonzero aE=0). [26,27 have introduced it in their perturbative treatment by
Using the relation developing the initialoff) as a sum of irreducible tensorial
} 5 ) elements as in Eq(5). Furthermore, the values O,Iplé,
wppQ=(—1)% 38R g p %, (39 ,pk, and cpk for k=0,1,2 could also provide information

on the anisotropy of the medium after the interaction, if these
we first eliminate,,p¢, and ,epf and reduce this system of values are extracted from the set of equations.
seven equations to a set of two equations involving only At this step of the calculatiorp still depends on the ve-
P and 4ep components. This set is then developed forlocity v of the molecules, on the laser frequency, and on the
eachk andQ value and the result is shown in Appendix A. It spatial position in the interaction volume. To get the final
is finally written as a product of a matrt with a vectorp signal polarization generated in the phase-matched direction,
such thathtp = 0(®. The real and imaginary parts gt,p'é integrations over the velocity distribution, the spatial coordi-
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nates, and the laser bandwidth are performed as explained in H. Expression of the integral over spatial coordinates

the fo_llowing. . . We search for the observed signal field in the phase-
This analysis treats the coupling betwekandM levels matched direction, far from the interaction volume. The total

and finally endsl ¥V'th d|fferhentfcontr|but|ons froml molecular gjetric fieldE and the corresponding macroscopic induced
and geometrical factors. This factorization was already 'ntropolanzatlonP are related by the wave equation

duced in theJ-M basis set in a previous worRk0]. The

geometrical factors are expressed as products of 3-j and 6-j PE(FY) n2 PE(LY 1 #2P(r 1)
symbols. The above spherical tensor formalism provides a > TS A > (45
framework that takes more properly into account the reori- ar c ot €oC ot

enting collisions and the symmetry of the media. In addition,
this treatment allows us to properly calculate saturation efWheres, is the permittivity of vacuumn the refractive in-

fects in forward DFWM with due account for the configura- 48X, andc the speed of light in the vacuum.
tion of the incident beam polarizatiofi2g]. For sake of simplicity, we consider homogeneous plane
waves. The Fourier spectrum of the polarization is consti-

tuted of discrete spatial frequencies. Keeping the only phase-
F. |ntegrati0n over the VeIOCity distribution matched ComponentS, one has

The signal results from the contributions of all the differ-
ent velocity groups, assuming a Maxwell-Boltzmann distri-
bution. The most probable velocityof the molecules for a
given temperaturd is

( 2/\/’akBT) 112
u= 1

’P(X,y'z) = P(_l}-oei(kl)xxei(kl)zz-{- P(()Z_) 1ei(k2)yyei(k2)zz
+ Pg-%)ei(k3)xxei(k3)zz+ Pgﬁ)ei(k‘,)yyei(kpzz,

(46)

(40

m where P('l) is the polarization amplitude of the beamvith

the wave vectorgk,, Ik,, k,). P is the only component

where \; is the Avogadro numbekg the Boltzmann con-  Of interest for the DFWM S|gnal prowded the solid angle of
stant, andn the mass of the target molecule. As in previousthe detector is restricted aroutkg direction. It means that
papers[20,22, we proceed to an integration of the density the angle between the beams is small. So, for mathematical
matrix Componentsdbp and acp over the velocity distri ~ simplicity, we assume that the active medium is a cylinder of
bution. Since the angle between the beams is very small, thgectionS and lengthL parallel tok,. Because of the period-
Doppler effect can be neglected in the transverse directioitity, P(“) can be calculated as a single spatial period in the
(kyvx kyvy<I'yp). We only perform the numerical integra- interaction volume

tion alongv, with k,=k,=nw/c andn the refractive index.

2/Ky 27T/k

Ky k k, 27lk,

P{Y= P(X,Y,2)

<abp(lg>av: f abp(lg(wlaser_ ky)F(v)dv, (41
Xexp —i[(ks)z+ (Kg)yylidxdydz  (47)
with .
Taking thez axis alongk,, we also make the slowly varying
envelope approximation. We have

1 2
F(v)= ef(v/u) ] 42 . .
) umr 42 E(r,t)=&(z)e (knzmot) (48)
=\ p(®)ai(knz—
G. Spatial polarization P(r,t)= POleI( e, (49
The polarization of the signal is given by its componentsyith
I dé(z)
PQ(r) \/—<abp (r)>av \/a—c<acp (r)>aV1 Q==*1. dz <
(43
Neglecting second derivative é{z), Eq. (45) leads to
At this stage, phase factors defined in Sec. Il C are reintro- s K
duced according to E¢33). For a signal polarized alongor () =i p@® (50)
01>
y, one has dz 2¢
P =12 P_ (1)~ P (1)] (443 o pgo
X - - + ) E(L)=i ZPOlL' (51)
Pyr)=i/N2[P_(r)+P,(r)]. (44b  The total power of the diffracted beam is
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_c8C ,_ SLPkac (4)2 N i
ISig_Szn|5(L)| - 8sn |P01| ' (52) 119//2% 5 :g 11%
o Kk
We have made the rather crude approximation of plane % 3 £ }—fj
waves. In Appendix B, we develop a rigorous expression that gg 2 E
is able to take into account the real shape of the beams, for 12 £ F
instance the crossing of Gaussian beams. fg 0 | 1‘5
In the theoretical spectra, we plBtsi;= V14 as a func- 3 . S '
tion of the parameters of interest o1& N & & & I
NO A
_ SC @ R e o
Psig= KnL ﬁ“:)Ol . (53 P e - Lo
o & - : A e sn
Finally the finite width of the exciting laser is taken into 72 & 2 thom
account by convoluting a gaussian profile with the signal sz g; e
intensityl sjg. This Gaussian line shape depends on the laser 5, & 21‘[3/2 (F,)
properties and is measured experimentally. n £ 1 J=N-1/2
DFWM signals will be calculated using E¢54) in any ¢
range of saturation in order to interpret the NO spectra of ,
paper I1[1]. IL,,, (F))
J=N+1/2
ll. THE NO MOLECULE FIG. 5. Energy level diagram of thé 25 *-X2II electronic

transition of NO. Twelve branches are defined by the parity-
The model presented here is applied to the particular casgssigned sublevels in tHé&,, andIl,;, spin components.
of NO, and is validated in flame environmelitge paper I,
Ref.[1]). The calculations developed in the previous section B. Dipole moment description
are not restricted to NO. The ap_pllcatu_)n to other m(_)lecules The one-photon transition probability betwek®) and
of interest such as OH and CH is straightforward, since thefm is commonly defined as
electronic transition involved is also 2 -I1 one[36].
In this section, spgctroscoplc properties r_elatlve to NQ ares, ;= |<na3a||#(l)HnﬁJﬁ>|2: |Ma3|2=(Re)2|(0a|v,3>|23i5,
recalled. The transition moments are detailed according to
the structure of they-system. The collisional widths are fur- (54)
ther simplified using the data from literature and the dynaml—also called molecular line strengtf2s]. In the Born-

cal conditions relevant to our experimental conditions. We ) L )
Oppenheimer approximatioly,,; is expressed as the prod-

assume that excited electronic states are not initially popu- 5
lated whatever the temperature. All the following spectra aréJCt of the Franck-Condon factof(sva|vﬁ>| with the square

relevant to these NO data and the saturation effects observ&%& tr:je elfectror;g tra_?;!t'ﬂn m;)merﬁt_e arlld W'tm tZe thnI-
on peculiar sets of line doubletmain and satellite ondon factorS,z. This last factor is also called the rota-

tional line strengtH40Q]. It is calculated with Earls’s values
[41] and derived in Tables 5 and 8 §24]. We treat the
A. Spectroscopy coupling of angular momentum with spin and rotation as an

) . , . >
The 23 -2IT electronic system of NO is composedRifQ, intermediate Hund’s cas@—b in the “II state[36)].

andR branches. The spin-orbit coupling further decomposes TABLE I. Main and satellite transition$™A ; of the y system
the spectrum into two series of components corresponding tg; \ 5 origir;ating fromyJ J
F; rotational sublevels with=1,2[36-38,20,24 The struc- a

ture of the NOy-system is illustrated in Fig. 5 and in Table Main Satellite 3y J

I. The line IabelingANAJij (i=1,2) is conventiondl36] and ¢

fully determines the type of transition. P, PQ12 Ja—1 Ja
In opposition to OH and CH, the main and satellite lines Q, Qp,, Ja J,—1

are nearly superimposed in N[39]. Therefore, each rota- QQ, CRy, Ja J.+1

tional line is a so-called\ doublet that can experience a "R, RQ. J.+1 Ja

particular type of coupling under strong-field excitation. NO °P, J.—1

is a characteristic molecule since the splitting between  Pp, J,—1

the |b) and |c) levels is very small in theS state RR, J.+1

(<0.01 cm!) and produces coupling effects evident even SRy, J+1

in moderate conditions of saturation.
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If we consider the (0-0) band of the-X system of NO, RFET, Q,, andA®S that label respectively the rotational
the known values areRe=1.56x10 3% C m and energy transfer rate, the quenching rate and the Einstein co-
[(valvp)|?=0.167. TheSJaB values of NO are calculated ac- efficient for spontaneous emission from tHe) level
cording to[41,36,24 for the main and satellite lines. [45,46.. We also need to definB.", Qg,, andAf; as

We define the so-called Rabi frequenéy,; of the state-to-state energy transfer rates frag to |3).

|a)—|B) transition as
I'a(k=0)= REET,

o _lmallEl s
@B~ he (59) Tp(k=0)=R™+Q,+ A
which becomes 0O,0(k=0)=Qap+Ayp(k=0),
Rel(v,|v ) (S)5) Y E| O ap(k>0)=Azp(K),
Q5= he . (56)

whereA (k)= (— 1)’ K IAS 23+ 1){ o 0 % } [47)

We then define a vibronic Rabi frequen€y,;, such as
Op(k=0)=RfE,

Qop=Quin(Shp) Y2 (57)
O,(k>0)=0.
with bc(k>0)
R E Let us note that Zeeman orientation is partially transferred
QO .b:M cem L. (58) by radiative processes between electronic levels whereas in-
v hc elastic collisional transfer cannot preserve significantly ori-

) . o ) entation. The velocity changing collisions could preserve ori-
ThIS furtherJdecomposmor).con3|sts in separating the rotaantation but were disregarded in the present treatifwesit
tional partS,; of the transition moment in order to have a T s related to the homogeneous half width at half maxi-
smglg wpromc Rabi frequency for each NO band. Hence, thenym (HWHM) of a dipolar transition betweeim) and|b).
electric field can be expressed as a functior)q, accord-  The temperature and pressure dependencE,gfis calcu-

ing to the above NO data such as lated for NO ag 43,44
|E|=Q,ip*X6.3x10" V/m. (59 1 295 0.79 295 0.75
Iap(k)= 5[0.75{ 7) 0.3+ O.585< T) 0.7}
It is now equivalent to plotting the spectra as a function of
Q.i, or E. Therefore, in the following and for sake of sim- xXP om-!

plicity, only Q,;, is scaled on theX axis in the different
figures. The collisional linewidths are detailed in the nextfor a mixture of colliders of 30% kD and 70% N, whereT
section prior to undertaking some example of calculation. s the temperature in Kelvin arfd the pressure in atm.
In the X IT and theAZ2S states, the rotational energy
C. Collisional data transfer data for NO were available mainly at room tempera-
The collisional parameters required in the model are deture [49-51. We have extrapolated the tabulated value for
fined in Eqs.(34). We shall make the following assumptions the ground state in flame conditiofi52] to our conditions

on the collisional rates for the excited statg€53]. On the other hand, the quenching
(1) Tap(K), Tac(k), andT (k) are not dependent dq values are derived from Paul and co-workers’ model for
(2) T ap(k) =T 5c(K)>Tpe(K); temperature-dependent quenching of W33, [54,55 and

(3) T',p5(k) is always larger thai" (k) andI"5(k), be- from high-tempe(atgre meas_ureme_[fm]. The well-known .
cause of the dephasing Contributidﬁ$B defined in Eq(35); Spontaneous emission coefficient is tgken from McDermid
(@) Ty(K)=To(K): Tp(k)=Ty(K): O, (K)=0,(k); and Laudenslagdb7]. Therefore, we will make a crude as-

O,(K) =0 (K). sumption thaRRET, Q, andA are not dependent ahand are
Williams et al. have shown that population and reorienta-the following forv =0, T=2000 K, and atmospheric pres-
tion relaxation rates are nearly equal for Iun OH [42]. It ~ SUre:

was shown that rotational level dependencelqf is not
observed in NG43,44). Therefore we assume, whatevdn
NO, that

RRET=RRET=2%10"2 cm?,

Q,=4x10"3 cm?
I, (k>0)=2I" (k=0). (60
£5=1.5x10"* cm L.
In order to find their numerical values, the rates appearing
in Egs. (34) are further expressed in terms of specific rates. In addition, the vibrational energy transfer is assumed
Namely, relaxation rates are decomposed intonegligible compared to the quenching and the rotational en-
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TABLE Il. NO data for collisional relaxation and Doppler X 10°
broadening in cm?, in flame conditions T=2000 K, P
=1 bar), other related data are given through the interchange of
andc. —~
A=
k=0 k>0 5
o
(k) 7.49x10°? 7.49x10°? 8
Iye(K) 4.90x 10?2 4.90x 10?2 o
[ .(k) 2.00x 102 4.00x 102 A~
I'y(K) 2.45<10°2 4.90x10°?
—3 L L . L
Op(K) 2.00<10 0 44090 44100 44110 44120
Doppler (HWHM) 0.129 o (cm'l)
ForQ1P2(5.5) k=0 k=1 k=2 FIG. 6. Isolated®Q,-branch structure witlisolid line) the per-
_ _ _ turbative model and @) the tensorial model with simplified as-
3 4 4
O () 2.60x 10_3 1.50¢ 10_4 141X 10_4 sumptions:I' (k) =T, (k) =T",5(k),Vk, in theyyyy configuration
Oac(k) 2.58<10°°  1.38x10°"  1.34x10 from J=1.5 to J=85 with Q,,=10"3, P=1 bar, and T

=2000 K.

ergy transfer processd&8]. Effects arising from velocity A. Low-field limit: comparison with the perturbative model
changing collisions are not treated here, since they were not for an isolated line
observed for NO. . .

From these rates and the previous assumptions, the fina.Whlle the perturbative model has been successfully ap-

numerical data introduced in the model are given in Table 1P led to the low-field limit in DFWM spectroscopy, our
for 2000 K and atmospheric pressure. model concerns the whole range between no-saturation and

high-saturation regimes. Let us first demonstrate that both
models are equivalent in the low-field limit.

Some simplifications are done to compare the spectral line
shapes obtained in the low-field regime. As in our previous
Most of the calculations assume atmospheric pressure, seatment$19,20, we setl’,(k) =T",(k) =T',5(k), whatever
temperature of 2000 K, and a constant total number densitlg. This assumption means that we neglect the pure dephasing
N. In these conditions, Doppler broadening is equal to 0.129ates and the multipole dependence of collisional linewidths.
cm ' (HWHM). A doublet of line composed ofQ, and  Moreover, the transfer raté(k) and the spontaneous emis-

Qp,, will be called aQ;P,; doublet for sake of simplicity. ~Sion are set to zero.

The full denomination is defined in Table | and is illustrated ~ In this way, the present model is compared to our previ-

in Fig. 5. All other doublets are labeled in the same way inous perturbative treatment in Fig. 6 in whiBlyq is given by

the following. Eq. (53). The comparison is done for an isola’?@@z-branch
Saturation effects will be studied in most cases assuminin the yyyy polarization and the two profiles are in quite

equal field amplitudes of the exciting beams, thatBis good agreement withd,;,=10"3.

IV. SATURATION BEHAVIOR

=E with i=1,2,3. Let us define a line amplitude ratR® by

In Sec. IV A, we first compare the characteristics of the . .
present model to previous results obtained in the weak-field _ PsiglyxyX) a _ Pgiglyxxy)
limit, using perturbative theory, for isolated lines. A simpli- YXyx ngx(yyyy) yxxy Pgig)Yyyyy)

fication of the input collisional parameters is done in this
section in order to match the assumptions of the previous
calculation[20] that disregards the multipole nature of relax- These ratios correspond to the ratioR at line maximum
ation and dephasing rates. in crossed-polarization configurations oueg}gx in the all-

In Sec. IV B, the leve|c) is again disregarde(Fig. 4 to  parallel case. They are plotted in Figgaj7and(b) for P and
study the saturation features of isolated lines that may b€ lines, respectively. The analytical ratios of Benetsal.
either main or satellite ones as listed in Table I. We considef20] are plotted in Fig. 7, case A. The case B is calculated
here the complete collisional description of Sec. Il C. Thewith our computed ratios and is in good agreement with case
influence of the Zeeman structure and of unequal pump bea. The line amplitude calculated from our model is therefore
intensity on the saturation process will be described in detailtully consistent with previous analytical description of

In Sec. IV C, the rotational line coupling betwefdy) and  DFWM signal intensity performed in the perturbative limit.
|c) levels is fully accounted for, in order to observe the ad- These line amplitude ratios depend only on the geometri-
ditional distortion of line profile and intensities resulting cal factors in case A and B0,2§. The R(J) line ratio is
from this latter phenomenon. The effect of this line mixing found equal to the ratio oP(J+1) line and thus is not
resulting from strong-field excitation was not properly takenconsidered here. If the only transfer processes occurring be-
into account in previous works. tween|b) and|a) are that induced by the laser, the geometri-
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ﬂ B C lg TABLE lll. Saturation thresholdS,, and other parameters rela-
1.0 YXYXYYYY I tives to saturation of isolate8P(5.5), 2Q,(5.5), andRR;(5.5)
VYIYYYY °c ¢ lines for homogeneous distribution of the beam amplitudes and po-
N larization.
m HE g W 8@ B 8 8 B =B
'%0-5 B I M Sap=1 Dip appearance
@ e o 6 & ¢ 0o o @ : g L (S;b)llz Qaabt Qvib Sab
. . g e ¢ O 0 e 00 0
00 ° PP,(5.5) 1.81 0.02 0.2 87
2345 ? 78910 12345678910 QQ1(5_5) 2.65 0.015 0.12 67
@ ®) RR,(5.5) 1.92 0.02 0.2 97
FIG. 7. Analytical and computed line-amplitude ratios(af P
and (b) Q branches with),;,=10"2, P=1 bar, andT=2000 K. )
A: calculated with analytical formula of20]; B: computed with S - Qb 62
tensorial model and simplified assumptiond:,(k)=1",(k) ab_f‘arab' (62)

=TI",p(k),Yk; C: computed with tensorial model and collisional
assumptions of Table II. From this expression, it is clear that the degree of saturation

. . _ depends on the type of transition and on the collisional en-
cal factors involved in our expressions are the same for thesg.onment. We choose to define the saturation threshold by

two types of line. _ . sat_ysat [@d — T T
In Fig. 7, the computed ratios obtained using the colli- Sab™ 1, Which comresponds @ ,=0*Sz,= VI'al'ap and

sional data of Table I{case @ are also shown for compari- h

. : cyl',I’
son. The particular effect of the dephasing rate and sat:—aab_ (63)
k-dependence included in our complete relaxation-rates | apl

model tends to change the findl values. Since in cases A
and B, disorienting collisions are neglected, the amplitud R 1 Sl ) :
ratios R, which depend on geometrical factors, do not de-"?md Ry Il_nes of NO vv_|thJ—5.5._For the Q.1(5'5) |sola_1te_d

pend on anyl',, values. In case C, we have introduced theIlne, the line-broadening behavior of the line shape is illus-

disorienting collisions that are seen to strongly change thgsaeg in_Fti_)g. 8 with appearance of a dip betwég,=0.1
vib™ V-

efficiency of signal generation, especially in crossed- : . —
polarization cases. The influence of anisotropic transfer is /¢cording to the previous definition of the threshold,

also playing a role but of minor importan¢see Appendixes saturation becomes visible on the spectra as soon as the Rabi

A and B). This tendency is of crucial importance in Somefrequency becomes larger than the relaxation rates.
cases even at low energy threshol@5-27. Finally, one
advantage of the tensorial approach is to take properly into
account the effect of disorientation through collisions, in the The FDFWM polarizatiorPg is plotted at line maximum
spectral line shapes. (Pg”igx) and not at line center as done usually. The logarith-
mic plot of Fig. 9 exhibits a cubic field dependence below
0,i,=0.01[20], as predicted by the perturbative theory. The
signal dependence versu€),;,, is changing between

&Some values of)**are given in Table Ill for thé’P,, Q,,

2. Line intensity in various branches

B. Saturation of an isolated line

The properties of isolated lineGnain or satellit¢ are
studied here as a function of several parameters such as ro-

. - - 1500
tational quantum number, field strength, Zeeman multiplic- Qu
ity, and different relative amplitudes of the beams. Some of 5
these effects were already studied in the pa2{24], but it is Y

the first time to our knowledge that both polarization and 1000
saturation are studied thoroughly for the different NO lines §
listed in Table I. Let us note that the cases of OH and CH, £
although not detailed in the present paper, can be studied & 5001
straightforwardly from our model. The data of Table Il are p_“%)

used in all the following calculations and particularly the 2 .
0 0

k-dependent linewidths including dephasing contributions. X , e ,
44196 44198 44200 44202
1. Rabi broadening of rotational lines (cm™)

The so-called Rabi frequendy,y, of thee|a>—>|b) transi- FIG. 8. Line-shape behavior of an isolated m&@,(5.5) line
tion interacting with the total electric field was introduced  with (,,,=0.1 to 5 in theyyyy configuration and witlP=1 bar,
in Sec. Il B. T=2000 K, and collisional data of Table II; for that particular
More precisely, to quantify the saturation threshold of aline, Q%3=0.015, Es,=9.40x 10° V/Im, and | ;,=58 kWi/cn? at
rovibrational transition, a saturation parameter is commonlsaturation threshold. However, the dip appears atfoyg=0.12
defined a§24,22 only, i.e., forl>100 ;.
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10°F caakaatil 24 aadk 4 andyxxy configurations. In Fig. 1®), the RR, line becomes
Aﬁw stronger than the®Q,; one, beyondQ,;,=0.3, indicating
@102' * that, in theyxyx polarization, saturation has a more pro-
g 0 5 ] nounced effect on th€Q,-branch relative t6'R; one. °Q;
P line always dominates’P; line in all cases. In the/xxy
S 10% Vyyy ] configuration[Fig. 10c)], "R, is always smaller tha?Q,
w + P (5.5) whateverQ ;, .
%_‘flO‘- s %Q65)|] The efficiencyy is defined as
10% = x RR1 4.5 |4 I
. - - .0 3 n=—2 where |,x|E{|?. (64)
10 10 10 10 10 2 I,

Qi (le) i

FIG. 9. Evolution of the signal at line maximum for isolated ~ As shown in Figs. 1@-f), the efficiency at line maxi-
PP,(5.5), °Q(5.5), andRR,(5.5) lines inyyyy configuration ~ mum (7ms) grows quadratically to reach a maximum value
with P=1 bar,T=2000 K, and collisional data of Table Il. As lying around(),;,=0.1 for all lines. Therefore, the interme-
expected, the slope of all curves is 3 in logarithmic scale, below theliate range of saturation is the laser energy range providing
saturation limit. optimum sensitivity for concentration measurements, as

demonstrated by former work$2,24,59. The maximum ef-
Q,,=0.01 and Q,,=1, around theQs* value, already ficiency is always higher for th@-branch, than for th® and
given in Table lll, thus defining what we will call an inter- R ones, and its absolute value decreases fygmy to yxyx
mediate range. Abov&,,=1, the strong saturation condi- andyxxy configurations. Nevertheless, as we will see later
tion gives a plateau. on, crossed-polarization cases could become advantageous

The PP;, 9Q,, andRR, line amplitudes are presented in since they offer the possibility to reduce the scattered light
Figs. 1@a—0 as a function of,;, and for theyyyy, yxyx, on the signal path.

3

vy e aara A N yYyyy
s+ P (55) a® “a s *p (55)
21000 ! A X RERK A A 10
a 2 %Q (55) K xﬁ x i A 32;‘2 A, & Q55
S & "R (5.5 AAAA x,gm é a & "R (5.5
2 A {A‘A 3 a a
& 500 N gl .
Bs . g .
a a b3
A “‘ a x}A *::A
O Hx & knnt £ % ol x & .
@) 109
= P55 . “ I ACK) FIG. 10. Evolution(a,b,0 of
—_ o) gogR U0 0 @ a® | G. 10. Ev
2 ° QG5 L @ a o %Q(55) the signal at line maximum and
gSOO = 'R (5.5 B g = = "R (5.5) (d,e,h of the efficiencyy at line
-g nd"". _go.s oo maximum as a function of),
= 5‘ w2 o omE for isolated PP,(5.5), 2Q,(5.5),
Eﬁq%“ aft g & andRR,(5.5) lines in different po-
oy o s larization configurations withP
0 — i " 00 e 'l...“ s =1 bar, T=2000 K, and colli-
Eb;' e : ('e;' nes sional data of Table II.
XXy od‘fm 00 000 ¢ 03 & XXy
A400 . l’P1 (5.5) o° R oo . l’l;,1 (5.5)
2 o Q55 ° P ) 02 o Q65
g 8 RR1 (5.5 © g™ ee eee o g ) ° ® RR1 (5.5
o e m.o"’ .
o0 o & E °
M N 01 ° o
%ﬂm o é .3@ [
) o '5 bt aoo
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FIG. 13. Evolution of ratioRR at line maximum as a function of
Q,;, for isolated PP;(5.5) and for °Q,(5.5) lines and the same
conditions as Fig. 10.

been used to calculate the rati®s of Fig. 7(c). We can
notice that at low intensity, th@ lines always give the larg-
est signals as well when it is a main lin€Q@,-°P,,) as
when it is a satellite lineR;- RQ,,). In this case, a crossing
appears fod=10.5 in theyxyxandyxxy configurations and
should appear abové=11.5 in theyyyy case. At higher

FIG. 11. Evolution of the signal at line maximum as a function saturation (),;,=0.2), the difference between the main and

of J for yyyy polarization configuration fof),,=10"2 and Q;,
=0.2; upper graph corresponds to the main [#@; and its satel-
lite ®P,; and lower graph to the main IinBR; and its satellite
RQ,, in the same conditions as Fig. 10.

The °Q,, °P,;, RR;, and RQ,, branches are shown in

the satellite line is reduced. For tf&®, and RQ,, lines, fR;
line passes over its satellite lif&,; at J=2.5 in theyxyx
case. The prediction of these branches’ behaviors will be
particularly useful to interpret the experimental spectra of
NO [V. Krugeret al,, paper II.

As previously demonstrated in Sec. IV[20,26-2§, all

Figs. 11 and 12 for the all-parallel and crossed-polarizedhe information regarding the experimental polarization ge-
cases, respectively. The behavior of main and satellite lin@metry is included in the geometrical factors of the resonant

intensity is calculated as a function dfor Q=102 and

four-wave-mixing response. The ratiés of Eq. (62) that

0.2. In the low-field ||m|t, these line amplitudes have alreadydirecﬂy reflect these geometrica' factors are p|0tted as a

X10? Yy
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FIG. 12. Same figure as Fig. 11 fgxyx andyxxy polarization.

function of Q,;, in Fig. 13 for °P,(5.5) and®Q,(5.5) lines.

As expected from the perturbation thed0], R ratios do

not depend on laser intensity as far as the low-field approxi-
mation is valid ,;,<0.01). In the intermediate range
(0.01<Q,y<0.1), the saturation occurs differently for the
different polarization configurations and all ratios vary. It
means that although each Zeeman transition has its own tran-
sition probability that is at the origin of the geometrical fac-
tors in the low-field limit[24—27), the saturation tends to
erase this difference above a certain threshold.

A remarkable feature is the occurrence of a new plateau
of R values in the high-saturation range. New factors can be
derived from the high-field plateau’s value. The line intensity
derivation in the saturation limit could be greatly simplified
using these factors. In particular, it may be quite interesting
to study the evolution of that plateau as a function oflfhe
values and more particularly of the amplitude of the disori-
enting collisions. Let us notice also that the crossed-
polarization arrangements are more advantageous in the
high-field limit since R values become larger as already
mentioned in21].

Finally, the utility of our model is demonstrated when
exact calculation of the intensity is required, especially in the
intermediate range. In this case, analytical expressions pre-
viously published 11,60 are not anymore appropriate.
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-g nu‘“ ° (o)} FIG. 15. Line-shape behavior vs ground rotational lel/r an
~—'200 a o oo isolated main®Q; line from J=1.5 to J=7.5 with Q,;,=0.5 and
%_“%" 0 @ <><><>°"°°°° the same conditions as Fig. 10; we use a fixed vaSilg
a 83‘} =S2;>°VJ in this particular case. Dashed curve referslt5.5.
o e
(4
0bo. ooom 25 2 - 5 . ing. Therefore, theyxxy configuration, with attenuation of
10° 10° 10° 10 10 ) : : : )
Q. (cni the y-polarized probe beam 2, is preferred since only coher
vibl

ence gratings are generated.

FIG. 14. Evolution ofPgg* as a function of(),;,, for isolated
QQ,(5.5) line: in theyxyx configuration(a) and in theyxxy con-
figuration (b); A: E;=E,=Eg; B: E,=E;,E3=E;/3.6; C: E, The saturation of FDFWM signal intensity is the result of
=E,/3.6E3=E;. Q. is the vibronic Rabi frequency of beam 1. two competing effects: the line strength of the multiplicity
expressed by the factcﬁigb [Eqg. (55)] and the individual
amplitude of each Zeeman component, the average value of
We have performed numerical calculations of the signalyhich decreases like2J+1 when the number of compo-

amplitudePs;q for several distributions of the incident laser pents increase@s it can be seen from the value of 3-j coef-
energy over the three input beams. To be consistent with o4{cients.

experimental conditions, we assume that two beams have the Tne effect of thevi-level degeneracy is illustrated in Fig.

same field amplitude whereas tpolarized beam is attenu- 15 as a function of, for (,;,=0.5. In order to observe the

ated by a factor of 3.6, this value corresponding to the lasegffect of the change of 3-j coefficients withseparately, we

attenuation used if\V. Krugeret al, paper Il . choose to keefs), fixed in the calculation of the line pro-
Figure 14 illustrates the evolution of the signal amplitudejog [Eq. (55)]. In this case(Fig. 15, the line profile be-

at line maximum of the®Qy(5.5) isolated line in different ,mes narrower whed increases, indicating that saturation

polarization arrangements and energy distributions. The di§g atenuated by the increasing number of Zeeman sublevels.

tribution is uniform in the A case H;=E,=E;). The In Fig. 16, the signal intensity is normalized at line maxi-
DFWM signal is always more efficient in this case, in good ,um forJ=1.5 andJ=11.5. In Fig. 16a), exact calculation

agreement with the study of Ai and KniZd] in phase con- ot the Jine profile shows that the saturation is almost the

jugate geometry. _ same whateved for the main®Q, lines. The change a8,
The pump b_eam 3 has been attenu_ate(_j In case B ar_wd tE?roughly following a (2+1)" law with a largem value for
probe beam 2 in case C. In both polarization conflguratlons',nain than for satellite line§20]. Figure 16b) shows that
the signal is only slightly reduced in the intermediate satura- '
tion regime, when the attenuated incoming beam is the one
that isy polarized, like the signajcase B foryxyx [Fig. 10
14(a)] and case C foyxxy [Fig. 14b)]}. On the opposite,
attenuation of a-polarized beam strongly reduces the signal.
Let us note that Fig. 14 is plotted as a function of the vi-
bronic Rabi frequency of beam 1.
This result is extremely interesting since, for obvious
problems of noise rejection, the best experimental situation f

consists in attenuating the exciting beam that is polarized 00

4. Influence of Zeeman multiplicity

3. Unequal beam intensity

——J=15
QA | A Py

4

S (nognalized)
&

like the signal beam. (a) %_(g(cm-l) ! -zb) %_Og(cm")
However, as we will see in the experimental artiflé

Krugeret al, paper Il, the intensity cannot be increased up  FIG. 16. Normalized line-shape behavior ¥or main °Q, (a)

to the high-saturation regime, in tlyxyx case, because the and satellite®P,, (b) lines forJ=1.5 andJ=11.5 withQ,;,=0.3

population grating induces a spurious parasitic thermal gratand the same conditions as Fig. 10.
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FIG. 18. Line-shape behavior forQ,P,(5.5) (& and
R;Q,(5.5) (b) doublets withQ,;,=0.2, w,,=0.01 cn'! (solid
FIG. 17. Line-shape behavior withQ,;,=0.2, wy, line) and w,,=0.1 cm ! (dashed ling
=0.015 cm?! and the same conditions as Fig. 10, for the
Q,P,(5.5) doublet(A), its singlet component8Q,(5.5) (B) and

Qp,,(5.5) (C) and the complex sum of these two compongits ~ PI€t. The line strength factos;, andS; are similar for the

components of theR;Q,(5.5) doublet whereas the main
component of theQ;P,,(5.5) doublet is almost two times
stronger than the satellite one, thus leading to different fea-
tures[24]. We choose to plot these doublets in theyy

saturation of satellitd’P,, lines decreases whehincreases,
since S}, increases much less than the 3-j coefficients de

crease. Nevertheless, the effect of rotational degeneracy may - .- ~tion and by setting arbitrarily,.=0.01 cnm* and
be further complicated when main and satellite componentg 1 .1 in Fig. 18. Medium saturatitt))cn is. assumed in this

are coupled by the strong fields as described in the next e withQ.,;,=0.2. The splittingwp, has a definite influ-

section. ence on the final line shape behavior. A largg,
o _ _ _ _ (0.1 cmY) results in an asymmetric profile as it is expected
C. Saturation including rotational line coupling since lines are almost resolvell {,=1",.=0.0749 cml).

Let us remember that a doublet transition involves a mairf\S depicted in Fig. 18, thR;Q,4(5.5) andQ,P,(5.5) dou-
line |a)—|b) and a satellite linéa)— |c). The final behav- blets exhibit opposite asymmetry since theil, /. values
ior of the doublet profile depends on the relative line strengttre different. The highest peak seems to be located on the
of its single components and on the splitting between thengide corresponding to the weakest component. By separating
Whe. real and imaginary parts in the calculation of the complex
In this section, all calculations are performed assuming #0larization, we have seen that the asymmetry is mainly
coupled three} level schemdFig. 4) and the collisional as- Originating from the contributions of the dispersive parts to
sumption of Table Il at 2000 K. The line intensities are de-the line profile. o
rived from the definition(54) and simulations will be pre-  Similarly, the influence of the polarization on the asym-
sented in order to isolate the line mixing effects that couplgmetry is shown in Fig. 19 witlw,.=0.015 cm *. One can
main and satellite components of NO doublets under strong?otice the asymmetry is inverted comparing Rg,(5.5)
field excitation. andQ,P»4(5.5) doublet line shapes for any polarization con-

Peculiar effects of line coupling between main and satelfiguration. The asymmetry is stronger for the crossed-
lite components will be recognized by comparison with linepolarization cases than for the intenggyy one. Opposite
profiles obtained by simply adding the independently calcu@symmetry is observed for thexyx andyxxy cases. While
lated complex amplitudes of the nonlinear polarization ofdoing the calculation, we have seen that it is due to the
nearby transitions.

The Q,P,; doublet is plotted in Fig. 17 in thgyyy po-
larization. The profiles of the two components and of their QP59 — RQ,(5.9
sum are also shown. In the intermediate saturation regime
(9Q,i=0.2), the sum leads to a stronger intensity than the
coupled doublet profile that exhibits a deeper hole. The cou-
pling between the two components reinforces the saturation
process, since the population of the comnijap level is
shared by both transitions. In four-wave-mixing spectros-
copy, many authors use the simple sum of amplitudes to
describe line interferences. This summation is proved to be g !
incorrect in doublet configurations such as that of NO. (@ o(cm’) (b)  o(m’)

FIG. 19. Line-shape behavior forQ;P,(5.5) (& and
R;Q,1(5.5) (b) doublets with€),;,=0.2 andw,,=0.015 cm? in

A typical doublet splitting in NO is 0.015 cit for  the different polarization configurations and the same conditions as
QP,4(5.5) doublet and 0.017 cnt for R;Q,4(5.5) dou-  Fig. 10.

1. Asymmetry and line interferences
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1500 A—T, (02T, (02T, ing different disorienting rate$]" ,(k>0)]. In all cases, the
QpP,(5.5)| B Iy 0T, OFIT, optical dephasing ratd’,; is kept constant. In case A,
I' ,(k>0) is set as twice the population rate of NO like in all
yyyy previous calculations. In case B, disorienting contributions
21000 are canceled by setting  (k>0)=T,(k=0). With yyyy
g andyxyx configurations, the elimination of disorienting col-
.g X lisions results in a small increase of saturation with reduction
N2 of the amplitude and broadening of the line shape. It indi-
2 500 . .
a? Xy cates that Zeem-an coher.e.nces participate merrathy in the
saturation of optical transitions. For tlyexy configuration,
- there is a relatively strong increase of the signal when there
0 ; is no disorientation; this behavior highlights the importance
44199 44200_1 44201 of Zeeman coherences in the polarization gratings formation.
® (cm’)
FIG. 20. Line-shape behavior fo,P,(5.5) doublet with 3. Line intensity versus E and J

O.iy=0.2 in theyyyy, yxyx andyxxy configuration: comparison
of different collisional situations with",=2.00<10"2 cm !, T,
=2.45<10"2 cm ! and other parameters from Table II.

The FDFWM signal polarization and the efficiency at line
maximum are plotted in Fig. 21 as a functionf;, for the
Q1P»1(5.5) andR;Q,4(5.5) doublets. In thg xyx caseFig.
21(a)], the intensities 0fQ;P,;(5.5) andR;Q,4(5.5) dou-
blets are practically identical althoudh Q, andR isolated
lines had different amplitudes in Fig. @). In theyxxy case

ig. 21(c)], the saturated signal is different for the two dou-
One can conclude thaby, wap/suac, and the polariza- blets. However, the tendency is the same in both cases, i.e.,

. ) ¢ . the ratio of line amplitud&, /R, is smaller if line coupling
tion arrangement have a noticeable influence on the couplln% taken into account.

effect when the calc_ulations are performed in the intermedi- The effect of line mixing is further detailed in Fig. 22 as
ate range of saturation. a function ofJ for Q,;,,=0.2. The two components of each
o ) ) ) doublet are shown in Figs. 28 and(b), they are summed in
2. Contributions of orientational relaxation rates Fig. 22c) and coupled in Fig. 22)). The behavior of the
The pure disorienting rates may be quite different dependdoublets amplitudes versusJ is confirming that
ing on the collision partners. Let us notice that in some case$);1P,;/R;Q,; ratio provides a good marker of this coupling
as for helium colliders for example, this rate may increaseeffect as it will be observed experimentally. Krugeret al,,
significantly [42]. paper .
To evaluate the contributions of disorienting collisions, In Fig. 23, the doublet amplitudBg; is calculated as a
the Q,P,4(5.5) doublet profile is plotted in Fig. 20, assum- function of Q,;, at different distance from line center, i.e.,

contribution of the dispersive part of the line profile that is
larger in theyxxy case. The peculiar asymmetry of thexy
line shape has been already observed in the experiment
Kumaret al. [61] in CH.
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EB o ° FIG. 21. Evolution of the sig-
PN — &° P — ¢ S nal at line maximum(a,9 and of
the efficiency» at line maximum
@ (®) (b,d as a function ofQ,;, for
yXxy 5 © 0000 q yXxy _
] I 03 2o GREDL Ry andyy polarise
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@400 L S o= e a@ ° RQ,53) tion configurations and the same
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]
.61000_ . s ) ¢ © -
a a
g - 3 P ¢ u o © : . . .
w (a8 49 . g e is large especially when pure coherence gratings are
Eb.f" o ® NP involved. To our knowledge, it is the first time that
s, . , , , ., , . , , ; ; fi
R e 565 16 suc_h effects are correctly simulated in the strong-field
(© J (d J regime.

The rotational line coupling results in a stronger satura-
FIG. 22. Evolution of the signal at line maximum as a function tjon of NO doublets and this effect is represented correctly
of J for yxyx and yxxy polarization configurations witlyi,  through our calculation. Moreover, a line asymmetry is ob-
.:0'3 In the same conditions as Fig. 10..a:.m8631 and its satel- - go 04 especially in crossed-polarization cases. The asymme-
L'::Z Czﬁ;’ l())'nrenrilsn aF:ﬁ ?:3 d"tesssgﬁgf“gf]atgeéom&iﬁe utm dc_)f try may be reversed according to the polarization pattern.
Q.Psy anpd RO, dou%lets. 2 ezt ' This effect is closely correlated to the strength of the transi-
tion moment and to the spacing between main and satellite
transitions.
with 6=0, 2I',,,and T',,. If =0, the optimum effi- The intermediate domain of saturation is emphasized:
ciency of the process is obtained fér,,=0.15. Larger it has been definitely proved as the most appropriate to
input-laser intensities are required to reach this optimunProvide optimal sensitivity in forward DFWM. In this
condition if the laser frequency is detuned;;,=0.25 if § regime, our treatment is necessary to allow quantitative
=2I",, andQ,;,=0.5 if =5I",,. However, the amplitude measurements. The spatial profile of the laser may be incor-
of the maximum is larger in these cases than withO. porated in the calculation if necessary. Through this
These results are consistent with the calculation of Ai andgpaper, we have discussed the saturation behavior of
Knize in the phase conjugate geomeft#y. FDFWM. However, the model presented here involves
analytical expressions that can be modified to represent

V. CONCLUSION other excitation schemes such as two-color resonant
) four-wave mixing, provided that each transition
Our purpose was to properly take into account thejnteract resonantly with only one laser frequency,

saturation effects in forward DFWM for unresolved a”owing the rotating_wave approximation_ Fina”y, for
doublet lines, with specific polarization of the incoming spectroscopic applications, the multipole nature of our
beams, with the Zeeman structure and the disorientingreatment could be exploited to take into account the
collisions. A model based on irreducible tensor formalisminitial anisotropy existing in the molecular media although
is proposed to solve the density matrix equations. Thet would greatly increase the number of coupled equa-
system is solved in the steady-state approximation usingons [25-27. In paper I, experimental measurements
a numerical matrix inversion. The signal amplitudes andyjj|| be interpreted through the correct calculation of DFWM
line shapes are calculated in detail to study separatelitensity whatever field strength, polarization, and line
the effect of these different assumptions. Thé+2  muyltiplicity.
Zeeman degeneracy has a small effect on the saturated
spectral profiles of the main lines, which are almost
independent onJ, but has a much stronger influence on

satellite lines.

The influence of the disorienting collisions is seen to The authors would like to thank P. H. Renard for his
distort the spectral line shapes and to change significantigssistance in the code development and P Bouchardy for his
the line intensity. The peculiar effect of disorientation technical support during experiments. This work was sup-
has been evidenced in saturating conditions and this effegtorted in part by Direction Gerale de I'Armement.
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APPENDIX A: DETAILED EXPRESSION OF THE EQUATION SET

In this appendix, we present the final expression of the density matrix equation reducedafgr‘gimwd acplé components.
These equations are solved numerically to calculateagbé and acpé components required to obtain the expression of the
DFWM signal polarization. In what follows, we rely on the definitions of symbols already introduced.

. 1 . k" k” . _
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A :i 1 Fb(0)®ac(0)+®bc(o)®ab(o)_ 1
" B[ (23 1)(23cF1) T(0)[T(0)Te(0)~OZ(0)]  (2],+1)2T4(0)
- ®bc(o) (A9)
(23p+1)(23+ D)[TH(0)T'(0)~ OF(0)]
|

The second equation fo;cpg is obtained through the inter- R 1 Py - Koo
change of the indek andc. The notation Im(--) symbol- ER)= 3f 3 f 5 el (RN gk,
izes the imaginary part of a complex quantity. (27) & PPk — ki (85)

APPENDIX B: GENERAL EXPRESSION OF THE . . - . o .
INTEGRAL OVER SPATIAL COORDINATES The integration ork is performed in cylindrical coordinates

, _ . ~around the axiR—r and by using the relation
In this appendix, we demonstrate the rigorous expression

of the diffractec_;l beam for any shape of the incoming beam 1 QiKx

and of the active volume. Through the knowledge of the _J dK=i sgr(x) (B6)
incoming beams, it is possible to exprﬂi) in any point mJep K

and to calculatefP(F) according to Eq.(43). We use the

spatial Fourier decomposition éfand P one obtains

kﬁ f eikn\ﬁff\+efikn|liff|

€(F)=fg(I2)e”‘“Fd3IZ, P(F)sz(IZ)e“‘"Fd"’IZ, ER)=7 e
me Jv —r

(B1)

P(ryd3. (B7)

Assuming thatR>r, that is the FraunHter approximation

&(R) = JE(F)e*”z'Fd?'F, rf=ri+r2<\R, one has|R—r|=R—r-R/R. We ignore

(2m)® the counterpropagating wave termen’*"R="! since it is not
phase matched and not observable in the forward direction,

R 1 o thus one obtains
P(k)= f P(r)e 'k rdsr. (B2)
( (2m)° ( 2
ER) =7 —— ReiknRJ P(ryek RRd®. (B
The wave equation Eq45) leads to e v

k2 This is the classical result, in other words, the field radiated

N N nw
(K= k) (k) = ;np(k) with kn=-—. (B3 atinfinity in theR direction is the Fourier transform 6¥(r)
with the wave vectoknlil R. At this step of the calculation,
We have assumed that the index of refractiomisvery- W€ haye to palculgte_the t_otal energy in the diffraction beam.
where for the final energy of the diffracted beam. As far as! "€ Signal intensity is written as the flux of energy by sur-
we measure the total intensity of the diffracted beam, thid@ce unit and is expressed as
assumption has no importance.

The Fourier transform of(k) is introduced in Eq(B3) I(R)= §|5( R)[2 (B9)
to give 2n '
iRtaae To provide the total signal intensity, EB9) is further in-
e dor. (B4)  tegrated over the surface of the detecBy, which corre-
sponds to a particular solid angle for signal emission

&(K)

&

1K JP(F)
(27)% k2= K2

We search for the observed signal field in the phase-matched

direction, far from the interaction volume. L&=(X,Y,Z2) |Sig:f f [(R)dXdY. (B10)
be the local point of observation. The fief(iﬁ) emitted far Sp

from the interaction volume is obtained using E31) and

(B4) It is developed as
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FORWARD DEGENERATE FOUR-WAVE. .. .I. ...
daxdy

I kic J J'
S9 30m2n) Jsy| R?
) X
X J’ exp{—lkn

v J’ J;l
32 en

R
2
+Kzz)]7?(x,y,z)dxdyd%

P(r)drd

|

dKXde<ff exd —i(Kyx+Kyy
\%

, (B11)

with X/R=K, /k,, Y/R=K,/k, and Z/R=K,/k, and K?
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2
krc

327%en

L 2
f JerXJrKny(()?J’ ei(anz)ZdXdyd% . (812)
S 0

I Sig—

JJdKXdeJdKzé(Kz—\/knz—sz—Kyz)
Q

X

Since S>\?, the diffraction angle) is small andK,,K,
<k, , then we simply hav&,=k,, leading to

2
ksc

327%en

I'sig= |Pg)41)|L2f Lng(KX KyLZdK,dK, .
(B13)

Fs is the two-dimensional Fourier transform of the function

2 2_1,2 ; H i
+Ky+K;=k,. Equation(B11) is the final result. For any gy y)=1 within the surfaceSand zero outside, then apply-
shape of the incoming beams and of the active volume, ONfg the Parseval theorem

can calculateP(x,y,z) in any pointf and then evaluate nu-

merically the five integrals, by choosing the solid angle

around the phase-matched directl?m but avoiding the di-

rections of the incident beams. (B14)
We will now show that Eq(B11) can be simplified to Eq.

(53) if we use the same approximation as in the main textjndeed sinceF (K, ,K,) is nonzero only for a very small

i.e., if we assume plane waves and a cylindrical active areaolid angle, the integration can be extended to the full space
Taking nowz alongk, with k,=k, and using Eq(46), one

J JF@(KX,Ky)dKXde=4w2JJs2(x,y)dxdy

=47°S.

has

and Eq.(B13) gives the same expression as E§3) ob-
tained by the simple method.
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