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Forward degenerate four-wave-mixing spectra of NO in the strong-field
regime including polarization, line coupling, and multipole effects. I. Theory

V. Krüger,1 M. Dumont,2 S. Le Boiteux,3 Y. J. Picard,1 F. Chaussard,1 and B. Attal-Trétout1,*
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In the present paper, we investigate the saturation mechanism of FDFWM~forward degenerate four-wave-
mixing! spectra, observed with different polarizations of the input beams, line coupling, and Doppler effect.
Our theoretical approach uses a nonperturbative resolution of the density matrix equations, decomposed on the
irreducible tensor basis. This formalism greatly simplifies analytical expressions and allows for a correct
treatment of magnetic sublevels structure in a three-J level system. Systematic calculations of the FDFWM
signal for specific NO lines are performed to characterize intensities and line shapes as a function of saturation.
Relative intensities exhibit strong changes in the intermediate regime of saturation further supporting the
necessity for using such a complete model. Under saturating conditions, line coupling is shown to distort the
spectra, according to the type of transition and the polarization configuration. This effect is observed in the
following paper@V. Krüger et al., paper II, Phys. Rev. A64, 012717~2001!#, where saturated experimental
spectra of NO are presented and interpreted for two polarization configurations of interest for diagnostic
purposes.
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I. INTRODUCTION

Degenerate four-wave-mixing~DFWM! spectroscopy is a
widely investigated optical method, used as a diagnostic
in reactive media. Theoretical models are required to und
stand the physical mechanisms involved, to evaluate the
sitivity of DFWM measurements and to interpret the expe
mental results. Quantitative concentration or temperatur
reactive species are usually measured by fitting the exp
mental spectrum with the corresponding theoretical simu
tion. However, under saturation conditions, quantitative m
surements are difficult to obtain because the rela
intensities of the spectral lines are strongly modified@1#. On
the other hand, this behavior can be further exploited to
hance new applications of the DFWM technique, introduc
a need for accurate simulation of saturated signal.

Following these goals, different models have been de
oped to properly reproduce the DFWM line shape and int
sity under saturated conditions. Abrams and Lind@2,3# are
among the first to present a model for saturation of DFW
process in absorbing medium. Their model relies on the a
lytical resolution of the wave equation in the phase conjug
scheme, restricted to the steady-state and undepleted s
pump beams. They have focused on the study of the si
reflectivity for different conditions of saturation, absorptio
and detuning, in order to optimize the conjugated wave. T
basic approach has been used in many other developm
such as the recent model of Ai and Knize@4#. These authors
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have numerically solved the wave equation involving ar
trary intensities of the incident beams. They have dem
strated that optimum efficiency is achieved using equal
tensities for the three beams. They have also treated the
of strong absorption and spectral line detuning, yielding
the same conclusions as Abrams and Lind in terms of o
mum efficiency of the process.

In a different manner, Ducloy and co-workers@5,6# have
developed a theory for DFWM, including two strong pum
beams and the Doppler effect. They have solved in two w
the density matrix equation by a perturbative developmen
the weak probe interaction. First, they have considere
three-J level atomic system. A numerical solution of the de
sity matrix equations is needed in this case. Second, an
lytical expression is derived assuming a pair of two-lev
transitions on which each pump beam saturates. The re
are found to be similar in line shape and intensity for eith
resolution whatever the saturating pump.

Using the dressed-atom formalism, Grynberget al. @7,8#
have analytically treated the case of one saturating quant
pump beam in a Doppler-broadened two-level state, whe
the weak beams are classically treated. Their results are c
pared with the preceding ones of Ducloy and give a go
agreement, with simpler analytical formulas.

Focusing on the effect of laser bandwidth in satura
media, Ewart and co-workers@9–11# have established a
model for two broad strong pumps and a weak narrow pr
in a phase conjugate arrangement. They have resolved
time-dependent density matrix equation using a perturba
formalism on a two-level system. The problem is then si
plified in a reduced number of terms. A spectral line sha
including Doppler and finite bandwidth effects is obtain
and the variation of efficiency is studied.
ic
©2001 The American Physical Society16-1
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V. KRÜGER et al. PHYSICAL REVIEW A 64 012716
Using a different approach, Luchtet al. have investigated
the physics of the DFWM process by direct numerical in
gration of the time- and space-dependent density ma
equations@12# using two-level representation. Their calcul
tions assume a phase conjugate geometry and include
strong beams, as well as the Doppler effect. Saturated
files obtained in a jet of NO@12# and in a flame for OH@13#
have validated the calculated line shape in the saturation
gime. Their calculations may account for short-pulse effe
@14#, closely-spaced resonances without coupling@15#, polar-
ization spectroscopy@16#, and recently the forward geometr
for DFWM @17#. The effects of temperature@18# and short-
pulse have been discussed in the high-field limit, and app
to concentration measurements in flames and plasmas.
recent comparison of the phase conjugate and forward ph
matched geometries has shown that the signal is stronge
the forward case in condition of intermediate saturation a
was previously demonstrated for the low-field limit@19,20#.
A more recent paper dealing with phase conjugate geom
tends to include theM-level degeneracy in the couplin
scheme up to 22 levels but still disregarding reorientat
effects@21#.

Focusing on the experimental conditions of flame en
ronments, two models were proposed for the DFWM f
ward geometry. In the first one, Attal-Tre´tout et al. @22# have
applied the radiative renormalization method of Blumet al.
@23# to the DFWM process. Analytical solutions of densi
matrix equations were obtained for a three-level system
teracting with two strong fields and crossed-polarizat
scheme, which is important in the degenerate configurat
The Doppler effect is also included. A parametric study w
achieved to enhance experimental feasibility. In a sec
model, Robertsonet al. @24# describe the DFWM interaction
in the high-field limit with a fully quantified system. It in
cludes line coupling and the Doppler effect in different p
larization configurations. It demonstrates that line coupling
specially relevant for NO DFWM spectra. The two previo
models were applied to OH and NO, with due account
high intensity of the beams in flame environment. Althou
these simulations cover the whole saturation regime, so
physical characteristics of the lines were not completely
covered. Therefore, we present here a new model that
properly reproduce the line coupling induced by the th
strong incident fields as well as the different polarizati
schemes of the beams.

Our approach combines analytical resolution of the d
sity matrix equations and irreducible tensor formalism in
der to properly restore the saturation effects in a FDFW
~forward degenerate four-wave-mixing! process. We do ac
count for the polarization of each incident field, theM-level
degeneracy, and the multipole nature of the collisional
rameters. In addition, the line mixing of unresolved ro
tional structures is taken into account by assuming a threJ
level scheme for each line doublet~main line and its satel-
lite!.

II. THEORY

Up to now in DFWM spectroscopy, the development
density matrix over irreducible tensor operators has o
01271
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been applied to perturbative models@25–28#, restricting
them to the weak-field limit. This development, applied
the resolution of density matrix equations, exploits inher
symmetries of the system. Line shape function, molecu
line strength as well as polarization factors are naturally
cluded in the system. Yet, it amplifies the physical insig
of the problem and allows for calculations in the strong-fie
regime.

It is well known that the interaction of the three wav
with the molecular system generates in the medium a n
linear polarization. It contains the source term of the DFW
signal and is here represented by the polarization opera
The theoretical mean value of any operatorA is deduced
from the density matrix operatorr, using the well-known
relation

^A&5Tr~rA!. ~1!

where Tr(•••) is the notation for the trace operation. All th
significant physical information for the system is included
the density matrix operatorr. We therefore have to evaluat
the density matrix components describing the four-wa
mixing process and apply Eq.~1! to deduce the polarization
operatorPW responsible for the signal generation. It is relat
to the dipole moment operatormW by

^PW &5Tr~rmW !. ~2!

A. Irreducible tensor components

In order to simplify the calculation and by using the i
herent symmetries of the system, it is convenient to expanr
in terms of irreducible tensorial elements@29,30# instead of
the more usual basisunaJaMa&^nbJbMbu. In the latter,J
and M, respectively, label the total angular momentum a
its projection over thez axis ~direction of propagation!. n
denotes the other quantum numbers describing the state.
density matrix is written as

r5 (
naJaMa ,nbJbMb

rnaJaMa ,nbJbMb
unaJaMa&^nbJbMbu

~3!

in the standard basis, and

r5 (
ab,kQ

abrQ
k

abTQ
k ~4!

in the irreducible basis, following the notation of Omo
@31#. The equivalence between components is given by

rnaJaMa ,nbJbMb
5(

k,Q
^naJaMauabTQ

k unbJbMb&abrQ
k [rab ,

~5!

where
6-2
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FORWARD DEGENERATE FOUR-WAVE- . . . . I. . . . PHYSICAL REVIEW A 64 012716
^naJaMauabTQ
k unbJbMb&

5~21!Ja2MaA2k11S Ja k Jb

2Ma Q Mb
D . ~6!

abTQ
k is a k-rank tensor and componentsQ obey the condi-

tions 2k<Q<k with uJa2Jbu<k<Ja1Jb . The tensorial
operatorabT(k) forms an orthonormalized basis of the Lio
ville space

Tr ~ abTQ
k

a8b8TQ8
k8†

!5daa8dbb8dkk8dQQ8 ~7!

and

abTQ
k†5~21!Ja2Jb1Q

baT2Q
k . ~8!

The mean value of the irreducible tensor is calcula
with Eqs.~1! and ~7!

^ abTQ
k†&5Tr~r abTQ

k†!5 abrQ
k [^T~Ja ,Jb!kQ

† &. ~9!

We introduce here the so-called state multipo
^T(Ja ,Jb)kQ

† & defined by Blum@32#.
From a physical point of view, the off-diagonal comp

nent abrQ
k (aÞb) is the k-order multipolar coherence be

tween statesunaJaMa& andunbJbMb&, whereas the diagona
elementsaarQ

k [ arQ
k are the orientational components of th

k-order multipolar component of the molecular anisotropy
level unaJa&. ar0

k are linear combinations of theMa popu-
lations andarQ

k (QÞ0) are related to Zeeman coherenc
The componentsarQ

1 and arQ
2 respectively correspond t

the orientation~polar order! and alignment~quadrupolar or-
der! of the angular momentumJa of level unaJa& @33#.

Let us note that the classical definition of the density m
trix where Tr(r)51 is not assumed in this formalism. In
stead, we consider an open system where the total numb
molecules may vary. The number of molecules in le
unaJa& per volume unit is

Na5Tr~raa!5A2Ja11 ar0
05(

Ma

NnaJaMa
. ~10!

B. Density matrix formalism

The system evolution is expressed in terms of the Sch¨-
dinger equation

dr

dt
52

i

\
@Ho1Hi ,r#1L1S dr

dt D
rel1tr

. ~11!

In this expression,Ho is the Hamiltonian of the unperturbe
molecular system andHi the interaction Hamiltonian of the
molecules with classical electromagnetic fieldE¢ . In the elec-
tric dipolar approximation,Hi52mW •E¢ , wheremW is the elec-
tric dipole moment operator.L is the source term for the
implementation of initial conditions. The last term
01271
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(dr/dt)rel1tr contains the phenomenological evolution ofr
along different relaxation and transfer processes.

Let us develop the interaction Hamiltonian over the irr
ducible representation involvingunaJa& and unbJb& levels.
RecognizingmW andE¢ as spherical tensors of rankk51 and
applying the Wigner-Eckart theorem, one has

mW ab•E¢ 5
mab

A3
(

q
~21!q

abTq
1E2q , ~12!

with E2q the irreducible component ofE¢ defined as

E6157
1

A2
~Ex6 iEy!, E05Ez , ~13!

with z the direction of propagation, and

mW ab5
mab

A3
abT(1), ~14!

with mab5^naJaim (1)inbJb&. Assuming thatmab is real,
we get

mba5~21!Jb2Jamab . ~15!

Applying Eq. ~9! to Eq. ~11! leads to the equation o
motion in the irreducible basis; we therefore have

Tr~ ṙ agTQ
k†!5 agṙQ

k

52
i

\
Tr~@Ho ,r# agTQ

k†!1TrF S dr

dt D
rel1tr

agTQ
k†G

1Tr~LagTQ
k†!1

i

\
Tr@„~mW ab•E¢ !rbg

2rab~mW bg•E¢ !… agTQ
k†#. ~16!

Then using Eq.~5!

agṙQ
k 5 ivag agrQ

k 1S d agrQ
k

dt D
rel1tr

1 agLQ
k

1
i

A3\
(

k8,Q8,q
~21!qE2q

3@mab Tr~ abTq
1

bgTQ8
k8

agTQ
k†! bgrQ8

k8

2 abrQ8
k8 mbg Tr~ abTQ8

k8
bgTq

1
agTQ

k†!#, ~17!

wherevag is the transition frequency betweenunaJa& and
ungJg&. The trace is calculated with the help of Eqs.~6! and
~8! as
6-3
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Tr~ abTq1

k1
bgTq2

k2
agTq3

k3†
!5~21!Ja2Jg1q3 (

MaMbMg

^naJaMau abTq1

k1unbJbMb&^nbJbMbu bgTq2

k2ungJgMg&

3^ngJgMgu gaT
2q3

k3 unaJaMa&

5A~2k111!~2k211!~2k311!~21!2Jb2Ja1Jg1q3S k2 k1 k3

q2 q1 2q3
D H k1 k2 k3

Jg Ja Jb
J . ~18!

And we finally get

agṙQ
k 5 ivag agrQ

k 2S d agrQ
k

dt D
rel1tr

1 agLQ
k 2 (

k8Q8q

i

\
~21!q1Q1JaA~2k11!~2k811!E2qS k8 1 k

Q8 q 2QD
3S H k8 1 k

Ja Jg Jb
J mab bgrQ8

k8 1~21!k1k8H k8 1 k

Jg Ja Jb
J abrQ8

k8 mbgD . ~19!
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This last equation is valid whatever the geometrical c
figuration if no permanent electric or magnetic field
present. It fully incorporates the coupling of degenerate m
netic sublevelsM inside each rotational level through th
sum overk8 and Q8. To apply it to FDFWM process in a
gas-phase medium described by a three-J level system, we
have to take into account the experimental configuration

C. Beam and polarization configuration

Unlike many DFWM simulations in phase-conjuga
beam geometry, the present model is concerned with
folded-Boxcars geometry in which the three incident bea
are traveling in the forward direction alongz axis as shown
in Fig. 1. The subscripts 1, 2, and 3 refer to the three incid
beams, and index 4 represents the signal beam. For li
polarizations of the incident beams and ay-polarized signal,
the different possible polarization arrangements are se
Fig. 2. They are respectively labeled along they or x polar-
ization direction, in the conventional orderê4ê1ê3ê2 @34#.
The yyyy polarization is called the all-parallel case. Th
crossed-polarizationsyyxx and yxyx are equivalent in the
forward box @20#. In Fig. 2, the different types of grating
induced by the pump-probe interference have been outl
in order to recognize the population and polarization grati
respectively shown as shaded and dotted ellipse.

We assume plane and degenerated monochromatic w
and a free propagation of the fields in the medium along
z axis. The total incident fieldE¢ is the sum of the three

FIG. 1. Beam configuration: folded Boxcars.
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incident fields that may have arbitrary unequal individu
intensities.

E¢ 5 1
2 ~EW 1EW * !

EW 5 (
i 51,2,3

EW i

EW i5 ê iEie
i (kW i•rW2vt)

with EW i[ê iEi ~20!

where the electric fieldEW i for i 51,2,3 is specified by its
polarization vectorê i , its frequencyv, its wave vectorkW i ,
and its scalar amplitudeEi .

The polarization vectorê i is expanded either on a rea
orthonormal basis (êx ,êy ,êz) or on a complex spherical ten
sor basis defined as follows

ê6157
1

A2
~ êx6 i êy!, ê05êz , ~21!

with the following properties

êq* 5~21!qê2q , êq•êq8
* 5dqq8 . ~22!

The three beams are crossing with a very small an
('1°), sothat it is a good approximation to assume almo
collinear beams. Thez component of all electric fields is

FIG. 2. Different linear polarization arrangements and related« i

values defined in Eqs.~29! according to the labelingê4ê1ê3ê2.
6-4
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negligible and we will assume that all their polarization ve
tors are in the (x,y) plane. Therefore, each field is develop
on either basis, leading to

EW i5~Ei !xêx1~Ei !yêy5~Ei !1ê11* 1~Ei !2ê21* ~23!

and according to Eq.~13!

~Ei !657
1

A2
@~Ei !x6 i ~Ei !y#. ~24!

It is further simplified

~Ei !657
1

A2
Ei5eipS 6

1

A2
Ei D ~25!

for polarization alongx and

~Ei !652
i

A2
Ei5e2 i ~p/2!S 1

A2
Ei D ~26!

for polarization alongy. The relative phase of the three inp
beams is not important, merely resulting in a translation
the space and time origin. Thus changes of little importa
can be performed on the phase factor to simplify these
pressions. For linear polarization, we can finally write E
~25! and ~26! as

~Ei !656
1

A2
Ei ~27!

for polarization alongx and

~Ei !65
1

A2
Ei ~28!

for polarization alongy. Note that in this configuration, th
contribution to (Ei)6 is always real and (Ei)1 is positive.

According to the geometry of Fig. 3, we define the fo
lowing wave-vector projectionskx52(k1)x5(k3)x , ky5
2(k2)y , and kz5(ki)z with kx ,ky!kz . Introducing the
phase vector exp(ikWi•rW), the total electric field components i
the spherical basis are written as follows:

E15
1

A2
$E1e2 ikxx1E2e2 ikyy1E3eikxx%ei (kzz2vt)

[E1e2 ivt[E1eiw1e2 ivt, ~29a!

E25
1

A2
$«1E1e2 ikxx1«2E2e2 ikyy1«3E3eikxx%ei (kzz2vt)

[E2e2 ivt[E2eiw2e2 ivt, ~29b!

with « i521 for x polarization, and« i511 for y polariza-
tion for i 51,2,3. Depending on the polarization arrangem
of the incident laser beams, the input parameters« i are dif-
01271
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f
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ferent ~Fig. 2!. The quantitiesE6 andw6 are all depending
on x, y, andz. They represent the interference pattern of t
three beams.

The total phase factor ofE6 is split between the spatia
one w6 and the temporal one as shown in Eqs.~29!. This
allows a simplification of w6 that depends on spatia
position1

w65
w11w2

2
6

w12w2

2
5w06c. ~30!

A rotation of the axes used for describing the polarization,
the anglec5(w12w2)/2 around thez axis, leads to new
components of the field given by

Ẽ65E6eiw0. ~31!

The phase factorw0 is then the same for both componen
and can be suppressed in the equations by a simple chan
the time origin. At this stage, according to this phase sim
fication, the field expressions of Eqs.~29! are introduced into
Eq. ~19! with

Eq561[E65 1
2 ~E6e2 ivt2E7eivt!. ~32!

The position-dependent phase factors are reintroduce
the end of the resolution~see Sec. II G! in the expression of
the signal polarization

P6
final5eiw0P6e6 ic5P6eiw6. ~33!

These phase factors reflect the coherent features of
incident-field polarizations into the final calculation ofP. To

1We define a new local axis in order to simplify the equation
the polarization. Nevertheless,x andy axes are still valid to define

the wave vectorkW i and the position of each point.

FIG. 3. Transversal section of the four interacting beams, exh
iting wave-vector projections.
6-5
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account for these coherent effects, an integration of Eq.~33!
is performed on the spatial coordinates as described in
II H.

D. Collisional modeling

The collisional rates of the molecular system are
pressed by the relaxation and transfer term of Eq.~11!. The
multipolar term (d agrQ

k /dt)rel1tr of Eq. ~19! is its projection
on theabT(k) basis. Because of the isotropy of relaxation a
transfer processes, relaxation rates@G(k)# and transfer rates
@Q(k)# do not couple tensorial components of different m
tipolar order. Moreover,G(k) andQ(k) do not depend onQ
@30#.

In the three-J level scheme,ua& represents the rotationa
ground levelunaJa&; ub& and uc& respectively represent th
excited levelsunbJb& and uncJc& ~Fig. 4!. In the NO doublet
structure,ua&→ub& and ua&→uc& correspond respectively t
the main and satellite transitions originating from a comm
level ua&. Relaxation of diagonal and off-diagonal comp
nents of the multipolar term are yet given by

S d arQ
k

dt D
rel1tr

52Ga~k! arQ
k 1Qab~k! brQ

k 1Qac~k! crQ
k

~34a!

S d brQ
k

dt D
rel1tr

52Gb~k! brQ
k 1Qbc~k! crQ

k ~34b!

S d abrQ
k

dt D
rel1tr

52Gab~k! abrQ
k ~34c!

S d bcrQ
k

dt D
rel1tr

52Gbc~k! bcrQ
k . ~34d!

The correspondingc, cb, and ac components are obtaine
by interchanging indexb with c in the former expressions
The notations introduced in Eqs.~34! are defined according
to @35#.

Ga(k50) is the population relaxation rate of the rot
tional level ua&, i.e., the departure toward other levels
either by spontaneous emission or by collisional trans
Ga(k.0) contains in addition the effect of collisiona
reorientation of the angular momentumJa . Therefore,
Ga(k.0)>Ga(k50) with the equality fulfilled in the ab-
sence of collisions.

FIG. 4. Three-J level scheme of mainua&→ub& and satellite
ua&→uc& transitions.
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Gab for b5b,c, is the multipolar dephasing rate or th
transverse relaxation rate.Gbc is commonly labeled a Rama
linewidth and may be involved in the so-called Raman te
of the density matrix equations.

The pure dephasing contributions to the linewidthGab are
commonly given by the quantity

Gab
f ~k!5Gab~k!2 1

2 @Ga~k50!1Gb~k50!#. ~35!

The transfer rateQba(k) is related to direct population
and Zeeman coherence transfer fromua& to ub&, through
collisions and spontaneous emission.

E. Final derivation of the equation set

The expressions of the electric field, the relaxation a
transfer terms are now included in Eq.~19!. The nonlinear
polarization is calculated by developing the density mat
componentsabrQ

k and acrQ
k . We first solve the density ma

trix equations for a single class of molecular velocityvW , that
is for the Doppler-shifted laser frequencyv5v laser2kW•vW .
Then the resolution of the system is fully performed for
velocity classes just by changing the laser frequency step
step. In this treatment, we assume a monochromatic l
emission@11#. Numerical integration of the solution over
Maxwell-Boltzmann distribution function is performed in
second step. This part of the calculation deals with comp
amplitudes of the DFWM signal, which are added to rep
duce the rotational structure of the spectra@20#. At this step
of the calculation, the signal intensity can be calcula
~squared complex amplitude! and convoluted by the lase
linewidth function that is measured experimentally. This la
step will be calculated effectively in paper II@1# where com-
parison with experiments is required.

We use the rotating wave approximation~RWA! that con-
sists in keeping only the nearly resonant contribution in
each density matrix component:arQ

k , brQ
k , crQ

k , and bcrQ
k

are constant with time butabrQ
k and acrQ

k oscillate at the
frequencyv'vab'vac since harmonic contributions ar
neglected. This approximation leads toabrQ

k (t)5 abrQ
k eivt

and acrQ
k (t)5 acrQ

k eivt. The following equations only dea
with the complex amplitudesabrQ

k and acrQ
k since temporal

phase factor is simplified.
The source termL can be calculated considering that th

system is isotropic in the absence of field. ThusagLQ
k is only

nonzero fork50 anda5g. Applying Eq. ~19! with E50
leads to

aL0
05Ga~0!ra

(o)2Qab~0!rb
(o)2Qac~0!rc

(o), ~36a!

bL0
05Gb~0!rb

(o)2Qbc~0!rc
(o) , ~36b!

where

ra
(o)5 ar0

0~E50!5Na
(o)/A2Ja11. ~37!

Na
(o) is the initial population of levelua& defined asNna

(o) ,
whereN is the total number density andna

(o) is the popula-
tion fraction of levelunaJa& given by the normalized Boltz-
6-6
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mann exponential. The temperature dependence is inclu
in both na

(o) andN. N is assumed to be constant in the the
retical studies. Equations~36! allow the elimination ofL in
Eq. ~19!.
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The stationary solution is valid when the laser pulse
long enough compared to the lifetime of the molecular lev
in the collisional and Doppler regime of interest in our ca
This solution is given by the following set of equations:
Ga~k!~ arQ
k 2ra

(o)dk,0!5Qab~k!~ brQ
k 2rb

(o)dk,0!1Qac~k!~ crQ
k 2rc

(o)dk,0!1
i

2\ (
k8Q8q

~21!q1Q12JaA~2k11!~2k811!

3S k8 1 k

Q8 q 2QD F S k8 1 k

Ja Ja Jb
D @~21!qEqmab barQ8

k8 1~21!k1k8E2q abrQ8
k8 mba#

1S k8 1 k

Ja Ja Jc
D @~21!qEqmac carQ8

k8 1~21!k1k8E2q acrQ8
k8 mca#G , ~38a!

Gb~k!~ brQ
k 2rb

(o)dk,0!5Qbc~k!~ crQ
k 2rc

(o)dk,0!1
i

2\ (
k8Q8q

~21!q1Q12JaA~2k11!~2k811!S k8 1 k

Q8 q 2QD
3S k8 1 k

Jb Jb Ja
D @E2qmba abrQ8

k8 1~21!k1k81qEq barQ8
k8 mab#, ~38b!

@vbc2 iGbc~k!# bcrQ
k 5

1

2\ (
k8Q8q

~21!q1Q1Jb1JcA~2k11!~2k811!S k8 1 k

Q8 q 2QD
3F S k8 1 k

Jb Jc Ja
DE2qmba acrQ8

k8 1~21!k1k81qS k8 1 k

Jc Jb Ja
DEq barQ8

k8 macG , ~38c!

@v2vab2 iGab~k!# abrQ
k 5

1

2\ (
k8Q8q

~21!Q1Ja1JbA~2k11!~2k811!EqS k8 1 k

Q8 q 2QD
3F H k8 1 k

Ja Jb Jb
J mab brQ8

k8 1~21!k1k8H k8 1 k

Jb Ja Ja
J arQ8

k8 mab1H k8 1 k

Ja Jb Jc
J mac cbrQ8

k8 G .
~38d!
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The equations forcrQ
k and acrQ

k are obtained by exchangin
b andc in Eq. ~38b! and Eq.~38d!. Here, due to the RWA
approximation, the temporal phase factors of the elec
field have been removed, and the equations only depen
the real amplitudesE6 in each point. The only nonzero re
lations have to satisfy the triangular inequalities betweenJa ,
Jb , Jc , and thek values.Q is odd for abrQ

k and even forarQ
k

and bcrQ
k , becauseq561 and because the initial state

isotropic ~only ar0
0 is nonzero asE50).

Using the relation

abrQ
k 5~21!Ja2Jb1Q

bar2Q
k* , ~39!

we first eliminatearQ
k and bcrQ

k and reduce this system o
seven equations to a set of two equations involving o

abrQ
k and acrQ

k components. This set is then developed
eachk andQ value and the result is shown in Appendix A.
is finally written as a product of a matrixM with a vector%
such thatM%5% (o). The real and imaginary parts ofabrQ

k

ic
on

y
r

and acrQ
k are the vector components of% and % (o) is the

vector of the source term for the initial conditions. The m
trix is numerically inverted and we get the solutions%

5M21% (o). The dipolar termsabrQ
1 and acrQ

1 are derived in
order to calculate the signal polarizationP resulting from the
four-wave-mixing interaction.

Let us note that an initial anisotropy of the medium cou
have been easily included in our calculations. Vaccaroet al.
@26,27# have introduced it in their perturbative treatment
developing the initialra

(o) as a sum of irreducible tensoria
elements as in Eq.~5!. Furthermore, the values ofarQ

k ,

brQ
k , and crQ

k for k50,1,2 could also provide information
on the anisotropy of the medium after the interaction, if the
values are extracted from the set of equations.

At this step of the calculation,r still depends on the ve
locity v of the molecules, on the laser frequency, and on
spatial position in the interaction volume. To get the fin
signal polarization generated in the phase-matched direc
integrations over the velocity distribution, the spatial coor
6-7
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nates, and the laser bandwidth are performed as explaine
the following.

This analysis treats the coupling betweenJ andM levels
and finally ends with different contributions from molecul
and geometrical factors. This factorization was already in
duced in theJ-M basis set in a previous work@20#. The
geometrical factors are expressed as products of 3-j and
symbols. The above spherical tensor formalism provide
framework that takes more properly into account the re
enting collisions and the symmetry of the media. In additi
this treatment allows us to properly calculate saturation
fects in forward DFWM with due account for the configur
tion of the incident beam polarizations@28#.

F. Integration over the velocity distribution

The signal results from the contributions of all the diffe
ent velocity groups, assuming a Maxwell-Boltzmann dis
bution. The most probable velocityu of the molecules for a
given temperatureT is

u5S 2NakBT

m D 1/2

, ~40!

whereNa is the Avogadro number,kB the Boltzmann con-
stant, andm the mass of the target molecule. As in previo
papers@20,22#, we proceed to an integration of the dens
matrix componentsabrQ

1 and acrQ
1 over the velocity distri

bution. Since the angle between the beams is very small
Doppler effect can be neglected in the transverse direc
(kxvx ,kyvy!Gab). We only perform the numerical integra
tion alongvz with kz5kn5nv/c andn the refractive index.

^ abrQ
1 &av5E abrQ

1 ~v laser2knv !F~v !dv, ~41!

with

F~v !5
1

uAp
e2(v/u)2

. ~42!

G. Spatial polarization

The polarization of the signal is given by its compone

PQ~rW !5
mab

A3
^ abrQ

1* ~rW !&av1
mac

A3
^ acrQ

1* ~rW !&av, Q561.

~43!

At this stage, phase factors defined in Sec. II C are rein
duced according to Eq.~33!. For a signal polarized alongx or
y, one has

Px~rW !51/A2@P2~rW !2P1~rW !#, ~44a!

Py~rW !5 i /A2@P2~rW !1P1~rW !#. ~44b!
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H. Expression of the integral over spatial coordinates

We search for the observed signal field in the pha
matched direction, far from the interaction volume. The to
electric fieldE and the corresponding macroscopic induc
polarizationP are related by the wave equation

]2E~rW,t !

]r 2
2

n2

c2

]2E~rW,t !

]t2
5

1

«oc2

]2P~rW,t !

]t2
, ~45!

where«o is the permittivity of vacuum,n the refractive in-
dex, andc the speed of light in the vacuum.

For sake of simplicity, we consider homogeneous pla
waves. The Fourier spectrum of the polarization is con
tuted of discrete spatial frequencies. Keeping the only pha
matched components, one has

P~x,y,z!5P210
(1) ei (k1)xxei (k1)zz1P021

(2) ei (k2)yyei (k2)zz

1P10
(3)ei (k3)xxei (k3)zz1P01

(4)ei (k4)yyei (k4)zz,

~46!

wherePql
( i ) is the polarization amplitude of the beami with

the wave vector (qkx , lky , kz). P01
(4) is the only component

of interest for the DFWM signal, provided the solid angle
the detector is restricted aroundkW4 direction. It means that
the angle between the beams is small. So, for mathema
simplicity, we assume that the active medium is a cylinder
sectionS and lengthL parallel tokW4. Because of the period
icity, P01

(4) can be calculated as a single spatial period in
interaction volume

P01
(4)5

kxkykz

8p3 E
0

2p/kxE
0

2p/kyE
0

2p/kz P~x,y,z!

3exp$2 i @~k4!zz1~k4!yy#%dxdydz. ~47!

Taking thez axis alongkW4, we also make the slowly varying
envelope approximation. We have

E~rW,t !5E~z!ei (knz2vt), ~48!

P~rW,t !5P01
(4)ei (knz2vt), ~49!

with

l
dE~z!

dz
!1 and kn5

nv

c
.

Neglecting second derivative ofE(z), Eq. ~45! leads to

dE~z!

dz
5 i

kn

2«
P01

(4), ~50!

E~L !5 i
kn

2«
P01

(4)L. ~51!

The total power of the diffracted beam is
6-8
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I Sig5S
«c

2n
uE~L !u25

SL2kn
2c

8«n
uP01

(4)u2. ~52!

We have made the rather crude approximation of pl
waves. In Appendix B, we develop a rigorous expression
is able to take into account the real shape of the beams
instance the crossing of Gaussian beams.

In the theoretical spectra, we plotPSig5AI Sig as a func-
tion of the parameters of interest

PSig5knLA Sc

8«n
uP01

(4)u. ~53!

Finally the finite width of the exciting laser is taken in
account by convoluting a gaussian profile with the sig
intensityI Sig. This Gaussian line shape depends on the la
properties and is measured experimentally.

DFWM signals will be calculated using Eq.~54! in any
range of saturation in order to interpret the NO spectra
paper II @1#.

III. THE NO MOLECULE

The model presented here is applied to the particular c
of NO, and is validated in flame environments~see paper II,
Ref. @1#!. The calculations developed in the previous sect
are not restricted to NO. The application to other molecu
of interest such as OH and CH is straightforward, since
electronic transition involved is also a2S-2P one @36#.

In this section, spectroscopic properties relative to NO
recalled. The transition moments are detailed according
the structure of theg-system. The collisional widths are fur
ther simplified using the data from literature and the dyna
cal conditions relevant to our experimental conditions. W
assume that excited electronic states are not initially po
lated whatever the temperature. All the following spectra
relevant to these NO data and the saturation effects obse
on peculiar sets of line doublets~main and satellite!.

A. Spectroscopy

The 2S-2P electronic system of NO is composed ofP, Q,
andR branches. The spin-orbit coupling further decompo
the spectrum into two series of components correspondin
Fi rotational sublevels withi 51,2 @36–38,20,24#. The struc-
ture of the NOg-system is illustrated in Fig. 5 and in Tab
I. The line labelingDNDJi j ( i 51,2) is conventional@36# and
fully determines the type of transition.

In opposition to OH and CH, the main and satellite lin
are nearly superimposed in NO@39#. Therefore, each rota
tional line is a so-calledL doublet that can experience
particular type of coupling under strong-field excitation. N
is a characteristic molecule since the splitting betwe
the ub& and uc& levels is very small in the2S state
(,0.01 cm21) and produces coupling effects evident ev
in moderate conditions of saturation.
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B. Dipole moment description

The one-photon transition probability betweenua& and
ub& is commonly defined as

Sab5u^naJaim (1)inbJb&u25umabu25~Re!2u^vauvb&u2Sab
J ,

~54!

also called molecular line strength@28#. In the Born-
Oppenheimer approximation,Sab is expressed as the prod
uct of the Franck-Condon factorsu^vauvb&u2 with the square
of the electronic transition momentRe and with the Ho¨nl-
London factorSab

J . This last factor is also called the rota
tional line strength@40#. It is calculated with Earls’s values
@41# and derived in Tables 5 and 8 of@24#. We treat the
coupling of angular momentum with spin and rotation as
intermediate Hund’s case~a–b! in the 2P state@36#.

FIG. 5. Energy level diagram of theÃ 2S1-X̃ 2P electronic
transition of NO. Twelve branches are defined by the par
assigned sublevels in theP3/2 andP1/2 spin components.

TABLE I. Main and satellite transitionsDNDJ of the g system
of NO originating fromJa .

Main Satellite Jb Jc

PP2
PQ12 Ja21 Ja

QQ1
QP21 Ja Ja21

QQ2
QR12 Ja Ja11

RR1
RQ21 Ja11 Ja
OP12 Ja21

PP1 Ja21
RR2 Ja11

SR21 Ja11
6-9



-

ta
a
th

o
-

x
.

de
s

ta

in
es
nt

l
co-

red
s in-
ri-
ri-

xi-

y
ra-
for

g
for

id
-

-

ed
en-
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If we consider the (0-0) band of theÃ-X̃ system of NO,
the known values are Re51.56310230 C m and
u^vauvb&u250.167. TheSab

J values of NO are calculated ac
cording to@41,36,24# for the main and satellite lines.

We define the so-called Rabi frequencyVab of the
ua&→ub& transition as

Vab5
umabuuEu

hc
, ~55!

which becomes

Vab5
Reu^vauvb&u~Sab

J !1/2uEu
hc

. ~56!

We then define a vibronic Rabi frequencyVvib such as

Vab5Vvib~Sab
J !1/2, ~57!

with

Vvib5
Reu^vauvb&uuEu

hc
cm21. ~58!

This further decomposition consists in separating the ro
tional partSab

J of the transition moment in order to have
single vibronic Rabi frequency for each NO band. Hence,
electric field can be expressed as a function ofVvib accord-
ing to the above NO data such as

uEu5Vvib36.33107 V/m. ~59!

It is now equivalent to plotting the spectra as a function
Vvib or E. Therefore, in the following and for sake of sim
plicity, only Vvib is scaled on theX axis in the different
figures. The collisional linewidths are detailed in the ne
section prior to undertaking some example of calculation

C. Collisional data

The collisional parameters required in the model are
fined in Eqs.~34!. We shall make the following assumption
on the collisional rates

~1! Gab(k), Gac(k), andGbc(k) are not dependent onk;
~2! Gab(k)5Gac(k).Gbc(k);
~3! Gab(k) is always larger thanGa(k) and Gb(k), be-

cause of the dephasing contributionsGab
f defined in Eq.~35!;

~4! Gb(k)5Gc(k); Gbc(k)5Gcb(k); Qab(k)5Qac(k);
Qbc(k)5Qcb(k).

Williams et al. have shown that population and reorien
tion relaxation rates are nearly equal for lowJ in OH @42#. It
was shown that rotational level dependence ofGa is not
observed in NO@43,44#. Therefore we assume, whateverJ in
NO, that

Ga~k.0!52Ga~k50!. ~60!

In order to find their numerical values, the rates appear
in Eqs.~34! are further expressed in terms of specific rat
Namely, relaxation rates are decomposed i
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Ra
RET, Qa , andAa

es that label respectively the rotationa
energy transfer rate, the quenching rate and the Einstein
efficient for spontaneous emission from theua& level
@45,46#. We also need to defineRba

RET, Qba , andAba
es as

state-to-state energy transfer rates fromua& to ub&.

Ga~k50!5Ra
RET,

Gb~k50!5Rb
RET1Qb1Ab

es,

Qab~k50!5Qab1Aab~k50!,

Qab~k.0!5Aab~k!,

whereAab(k)5(21)Ja1Jb1k11Ab
es(2Jb11)$ Ja

Jb
Ja

Jb
1
k

% @47#

Qbc~k50!5Rbc
RET,

Qbc~k.0!50.

Let us note that Zeeman orientation is partially transfer
by radiative processes between electronic levels wherea
elastic collisional transfer cannot preserve significantly o
entation. The velocity changing collisions could preserve o
entation but were disregarded in the present treatment@48#.

Gab is related to the homogeneous half width at half ma
mum ~HWHM! of a dipolar transition betweenua& and ub&.
The temperature and pressure dependence ofGab is calcu-
lated for NO as@43,44#

Gab~k!5
1

2 F0.79S 295

T D 0.79

0.310.585S 295

T D 0.75

0.7G
3P cm21

for a mixture of colliders of 30% H2O and 70% N2, whereT
is the temperature in Kelvin andP the pressure in atm.

In the X̃ 2P and theÃ 2S states, the rotational energ
transfer data for NO were available mainly at room tempe
ture @49–51#. We have extrapolated the tabulated value
the ground state in flame conditions@52# to our conditions
for the excited state@53#. On the other hand, the quenchin
values are derived from Paul and co-workers’ model
temperature-dependent quenching of NOÃ 2S @54,55# and
from high-temperature measurements@56#. The well-known
spontaneous emission coefficient is taken from McDerm
and Laudenslager@57#. Therefore, we will make a crude as
sumption thatRRET, Q, andA are not dependent onJ and are
the following for v50, T52000 K, and atmospheric pres
sure:

Ra
RET5Rb

RET5231022 cm21,

Qb5431023 cm21,

Ab
es51.531024 cm21.

In addition, the vibrational energy transfer is assum
negligible compared to the quenching and the rotational
6-10
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ergy transfer processes@58#. Effects arising from velocity
changing collisions are not treated here, since they were
observed for NO.

From these rates and the previous assumptions, the
numerical data introduced in the model are given in Table
for 2000 K and atmospheric pressure.

IV. SATURATION BEHAVIOR

Most of the calculations assume atmospheric pressur
temperature of 2000 K, and a constant total number den
N. In these conditions, Doppler broadening is equal to 0.1
cm21 ~HWHM!. A doublet of line composed ofQQ1 and
QP21 will be called aQ1P21 doublet for sake of simplicity.
The full denomination is defined in Table I and is illustrat
in Fig. 5. All other doublets are labeled in the same way
the following.

Saturation effects will be studied in most cases assum
equal field amplitudes of the exciting beams, that isEi
5E with i 51,2,3.

In Sec. IV A, we first compare the characteristics of t
present model to previous results obtained in the weak-fi
limit, using perturbative theory, for isolated lines. A simp
fication of the input collisional parameters is done in th
section in order to match the assumptions of the previ
calculation@20# that disregards the multipole nature of rela
ation and dephasing rates.

In Sec. IV B, the leveluc& is again disregarded~Fig. 4! to
study the saturation features of isolated lines that may
either main or satellite ones as listed in Table I. We consi
here the complete collisional description of Sec. III C. T
influence of the Zeeman structure and of unequal pump b
intensity on the saturation process will be described in de

In Sec. IV C, the rotational line coupling betweenub& and
uc& levels is fully accounted for, in order to observe the a
ditional distortion of line profile and intensities resultin
from this latter phenomenon. The effect of this line mixin
resulting from strong-field excitation was not properly tak
into account in previous works.

TABLE II. NO data for collisional relaxation and Dopple
broadening in cm21, in flame conditions (T52000 K, P
51 bar), other related data are given through the interchangeb
andc.

k50 k.0

Gab(k) 7.4931022 7.4931022

Gbc(k) 4.9031022 4.9031022

Ga(k) 2.0031022 4.0031022

Gb(k) 2.4531022 4.9031022

Qbc(k) 2.0031023 0
Doppler ~HWHM! 0.129

ForQ1P21(5.5) k50 k51 k52

Qab(k) 2.6031023 1.5031024 1.4131024

Qac(k) 2.5831023 1.3831024 1.3431024
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A. Low-field limit: comparison with the perturbative model
for an isolated line

While the perturbative model has been successfully
plied to the low-field limit in DFWM spectroscopy, ou
model concerns the whole range between no-saturation
high-saturation regimes. Let us first demonstrate that b
models are equivalent in the low-field limit.

Some simplifications are done to compare the spectral
shapes obtained in the low-field regime. As in our previo
treatments@19,20#, we setGa(k)5Gb(k)5Gab(k), whatever
k. This assumption means that we neglect the pure depha
rates and the multipole dependence of collisional linewidt
Moreover, the transfer ratesQ(k) and the spontaneous emi
sion are set to zero.

In this way, the present model is compared to our pre
ous perturbative treatment in Fig. 6 in whichPSig is given by
Eq. ~53!. The comparison is done for an isolatedQQ2-branch
in the yyyy polarization and the two profiles are in qui
good agreement withVvib51023.

Let us define a line amplitude ratioR by

Ryxyx5
PSig

max~yxyx!

PSig
max~yyyy!

and Ryxxy5
PSig

max~yxxy!

PSig
max~yyyy!

. ~61!

These ratios correspond to the ratio ofPSig at line maximum
in crossed-polarization configurations overPSig

max in the all-
parallel case. They are plotted in Figs. 7~a! and~b! for P and
Q lines, respectively. The analytical ratios of Bervaset al.
@20# are plotted in Fig. 7, case A. The case B is calcula
with our computed ratios and is in good agreement with c
A. The line amplitude calculated from our model is therefo
fully consistent with previous analytical description
DFWM signal intensity performed in the perturbative limi

These line amplitude ratios depend only on the geome
cal factors in case A and B@20,28#. The R(J) line ratio is
found equal to the ratio ofP(J11) line and thus is not
considered here. If the only transfer processes occurring
tweenub& andua& are that induced by the laser, the geome

FIG. 6. IsolatedQQ2-branch structure with~solid line! the per-
turbative model and (s) the tensorial model with simplified as
sumptions:Ga(k)5Gb(k)5Gab(k),;k, in the yyyy configuration
from J51.5 to J58.5 with Vvib51023, P51 bar, and T
52000 K.
6-11
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cal factors involved in our expressions are the same for th
two types of line.

In Fig. 7, the computed ratios obtained using the co
sional data of Table II~case C! are also shown for compari
son. The particular effect of the dephasing rate a
k-dependence included in our complete relaxation-ra
model tends to change the finalR values. Since in cases A
and B, disorienting collisions are neglected, the amplitu
ratios R, which depend on geometrical factors, do not d
pend on anyGa values. In case C, we have introduced t
disorienting collisions that are seen to strongly change
efficiency of signal generation, especially in crosse
polarization cases. The influence of anisotropic transfe
also playing a role but of minor importance~see Appendixes
A and B!. This tendency is of crucial importance in som
cases even at low energy thresholds@25–27#. Finally, one
advantage of the tensorial approach is to take properly
account the effect of disorientation through collisions, in t
spectral line shapes.

B. Saturation of an isolated line

The properties of isolated lines~main or satellite! are
studied here as a function of several parameters such a
tational quantum number, field strength, Zeeman multip
ity, and different relative amplitudes of the beams. Some
these effects were already studied in the past@12,24#, but it is
the first time to our knowledge that both polarization a
saturation are studied thoroughly for the different NO lin
listed in Table I. Let us note that the cases of OH and C
although not detailed in the present paper, can be stu
straightforwardly from our model. The data of Table II a
used in all the following calculations and particularly th
k-dependent linewidths including dephasing contributions

1. Rabi broadening of rotational lines

The so-called Rabi frequencyVab of the ua&→ub& transi-
tion interacting with the total electric fieldE¢ was introduced
in Sec. III B.

More precisely, to quantify the saturation threshold o
rovibrational transition, a saturation parameter is commo
defined as@24,22#

FIG. 7. Analytical and computed line-amplitude ratios of~a! P
and ~b! Q branches withVvib51023, P51 bar, andT52000 K.
A: calculated with analytical formula of@20#; B: computed with
tensorial model and simplified assumptions:Ga(k)5Gb(k)
5Gab(k),;k; C: computed with tensorial model and collision
assumptions of Table II.
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Sab5
Vab

2

GaGab
. ~62!

From this expression, it is clear that the degree of satura
depends on the type of transition and on the collisional
vironment. We choose to define the saturation threshold
Sab51, which corresponds toVab

sat5VsatASab
J 5AGaGab and

Esat5
hcAGaGab

umabu
. ~63!

Some values ofVsatare given in Table III for thePP1 , QQ1,
and RR1 lines of NO withJ55.5. For theQQ1(5.5) isolated
line, the line-broadening behavior of the line shape is illu
trated in Fig. 8 with appearance of a dip betweenVvib50.1
andVvib55.

According to the previous definition of the threshol
saturation becomes visible on the spectra as soon as the
frequency becomes larger than the relaxation rates.

2. Line intensity in various branches

The FDFWM polarizationPSig is plotted at line maximum
(PSig

max) and not at line center as done usually. The logari
mic plot of Fig. 9 exhibits a cubic field dependence belo
Vvib50.01@20#, as predicted by the perturbative theory. T
signal dependence versusVvib is changing between

FIG. 8. Line-shape behavior of an isolated mainQQ1(5.5) line
with Vvib50.1 to 5 in theyyyy configuration and withP51 bar,
T52000 K, and collisional data of Table II; for that particula
line, Vsat50.015, Esat59.403105 V/m, and I sat558 kW/cm2 at
saturation threshold. However, the dip appears aboveVvib50.12
only, i.e., for I .100I sat.

TABLE III. Saturation thresholdsSab and other parameters rela
tives to saturation of isolatedPP1(5.5), QQ1(5.5), andRR1(5.5)
lines for homogeneous distribution of the beam amplitudes and
larization.

Sab51 Dip appearance
(Sab

J )1/2 Vvib
sat Vvib Sab

PP1(5.5) 1.81 0.02 0.2 87
QQ1(5.5) 2.65 0.015 0.12 67
RR1(5.5) 1.92 0.02 0.2 97
6-12
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Vvib50.01 and Vvib51, around theVsat value, already
given in Table III, thus defining what we will call an inter
mediate range. AboveVvib51, the strong saturation cond
tion gives a plateau.

The PP1 , QQ1, and RR1 line amplitudes are presented
Figs. 10~a–c! as a function ofVvib and for theyyyy, yxyx,

FIG. 9. Evolution of the signal at line maximum for isolate
PP1(5.5), QQ1(5.5), and RR1(5.5) lines in yyyy configuration
with P51 bar, T52000 K, and collisional data of Table II. A
expected, the slope of all curves is 3 in logarithmic scale, below
saturation limit.
01271
andyxxyconfigurations. In Fig. 10~b!, the RR1 line becomes
stronger than theQQ1 one, beyondVvib50.3, indicating
that, in theyxyx polarization, saturation has a more pr
nounced effect on theQQ1-branch relative toRR1 one. QQ1
line always dominatesPP1 line in all cases. In theyxxy
configuration@Fig. 10~c!#, RR1 is always smaller thanQQ1
whateverVvib .

The efficiencyh is defined as

h5
I Sig

(
i

I i

where I i}uEi u2 . ~64!

As shown in Figs. 10~d–f!, the efficiency at line maxi-
mum (hmax) grows quadratically to reach a maximum valu
lying aroundVvib50.1 for all lines. Therefore, the interme
diate range of saturation is the laser energy range provid
optimum sensitivity for concentration measurements,
demonstrated by former works@12,24,59#. The maximum ef-
ficiency is always higher for theQ-branch, than for theP and
R ones, and its absolute value decreases fromyyyy to yxyx
and yxxy configurations. Nevertheless, as we will see la
on, crossed-polarization cases could become advantag
since they offer the possibility to reduce the scattered li
on the signal path.

e

FIG. 10. Evolution ~a,b,c! of
the signal at line maximum and
~d,e,f! of the efficiencyh at line
maximum as a function ofVvib

for isolated PP1(5.5), QQ1(5.5),
and RR1(5.5) lines in different po-
larization configurations withP
51 bar, T52000 K, and colli-
sional data of Table II.
6-13
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The QQ1 , QP21, RR1, and RQ21 branches are shown i
Figs. 11 and 12 for the all-parallel and crossed-polariz
cases, respectively. The behavior of main and satellite
intensity is calculated as a function ofJ for Vvib51023 and
0.2. In the low-field limit, these line amplitudes have alrea

FIG. 11. Evolution of the signal at line maximum as a functi
of J for yyyy polarization configuration forVvib51023 and Vvib

50.2; upper graph corresponds to the main lineQQ1 and its satel-
lite QP21 and lower graph to the main lineRR1 and its satellite
RQ21 in the same conditions as Fig. 10.

FIG. 12. Same figure as Fig. 11 foryxyx andyxxy polarization.
01271
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been used to calculate the ratiosR of Fig. 7~c!. We can
notice that at low intensity, theQ lines always give the larg-
est signals as well when it is a main line (QQ1-QP21) as
when it is a satellite line (RR1- RQ21). In this case, a crossing
appears forJ510.5 in theyxyxandyxxyconfigurations and
should appear aboveJ511.5 in theyyyy case. At higher
saturation (Vvib50.2), the difference between the main a
the satellite line is reduced. For theRR1 and RQ21 lines, RR1
line passes over its satellite lineRQ21 at J52.5 in theyxyx
case. The prediction of these branches’ behaviors will
particularly useful to interpret the experimental spectra
NO @V. Krüger et al., paper II#.

As previously demonstrated in Sec. IV A@20,26–28#, all
the information regarding the experimental polarization g
ometry is included in the geometrical factors of the reson
four-wave-mixing response. The ratiosR of Eq. ~62! that
directly reflect these geometrical factors are plotted a
function ofVvib in Fig. 13 for PP1(5.5) andQQ1(5.5) lines.
As expected from the perturbation theory@20#, R ratios do
not depend on laser intensity as far as the low-field appro
mation is valid (Vvib,0.01). In the intermediate rang
(0.01,Vvib,0.1), the saturation occurs differently for th
different polarization configurations and all ratios vary.
means that although each Zeeman transition has its own
sition probability that is at the origin of the geometrical fa
tors in the low-field limit @24–27#, the saturation tends to
erase this difference above a certain threshold.

A remarkable feature is the occurrence of a new plat
of R values in the high-saturation range. New factors can
derived from the high-field plateau’s value. The line intens
derivation in the saturation limit could be greatly simplifie
using these factors. In particular, it may be quite interest
to study the evolution of that plateau as a function of theGa
values and more particularly of the amplitude of the diso
enting collisions. Let us notice also that the crosse
polarization arrangements are more advantageous in
high-field limit since R values become larger as alread
mentioned in@21#.

Finally, the utility of our model is demonstrated whe
exact calculation of the intensity is required, especially in
intermediate range. In this case, analytical expressions
viously published@11,60# are not anymore appropriate.

FIG. 13. Evolution of ratiosR at line maximum as a function o
Vvib for isolated PP1(5.5) and for QQ1(5.5) lines and the same
conditions as Fig. 10.
6-14
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3. Unequal beam intensity

We have performed numerical calculations of the sig
amplitudePSig for several distributions of the incident las
energy over the three input beams. To be consistent with
experimental conditions, we assume that two beams have
same field amplitude whereas they-polarized beam is attenu
ated by a factor of 3.6, this value corresponding to the la
attenuation used in@V. Krüger et al., paper II#.

Figure 14 illustrates the evolution of the signal amplitu
at line maximum of theQQ1(5.5) isolated line in different
polarization arrangements and energy distributions. The
tribution is uniform in the A case (E15E25E3). The
DFWM signal is always more efficient in this case, in go
agreement with the study of Ai and Knize@4# in phase con-
jugate geometry.

The pump beam 3 has been attenuated in case B an
probe beam 2 in case C. In both polarization configuratio
the signal is only slightly reduced in the intermediate satu
tion regime, when the attenuated incoming beam is the
that is y polarized, like the signal$case B foryxyx @Fig.
14~a!# and case C foryxxy @Fig. 14~b!#%. On the opposite,
attenuation of ax-polarized beam strongly reduces the sign
Let us note that Fig. 14 is plotted as a function of the
bronic Rabi frequency of beam 1.

This result is extremely interesting since, for obvio
problems of noise rejection, the best experimental situa
consists in attenuating the exciting beam that is polari
like the signal beam.

However, as we will see in the experimental article@V.
Krüger et al., paper II#, the intensity cannot be increased u
to the high-saturation regime, in theyxyx case, because th
population grating induces a spurious parasitic thermal g

FIG. 14. Evolution ofPSig
max as a function ofVvib1 for isolated

QQ1(5.5) line: in theyxyx configuration~a! and in theyxxy con-
figuration ~b!; A: E15E25E3; B: E25E1 ,E35E1/3.6; C: E2

5E1/3.6,E35E1 . Vvib1 is the vibronic Rabi frequency of beam 1
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ing. Therefore, theyxxy configuration, with attenuation o
the y-polarized probe beam 2, is preferred since only coh
ence gratings are generated.

4. Influence of Zeeman multiplicity

The saturation of FDFWM signal intensity is the result
two competing effects: the line strength of the multiplici
expressed by the factorSab

J @Eq. ~55!# and the individual
amplitude of each Zeeman component, the average valu
which decreases likeA2J11 when the number of compo
nents increases~as it can be seen from the value of 3-j coe
ficients!.

The effect of theM-level degeneracy is illustrated in Fig
15 as a function ofJ, for Vvib50.5. In order to observe the
effect of the change of 3-j coefficients withJ separately, we
choose to keepSab

J fixed in the calculation of the line pro
files @Eq. ~55!#. In this case~Fig. 15!, the line profile be-
comes narrower whenJ increases, indicating that saturatio
is attenuated by the increasing number of Zeeman sublev

In Fig. 16, the signal intensity is normalized at line max
mum forJ51.5 andJ511.5. In Fig. 16~a!, exact calculation
of the line profile shows that the saturation is almost
same whateverJ for the mainQQ1 lines. The change ofSab

J

is roughly following a (2J11)n law with a largern value for
main than for satellite lines@20#. Figure 16~b! shows that

FIG. 15. Line-shape behavior vs ground rotational levelJ for an
isolated mainQQ1 line from J51.5 to J57.5 with Vvib50.5 and
the same conditions as Fig. 10; we use a fixed valueSab

J

5Sab
J55,5;J in this particular case. Dashed curve refers toJ55.5.

FIG. 16. Normalized line-shape behavior vsJ for main QQ1 ~a!
and satelliteQP21 ~b! lines for J51.5 andJ511.5 with Vvib50.3
and the same conditions as Fig. 10.
6-15



de
m
n
e

ai

gt
e

g

e

pl
n

te
ne
cu
o

ei
im
th
o
tio

os

b

n

ea-

is

ed

the
ting

lex
inly
to

-

n-
d-

the

he

s as
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saturation of satelliteQP21 lines decreases whenJ increases,
sinceSab

J increases much less than the 3-j coefficients
crease. Nevertheless, the effect of rotational degeneracy
be further complicated when main and satellite compone
are coupled by the strong fields as described in the n
section.

C. Saturation including rotational line coupling

Let us remember that a doublet transition involves a m
line ua&→ub& and a satellite lineua&→uc&. The final behav-
ior of the doublet profile depends on the relative line stren
of its single components and on the splitting between th
vbc .

In this section, all calculations are performed assumin
coupled three-J level scheme~Fig. 4! and the collisional as-
sumption of Table II at 2000 K. The line intensities are d
rived from the definition~54! and simulations will be pre-
sented in order to isolate the line mixing effects that cou
main and satellite components of NO doublets under stro
field excitation.

Peculiar effects of line coupling between main and sa
lite components will be recognized by comparison with li
profiles obtained by simply adding the independently cal
lated complex amplitudes of the nonlinear polarization
nearby transitions.

The Q1P21 doublet is plotted in Fig. 17 in theyyyy po-
larization. The profiles of the two components and of th
sum are also shown. In the intermediate saturation reg
(Vvib50.2), the sum leads to a stronger intensity than
coupled doublet profile that exhibits a deeper hole. The c
pling between the two components reinforces the satura
process, since the population of the commonua& level is
shared by both transitions. In four-wave-mixing spectr
copy, many authors use the simple sum of amplitudes
describe line interferences. This summation is proved to
incorrect in doublet configurations such as that of NO.

1. Asymmetry and line interferences

A typical doublet splitting in NO is 0.015 cm21 for
Q1P21(5.5) doublet and 0.017 cm21 for R1Q21(5.5) dou-

FIG. 17. Line-shape behavior with Vvib50.2, vbc

50.015 cm21 and the same conditions as Fig. 10, for t
Q1P21(5.5) doublet~A!, its singlet componentsQQ1(5.5) ~B! and
QP21(5.5) ~C! and the complex sum of these two components~D!.
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blet. The line strength factorsSab
J andSac

J are similar for the
components of theR1Q21(5.5) doublet whereas the mai
component of theQ1P21(5.5) doublet is almost two times
stronger than the satellite one, thus leading to different f
tures @24#. We choose to plot these doublets in theyyyy
polarization and by setting arbitrarilyvbc50.01 cm21 and
0.1 cm21 in Fig. 18. Medium saturation is assumed in th
case withVvib50.2. The splittingvbc has a definite influ-
ence on the final line shape behavior. A largevbc
(0.1 cm21) results in an asymmetric profile as it is expect
since lines are almost resolved (Gab5Gac50.0749 cm21).
As depicted in Fig. 18, theR1Q21(5.5) andQ1P21(5.5) dou-
blets exhibit opposite asymmetry since theirmab /mac values
are different. The highest peak seems to be located on
side corresponding to the weakest component. By separa
real and imaginary parts in the calculation of the comp
polarization, we have seen that the asymmetry is ma
originating from the contributions of the dispersive parts
the line profile.

Similarly, the influence of the polarization on the asym
metry is shown in Fig. 19 withvbc50.015 cm21. One can
notice the asymmetry is inverted comparing theR1Q21(5.5)
andQ1P21(5.5) doublet line shapes for any polarization co
figuration. The asymmetry is stronger for the crosse
polarization cases than for the intenseyyyy one. Opposite
asymmetry is observed for theyxyx andyxxy cases. While
doing the calculation, we have seen that it is due to

FIG. 18. Line-shape behavior forQ1P21(5.5) ~a! and
R1Q21(5.5) ~b! doublets withVvib50.2, vbc50.01 cm21 ~solid
line! andvbc50.1 cm21 ~dashed line!.

FIG. 19. Line-shape behavior forQ1P21(5.5) ~a! and
R1Q21(5.5) ~b! doublets withVvib50.2 andvbc50.015 cm21 in
the different polarization configurations and the same condition
Fig. 10.
6-16
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contribution of the dispersive part of the line profile that
larger in theyxxy case. The peculiar asymmetry of theyxxy
line shape has been already observed in the experimen
Kumar et al. @61# in CH.

One can conclude thatvbc , mab /mac , and the polariza-
tion arrangement have a noticeable influence on the coup
effect when the calculations are performed in the interme
ate range of saturation.

2. Contributions of orientational relaxation rates

The pure disorienting rates may be quite different depe
ing on the collision partners. Let us notice that in some ca
as for helium colliders for example, this rate may increa
significantly @42#.

To evaluate the contributions of disorienting collision
the Q1P21(5.5) doublet profile is plotted in Fig. 20, assum

FIG. 20. Line-shape behavior forQ1P21(5.5) doublet with
Vvib50.2 in theyyyy, yxyx, andyxxy configuration: comparison
of different collisional situations withGa52.0031022 cm21, Gb

52.4531022 cm21 and other parameters from Table II.
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ing different disorienting rates,@Ga(k.0)#. In all cases, the
optical dephasing rateGab is kept constant. In case A
Ga(k.0) is set as twice the population rate of NO like in a
previous calculations. In case B, disorienting contributio
are canceled by settingGa(k.0)5Ga(k50). With yyyy
andyxyx configurations, the elimination of disorienting co
lisions results in a small increase of saturation with reduct
of the amplitude and broadening of the line shape. It in
cates that Zeeman coherences participate moderately in
saturation of optical transitions. For theyxxy configuration,
there is a relatively strong increase of the signal when th
is no disorientation; this behavior highlights the importan
of Zeeman coherences in the polarization gratings format

3. Line intensity versus E and J

The FDFWM signal polarization and the efficiency at lin
maximum are plotted in Fig. 21 as a function ofVvib for the
Q1P21(5.5) andR1Q21(5.5) doublets. In theyxyx case@Fig.
21~a!#, the intensities ofQ1P21(5.5) andR1Q21(5.5) dou-
blets are practically identical althoughP, Q, andR isolated
lines had different amplitudes in Fig. 10~b!. In theyxxy case
@Fig. 21~c!#, the saturated signal is different for the two do
blets. However, the tendency is the same in both cases,
the ratio of line amplitudeQ1 /R1 is smaller if line coupling
is taken into account.

The effect of line mixing is further detailed in Fig. 22 a
a function ofJ for Vvib50.2. The two components of eac
doublet are shown in Figs. 22~a! and~b!, they are summed in
Fig. 22~c! and coupled in Fig. 22~d!. The behavior of the
doublets amplitudes versusJ is confirming that
Q1P21/R1Q21 ratio provides a good marker of this couplin
effect as it will be observed experimentally@V. Krügeret al.,
paper II#.

In Fig. 23, the doublet amplitudePSig is calculated as a
function ofVvib at different distanced from line center, i.e.,
e

FIG. 21. Evolution of the sig-
nal at line maximum~a,c! and of
the efficiencyh at line maximum
~b,d! as a function ofVvib for
Q1P21(5.5) andR1Q21(5.5) dou-
blets in yxyx and yxxy polariza-
tion configurations and the sam
conditions as Fig. 10.
6-17
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V. KRÜGER et al. PHYSICAL REVIEW A 64 012716
with d50, 2Gab ,and 5Gab . If d50, the optimum effi-
ciency of the process is obtained forVvib50.15. Larger
input-laser intensities are required to reach this optim
condition if the laser frequency is detuned:Vvib50.25 if d
52Gab andVvib50.5 if d55Gab . However, the amplitude
of the maximum is larger in these cases than withd50.
These results are consistent with the calculation of Ai a
Knize in the phase conjugate geometry@4#.

V. CONCLUSION

Our purpose was to properly take into account
saturation effects in forward DFWM for unresolve
doublet lines, with specific polarization of the incomin
beams, with the Zeeman structure and the disorien
collisions. A model based on irreducible tensor formalis
is proposed to solve the density matrix equations. T
system is solved in the steady-state approximation us
a numerical matrix inversion. The signal amplitudes a
line shapes are calculated in detail to study separa
the effect of these different assumptions. The 2J11
Zeeman degeneracy has a small effect on the satur
spectral profiles of the main lines, which are almo
independent onJ, but has a much stronger influence o
satellite lines.

The influence of the disorienting collisions is seen
distort the spectral line shapes and to change significa
the line intensity. The peculiar effect of disorientatio
has been evidenced in saturating conditions and this e

FIG. 22. Evolution of the signal at line maximum as a functi
of J for yxyx and yxxy polarization configurations withVvib

50.2 in the same conditions as Fig. 10. a: mainQQ1 and its satel-
lite QP21; b: main RR1 and its satelliteRQ21; c: the complex sum of
the components amplitudes of theQ1P21 and R1Q21 doublet; d:
Q1P21 andR1Q21 doublets.
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is large especially when pure coherence gratings
involved. To our knowledge, it is the first time tha
such effects are correctly simulated in the strong-fi
regime.

The rotational line coupling results in a stronger satu
tion of NO doublets and this effect is represented correc
through our calculation. Moreover, a line asymmetry is o
served especially in crossed-polarization cases. The asym
try may be reversed according to the polarization patte
This effect is closely correlated to the strength of the tran
tion moment and to the spacing between main and sate
transitions.

The intermediate domain of saturation is emphasiz
it has been definitely proved as the most appropriate
provide optimal sensitivity in forward DFWM. In this
regime, our treatment is necessary to allow quantitat
measurements. The spatial profile of the laser may be in
porated in the calculation if necessary. Through t
paper, we have discussed the saturation behavior
FDFWM. However, the model presented here involv
analytical expressions that can be modified to repres
other excitation schemes such as two-color reson
four-wave mixing, provided that each transitio
interact resonantly with only one laser frequenc
allowing the rotating-wave approximation. Finally, fo
spectroscopic applications, the multipole nature of o
treatment could be exploited to take into account
initial anisotropy existing in the molecular media althou
it would greatly increase the number of coupled equ
tions @25–27#. In paper II, experimental measuremen
will be interpreted through the correct calculation of DFW
intensity whatever field strength, polarization, and li
multiplicity.
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FIG. 23. Evolution of the signal at different detuning freque
ciesd as a function ofVvib for Q1P21(5.5) doublet andyyyy case
in the same conditions as Fig. 10.
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APPENDIX A: DETAILED EXPRESSION OF THE EQUATION SET

In this appendix, we present the final expression of the density matrix equation reduced for theabrQ
k and acrQ

k components.
These equations are solved numerically to calculate theabrQ

1 and acrQ
1 components required to obtain the expression of

DFWM signal polarization. In what follows, we rely on the definitions of symbols already introduced.

@v2vab2 iGab~k!# abrQ
k 5

1

4\2 (
k8Þ0,k9

H iBab (
q,q8,Q9

mab
2 EqE2q8@G1 abrQ9

k9 2G2 abrQ9
k9* #1 i ~21!Jb2JcCab
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q,q8,Q9

mabmacEqE2q8@G1 acrQ9
k9 2G2 acrQ9
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A2Jb11
2

ra
(o)

A2Ja11
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Q8

~21!Q1Q9S k9 1 k8

Q9 q8 2Q8
D S k8 1 k

Q8 q 2QD , ~A6!

G25(
Q8

~21!Q1q8S k9 1 k8

Q9 q8 Q8
D S k8 1 k

Q8 q 2QD , ~A7!

Ab5
1

A3
F 1

~2Ja11!~2Jb11!

Gc~0!Qab~0!1Qbc~0!Qac~0!

Ga~0!@Gb~0!Gc~0!2Qbc
2 ~0!#

2
1

~2Ja11!2Ga~0!
2

Gc~0!

~2Jb11!2@Gb~0!Gc~0!2Qbc
2 ~0!#

G ,

~A8!
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Abc5
1

A3
F 1

~2Ja11!~2Jc11!

Gb~0!Qac~0!1Qbc~0!Qab~0!

Ga~0!@Gb~0!Gc~0!2Qbc
2 ~0!#

2
1

~2Ja11!2Ga~0!

2
Qbc~0!

~2Jb11!~2Jc11!@Gb~0!Gc~0!2Qbc
2 ~0!#

G . ~A9!
-

io
am
h

a
h

h

s

ion,

ted

,
m.
r-
The second equation foracrQ
k is obtained through the inter

change of the indexb andc. The notation Im(•••) symbol-
izes the imaginary part of a complex quantity.

APPENDIX B: GENERAL EXPRESSION OF THE
INTEGRAL OVER SPATIAL COORDINATES

In this appendix, we demonstrate the rigorous express
of the diffracted beam for any shape of the incoming be
and of the active volume. Through the knowledge of t
incoming beams, it is possible to expressE(rW) in any point
and to calculateP(rW) according to Eq.~43!. We use the
spatial Fourier decomposition ofE andP

E~rW !5E E~kW !eikW•rWd3kW , P~rW !5E P~kW !eikW•rWd3kW ,

~B1!

E~kW !5
1

~2p!3E E~rW !e2 ikW•rWd3rW,

P~kW !5
1

~2p!3E P~rW !e2 ikW•rWd3rW. ~B2!

The wave equation Eq.~45! leads to

~k22kn
2!E~kW !5

kn
2

«
P~kW ! with kn5

nv

c
. ~B3!

We have assumed that the index of refraction isn every-
where for the final energy of the diffracted beam. As far
we measure the total intensity of the diffracted beam, t
assumption has no importance.

The Fourier transform ofP(kW ) is introduced in Eq.~B3!
to give

E~kW !5
1

~2p!3

kn
2

k22kn
2E P~rW !

«
e2 ikW•rWd3rW. ~B4!

We search for the observed signal field in the phase-matc
direction, far from the interaction volume. LetR5(X,Y,Z)
be the local point of observation. The fieldE(RW ) emitted far
from the interaction volume is obtained using Eqs.~B1! and
~B4!
01271
n

e

s
is

ed

E~RW !5
1

~2p!3E P~rW !

«
d3rWE

PP

kn
2

k22kn
2

eikW•(RW 2rW)d3kW .

~B5!

The integration onkW is performed in cylindrical coordinate
around the axisRW –rW and by using the relation

1

pEPP

eiKx

K
dK5 i sgn~x! ~B6!

one obtains

E~RW !5
kn

2

4p«EV

eiknuRW 2rWu1e2 iknuRW 2rWu

uRW 2rWu
P~rW !d3rW. ~B7!

Assuming thatR@r , that is the Fraunho¨ffer approximation
r'

2 .r x
21r y

2!lR, one hasuRW 2rWu.R2rW•RW /R. We ignore

the counterpropagating wave term ine2 iknuRW 2rWu since it is not
phase matched and not observable in the forward direct
thus one obtains

E~RW !5
kn

2

4p«R
eiknRE

V
P~rW !eiknrW• RW /Rd3rW. ~B8!

This is the classical result, in other words, the field radia
at infinity in theRW direction is the Fourier transform ofP(rW)
with the wave vectorknRW /R. At this step of the calculation
we have to calculate the total energy in the diffraction bea
The signal intensity is written as the flux of energy by su
face unit and is expressed as

I ~RW !5
«c

2n
uE~RW !u2. ~B9!

To provide the total signal intensity, Eq.~B9! is further in-
tegrated over the surface of the detectorSD , which corre-
sponds to a particular solid angleV for signal emission

I Sig5E E
SD

I ~RW !dXdY. ~B10!

It is developed as
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I Sig5
kn

4c

32p2«n
E E

SD
FdXdY

R2 U
3E expF2 iknS X

R
x1

Y

R
y1

Z

R
zD GP~rW !dr3U2G

5
kn

2c

32p2«n
E E

V
FdKxdKyS E E

V
exp@2 i ~Kxx1Kyy

1Kzz!#P~x,y,z!dxdydzD 2G , ~B11!

with X/R5Kx /kn , Y/R5Ky /kn and Z/R5Kz /kn and Kx
2

1Ky
21Kz

25kn
2 . Equation~B11! is the final result. For any

shape of the incoming beams and of the active volume,
can calculateP(x,y,z) in any pointrW and then evaluate nu
merically the five integrals, by choosing the solid ang
around the phase-matched directionkW4, but avoiding the di-
rections of the incident beams.

We will now show that Eq.~B11! can be simplified to Eq.
~53! if we use the same approximation as in the main te
i.e., if we assume plane waves and a cylindrical active a
Taking nowz alongkW4 with k45kn and using Eq.~46!, one
has
A

hy

oc

01271
e

t,
a.

I Sig5
kn

2c

32p2«n
E E

V
dKxdKyE dKzd~Kz2Akn

22Kx
22Ky

2!

3F E E
S
eKxx1KyyP01

(4)E
0

L

ei (kn2Kz)zdxdydzG2

. ~B12!

Since S@l2, the diffraction angleV is small andKx ,Ky
!kn , then we simply haveKz.kn , leading to

I Sig5
kn

2c

32p2«n
uP01

(4)uL2E E
V

FS
2~Kx ,Ky!Lz

2dKxdKy .

~B13!

FS is the two-dimensional Fourier transform of the functio
S(x,y)51 within the surfaceSand zero outside, then apply
ing the Parseval theorem

E E FS
2~Kx ,Ky!dKxdKy54p2E E S2~x,y!dxdy

54p2S2. ~B14!

Indeed sinceFS(Kx ,Ky) is nonzero only for a very smal
solid angle, the integration can be extended to the full sp
and Eq.~B13! gives the same expression as Eq.~53! ob-
tained by the simple method.
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V. KRÜGER et al. PHYSICAL REVIEW A 64 012716
Laser Spectroscopy~Academic Press, New York, 1987!.
@35# M. Dumont, Ph.D. thesis, Universite´ Paris, 1971.
@36# G. Herzberg,Molecular Spectra and Molecular Structure

Spectra of Diatomic Molecules~D. Van Nostrand, Princeton
1950!.

@37# C. Amiot, R. Bacis, and G. Guelachvili, Can. J. Phys.56, 251
~1978!.

@38# C. Amiot and J. Verges, Phys. Scr.26, 422 ~1982!.
@39# B. Attal-Trétout, P. Monot, and K. Mu¨ller-Dethlefs, Mol.

Phys.73, 1257~1991!.
@40# R. N. Zare,Angular Momentum~Wiley, New York, 1988!.
@41# L. T. Earls, Phys. Rev.48, 423 ~1935!.
@42# S. Williams, L. A. Rahn, and R. N. Zare, J. Chem. Phys.104,

3947 ~1996!.
@43# A. Y. Chang, M. D. D. Rosa, and R. K. Hanson, J. Qua

Spectrosc. Radiat. Transf.47, 375 ~1992!.
@44# M. D. D. Rosa and R. K. Hanson, J. Quant. Spectrosc. Rad

Transf.52, 515 ~1994!.
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