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Transient interference of transmission and incidence
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Due to a transient quantum interference during a wave packet collision with a potential barrier, a particular
momentum, that depends on the potential parameters, but is close to the initial average momentum, becomes
suppressed. The hole left pushes the momentum distribution outwards leading to a significant constructive
enhancement of lower and higher momenta. This is explained in the momentum complex-plane language in
terms of a saddle point and two contiguous “structural” poles, which are not associated with resonances but
with incident and transmitted components of the wave function.
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In the traditional exposition of quantum-scattering theory, o
it is assumed that only thesultsof the collision, unlike the Gq(p,t)EJ {l(p" O[>~ w(p',0)% dp’
collision itself, can be observed at “asymptotic” distances P
and times. Indeed, in standard collision experiments with
atomic or molecular beams, only the asymptotic results aréakes on positive values for positive potentigélee corre-
observed. However, in modern experiments the collisiorsponding classical quantity is negative or zero due to energy
complex is observed by means of femtosecond laser pulse®nservation[3,4]. An important aspect of this effect is its
or “spectroscopy of the transition stat¢1]. Also, in quan-  transientcharacterG9<0 before and after the collision. The
tum kinetic theory of gases, accurate treatments must abagffect is alsogeneric[3,4] because the stationary compo-
don the "completed collision” approximation and use a full nents of the wave packet have, in momentum representation,
description, e.g., in terms of Mer wave operators as in the 5 4i| due to the resolvent that is always present in the
Waldmann-Snider equation and its. g_en_erallzatlons for mOdLippmann-Schwinger equation. This tail goes beyond the
erately dense gasgBl. In any case, it is important to under- i m value allowed by the conservation of energy.

stand the whole collision process to control or modify the : C . 2
products. This has motivated a recent trend of theoretical and For a Gaussian wave packet colliding with an infinite

experimental work to investigate the collision itself, and notVall. maximum V‘?llies oG%agp,t)z0.0S have been re-
only its asymptotics. In particular, a quantum effect has beeRO"ed[3]. Also a “&" potential was used4] to analyze the
recently described by Brouard and Mug4] in which the influence of the opacity of the barrier. For the cases exam-
probability to find the particle with a momentum above ained, an increase d&“ with the opacity was observed up to
given value is |arger' in the midst of the collision, than the@ saturation level where the infinite wall results were recov-
quantity allowed classically by energy conservation. The efered[4]. This suggested that the observability of the effect
fect belongs to a group where the conservation of energyvould improve with strongly opaque conditions. In a
seems to be violated from a classical perspective. Wellcomplementary study we have systematically varied the spa-
known examples are the tunnel effect, or in general, the norfial variance of the wave packedy, and the height of a
vanishing probability to find the particle in evanescent re-square barriefyy, for a fixed average initial momentupy .
gions beyond the classical turning points. Contrary to previous expectations, the maximum effect cor-
The transient enhancement of the momentum tail may, ifiesponds to energies well above the barrier and to large val-
principle, be observed by colliding ultracold atoms with aues of,. In this regime, where we have found values of
laser field that is turned off suddenly in the time scale of theGa, as large as 0.37, the barrier is not at all opaque and
atomic motion[3]. Moreover the effect implies deviations essentially the full wave is finally transmitted.
from the Maxwellian velocity distribution as a macroscopic ~ The numerical effort to perform these calculations by or-
consequencgs]. dinary propagation methodg¢such as the split-operator
We initiated the research that has led to the present worknpethod is rather heavy, since large values &f and the
looking for conditions that increase the effect and favor itsneed to discern fine details of the momentum distribution
observability. In doing so we have found an unexpected rerequire an extense and dense grid. In fact for very large
gime where the enhancement is much higher than in previvalues oféd, this numerical route has to be eventually aban-
ously studied cases. In this article we shall describe such doned. But even if one gets numerical results with enough
regime and analyze its physical origin, namely, a transiencomputer power, they will not provide any explanation of the
interference between transmission and incidence componentsiexpectedly higlG9 values. Fortunately these two difficul-
of the wave packety. ties can be overcome with an approximate analytical solu-
Let us first briefly review the main aspects of the classi-tion. Its obtention follows Ref.6] closely. First the momen-
cally forbidden increase of high momenta. Brouard andium representation of the wave function is expressed using
Muga have studied several examples of one-dimensional cothe basis of stationary eigenstatesfp’ *), corresponding
lisions where the quantity to incident momentunp’, and energye’ =p’?/(2m),
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+o oy Bt 4 ) since the collision takes place well above the barrier top. The

¢(p,t)=f_ (plp'")e (p""|g(t=0))dp’. (1)  validity of these approximations is confirmed by our numeri-
cal calculations.

If the initial state at timet=0 does not overlap with the The remaining contribution is

potential and has negligible negative momentum components "
we can write ¢|T:ih71/2ﬁ7f [ai(p")+gr(p)]e?®dp’,  (6)

—o0

+oo -,
w<p,t>=fo (plp’ "Ye EVR(p'|y(t=0))dp’. (2)  where

1/4
To facilitate the treatment of the integral in tpé-complex = L ( 25*) )
plane we may now extend the lower limit toc using the 27h \ wh?
analytical continuation ofp|p’*), p’>0, overp’<0 (and
later over the whole complex plane gipd/2h
For a barrier between-d/2 andd/2, the §-normalized g(p)=—7—2,
stationary wave functions with incident momentyrh have p—p'+i0
the form
. . (p')= —T(p")exdi(2p'—p)d/2a]
X |e|p’x/ﬁ+Re—|p’x/ﬁ, X< —d/2 gr(p)= (p_p,_io) )
T\ x;p’), —d/2<x<d/2
(x|p +>_th2 X(_ ,p : and
TP ¥t x>d/2,
—ip%t  S(p'—p)? ip'(ad,—dl2)
(3) "n_ |p % c X
$(p)=— P By

wherel=1 andR andT are the reflection and transmission
amplitudes, respectively. The momentum representatiolrhe functionsg,(p’) andg+(p’) present structural poles at

(plp’ ™) will have four terms corresponding toR, x, andT.  p! andp/, respectively; in additiongr(p’) may have reso-
The terms withl, R, and T havestructural p0|ES[7] in the nance and antiresonance p0|esl

p’-complex momentum plane at The steepest descent patBDP is a straight line with
) _ negative slope-t4/(2mé,), and with a saddle point close to
P =p+i0, (4 p, in the midst of the collision at
pr=—p~i0,

S=—————1Amp. 82+ (a s, — dI2) k%t
4m2(5)2(+t2ﬁ2{ pC X ( X )

+i2B[MS(ad,—dI2) — pSit]}. (8)

pr=p—io0,

which are not related to resonances or to the potential profile.
The functionsRk and T may presentesonance and antireso- We shall always assume that the slope is small enough so
nance polesn the third and fourth quadrants. However, the that when the integration contour is deformed along this path
conditions examined in this work correspond to “direct scat-it “cuts” the resonance poles of the fourth quadrant far from
tering,” where these resonance singularities do not play anghe real axis, so that their residues can be negle¢tidect
significant role. scattering” conditions

The initial state is taken as a minimum-uncertainty- To evaluate the integral in Eq6), the contour is de-
product Gaussian centered at the positiond,, >0, with ~ formed to the SDP passing over the saddle. Because of the

average momenturp,, interference between the saddle and the structural poles, it is
necessary to find a uniform expression for a smooth treat-
, 25\ 8(p' —po)? ip'ad, ment of the crossing of the Eole by .the SD.P. This is provided
(p'|(t=0))= -2 T | by thew function,w(z) =e~ " erfc(—iz), which may also be
™ ®) defined by its integral expressi¢8]
This expression and the momentum representation of®q. W(z)= i du e 9)
are inserted in Eq(2) to obtain four integrals. For the cases im]r. u=2’

discussed in this article, however, only two of them associ-

ated with incident and transmitted components, are relevantyherel’ _ goes from—« to « passing below the pole.

and will be studied in detail. We may neglect the contribu- To introduce thev functions, the integrand must be put in
tion of y, since the wave is much more extended in spacehe form of Eq.(9). We complete the square in E(.) and
than the barrier, and we may also neglect the reflection termyse the change of variable
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The main contribution frony, is retained by approximating FIG. 1. |(p|(t))|? for different values of: t=0 (dotted-dashed
g,(u)=R,/(u—u,), whereR, is the residue ofj,(u) at the line); t=2.333, (solid line); t=2.73%, (dashed ling and t

point u=u,=(p/ —s)/f. Finally, proceeding similarly for =3.233, (dotted ling. m=1558028n,, V,=102.%,, d
o1, =28,, —adé,=-50,, &= 107.995, with an average momen-

tum p.=28.4%, well above the classical threshold rfi&/,)*?
_ =17.8"%, . The units are scaled for numerical convenience in the
12 _ 2132 2 u
(Ply(t)=h""*mriiex] — (6pc/h%) + n°] computations ag,=10"'3 a.u. of energyp,=10"* a.u. of mo-
x ePY2 [ v(u,) + T(p)W(—ur)] mentum, |,=10* a.u. of length,m,=10° a.u. of mass, and,

=101 a.u. of time.
=yir(p.b). (1)

ues are chosen for collisions of ultracold Rubidium atoms
As a test of consistency, let us consider the lichit 0 of this ~ with an effective “laser” barrier. The observed behavior
expression. Since,~ur, by taking into account the relation does not have a classical explanation. Recall that the wave
betweenw functions with argument of opposite sign, see Eq.packet is considerably broader than the barrier. Thus, a clas-
9), sical ensemble of particles with the same Gaussian phase-
space(Wignen distribution as in Eq.(5) would only be
w(u ):e*“f—w(—u ) (12) slightly deformed_due to the s_mall _fraction of particles lo-
! Lk cated on the barrier top at a given time, and would keep the
. maximum at the average momentysp. Moreover, there
it follows that (p[#(t)) goes to(p[#(0)) asd—0, as ex-  could not be any spectacular acceleration or deceleration as
pected. Note that there is not a simple uncertainty type ofne one seen in the two peaks of the quantum distribution.
relation between the momentum spreadthe importance of \ve shall see that the zero of the quantum momentum distri-
the effec andd, since the barrier, unlike the diaphragm of pytion, which forbids in this case the initially dominant mo-
the Heisenberg’s microscope, does not limit the wave packghentump, , is due to a destructive interference, whereas the
size to the valudl. In fac;t, asd goes to zero, the width in o new peaks correspond to momentum regions of con-
momentum space remains constant. structive interference.

More precise expressions including reflection anigrms In Fig. 2 theArgand diagramsof the two terms of Eq.
worked out analytical corrections to the zeroth orgy for  parts of incident and transmission components, obtained by
the square barrig9], which allow to obtain the wave func- varyingp at equal intervals. Each lobule corresponds to one
tion and Gy, accurately for large values af, with small  of the terms. The “motion” ag increases begins close to
computational effort. However, Eq11) is generic, it cap- the origin, downwards in both diagrams. The left peak of the
tures the essential and provides a simple and explanatofyiomentum distribution, see Fig. 1, corresponds to the zone
picture of the phenomenon we want to discuss. One may b&here the two moduli increase together and are approxi-
tempted to try a further simplification and use a Born ap-mately in phase. After the descending motion there is a fast,
proximation for T(p) in Eq. (11). However, for the cases approximately circular motion where the phases become op-
studied the energy where the maximum effect takes place isosed(destructive interferengeFinally, the two curves meet
not sufficiently large[|T(p)|3.,+/|T(p)|?~200 in the ex- againin phasein the upper part of the lobules, this momen-
ample discussed belgw tum interval corresponds to the right peak of the momentum

Figure 1 shows the distribution of momerjta|4(t))|?>  distribution. The described behavior is essentially due to the
for different instants of time, from the initial one to a time two w functions,w(u;) and —w(—us). The phase opposi-
after the collision with a square barrier has been completedjon alone does not explain, however, why the interference is
passing through the instant for whiGf'=0.27 is maximum totally destructive. It is also necessary that the incidence and
for this particular collision. In all figures, the numerical val- transmission terms of Eql1) have equal moduli for an
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FIG. 2. Imaginary versus real parts of the incident contribution FIG. 4. Imaginary versus real parts of the incident contribution
to zpf’T(p,t) (empty circle$, and of the transmission contribution to Lp?T(p,t) (empty circle$, and of the transmission contribution
(filled circles, for t=2.731, and different values op equally (filled circles, for Vo=10%,, the value of for which the effect is
spaced betweep=28p, andp=29p, . Other parameters as in Fig. maximum ¢=2.731,) and different values gb. Other parameters
1. as in Fig. 1.

exact ce.mcelllatlon. Actually, the equallty IS obtained Or”ythe positions of the maxima and minima of the momentum
transitorily, since before and after the collision only one lob-

ule remains, the one for incidence before the collision anéjlsmbl“Itlon do not change significantly for a given collision

the one for transmission after the collision. As the collisiondurlng the transient regime.

rogresses, the incident lobule decreases and the transmis-AS stated before, the interference effect described does
prog ! not depend on the square barrier-potential form and we have

sion one grows until they equilibrate and give the perfect bserved it in particular for a Gaussian barrier, chosen so

cancellation and the two constructive interference zones Ot at the truncation at-d/2 does not alter the scattering.

Fig. 1. : ; e :
. : . Equation(11) is of general validity and independent of the

By changing the barrier height, the phases of the factors . . . :
that multiply thew’s change, the lobules rotate with respect potent!a: shap(te), with-d/2 ;ndilz being p(lnllnts Whe_ﬁa]_th'e i
to each other, and one of the two in-phase regions grow otentia} may be assumed to be essentially zero. This Is il-

. L ustrated in Fig. 5, where both the exact distribution of mo-
while the other diminishes, so that the two peaks of the mo- 2 T, 5
mentum distribution become asymmetric, see Figs. 3 and L{penta|<p|z,/x(t)>| , and the approximatiofyir(p,t)|*, are

where the momentum distributions and the correspondin%ompared as a function of momentum for the Gaussian po-

lobules of the Argand diagrams are shown, compare als ptial barrle.r._. . .
with Fig. 2. Note that these multiplying factors do not de- The possibility to observe this effect with ultracold atoms

pend on time and therefore the angle between the lobuld$sts on the ability to prepare appropriate initial states. Turn-
remains constant throughout the collision. This means that
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FIG. 5. Exact|(p|#(t))|? (solid line) and |42 (p,t)|? (dashed
FIG. 3. |(p|#(t))]? as a function op, for two different values of  line) at timet=2.6&,,, during the collision of the same initial wave
Vy: 102.%, (solid line) and 10%, (dashed ling The value oft is packet as in Fig. 1, against a Gaussian potential barrier of height
selected to get the maximum effe@l=0.24;t=2.73%,. Other V,=100,, width o¢=1l,, and truncated at+d/2, where d
parameters as in Fig. 1. =94,.
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