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Transient interference of transmission and incidence
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Due to a transient quantum interference during a wave packet collision with a potential barrier, a particular
momentum, that depends on the potential parameters, but is close to the initial average momentum, becomes
suppressed. The hole left pushes the momentum distribution outwards leading to a significant constructive
enhancement of lower and higher momenta. This is explained in the momentum complex-plane language in
terms of a saddle point and two contiguous ‘‘structural’’ poles, which are not associated with resonances but
with incident and transmitted components of the wave function.
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In the traditional exposition of quantum-scattering theo
it is assumed that only theresultsof the collision, unlike the
collision itself, can be observed at ‘‘asymptotic’’ distanc
and times. Indeed, in standard collision experiments w
atomic or molecular beams, only the asymptotic results
observed. However, in modern experiments the collis
complex is observed by means of femtosecond laser pu
or ‘‘spectroscopy of the transition state’’@1#. Also, in quan-
tum kinetic theory of gases, accurate treatments must a
don the ‘‘completed collision’’ approximation and use a fu
description, e.g., in terms of Mo¨ller wave operators as in th
Waldmann-Snider equation and its generalizations for m
erately dense gases@2#. In any case, it is important to unde
stand the whole collision process to control or modify t
products. This has motivated a recent trend of theoretical
experimental work to investigate the collision itself, and n
only its asymptotics. In particular, a quantum effect has b
recently described by Brouard and Muga@3,4# in which the
probability to find the particle with a momentum above
given value is larger, in the midst of the collision, than t
quantity allowed classically by energy conservation. The
fect belongs to a group where the conservation of ene
seems to be violated from a classical perspective. W
known examples are the tunnel effect, or in general, the n
vanishing probability to find the particle in evanescent
gions beyond the classical turning points.

The transient enhancement of the momentum tail may
principle, be observed by colliding ultracold atoms with
laser field that is turned off suddenly in the time scale of
atomic motion@3#. Moreover the effect implies deviation
from the Maxwellian velocity distribution as a macroscop
consequence@5#.

We initiated the research that has led to the present w
looking for conditions that increase the effect and favor
observability. In doing so we have found an unexpected
gime where the enhancement is much higher than in pr
ously studied cases. In this article we shall describe suc
regime and analyze its physical origin, namely, a trans
interference between transmission and incidence compon
of the wave packetc.

Let us first briefly review the main aspects of the clas
cally forbidden increase of high momenta. Brouard a
Muga have studied several examples of one-dimensional
lisions where the quantity
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Gq~p,t ![E
p

`

$uc~p8,t !u22uc~p8,0!u2% dp8

takes on positive values for positive potentials~the corre-
sponding classical quantity is negative or zero due to ene
conservation! @3,4#. An important aspect of this effect is it
transientcharacter,Gq<0 before and after the collision. Th
effect is alsogeneric @3,4# because the stationary comp
nents of the wave packet have, in momentum representa
a tail due to the resolvent that is always present in
Lippmann-Schwinger equation. This tail goes beyond
maximum value allowed by the conservation of energy.

For a Gaussian wave packet colliding with an infin
wall, maximum values ofGmax

q (p,t).0.05 have been re
ported@3#. Also a ‘‘d ’’ potential was used@4# to analyze the
influence of the opacity of the barrier. For the cases exa
ined, an increase ofGq with the opacity was observed up t
a saturation level where the infinite wall results were rec
ered @4#. This suggested that the observability of the effe
would improve with strongly opaque conditions. In
complementary study we have systematically varied the s
tial variance of the wave packet,dx , and the height of a
square barrier,V0, for a fixed average initial momentumpc .
Contrary to previous expectations, the maximum effect c
responds to energies well above the barrier and to large
ues ofdx . In this regime, where we have found values
Gmax

q as large as 0.37, the barrier is not at all opaque
essentially the full wave is finally transmitted.

The numerical effort to perform these calculations by
dinary propagation methods~such as the split-operato
method! is rather heavy, since large values ofdx and the
need to discern fine details of the momentum distribut
require an extense and dense grid. In fact for very la
values ofdx this numerical route has to be eventually aba
doned. But even if one gets numerical results with enou
computer power, they will not provide any explanation of t
unexpectedly highGq values. Fortunately these two difficu
ties can be overcome with an approximate analytical so
tion. Its obtention follows Ref.@6# closely. First the momen-
tum representation of the wave function is expressed us
the basis of stationary eigenstates ofH, up81&, corresponding
to incident momentump8, and energyE85p82/(2m),
©2001 The American Physical Society10-1
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c~p,t !5E
2`

1`

^pup81&e2 iE8t/\^p81uc~ t50!& dp8. ~1!

If the initial state at timet50 does not overlap with the
potential and has negligible negative momentum compon
we can write

c~p,t !5E
0

1`

^pup81&e2 iE8t/\^p8uc~ t50!& dp8. ~2!

To facilitate the treatment of the integral in thep8-complex
plane we may now extend the lower limit to2` using the
analytical continuation of̂pup81&, p8.0, overp8,0 ~and
later over the whole complex plane!.

For a barrier between2d/2 and d/2, the d-normalized
stationary wave functions with incident momentump8 have
the form

^xup81&5
1

h1/2H Ieip8x/\1Re2 ip8x/\, x,2d/2

x~x;p8!, 2d/2,x,d/2

Teip8x/\, x.d/2,

~3!

whereI 51 andR andT are the reflection and transmissio
amplitudes, respectively. The momentum representa
^pup81& will have four terms corresponding toI, R, x, andT.
The terms withI, R, andT havestructural poles@7# in the
p8-complex momentum plane at

pI85p1 i0, ~4!

pR852p2 i0,

pT85p2 i0,

which are not related to resonances or to the potential pro
The functionsR andT may presentresonance and antireso
nance polesin the third and fourth quadrants. However, t
conditions examined in this work correspond to ‘‘direct sc
tering,’’ where these resonance singularities do not play
significant role.

The initial state is taken as a minimum-uncertain
product Gaussian centered at the position2adx , a.0, with
average momentumpc ,

^p8uc~ t50!&5S 2dx

p\2D 1/4

expF2
dx~p82pc!

2

\2
1

ip8adx

\ G .

~5!

This expression and the momentum representation of Eq~3!
are inserted in Eq.~2! to obtain four integrals. For the case
discussed in this article, however, only two of them asso
ated with incident and transmitted components, are relev
and will be studied in detail. We may neglect the contrib
tion of x, since the wave is much more extended in sp
than the barrier, and we may also neglect the reflection te
01271
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since the collision takes place well above the barrier top. T
validity of these approximations is confirmed by our nume
cal calculations.

The remaining contribution is

c IT5 ih21/2\tE
2`

`

@gI~p8!1gT~p8!#ef(p8)dp8, ~6!

where

t5
1

A2p\
S 2dx

p\2D 1/4

,

gI~p8!5
eipd/2\

p2p81 i0
,

gT~p8!5
2T~p8!exp@ i ~2p82p!d/2\#

~p2p82 i0!
,

and

f~p8!5
2 ip82t

2m\
2

dx~p82pc!
2

\2
1

ip8~adx2d/2!

\
. ~7!

The functionsgI(p8) andgT(p8) present structural poles a
pI8 andpT8 , respectively; in addition,gT(p8) may have reso-
nance and antiresonance poles.

The steepest descent path~SDP! is a straight line with
negative slope2t\/(2mdx), and with a saddle point close t
pc in the midst of the collision at

s5
m

4m2dx
21t2\2

$4mpcdx
21~adx2d/2!\2t

1 i2\@mdx~adx2d/2!2pcdxt#%. ~8!

We shall always assume that the slope is small enough
that when the integration contour is deformed along this p
it ‘‘cuts’’ the resonance poles of the fourth quadrant far fro
the real axis, so that their residues can be neglected~‘‘direct
scattering’’ conditions!.

To evaluate the integral in Eq.~6!, the contour is de-
formed to the SDP passing over the saddle. Because o
interference between the saddle and the structural poles,
necessary to find a uniform expression for a smooth tre
ment of the crossing of the pole by the SDP. This is provid
by thew function,w(z)5e2z2

erfc(2 iz), which may also be
defined by its integral expression@8#

w~z!5
1

ipEG2

du
e2u2

u2z
, ~9!

whereG2 goes from2` to ` passing below the pole.
To introduce thew functions, the integrand must be put

the form of Eq.~9!. We complete the square in Eq.~7! and
use the change of variable
0-2
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u5
p82s

f
, f 5S dx

\2
1 i

t

2m\ D 21/2

~10!

to obtain

^puc~ t !&. i f th21/2\ exp@2~dxpc
2/\2!1h2#

3E
2`

`

@gI~u!1gT~u!#e2u2
du,

whereg(u)[g„p8(u)…, and

h5S 2pcdx

\2
1 i

~adx2d/2!

\ D F4S dx

\2
1 i

t

2m\ D G21/2

.

The main contribution fromgI is retained by approximating
gI(u)'RI /(u2uI), whereRI is the residue ofgI(u) at the
point u5uI5(pI82s)/ f . Finally, proceeding similarly for
gT,

^puc~ t !&.h21/2pt \exp@2~dxpc
2/\2!1h2#

3eipd/2\@w~uI !1T~p!w~2uT!#

[c IT
0 ~p,t !. ~11!

As a test of consistency, let us consider the limitd→0 of this
expression. SinceuI'uT , by taking into account the relatio
betweenw functions with argument of opposite sign, see E
~9!,

w~uI !5e2uI
2
2w~2uT!, ~12!

it follows that ^puc(t)& goes to^puc(0)& as d→0, as ex-
pected. Note that there is not a simple uncertainty type
relation between the momentum spread~or the importance of
the effect! andd, since the barrier, unlike the diaphragm
the Heisenberg’s microscope, does not limit the wave pac
size to the valued. In fact, asd goes to zero, the width in
momentum space remains constant.

More precise expressions including reflection andx terms
may be obtained for specific models. In particular, we ha
worked out analytical corrections to the zeroth orderc IT

0 for
the square barrier@9#, which allow to obtain the wave func
tion andGmax

q accurately for large values ofdx with small
computational effort. However, Eq.~11! is generic, it cap-
tures the essential and provides a simple and explana
picture of the phenomenon we want to discuss. One ma
tempted to try a further simplification and use a Born a
proximation for T(p) in Eq. ~11!. However, for the case
studied the energy where the maximum effect takes plac
not sufficiently large@ uT(p)uBorn

2 /uT(p)u2'200 in the ex-
ample discussed below#.

Figure 1 shows the distribution of momentau^puc(t)&u2
for different instants of time, from the initial one to a tim
after the collision with a square barrier has been comple
passing through the instant for whichGq50.27 is maximum
for this particular collision. In all figures, the numerical va
01271
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ues are chosen for collisions of ultracold Rubidium ato
with an effective ‘‘laser’’ barrier. The observed behavi
does not have a classical explanation. Recall that the w
packet is considerably broader than the barrier. Thus, a c
sical ensemble of particles with the same Gaussian ph
space~Wigner! distribution as in Eq.~5! would only be
slightly deformed due to the small fraction of particles l
cated on the barrier top at a given time, and would keep
maximum at the average momentumpc . Moreover, there
could not be any spectacular acceleration or deceleratio
the one seen in the two peaks of the quantum distribut
We shall see that the zero of the quantum momentum di
bution, which forbids in this case the initially dominant m
mentumpc , is due to a destructive interference, whereas
two new peaks correspond to momentum regions of c
structive interference.

In Fig. 2 theArgand diagramsof the two terms of Eq.
~11! are represented, namely, the imaginary versus the
parts of incident and transmission components, obtained
varying p at equal intervals. Each lobule corresponds to o
of the terms. The ‘‘motion’’ asp increases begins close t
the origin, downwards in both diagrams. The left peak of
momentum distribution, see Fig. 1, corresponds to the z
where the two moduli increase together and are appr
mately in phase. After the descending motion there is a f
approximately circular motion where the phases become
posed~destructive interference!. Finally, the two curves mee
againin phasein the upper part of the lobules, this mome
tum interval corresponds to the right peak of the moment
distribution. The described behavior is essentially due to
two w functions,w(uI) and 2w(2uT). The phase opposi
tion alone does not explain, however, why the interferenc
totally destructive. It is also necessary that the incidence
transmission terms of Eq.~11! have equal moduli for an

FIG. 1. u^puc(t)&u2 for different values oft: t50 ~dotted-dashed
line!; t52.333tu ~solid line!; t52.731tu ~dashed line!; and t
53.233tu ~dotted line!. m51.558 023mu , V05102.5eu , d
52.5l u , 2adx5250l u , dx5107.99l u

2 , with an average momen
tum pc528.48pu well above the classical threshold (2mV0)1/2

517.87pu . The units are scaled for numerical convenience in
computations aseu510213 a.u. of energy,pu51024 a.u. of mo-
mentum, l u5104 a.u. of length,mu5105 a.u. of mass, andtu

51013 a.u. of time.
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exact cancellation. Actually, the equality is obtained on
transitorily, since before and after the collision only one lo
ule remains, the one for incidence before the collision a
the one for transmission after the collision. As the collisi
progresses, the incident lobule decreases and the trans
sion one grows until they equilibrate and give the perf
cancellation and the two constructive interference zone
Fig. 1.

By changing the barrier height, the phases of the fac
that multiply thew’s change, the lobules rotate with respe
to each other, and one of the two in-phase regions gr
while the other diminishes, so that the two peaks of the m
mentum distribution become asymmetric, see Figs. 3 an
where the momentum distributions and the correspond
lobules of the Argand diagrams are shown, compare a
with Fig. 2. Note that these multiplying factors do not d
pend on time and therefore the angle between the lob
remains constant throughout the collision. This means

FIG. 2. Imaginary versus real parts of the incident contribut
to c IT

0 (p,t) ~empty circles!, and of the transmission contributio
~filled circles!, for t52.731tu and different values ofp equally
spaced betweenp528pu andp529pu . Other parameters as in Fig
1.

FIG. 3. u^puc(t)&u2 as a function ofp, for two different values of
V0 : 102.5eu ~solid line! and 105eu ~dashed line!. The value oft is
selected to get the maximum effect,Gq.0.24; t52.731tu . Other
parameters as in Fig. 1.
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the positions of the maxima and minima of the moment
distribution do not change significantly for a given collisio
during the transient regime.

As stated before, the interference effect described d
not depend on the square barrier-potential form and we h
observed it in particular for a Gaussian barrier, chosen
that the truncation at6d/2 does not alter the scattering
Equation~11! is of general validity and independent of th
potential shape, with2d/2 andd/2 being points where the
potential may be assumed to be essentially zero. This i
lustrated in Fig. 5, where both the exact distribution of m
menta u^puc(t)&u2, and the approximationuc IT

0 (p,t)u2, are
compared as a function of momentum for the Gaussian
tential barrier.

The possibility to observe this effect with ultracold atom
rests on the ability to prepare appropriate initial states. Tu

FIG. 4. Imaginary versus real parts of the incident contribut
to c IT

0 (p,t) ~empty circles!, and of the transmission contributio
~filled circles!, for V05105eu , the value oft for which the effect is
maximum (t52.731tu) and different values ofp. Other parameters
as in Fig. 1.

FIG. 5. Exactu^puc(t)&u2 ~solid line! and uc IT
0 (p,t)u2 ~dashed

line! at timet52.68tu , during the collision of the same initial wav
packet as in Fig. 1, against a Gaussian potential barrier of he
V05100eu , width s51l u , and truncated at6d/2, where d
59.6l u .
0-4
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ing off the laser potential during the collision will leave
two-peaked momentum distribution that implies at la
times a visible spatial separation between two wave com
nents, one faster than the other.
,
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