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Interatomic collisions in a tightly confined Bose gas
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We discuss binary atomic collisions in a Bose gas tightly confined in one~axial! direction and identify two
regimes of scattering. In the quasi-two-dimensional~quasi-2D! regime, where the confinement frequencyv0

greatly exceeds the gas temperatureT, the scattering rates exhibit 2D features of the particle motion. At
temperaturesT;\v0 one has a confinement-dominated 3D regime, where the confinement can change the
momentum dependence of the scattering amplitudes. We describe the collision-induced energy exchange
between the axial and radial degrees of freedom and analyze recent experiments on thermalization and spin-
relaxation rates in a tightly~axially! confined gas of Cs atoms.
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I. INTRODUCTION

Collisional properties of ultracold gases strongly confin
in one direction attract a great deal of interest since the s
of active studies of spin-polarized atomic hydrogen. In
latter case the interest was related to recombination and s
relaxation collisions and to elastic scattering in the~quasi!
two-dimensional~2D! gas of atomic hydrogen adsorbed o
liquid-He surface~see @1# for review!. The discovery of
Bose-Einstein condensation in trapped alkali-atom clo
@2–4# stimulated a progress in evaporative and optical co
ing and in trapping of neutral atoms. Present facilities ma
it possible to~tightly! confine the motion of particles in on
direction to zero-point oscillations. Then, kinematically t
gas is 2D, and the only difference from the purely 2D cas
related to the value of the interparticle interaction that n
depends on the tight confinement. Thus, one now has m
more opportunities to create~quasi!2D gases. In the recen
experiments with optically trapped Cs@5–8# about 90% of
atoms are accumulated in the ground state of the harm
oscillator potential in the direction of the tight confinemen

In this paper we consider a Bose gas tightly confined
one ~axial! direction and discuss how the axial confineme
manifests itself in pair elastic and inelastic collisions. W
identify two regimes of scattering. At temperaturesT!\v0
(v0 is the axial frequency! only the ground state of the axia
harmonic oscillator is occupied, and one has a quasi-2D
gime. In this case, the 2D character of the relative motion
particles at large separation between them, manifests itse
a logarithmic energy dependence of the scattering amplitu
For a negative 3D scattering lengtha, we observe resonance
in the dependence of the elastic scattering rate ona. This is
quite different from the 3D case where the scattering r
always increases witha2. The presence of these resonanc
in quasi2D follows from the analysis given in@9# and finds
its origin in increasing role of the 2D kinematics of the pa
ticle motion with increasing ratio uau/ l 0, where l 0

*LKB is a unitéde recherche de l’Ecole Normale Superieure et
l’Université Pierre et Marie Curie, associe´e au CNRS.
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5(\/mv0)
1/2 is the axial extension of the atom wave fun

tion, andm the atom mass.
At temperatures T;\v0 we have a confinement

dominated 3D regime of scattering, where the 2D chara
of the particle motion is no longer pronounced in the scat
ing process, but the axial confinement can strongly influe
the energy~temperature! dependence of the scattering rat
Treating collisions as three dimensional, the wave vectop
of the relative motion of colliding atoms does not decrea
with T at T&\v0. The atoms undergo zero-point oscillation
in the axial direction and this corresponds top;1/l 0. If the
3D scattering amplitude is momentum dependent at thesp,
which is the case foruau* l 0, then the temperature depen
dence of the elastic collisional rate becomes much wea
This means that for a large 3D scattering length the ti
axial confinement suppresses a resonant enhancement o
collisional rate at low energies. In many of the current e
periments with ultracold gases one tunesa to large positive
or negative values by varying the magnetic field and achi
ing Feshbach resonances@10–14#. In the unitarity limit
(uau→`) the 3D elastic cross section iss58p/p2 and the
rate of 3D elastic collisions strongly increases with decre
ing temperature. The tight confinement of the axial moti
makes the scattering rate practically temperature indepen
at T;\v0. We obtain a similar suppression of resonanc
for inelastic collisions, where the resonant temperature
pendence in 3D is related to the energy dependence of
initial wave function of colliding atoms. We analyze th
Stanford and ENS experiments on elastic@6,8# and spin re-
laxation @6# collisions in a tightly axially confined gas o
cesium atoms and discuss the origin of significant deviati
of the observed collisional rates from the 3D behavior.

We develop a theory to describe the collision-induced
ergy exchange between axial and radial degrees of free
of the particle motion. We establish selection rules for tra
sitions between particle states in the axial harmonic poten
and calculate the corresponding transition amplitudes. T
allows us to consider temperaturesT*\v0 and analyze ther-
malization rates in nonequilibrium clouds. In the Stanfo
and ENS experiments these clouds were created by mea
degenerate Raman sideband cooling@5–8# that effectively

e
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leads to a gas with different axial (Tz) and radial (Tr) tem-
peratures. After the cooling is switched off, the temperatu
Tz andTr start to approach each other, and ultimately the
reaches the equilibrium temperature. At sufficiently lowT
only a few axial states are occupied and the tempera
dependence of the corresponding thermalization rates sh
deviate from the 3D behavior, thus exhibiting the influen
of the axial confinement on the scattering process. We
culate the thermalization rates and establish the condit
under which this influence is pronounced.

The minimum energy exchange between the rad
and axial degrees of freedom of two colliding atoms
equal to 2\v0. This follows from the symmetry of the inter
atomic potential with respect to simultaneous inversion
the axial coordinates of the two atoms, which ensures
conservation of parity of their wave function under this o
eration. Accordingly, the sum of two~axial! vibrational
quantum numbers can be changed only by an even va
The rate of energy transfer from the radial to axial motion
proportional to the difference between the radial and a
temperaturesDT5Tr2Tz , if they are close to each othe
As the total energy of colliding particles should exce
2\v0 in order to enable the energy transfer, the rate of t
process at temperaturesT,\v0 becomes exponentially
small: DĖ}DT exp(22\v0 /T). Due to the presence of th
energy gap\v0 in the excitation spectrum of the axial ha
monic oscillator, the heat capacity of the axial degree
freedom isdEz /dTz; exp(2\v0 /T), which leads to a ther-
malization rate DṪ/DT}exp(2\v0 /T). This exponential
temperature dependence shows that the thermalizatio
suppressed at very low temperatures. One can cool the
motion, but radially the cloud remains ‘‘hot’’ on a very lon
time scale.

II. 2D SCATTERING PROBLEM

First, we discuss the purely 2D elastic scattering in p
collisions of ultracold atoms interacting via a short-ran
potential U(r). At interparticle distancesr→` the wave
function of colliding atoms is represented as a superposi
of the incident plane wave and scattered circular wave@15#,

c~r!'eiq•r2 f ~q,f!A i

8pqr
eiqr. ~1!

The quantityf (q,f) is the scattering amplitude,q is the
relative momentum of the atoms, andf the scattering angle
Note that f (q,f) in Eq. ~1! differs by a factor of2A8pq
from the 2D scattering amplitude defined in@15#.

Similarly to the 3D case the scattering amplitude is go
erned by the contribution of thes-wave scattering if the rela
tive momentumq satisfies the inequalityqRe!1, whereRe
is the characteristic radius of interaction. In the case of al
atoms, the radiusRe is determined by the Van der Waals ta
of the potentialU(r) and ranges from 20 Å for Li to 100 Å
for Cs. Thes-wave scattering amplitude is independent
the scattering anglef. The probabilitya(q) for a scattered
particle to pass through a circle of radiusr per unit time is
01270
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equal to the intensity of the scattered wave multiplied
2prv, wherev52\q/m is the relative velocity of colliding
atoms. From Eq.~1! we have

a~q!5
\

2m
u f ~q!u2. ~2!

The velocityv is equal to the current density in the incide
wave of Eq.~1!. The ratio ofa(q) to this quantity is the 2D
cross section that has the dimension of length

s~q!5u f ~q!u2/4q. ~3!

For the case of identical bosons, Eqs.~2! and ~3! have an
extra factor 2 in the right-hand side~rhs!.

The quantitya(q) is nothing else than the rate constant
elastic collisions at a givenq. The average ofa(q) over the
momentum distribution of atoms, multiplied by the numb
of pairs of atoms in a unit area, gives the number of scat
ing events in this area per unit time.

For finding thes-wave scattering amplitude one has
solve the Schro¨dinger equation for thes wave of the relative
motion of colliding atoms at energy«5\2q2/m

F2
\2

m
Dr1U~r!Gcs~q,r!5

\2q2

m
cs~q,r!. ~4!

At distancesr@Re the relative motion is free and one ca
omit the interaction between atoms. Then the solution of
~4!, which for qr@1 gives the partials wave of c(r) Eq.
~1!, takes the form

cs~q,r!5J0~qr!2
i f ~q!

4
H0~qr!, r!Re , ~5!

whereJ0 andH0 are the Bessel and Hankel functions.
On the other hand, at distancesr!1/q one can omit the

relative energy of particles in Eq.~4!. The resulting~zero
energy! solution depends on the momentumq only through a
normalization coefficient. In the interval of distances whe
Re!r!1/q, the motion is free and this solution becom
cs} ln(r/d), where d.0 is a characteristic length that de
pends on a detailed shape of the potentialU(r) and has to be
found from the exact solution of Eq.~4! with q50. This
logarithmic expression serves as a boundary condition
cs(q,r) Eq. ~5! at qr!1, which immediately leads to the
scattering amplitude@15#

f ~q!5
2p

ln~1/qd* !1 ip/2
, ~6!

whered* 5(d/2)expC, andC'0.577 is the Euler constant
It is important to mention that the conditionqRe!1 is

sufficient for the validity of Eq.~6!. This equation also holds
for the case of resonance scattering, where the pote
U(r) supports a real~or virtual! weakly bounds level. In
this case the spatial shape ofcs(q,r) at distances where
Re!r!1/q, is the same as the shape of the wave function
the weakly bound state. This givesd* 5\/Am«0, where«0
is the binding energy. We thus have the inequalityd*
6-2
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@Re, and the quantityqd* in Eq. ~6! can be both small and
large. The rate constanta(q) peaks atq51/d* and de-
creases as 1/@11(4/p2)ln2(qd* )# with increasing or decreas
ing q. Note that the 2D resonance is actually a resonanc
the logarithmic scale of energies. The decrease ofa by factor
2 from its maximum value requires a change of energy«
5\2q2/m by factor 20.

For qd* !1 one may omit the imaginary part in Eq.~6!,
and the scattering amplitude becomes real and pos
@16,17#. The positive sign off (q) has a crucial consequenc
for the mean-field interparticle interaction in purely 2D Bo
gases. In the ultracold limit, whereqRe!1, the scattering
amplitude is related to the energy of interaction in a pair
particles~coupling constantg). For a short-range potentia
U(r), the energy of the mean-field interaction in a weak
interacting gas is the sum of all pair interactions. In a u
form Bose-condensed gas the coupling constantg for con-
densate atoms is equal to the amplitude of scattering~with an
extra factor\2/m for our definition off ) at the energy of the
relative motion«5\2q2/m52m, wherem is the chemical
potential@18,19#. Hence, we have

g5
\2

m
f ~qc!5

2p\2

m

1

ln~1/qcd* !
.0, qcd* !1, ~7!

whereqc5A2mm/\ is the inverse healing length. In a dilut
thermal 2D gas, due to the logarithmic dependence off on q,
the thermal average of the mean-field interaction leads to
coupling constantg5(\2/m) f (qT), where qT5AmT/\ is
the thermal momentum of particles. At sufficiently low tem
peratures, whereqTd* !1, we again haveg.0.

Thus, in an ultracold purely 2D gas the coupling const
for the mean-field interaction is always positive in the dilu
limit and, hence, the interaction is repulsive. This striki
difference from the 3D case is a consequence of the
kinematics. For low energies, at interparticle distancesr
@Re , the ~free! relative motion of a pair of atoms is gov
erned by the wave functioncs} ln(r/d). The probability den-
sity ucsu2 of finding two atoms at a given separation i
creases withr as the conditionr.d is always reached
unless the atoms have a bound state with energy«0→0 (d
→`). This means that it is favorable for particles to be
largerr, i.e., they repel each other.

III. SCATTERING IN AXIALLY CONFINED
GEOMETRIES: GENERAL APPROACH

In this section we discuss elastic scattering of ato
~tightly! confined in the axial~z! direction, assuming that th
motion in two other (x,y) directions is free. We analyze how
the scattering is influenced by the confinement and calcu
a complete set of scattering amplitudes corresponding
collision-induced transitions between particle states in
confining potential. We still call this scattering elastic as t
internal states of atoms are not changing.

For a harmonic axial confinement, the motion of two
oms interacting with each other via the potentialV(r ) can be
still separated into their relative and center-of-mass mot
The latter drops out of the scattering problem. The relat
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motion is governed by the potentialV(r ) and by the potential
VH(z)5mv0

2z2/4 originating from the axial confinemen
with frequencyv0. For the incident wave characterized b
the wave vectorq of the motion in the~x,y! plane and by the
quantum numbern of the state in the potentialVH(z), the
wave function of the relative motion satisfies the Sch¨-
dinger equation

F2
\2

m
D1V~r !1VH~z!2

\v0

2 Gc~r !5«c~r !, ~8!

where«5\2q2/m1n\v0.
The scattering depends crucially on the relation betw

the radius of interatomic interactionRe and the characteristic
de Broglie wavelength of particlesL̃« . The latter is intro-
duced qualitatively, as the motion along thez axis is tightly
confined. Accounting for the zero point axial oscillations o
can writeL̃«;\/Am«̃, with «̃5«1\v0/2. We will consider
the ultracold limit where

L̃«@Re . ~9!

Equation~9! immediately leads to the inequalityqRe!1, as
the de Broglie wavelength for the motion in the (x,y) plane
is ;1/q. For small n the harmonic oscillator lengthl 0
5(\/mv0)1/2 plays the role of the axial de Broglie wave
length of atoms. Therefore, the ultra-cold limit~9! also re-
quires the conditionl 0@Re . For largen, the axial de Broglie
wavelength is; l 0 /An and, according to Eq.~9!, this quan-
tity should be much larger thanRe .

Under the conditionqRe!1, the scattering amplitudes ar
determined by the contribution of thes wave for the motion
in the (x,y) plane. In the case of identical bosons, thes-wave
scattering requires even values ofn andn8 as the wave func-
tion c should conserve its sign under the transformationz
→2z. The quantum numbersn andn8 should be even also
for distinguishable particles. Otherwise at distances of in
atomic interaction,r &Re , the wave functionc will be small
at least asRe / l 0, ensuring the presence of this small para
eter in the expressions for the scattering amplitudes.

The scattering amplitudes corresponding to transitio
from the initial staten @of the relative motion in the potentia
VH(z)# to final statesn8 are defined through the asymptot
form of the wave functionc at an infinite separationr in the
(x,y) plane:

c~r !'wn~z!eiq•r2(
n8

f nn8~«!wn8~z!A i

8pqn8r
eiqn8r,

~10!

wherewn(z) andwn8(z) are the~real! eigenfunctions of the
statesn andn8. For each of the scattered circular waves t
value of the momentumqn8 follows from the energy-
conservation law\2qn8

2 /m5«2\v0n8.0.
Relying on the condition~9!, we develop a method tha

allows us to express the scattering amplitudes through the
scattering length. At interparticle distancesr @Re the relative
motion in the (x,y) plane is free, and the motion along thez
6-3
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axis is governed only by the harmonic oscillator poten
VH(z). Then, the solution of Eq.~8! with V(r )50 can be
expressed through the Green functionG«(r ,r 8) of this equa-
tion. Retaining only thes wave for the motion in the (x,y)
plane, we have

c~r !5wn~z!J0~qr!1AnG«~r ,0!, ~11!

and the expression for the Green functionG«(r ,0) reads

G«~r ,0!5(
n8

wn8~z!wn8~0!3H iH 0
(1)~qn8r!/4, qn8

2
.0

K0~ uqn8ur!/2p, qn8
2

,0.
~12!

Here the summation is also performed over closed scatte
channels for which qn8

2
,0. The function K0(x)

5( ip/2)H0( ix) and it decays asAp/2xexp(2x) at x@1.
Thus, forr→` the terms corresponding to the closed cha
nels vanish. Then, comparing Eq.~11! at r→` with Eq.
~10!, we find a relation between the scattering amplitud
and the coefficientsAn:

f nn852Anwn8~0!u~«2\v0n8!, ~13!

whereu is the step function.
The conditionl 0@Re ensures that the relative motion o

atoms in the region of interatomic interaction is not infl
enced by the axial~tight! confinement. Therefore, the wav
function c(r ) in the interval of distances whereRe!r
!L̃« , differs only by a normalization coefficient from th
3D wave function of free motion at zero energy. Writing th
coefficient ashwn(0), wehave

c~r !'hwn~0!~12a/r !. ~14!

Equation~14! contains the 3D scattering lengtha and serves
as a boundary condition forc(r ) Eq. ~11! at r→0.

For r→0, a straightforward calculation of the sum in E
~12! yields

G«~r ,0!'
1

4pr
1

1

2~2p!3/2l 0

wS «

2\v0
D , ~15!

where the complex functionw(x) is given by

w~x!5 lim
N→`

F2AN

p
ln

N

e2
2(

j 50

N
~2 j 21!!!

~2 j !!!
ln~ j 2x2 i0!G .

~16!

With the Green function~15!, the wave function~11! at r
→0 should coincide withc(r ) Eq. ~14!. This gives the co-
efficient

h5
1

11~a/A2p l 0!w~«/2\v0!
~17!

and provides us with the values of the coefficientsAn . Then,
using Eq. ~13! and explicit expressions wn(0)
5(1/2p l 0

2)1/4(n21)!!/An!, we immediately obtain the scat
tering amplitudef 00(«) and express all other scattering am
plitudes through this quantity:
01270
l
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f 00~«!54pw0
2~0!ah5

2A2p

l 0 /a1~1/A2p!w~«/2\v0!
,

~18!

f nn8~«!5Pnn8 f 00~«!u~«2\v0n!u~«2\v0n8!, ~19!

where

Pnn85
wn~0!wn8~0!

w0
2~0!

5
~n21!!! ~n821!!!

An!n8!
. ~20!

One can see from Eqs.~18! and ~19! that the scattering
amplitude is a universal function of the parametersa/ l 0 and
«/\v0, irrespective of the values ofn andn8. The quantity
Pnn8 in Eq. ~19! is nothing else than the relative probabili
amplitude of having an axial interparticle separationuzu! l 0
~in particular,uzu&Re) for both incoming (n) and outgoing
(n8) channels of the scattering process. It is thus sufficien
study only the behavior off 00(«).

We emphasize the presence of two distinct regimes
scattering. The first one, which we call quasi2D, requi
relative energies«!\v0. In this case, the relative motion o
particles is confined to zero-point oscillations in the ax
direction, and the 2D kinematics of the relative motion
interatomic distancesr. l 0 should manifest itself in the de
pendence of the scattering amplitude on«/2\v0 anda/ l 0. In
the other regime, at energies already comparable with\v0,
the 2D kinematics is no longer pronounced in the scatter
process. Nevertheless, the latter is still influenced by
~tight! axial confinement. Qualitatively, the scattering amp
tudes become three dimensional, with a momentum;1/l 0
related to the quantum character of the axial motion. Th
we can say that this is a confinement-dominated 3D reg
of scattering. With increasing the relative energy to«
@\v0, the momentum is increasing toAm«/\ and the
confinement-dominated 3D regime continuously transfor
to ordinary 3D scattering.

IV. QUASI-2D REGIME

In the quasi-2D regime, due to the condition«!\v0, the
incident and scattered waves have quantum numbersn5n8
50 for the motion in the axial harmonic potentialVH(z).
The relative energy«5\2q2/m and the inequalityql0!1 is
satisfied. In this case Eq.~16! gives

w~«/2\v0!5 ln~B\v0 /p«!1 ip, ~21!

whereB'0.915. Then our equation~18! recovers Eq.~11! of
Ref. @9#, obtained in this limit@20#.

Using Eq.~21! we can representf 00(«) Eq. ~18! in the 2D
form ~6!, with

d* 5~d/2!expC5Ap/B l0exp~2Ap/2 l 0 /a!. ~22!

This fact has a physical explanation. Relying on the sa
arguments as in the purely 2D case, one finds that in
interval of distances wherel 0!r!1/q, the wave function
c}w0(z)ln(r/d). On the other hand, forr@ l 0 we have
6-4
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c(r )5w0(z)cs(r), wherecs is given by the 2D expressio
~5! with f (q)5 f 00(«). This follows from Eqs.~11!–~13!, as
all closed scattering channels (n8Þ0) in Eq. ~12! for the
Green functionG«(r ,0) have momentauqn8u*1/l 0 and will
be exponentially suppressed atr@ l 0. Matching the two ex-
pressions for the wave functionc one immediately obtains
the 2D equation~6!. However, the parameterd* in Eq. ~22!
can be found only from the solution of the quasi-2D scatt
ing problem.

We thus conclude that the scattering problem in
quasi-2D regime is equivalent to the scattering in an eff
tive purely 2D potential that leads to the same value ofd* .
For positivea! l 0, this potential can be viewed as a~low!
barrier, with a heightV0;\2a/ml0

3 and radiusl 0. Hence, in
the case of positivea we have a small~positive! scattering
amplitude, in accordance with Eqs.~6! and~22!. For a nega-
tive a satisfying the conditionuau! l 0, the effective potential
is a shallow well that has a depthuV0u and radiusl 0. This
shallow well supports a weakly bound state with an ex
nentially small binding energy«0, which leads to an expo
nentially larged* as follows from Eq.~22!. As a result, we
have a resonance energy dependence of the scattering a
tude f 00 at a fixed ratioa/ l 0, and a resonance behavior off 00
as a function ofa/ l 0 at a fixed«/\v0.

The resonance in the energy dependence off 00 is quite
similar to the logarithmic-scale resonance in the purely
case, discussed in Sec. II. The quasi-2D resonance is
described by Eq.~6!, where the lengthd* is now given by
Eq. ~22!. As expected, the dependence off 00 on « is smooth.

The resonance in the dependence of the quasi-2D sca
ing amplitude ona/ l 0, appearing ata,0, has been found
and discussed in@9#. Relying on the above-introduced effe
tive 2D potential for the quasi-2D scattering, we can n
explain this resonance on the same grounds as the reson
in the energy dependence off 00. We will do this in terms of
the relative energy« and the binding energy in the effectiv
potential, «05\2/md

*
2 }exp(2A2p l 0 /uau) (a,0). For

«/«05(qd* )2@1, the scattering amplitude in Eq.~6! is real
and negative. It increases in magnitude with decreasing r
«/«0, that is with decreasingq or l 0. In the opposite limit,
where«/«0!1, the scattering amplitude is real and positi
and it increases with the ratio«/«0. The region of energies
«/«0;1 corresponds to the resonance, where both the
and imaginary parts off 00 are important. The real par
reaches its maximum at«/«05exp(2p), drops to zero at
«/«051, and acquires the maximum negative value
«/«05expp. The dependence of Imf 00 on «/«0 is the same
as that of the quantityu f 00u2. Both of them peak at«/«051
and decrease with increasing or decreasing«/«0.

Qualitatively, the picture remains the same foruau; l 0. In
Fig. 1 we present the dependence ofu f 00u2 on «/2\v0 at a/ l 0
equal to21, 1, and̀ . In the two last cases we always ha
«/«0!1, and u f 00u2 increases with« at «!\v0. For a/ l 0
521 we have the above-described logarithmic-scale re
nance in the behavior ofu f 00u2.

The quasi-2D resonance is much more pronounced in
dependence of the scattering amplitude on the param
a/ l 0. The reason is thatf 00 logarithmically depends on th
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particle energy, whereas the dependence ona/ l 0 is a power
law. For«!\v0, Eq. ~18! yields

u f 00u25
16p2

~A2p l 0 /a1 ln~B\v0 /p«!!21p2
. ~23!

The quantityu f 00u2 differs only by a factor of\/m from the
rate constant of elastic collisions@see Eq.~2!#, and one can
think of observing the resonance dependence ofu f 00u2 on
a/ l 0 in an experiment. For example, one can keep« ~tem-
perature! and v0 constant and varya by using Feshbach
resonances. The resonance is achieved ata52A2p l 0 /
ln(B\v0 /p«). This is a striking difference from the 3D cas
where the cross section and rate constant of elastic collis
monotonously increase witha2.

In Fig. 2 we presentu f 00u2 versusa/ l 0 at a fixed«/\v0. In
order to extend the results to the region of energies where
validity of the quasi-2D approach is questionable, the qu
tity u f 00u2 was calculated by using Eq.~18! for the scattering
amplitude. The resonance is still visible at«/\v050.06 and
it disappears for«/\v050.2.

The obtained results allow us to conclude that foruau
* l 0 the approximate border line between the quasi-2D a
confinement-dominated 3D regimes is«'«* 50.1\v0. For
uau! l 0, as we will see below, the confinement-dominat
regime is practically absent.

The output of kinetic studies in thermal gases is usua
related to the mean collisional frequency~the rate of inter-
atomic collisions! V5ān, whereā is the mean rate constan
of elastic collisions, andn the gas density. In the quasi-2D
regime, the rate constantā follows directly from Eq.~2!,
with twice as large rhs for identical bosons,

ā5
\

m
^u f 00u2&, ~24!

where the symbol̂ & stands for the thermal average. O
numerical calculations show that the average ofu f 00u2 over
the Boltzmann distribution of particles only slightly broade
the resonances in Fig. 1 and Fig. 2. Due to the logarithm
dependence off 00 on the relative energy, the thermal avera

FIG. 1. The functionu f 00u2 versus the ratio«/2\v0 for a/ l 0

521 ~solid curve!, a/ l 05` ~dashed curve! and a/ l 051 ~dotted
curve!.
6-5
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is obtained with a good accuracy if one simply replaces« by
the gas temperatureT. Thus, in order to observe the man
festation of the 2D features of the particle motion in th
collisional rates one has to achieve very low temperatu
T,0.1\v0.

V. CONFINEMENT-DOMINATED 3D REGIME

In the confinement-dominated 3D regime, where«
;\v0, the axial confinement influences the scattering p
cess through the confined character of the axial motion
order to analyze this influence, we first examine the funct
w(«/2\v0) that determines the energy dependence of
scattering amplitudes. The imaginary part ofw(x), following
from Eq. ~16!, is equal to

Imw~x!5p(
j 50

[x]
~2 j 21!!!

~2 j !!!
52Ap

G~@x#13/2!

@x#!
, ~25!

where@x# is the integer part ofx. The function Imw(x) has a
stepwise behavior as shown in Fig. 3. It is constant at n
integerx and undergoes a jump at each integerx, taking a
larger value for largerx. With increasingx, the jumps be-
come smaller and forx@1 we have Imw(x)'2Apx. The
real part ofw(x) was calculated numerically from Eq.~16!
and is also given in Fig. 3. At anyx we haveuRew(x)u,1,
except for narrow intervals in the vicinity of integerx. In
each of these intervals the function Rew(x) logarithmically
goes to infinity asx approaches the corresponding integ
value. This is consistent with the stepwise behavior

FIG. 2. The functionu f 00u2 versusuau/ l 0 at various ratios«/\v0

for a,0 ~a! anda.0 ~b!.
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Imw(x): As one can see directly from Eq.~16!, for x ap-
proaching an integerj the analytical complex functionw
} ln(j2x2i0).

The described behavior of the functionw(«/2\v0) has a
direct influence on the scattering amplitudes. For«/2\v0
close to an integerj, the amplitude is small and it is equal t
zero for «52\v0 j . This phenomenon originates from th
fact that for « close to 2\v0 j , a new scattering channe
opens~really or virtually!. For this channel the momentum
uqn8u5Amu«22\v0 j u/\ is very small. Hence, at distance
r!u1/qn8u the wave functionc @Eq. ~11!# will be determined
by the contribution of this low-momentum term ifr@ l 0.
This is clearly seen from Eqs.~12! and ~11! and makes the
situation somewhat similar to that in the quasi-2D regime
scattering. In the latter case, the wave functionc in Eq. ~11!
at distancesr!1/q is also determined by the contribution o
the low-momentum channel as long asr@ l 0. Then, as fol-
lows from the analysis in Sec. IV, this wave function and t
scattering amplitudef 00 behave as 1/ln(\v0 /«) in the limit
«→0. In the present case, the wave functionc and the scat-
tering amplitudes are small as 1/ln(\v0 /u«22\v0ju) for «
→2\v0 j .

The dependence ofu f 00u2 on «/2\v0 for a/ l 0 equal to
21, 1, and` is displayed in Fig. 4. Outside narrow energ
intervals in the vicinity of integer«/2\v0, the quantityu f 00u2
is a smooth function of«. One can also see a sort of
stepwise decrease ofu f 00u2 with increasing«, originating
from the stepwise increase of the function Imw(«/2\v0).
For «/2\v0 close to integer valuesj .0 we find a fine struc-
ture similar in nature to the behavior ofu f 00u2 at «!\v0. For
a/ l 051 anda/ l 05` there are narrow dips corresponding
the logarithmic decrease ofu f 00u2 as «→2\v0 j , and for
a/ l 0521 these dips are accompanied by resonances. N
that the thermal distribution of particles averages out this fi
structure, and the latter will not be pronounced in kine
properties.

The difference between the confinement-dominated
regime and the ordinary 3D regime of scattering will ma
fest itself in the rate of elastic collisions~mean collisional
frequencyV). For the Boltzmann distribution of particles

FIG. 3. The functions Rew(x) ~solid curve! and Imw(x)
~dashed lines!. The dotted curve shows the function 2Apx corre-
sponding to the asymptotic behavior of Imw at largex.
6-6
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one can find this quantity by turning to the thermal distrib
tion for the relative motion of colliding partners. Collision
induced transitions between the states of the relative mo
in the axial potentialVH(z) are described by the rate con
stants

ann8~«!5~\/m!u f nn8~«!u2, ~26!

where the scattering amplitudesf nn8 are given by Eqs.~18!
and ~19!, and an extra factor 2 for identical bosons is tak
into account. The collisional frequencyV5ān, wheren is
the ~2D! density, and the mean rate constant of elastic co
sions,ā, is obtained by averagingann8 in Eq. ~26! over the
thermal distribution of relative energies« and by making the
summation over all possible scattering channels. We t
have

V5ān5(
nn8

E nLT
2d2q

~2p!2
ann8~«!A expS 2

«

TD . ~27!

Here LT5(2p\2/mT)1/2 is the thermal de Broglie wave
length«5\2q2/m1\v0n and the quantum numbersn and
n8 take only even values. The distribution function overn
andq is normalized to unity. The normalization coefficientA
is obtained by the summation over both even and oddn and
is equal to

A52@12exp~2\v0 /T!#. ~28!

Note that the number of collisions per unit time and u
surface area in the (x,y) plane is equal toān2/25Vn/2.

The manifestation of the tight axial confinement of t
particle motion in collisional rates depends on the relat
between the scattering lengtha and the characteristic de Bro

FIG. 4. The functionu f 00u2 versus the ratio«/2\v0. In ~a! the
parametera/ l 0521. In ~b! the dashed curve corresponds to t
unitarity limit (a/ l 05`), and the dotted curve toa/ l 051.
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glie wavelengthL̃«;\/Am(«1\v0/2) accounting for the
zero-point axial oscillations. For the scattering length sa
fying the conditionuau!L̃« , the scattering amplitudes ar
energy independent at any«, except for extremely small en
ergies in the quasi-2D regime. This follows directly fro
Eqs. ~17!–~19!. The conditionuau!L̃« automatically leads
to the inequalitiesuau! l 0 anduau!\/Am«. Hence, the func-
tion w(«/2\v0) is much smaller thanl 0 /uau, unless «
&\v0exp(2l0 /uau) @see Eq.~21! and Fig. 3#. Accordingly,
Eq. ~17! givesh51 and Eqs.~18! and~19! lead to the scat-
tering amplitudes

f nn854pawn~0!wn8~0!u~«2\v0n!u~«2\v0n8!.
~29!

The amplitudes~29! are nothing else than the 3D scatterin
amplitude averaged over the axial distribution of particles
the incoming (n) and outgoing (n8) scattering channels
From Eqs.~26! and~29! one obtains the same rate of trans
tions n→n8 as in the case of 3D scattering of particles h
monically confined in the axial direction and interacting wi
each other via the potentialV(r ). This is what one should
expect, since under the conditionuau!L̃« the amplitude of
3D scattering is momentum independent. The integrat
overd2q in Eq. ~27! leads to the mean collisional frequenc

V5
\n

2m
~4pa!2A(

n,n8
wn

2~0!wn8
2

~0!expS 2
\v0

T
max$n,n8% D .

Thus, in the case whereuau!L̃T , the tight confinement in
the axial direction can manifest itself in the collisional rat
only through the axial distribution of particles and the d
crete structure of quantum levels in the axial confining p
tential. The expression for the collisional frequencyV can be
reduced to the form

V5
8p\n

m S a

l 0
D 2

j, ~30!

where the coefficientj ranges from 1 atT!\v0 to 2/p for
T@\v0. The conditionuau!L̃T is equivalent touau! l 0 and
qTuau!1, whereqT5AmT/\ is the thermal momentum o
particles. ForT@\v0, Eq. ~30! gives the collisional fre-
quency that coincides with the three-dimensional result
eraged over the classical Boltzmann profile of the 3D den
in the axial directionnB(z),

V3D5^s3Dv&E nB
2~z!

n
dz. ~31!

Heres is the 3D elastic cross section, andv is the relative
velocity of colliding particles. In other words, the quanti
(1/2)ān25(1/2)Vn coincides with the number of 3D colli
sions per unit time and unit surface area in the (x,y) plane,
given by (1/2)̂ s3Dv&*nB

2(z)dz.
From Eq. ~30! we conclude that for uau! l 0 the

confinement-dominated 3D regime of scattering is not p
nounced. At temperaturesT&\v0 the collisional rate only
slightly deviates from the ordinary 3D behavior. This has
6-7
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simple physical explanation. Foruau!L̃T , treating collisions
as three dimensional we haveV;8pa2vn3D . At low tem-
peraturesT&\v0 the velocityv;\/ml0, and the 3D density
is n3D;n/ l 0. For T@\v0 we havev;(T/m)1/2 and n3D

;n(mv0
2/T)1/2. In both cases the ‘‘flux’’vn3D;v0n, and

there is only a small numerical difference between the lowT
and high-T collisional frequencies.

The ultracold limit~9! assumes that the characteristic r
dius of interatomic interactionRe! l 0. Therefore, the condi-
tion uau! l 0 is always satisfied, unless the scattering length
anomalously large (uau@Re). Below we will focus our atten-
tion on this case, assuming thatuau* l 0.

Let us first show how the 3D result follows from ou
analysis atT@\v0, irrespective of the relation betweena
and L̃« . At these temperatures the main contribution to
sum in Eq.~27! comes from«@\v0 and largen and n8.
Accordingly, we can replace the summation overn and n8
by integration. At energies much larger than\v0 the quan-
tity An/ l 0 is nothing else than the axial momentumkz and
we have«5\2(q21kz

2)/m. For these energies the functio
w(«/2\v0) in Eq. ~18! takes its asymptotic formw
' iA2p«/\v0. Using Eq.~19!, this immediately allows us
to write

u f nn8u
25Pnn8

2 8pa2

l 0
2~11p2a2!

5Pnn8
2 s3D

l 0
2

, n8,
«

\v0
,

wherep5Aq21kz
2 is the 3D momentum of the relative mo

tion, ands3D58pa2/(11p2a2) is the cross section for th
3D elastic scattering. For largen and n8, Eq. ~20! gives
Pnn85(4/p2nn8)1/4, and the integration overn8 in Eq. ~27!
multiplies s3D by the relative 3D velocityv. Then, turning
from the integration overn to the integration over the axia
momentum, we reduce Eq.~27! to

V5E nLT
2d3p

~2p!3
~s3Dv !A expS 2

\2p2

mT D , ~32!

and one can easily check that Eq.~32! coincides with the
three-dimensional resultV3D in Eq. ~31!.

In the limiting case, where the thermal momentum of p
ticles satisfies the inequalityqTuau@1, we obtain

V3D5
16\n

m S \v0

T D , qTuau@1. ~33!

In the opposite limit, whereqTuau!1, at temperaturesT
@\v0 we automatically haveuau!LT and, accordingly, re-
cover Eq.~30! with j52/p:

V3D5
16\n

m S a

l 0
D 2

, qTuau!1. ~34!

As mentioned in Sec. IV, foruau* l 0 the approximate bor-
der line between the quasi2D and confinement-dominated
regimes is«* '0.1\v0. In the temperature interval«* ,T
,\v0, the leading scattering channel will be the same a
the quasi-2D case, that isn5n850. However, the expres
01270
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sion for the scattering amplitudef 00 is different. From Fig. 3
and Eq.~18! one concludes that the real part of the functi
w can be neglected and the scattering amplitude takes
form

f 005
2A2p

l 0 /a1 iAp/2
.

Then, retaining only the scattering channeln5n850, Eqs.
~26! and ~27! yield

V5
8p\n

m S a

l 0
D 212exp~2\v0 /T!

11pa2/2l 0
2

. ~35!

The difference of Eq.~35! from the quasi-2D result of Eqs
~23! and~24! is related to the absence of the logarithmic te
in the denominator. This follows from the fact that now w
omitted the real part of the functionw, which is logarithmi-
cally large in the quasi-2D regime.

It is worth noting that forl 0@uau, Eq. ~35! is only slightly
different from the 3D result~34!. This is consistent with the
above-given analysis leading to Eq.~30!.

On the other hand, for largeuau/ l 0 the difference between
Eq. ~35! and the 3D result~33! is significant. This originates
from the fact that for a large scattering lengtha the 3D am-
plitude of scattering in the ultracold limit depends on t
particle momenta. For a tight axial confinement, treating c
lisions as three dimensional, the relative momentum of c
liding particles at temperaturesT&\v0 is ;1/l 0 and it no
longer depends on temperature. Hence, the scattering ra
quite different from that in 3D. Given these arguments, o
expects a strongly pronounced confinement-dominated
regime of scattering if the ratiouau/ l 0@1.

This is confirmed by our numerical calculations for th
temperature dependence ofV from Eq. ~27!. In Fig. 5 we
present the results fora/ l 0 equal to 21, 1, and`. The
largest deviation from the 3D regime is observed in the u
tarity limit (a→`). From Fig. 5 we see that in the Stanfo
@6# and ENS@8# experiments performed in this limit@21,22#
one should have significant deviations of collisional ra
from the ordinary 3D behavior.

VI. THERMALIZATION RATES

We will now discuss the collision-induced energy e
change between axial and radial degrees of freedom of
particle motion in an ultracold Bose gas tightly confined
the axial direction of a pancake-shaped trap. It is assum
that the radial confinement is shallow and it does not infl
ence the scattering amplitudes. In this geometry, using
generate Raman sideband cooling, the Stanford@5,6# and
ENS @7,8# groups created Cs gas clouds with different ax
(Tz) and radial (Tr) temperatures. After switching off the
cooling, interatomic collisions lead to energy exchange
tween the axial and radial particle motion and the tempe
turesTz andTr start to approach each other. Ultimately, t
gas reaches a new equilibrium state, with a temperatur
between the initialTz andTr . The corresponding~thermal-
ization! rate has been measured at Stanford@6# and ENS@8#
6-8
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and it provides us with the information on the regimes
interatomic collisions in the gas.

The radial motion of particles is classical. Therefore,
will calculate the rate of energy exchange between the ra
and axial degrees of freedom for a given value of the ra
coordinater and then average the result over the Boltzma
density profile in the radial direction. The latter is given b

n~r!5n~0!expS 2
mv2r2

2T D , ~36!

wheren(0)5mv2N/2pT is the 2D density forr50, v the
radial frequency, andN the total number of particles
Collision-induced transitionsn→n8 change the energy of th
axial motion by\v0(n82n). We will assume that in the
course of evolution the axial and radial distribution of pa
ticles remain Boltzmann, with instantaneous values ofTz and
Tr . Then the rate of energy transfer from the radial to ax
motion can be written on the same grounds as Eq.~27! and
reads

Ėz52Ėr5
1

2E n2~r!d2r(
nn8

E LT
2d2q

~2p!2
\v0~n82n!

3
\

m
u f nn8~«!u2A expS 2

\2q2

mTr
2

\v0n

Tz
D , ~37!

FIG. 5. The dimensionless quantitymV/\n versus the ratio
T/\v0. In ~a! the parametera/ l 0521 ~dashed curve!, and a/ l 0

51 ~dotted curve!. In ~b! a/ l 05` ~unitarity limit!. The solid curves
in ~a! and~b! show the 3D result~31!. The arrow in~b! indicates the
lowest ratioT/\v0 in the Stanford and ENS experiments.
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where«5\2q2/m1\v0n, and the normalization coefficien
A depends now on bothTz andTr .

The radial energy of the gas isEr52NTr , and the axial
energy is given byEz5N\v0@exp(\v0 /Tz)21#21. The time
derivatives of these energies take the form

Ėz5
N\2v0

2Ṫz

4Tz
2sinh2~v0/2Tz!

, Ėr52NṪr . ~38!

Given the initial values ofTz and Tr , Eqs. ~37! and ~38!
provide us with the necessary information on the evolut
of Tz(t) andTx(t).

For a small differencedT5Tr2Tz , these equations ca
be linearized with respect todT. As the total energy is con
served, Eqs.~38! reduce to

dṪ5
Ėz

N S 1

2
1

4T2sinh2~\v0/2T!

\2v0
2 D . ~39!

In Eq. ~37! we represent the exponent as2(«/T
1dT\v0n/T2) and turn from the integration overdq to in-
tegration overd«. The zero-order term of the expansion
powers ofdT vanishes. The~leading! linear term, being sub-
stituted into Eq.~39!, leads to the differential equation fo
dT(t):

dṪ52V th~T!dT, ~40!

where the thermalization rateV th(T) is given by

V th5
n~0!LT

2A

16p\ S \2v0
2

2T2
14sinh2~\v0/2T!D

3 (
n.n8

~n2n8!2E
\v0n

`

d«u f nn8~«!u2expS 2
«

TD .

~41!

The degeneracy parameter isn(0)LT
25N(\v/T)2 and it is

small as the gas obeys the Boltzmann statistics. The norm
ization coefficientA is again given by Eq.~28!.

The quantum numbersn and n8 take only even values
and, hence, in order to change the state of the axial mo
one should have a relative energy«.2\v0. Therefore, at
temperatures lower than\v0 the rate of transitions changin
the axial and radial energy is} exp(22\v0 /T). On the other
hand, the axial energyEz} exp(2\v0 /T) and thus the ther-
malization rateV th} exp(2\v0 /T). This can be easily found
from Eq. ~41! and shows that the quantum character of
axially confined particle motion exponentially suppresses
thermalization process at temperaturesT!\v0. In particu-
lar, this is the case for the quasi-2D regime.

In the most interesting part of the confinement-domina
3D regime, where«* ,T,\v0, the energy exchange be
tween the axial and radial motion of particles is mostly
lated to transitions between the states withn850 andn52.
The relative energy« should be larger than 2\v0 and, at the
same time, this energy is well below 4\v0. Hence, the scat-
6-9
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tering amplitudef 20(«) is determined by Eqs.~18! and ~19!
in which one can putw(«/2\v0)' i3p/2 ~see Eq.~25! and
Fig. 3!. This gives

f 205
2A2p

l 0 /a1 i ~3/2!Ap/2
,

and from Eq.~41! we obtain

V th5
16\v0

9pT
V0

exp~2\v0 /T!

118l 0
2/9pa2

@12exp~2\v0 /T!#3.

~42!

The characteristic frequencyV0 is given by

V05v2N/v0 . ~43!

At temperaturesT@\v0, Eq. ~41! leads to the 3D resul
for the thermalization rate:

V th
3D5

8

15p S \v0

T D 2

V0 , qTuau@1, ~44!

V th
3D5

16

15p S a

l 0
D 2S \v0

T DV0 , qTuau!1. ~45!

Comparing Eqs.~44! and ~45! with Eq. ~42! one sees tha
V th should acquire its maximum value atT;\v0. For uau
* l 0 this maximum value is on the order ofV0/2p.

As one expects from the discussion in Sec. V, the diff
ence of the thermalization rate fromV th

3D is pronounced for
large values ofa. For example, in the unitarity limit Eq.~44!
givesV th

3D}1/T2, whereas in the confinement-dominated
gime we haveV th}(1/T)exp(2\v0 /T).

It should be emphasized that for anyT, v0, anda the ratio
V th /V0 depends only on the parametersT/\v0 and a/ l 0.
This can be found directly from Eq.~41!. In Fig. 6 we
present the temperature dependence ofV th in the unitarity
limit, obtained numerically from Eq.~41!, and compare our

FIG. 6. Thermalization rateV th ~in units ofV0) versus tempera-
ture ~in units of\v0) in the unitarity limit (a5`). The solid curve
shows the result of our calculations forV th , and the dotted line the
3D resultV th

3D . Squares and circles show the data of the Stanf
and ENS experiments.
01270
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results with the data of the Stanford@6# and ENS@8# experi-
ments. With the current error bars, the ENS results do
show significant deviations from the classical 3D behavi
These results agree fairly well with our calculations. T
Stanford experiment gives somewhat lower values
V th /V0 at the lowest temperatures of the experiment.

In the hydrodynamic regime for the gas cloud, where
characteristic collisional frequency greatly exceeds the ra
frequencyv, our assumption of quasiequilibrium at insta
taneous~time-dependent! values ofTz and Tr may not be
valid. Nevertheless, the shape of the curveV th(T) qualita-
tively remains the same, including the exponential decre
with temperature atT,\v0 and power-law decrease wit
increasingT at temperatures larger than\v0. However, the
maximum value ofV th will be somewhat lower~in particu-
lar, of the order ofv @6#!.

The number of particles~per ‘‘2D’’ sheet of atoms! in the
Stanford experiment@6# was N;104 @23#, which is by a
factor of 20 higher than at ENS forT'\v0 @8#. We then
estimate the 2D density of atoms for these temperatures t
n;2.53108 cm22 at Stanford (v'90 Hz!, and n;0.5
3108 cm22 at ENS (v'180 Hz!. For these densities, th
ratio of the collisional frequencyV in Fig. 5 to the radial
frequency isV/v;0.3 in the ENS experiment, andV/v
;3 in the experiment at Stanford. At temperaturesT.\v0
the densityn and the ratioV/v are smaller in both experi
ments. We thus see that the ENS experiment@8# was in the
collisionless regime, although rather close to the hydro
namic regime at temperaturesT'\v0. For these tempera
tures, the Stanford experiment@6# has already achieved th
hydrodynamic regime, and this can explain the discrepa
between our calculations and the Stanford results in Fig.

VII. INELASTIC TWO-BODY PROCESSES

Inelastic scattering of atoms is also influenced by the ti
axial confinement of the particle motion. In this section w
will consider the inelastic two-body processes, such as s
relaxation, in which the internal states of colliding atoms a
changing, and the released internal-state energy of the a
is transferred to their kinetic energy. Our goal is to establ
a relation between the inelastic rates in 3D and those in
~tightly! axially confined geometry. The analysis given b
low relies on two important conditions widely met for th
two-body spin relaxation@24#.

~i! The energy release per collision greatly exceeds
gas temperature and the frequency of the axial confinem
Accordingly, the inelastic transitions occur at comparative
short interparticle distances;Rin that are much smaller tha
the characteristic de Broglie wavelength of particles.

~ii ! The inelastic transitions are caused by weak~spin-
dipole, spin-orbit, etc.! interatomic interactions and can b
treated with perturbation theory.

To first order in perturbation theory the amplitude of i
elastic scattering, defined in the same way as in the prev
sections, is given by a general expression@25#

f in~«!5
m

\2E c i~r !Uint~r !c f~r !d3r . ~46!

d
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Here c i(r ) and c f(r ) are the true wave functions of th
initial and final states of the relative motion of colliding a
oms, andUint(r ) is the~weak! interatomic potential respon
sible for inelastic transitions. This potential is the same a
the 3D case. The functionc f is also the same as in 3D, sinc
the relative energy in the final state is much larger than\v0.
Thus, the only difference of the amplitudef in in Eq. ~46!
from the amplitude of inelastic scattering in the 3D case
related to the form of the wave functionc i .

The characteristic interatomic distanceRin at which the
inelastic transitions occur, satisfies the inequalityRin!L̃«

@see item~i!#. Therefore, we are in the ultracold limit simila
to that determined by Eq.~9! in the case of elastic scattering
and the conditionsqRin!1 and Rin! l 0 are satisfied. The
former ensures a dominant contribution of thes wave~of the
initial wave functionc i) to the scattering amplitudef in in
Eq. ~46!. Due to the conditionRin! l 0, at distancesr;Rin
the wave functionc i has a three-dimensional characte
c i(r )}c̃3D(r ), wherec̃3D(r ) is the wave function of the 3D
relative motion at zero energy. Forr @Re we havec̃3D(r )
5(12a/r ), and in order to be consistent with Eq.~14! we
should write

c i~r !5h~«!wn~0!c̃3D~r !, ~47!

where the coefficienth(«) is given by Eq.~17!, andn is the
quantum number of the initial state of the relative motion
the axial harmonic potentialVH(z).

In the 3D case, the amplitudef 0 of inelastic scattering a
zero initial energy is determined by Eq.~46! with c i replaced
by c̃3D . Hence, Eq.~47! directly gives a relation betwee
the two scattering amplitudes

f in5h~«!wn~0! f 0 . ~48!

Due to the high relative kinetic energy of particles in t
final state of the inelastic channel, the density of final sta
in this channel is independent of the axial confineme
Therefore, relying on Eq.~48! the mean rate constantā in of
inelastic collisions in the axially confined geometry and t
corresponding collisional frequencyV in can be represente
in the form

ā in5^uh~«!u2wn
2~0!u~«2\v0n!&a0 , V in5ā inn,

~49!

wherea0 is the 3D inelastic rate constant at zero energy
Note that in the ultracold limit the 3D inelastic rate co

stant is temperature independent and equal toa0 if the scat-
tering lengthuau&Re . For uau@Re , the wave function of the
relative motion in the region of interatomic interaction tak
the form c i(r )5h3Dc̃3D(r ), where uh3Du25(11p2a2)21

and p is the 3D relative momentum of colliding particle
~see, e.g.,@26#!. Hence, for the inelastic rate constant w
have ^a0(11p2a2)21&. In the presence of axial confine
ment, averaging the frequency of inelastic collisions over
~quantum! axial density profilen3D(z), we obtain
01270
in

s

:

s
t.

e

V in5K a0

~11p2a2!
L E n3D

2 ~z!

n
dz. ~50!

The density profilen3D(z) accounts for the discrete structu
of quantum levels in the axial confining potential and for t
quantum spatial distribution of particles. Therefore, Eq.~50!
gives the ordinary 3D result only at temperaturesT@\v0,
wheren3D(z) becomes the Boltzmann distributionnB(z).

We first analyze the influence of axial confinement onV in

in Eq. ~49! for the case whereuau!L̃T or, equivalently,uau
! l 0 andqTuau!1. In this case we may puth51 at anyT,
except for extremely low temperatures in the quasi-2D
gime. Then Eq.~49! gives

V in5^wn
2~0!&a0n5

a0n

A2p l 0

tanh1/2S \v0

T D . ~51!

One can easily check that Eq.~51! coincides with Eq.~50! in
which puau!1. The reason for this coincidence is that, sim
larly to the case of elastic scattering described by Eq.~29!,
for h51 the scattering amplitudef in in Eq. ~48! is indepen-
dent of the relative energy«. Hence, the inelastic rate i
influenced by the axial confinement only through the ax
distribution of particles. However, this influence is signi
cant, in contrast to the case of elastic scattering under
same conditions@see Eq.~30!#. Qualitatively, forqTuau!1
we haveV in;a0n3D . At temperaturesT!\v0, a charac-
teristic value of the 3D density isn3D;n/ l 0 and we obtain
V in;a0n/ l 0. For T@\v0, the 3D density n3D

;n(mv0
2/T)1/2 and hence the frequency of inelastic col

sions isV in;(a0n/ l 0)(\v0 /T)1/2.
We now discuss the temperature dependence of the

elastic rate for the case whereuau* l 0, which in the ultracold
limit ~9! assumes thatuau@Re . In the quasi-2D regime and
in the temperature interval«* ,T,\v0 of the confinement-
dominated 3D regime, the most important contribution to
inelastic rate in Eq.~49! comes from collisions with the axia
quantum numbern50. Then, using Eq.~18! we express the
parameterh through the elastic amplitudef 00 and obtain a
relation betweenV in and the mean frequency of elastic co
lisions V(T):

V in~T!5^u f 00~«!u2&
a0n

@4paw0~0!#2
5V~T!b, ~52!

whereb5(1/128p3)1/2(ml0a0 /\a2) is a dimensionless pa
rameter independent of temperature. The temperature de
dence ofV is displayed in Fig. 1 and Fig. 5 and was di
cussed in Secs. IV and V. Note that the parameterb is not
equal to zero foruau→`. In this case, since the amplitudef 0

is calculated with the wave functionc̃3D that behaves asa/r
for r→`, we havea0}a2 andb5const.

At temperaturesT@\v0, using the same method as
Sec. V for the case of elastic scattering, from Eq.~49! we
recover the 3D resultV in

3D given by Eq.~50! with n3D(z)
5nB(z). In the limiting case, whereqTuau@1, we find
6-11
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V in
3D5

8\n

m
bS 2\v0

T D 3/2

5V3D~T!bS 2\v0

T D 1/2

. ~53!

Comparing Eq.~53! with Eq. ~52!, we see that in the
confinement-dominated 3D regime the deviation of the
elastic rate from the ordinary 3D behavior should be lar
than that in the case of elastic scattering.

As follows from Eq.~52! and Fig. 5, foruau* l 0 the in-
elastic frequencyV in reaches its maximum at temperatur
near the border between the quasi-2D and confinem
dominated 3D regimes. The maximum value ofV in is close
to

Ṽ in5
16\

m
b. ~54!

From Eq. ~49! one finds that at anyT the ratio V in /Ṽ in
depends only on two parameters:T/\v0 anda/ l 0. In Fig. 7
we present our numerical results forV in /Ṽ in as a function
of T/\v0 for a/ l 0 equal to21, 1, and`. As expected, the
deviations from the 3D behavior are the largest in the uni
ity limit.

The inelastic rate of spin relaxation in a tightly~axially!
confined gas of atomic cesium has been measured for
unitarity limit in the Stanford experiment@6#. Due to a
shallow radial confinement of the cloud in this experime
the 2D densityn;1/T @see Eq.~36!#. Then, Eq.~53! gives
the 3D inelastic frequencyV in

3D;1/T5/2, whereas in the
temperature interval«* ,T,\v0 of the confinement-
dominated regime Eqs.~35! and ~52! lead toV in;(1/T)@1

FIG. 7. The quantityV in /Ṽ in versusT/\v0. In ~a! the param-
eter a/ l 0521 ~dashed curve!, and a/ l 051 ~dotted curve!. In ~b!
a/ l 05` ~unitarity limit!. The solid curves in~a! and ~b! show the
3D result~52!.
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2exp(2\v0 /T)#. In order to compare our calculations wit
the data of the Stanford experiment on spin relaxation,
Fig. 8 we displayV in(T) normalized toV in at T53\v0 that
was the highest temperature in the experiment. The temp
ture dependence of the inelastic rate, following from t
Stanford results, agrees fairly well with the calculations a
shows significant deviations from the 3D behavior. It shou
be noted that, in contrast to thermalization rates, the inela
decay rate is not sensitive to whether the gas is in the c
sionless or hydrodynamic regime@6#.

VIII. CONCLUDING REMARKS

In conclusion, we have developed a theory that descri
the influence of a tight axial confinement of the particle m
tion on the processes of elastic and inelastic scattering.
most interesting case turns out to be the one in which the
scattering lengtha exceeds the extension of the wave fun
tion in the axial direction,l 0. In the ultracold limit defined by
Eq. ~9!, the conditionuau. l 0 automatically requires largeuau
compared to the radius of interatomic interactionRe . Then
we have a pronounced confinement-dominated 3D regim
scattering at temperatures on the order of\v0. Treating in-
teratomic collisions as three dimensional, the relative m
mentum of colliding atoms is related to the quantum char
ter of the axial motion in the confining potential an
becomes of the order of 1/l 0. As a result, the scattering rat
can strongly deviate from the ordinary 3D behavior. T
axial extension of the wave function, achieved in the expe
ments at Stanford and ENS@5–8#, is l 0'200 Å. The re-
quired value of the scattering length,uau. l 0 anduau@Re , is
characteristic for Cs atoms (Re'100 Å! and can also be
achieved for other alkali atoms by using Feshbach re
nances.

In order to observe the 2D features of the particle mot
in the rates of interatomic collisions one has to reach
quasi-2D regime of scattering, which requires much low
temperatures, at least by an order of magnitude smaller
\v0. For v0'80 kHz (\v0'4 mK! as in the Stanford@5,6#

FIG. 8. Inelastic rateV in normalized toV in at T53\v0, versus
temperature~in units of \v0) in the unitarity limit (a5`). The
solid curve shows the result of our numerical calculations, and
dotted line the 3D limit. Circles show the data of the Stanfo
experiment.
6-12
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and ENS@7,8# experiments, these are temperatures be
400 nK. As one can see from Fig. 5, the rate of elastic c
lisions is still rather large for these temperatures and, he
one can think of achieving them by evaporative coolin
Moreover, for realistic radial frequenciesv;100Hz there is
a hope to achieve quantum degeneracy and observe a c
over to the Bose-Einstein condensation~BEC! regime. The
cross-over temperature isTc'N1/2\v ~see@27# and the dis-
cussion in@9#!, and forN;1000 particles in a quasi-2D laye
we find Tc'100 nK.

Another approach to reach BEC in the quasi-2D regi
will be to prepare initially a 3D trapped condensate and th
adiabatically slowly turn on the tight axial confinement. M
nipulating the obtained~quasi!2D condensate and inducin
the appearance of thermal clouds with temperaturesT,Tc ,
one can observe interesting phase coherence pheno
originating from the phase fluctuations of the condensat
quasi-2D~see@9#!.

Interestingly, at temperaturesT;Tc the collisional fre-
quencyV can be on the order of the cross-over temperat
if uau* l 0. This follows directly from Fig. 1 and Eq.~24! that
give V;p\n/m even at temperatures by two orders of ma
nitude smaller than\v0. As the 2D density of thermal par
ticles is n;Nmv2/T, we immediately obtain\V(Tc)
;N1/2\v'Tc . This condition means that the trapped g
becomes a strongly interacting system. The mean free
of a particlev/V(Tc) is already on the order of its de Brogli
wavelength\/AmTc. At the same time, the system remai
dilute, since the mean interparticle separation is still mu
s
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larger than the radius of interatomic interactionRe . In this
respect, the situation is similar to the 3D case with a la
scattering lengtha@Re at densities wherena3;1. The in-
vestigation of the crossover to the BEC regime in su
strongly interacting quasi-2D gases should bring in analog
with condensed matter systems or dense 2D gases. W
known examples of dense 2D systems in which
Kosterlitz-Thouless phase transition@28# has been found ex
perimentally, are monolayers of liquid helium@29# and the
quasi-2D gas of atomic hydrogen on liquid-helium surfa
@30#.

On the other hand, foruau! l 0 the collisional frequency
near the BEC crossover,V(Tc)!Tc /\, and the~quasi!2D
gas remains weakly interacting. Then, the nature of
crossover is questionable~see@9#!. Generally speaking, one
can have both the ordinary BEC crossover like in an id
trapped gas@27# and the Kosterlitz-Thouless type@28# of a
crossover. We thus see that axially confined Bose gase
the quasi-2D regime are remarkable systems where by tu
a or l 0 one can modify the nature of the BEC crossover.
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