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Interatomic collisions in a tightly confined Bose gas
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We discuss binary atomic collisions in a Bose gas tightly confined in(axial) direction and identify two
regimes of scattering. In the quasi-two-dimensiofelasi-2D regime, where the confinement frequenay
greatly exceeds the gas temperatlitethe scattering rates exhibit 2D features of the particle motion. At
temperature§ ~% wg one has a confinement-dominated 3D regime, where the confinement can change the
momentum dependence of the scattering amplitudes. We describe the collision-induced energy exchange
between the axial and radial degrees of freedom and analyze recent experiments on thermalization and spin-
relaxation rates in a tightlyaxially) confined gas of Cs atoms.
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. INTRODUCTION =(filmag)*? is the axial extension of the atom wave func-
tion, andm the atom mass.
Collisional properties of ultracold gases strongly confined At temperaturesT~%Aw, we have a confinement-
in one direction attract a great deal of interest since the stadominated 3D regime of scattering, where the 2D character
of active studies of spin-polarized atomic hydrogen. In theof the particle motion is no longer pronounced in the scatter-
latter case the interest was related to recombination and spiimg process, but the axial confinement can strongly influence
relaxation collisions and to elastic scattering in lggas) the energy(temperature dependence of the scattering rate.
two-dimensional(2D) gas of atomic hydrogen adsorbed on Treating collisions as three dimensional, the wave veptor
liguid-He surface(see[1] for review). The discovery of of the relative motion of colliding atoms does not decrease
Bose-Einstein condensation in trapped alkali-atom cloudsvith T at T<# wy. The atoms undergo zero-point oscillations
[2—4] stimulated a progress in evaporative and optical coolin the axial direction and this correspondspe 1/,. If the
ing and in trapping of neutral atoms. Present facilities make3D scattering amplitude is momentum dependent at these
it possible to(tightly) confine the motion of particles in one which is the case fota|=l,, then the temperature depen-
direction to zero-point oscillations. Then, kinematically thedence of the elastic collisional rate becomes much weaker.
gas is 2D, and the only difference from the purely 2D case iSThis means that for a large 3D scattering length the tight
related to the value of the interparticle interaction that nowaxial confinement suppresses a resonant enhancement of the
depends on the tight confinement. Thus, one now has margollisional rate at low energies. In many of the current ex-
more opportunities to creatguas)2D gases. In the recent periments with ultracold gases one turset large positive
experiments with optically trapped ¢5-8] about 90% of or negative values by varying the magnetic field and achiev-
atoms are accumulated in the ground state of the harmoniag Feshbach resonancg$0-14. In the unitarity limit
oscillator potential in the direction of the tight confinement. (Ja|] — o) the 3D elastic cross section is=8/p? and the
In this paper we consider a Bose gas tightly confined irvate of 3D elastic collisions strongly increases with decreas-
one (axial) direction and discuss how the axial confinementing temperature. The tight confinement of the axial motion
manifests itself in pair elastic and inelastic collisions. Wemakes the scattering rate practically temperature independent
identify two regimes of scattering. At temperatuiesrw, at T~%w, We obtain a similar suppression of resonances
(wq is the axial frequenagyonly the ground state of the axial for inelastic collisions, where the resonant temperature de-
harmonic oscillator is occupied, and one has a quasi-2D rependence in 3D is related to the energy dependence of the
gime. In this case, the 2D character of the relative motion ofnitial wave function of colliding atoms. We analyze the
particles at large separation between them, manifests itself iBtanford and ENS experiments on ela$ts] and spin re-
a logarithmic energy dependence of the scattering amplitudéaxation [6] collisions in a tightly axially confined gas of
For a negative 3D scattering lengihwe observe resonances cesium atoms and discuss the origin of significant deviations
in the dependence of the elastic scattering rat@.obhis is  of the observed collisional rates from the 3D behavior.
quite different from the 3D case where the scattering rate We develop a theory to describe the collision-induced en-
always increases with?. The presence of these resonancesergy exchange between axial and radial degrees of freedom
in quasi2D follows from the analysis given [8] and finds  of the particle motion. We establish selection rules for tran-
its origin in increasing role of the 2D kinematics of the par- sitions between particle states in the axial harmonic potential
ticle motion with increasing ratio|al/l,, where |,  and calculate the corresponding transition amplitudes. This
allows us to consider temperaturEs # g and analyze ther-
malization rates in nonequilibrium clouds. In the Stanford
*LKB is a unitede recherche de I'Ecole Normale Superieure et deand ENS experiments these clouds were created by means of
I'Universite Pierre et Marie Curie, assoei@u CNRS. degenerate Raman sideband cool[g-8] that effectively
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leads to a gas with different axial§) and radial T,) tem-  equal to the intensity of the scattered wave multiplied by
peratures. After the cooling is switched off, the temperature@ wpv, wherev =2%q/m is the relative velocity of colliding
T, andT, start to approach each other, and ultimately the gastoms. From Eq(1) we have

reaches the equilibrium temperature. At sufficiently [aw

only a few axial states are occupied and the temperature a(q)=i|f(q)|2 )
dependence of the corresponding thermalization rates should 2m '

deviate from the 3D behavior, thus exhibiting the influence

of the axial confinement on the scattering process. We cailhe velocityv is equal to the current density in the incident
culate the thermalization rates and establish the condition&ave of Eq.(1). The ratio ofa(q) to this quantity is the 2D

under which this influence is pronounced. cross section that has the dimension of length
The minimum energy exchange between the radial B 2
and axial degrees of freedom of two colliding atoms is o(a)=f(a)|*/4q. @)

equa! to Ziwo..ThiS.fOHOWS from thg symmetry of the inter- For the case of identical bosons, EG&) and (3) have an
atomic potential with respect to simultaneous inversion 0Ofyyir4 factor 2 in the right-hand sidehs).

the axial g:oordlnatgs of the. two atoms, 'WhICh ensures the The quantitye(q) is nothing else than the rate constant of
conservation of Pparity of their wave functl_on under_th|s OP-glastic collisions at a giveq. The average of(q) over the
eration. Accordingly, the sum of twdaxial) vibrational omentum distribution of atoms, multiplied by the number

quantum numbers can be changed only by an even valugt hairs of atoms in a unit area, gives the number of scatter-
The rate of energy transfer from the radial to axial motion iSing events in this area per unit time.

proportional to the difference between the radial and axial "k, finding theswave scattering amplitude one has to

temperatureAT=T,—T,, if they are close to each other. gqye the Schmdinger equation for the wave of the relative
As the total energy of colliding particles should exceedqtion of colliding atoms at energy=7%2q/m

2hwg in order to enable the energy transfer, the rate of this
process at temperatures<fiw, becomes exponentially
small: AExAT exp(—2hwy/T). Due to the presence of the
energy gapiwg in the excitation spectrum of the axial har-
monic oscillator, the heat capacity of the axial degree ofAt distancesp> R, the relative motion is free and one can
freedom isdE,/dT,~ exp(—%wy/T), which leads to a ther- omit the interaction between atoms. Then the solution of Eq.
malization rate AT/ATxexp(—#%wy/T). This exponential (4), which for qp>1 gives the partiak wave of #(p) Eq.
temperature dependence shows that the thermalization {3), takes the form

suppressed at very low temperatures. One can cool the axial
motion, but radially the cloud remains “hot” on a very long
time scale.

2

A 2.2
— A, +U(p)

AP =" Tulap). @

if(q)
¢s(A,p)=Jo(Ap) — —;—Ho(Ap), p<Re, (5

I 2D SCATTERING PROBLEM whereJ, andH, are the Bessel and Hankel functions.
' On the other hand, at distances1/q one can omit the

First, we discuss the purely 2D elastic scattering in pairelative energy of particles in Ed4). The resulting(zero
collisions of ultracold atoms interacting via a short-range€nergy solution depends on the momentayonly through a
potential U(p). At interparticle distancep—c the wave normalization coefficient. In the interval of distances where
function of colliding atoms is represented as a superpositiofRe<<p<1/q, the motion is free and this solution becomes

of the incident plane wave and scattered circular W,  ¥s<In(p/d), whered>0 is a characteristic length that de-
pends on a detailed shape of the potentigb) and has to be

found from the exact solution of Ed4) with g=0. This
gldr, (1) logarithmic expression serves as a boundary condition for
8mdp ¥s(q,p) Eq. (5) at gp<1, which immediately leads to the
scattering amplitud€15]

Y(p)~e'IP—1(q,4)

The quantityf(q,¢) is the scattering amplitude, is the

relative momentum of the atoms, agidthe scattering angle. ()= 2
Note thatf(q,¢) in Eq. (1) differs by a factor of— \/87q ()= In(1ad, ) +im/2" (6)

from the 2D scattering amplitude defined[it6].

Similarly to the 3D case the scattering amplitude is gov-whered, =(d/2)expC, andC~0.577 is the Euler constant.
erned by the contribution of threwave scattering if the rela- It is important to mention that the conditiopR.<1 is
tive momentuny satisfies the inequalityR.<1, whereR,  sufficient for the validity of Eq(6). This equation also holds
is the characteristic radius of interaction. In the case of alkalfor the case of resonance scattering, where the potential
atoms, the radiuR, is determined by the Van der Waals tail U(p) supports a realor virtual) weakly bounds level. In
of the potentiall (p) and ranges from 20 A for Li to 100 A this case the spatial shape ¢f(q,p) at distances where
for Cs. Theswave scattering amplitude is independent of Ra<p<<1/q, is the same as the shape of the wave function of
the scattering angléb. The probabilitya(q) for a scattered the weakly bound state. This gives =#/\meg, whereg,
particle to pass through a circle of radipgper unit time is is the binding energy. We thus have the inequality
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>R,, and the quantityjd, in Eqg. (6) can be both small and motion is governed by the potent¥(r) and by the potential
large. The rate constant(q) peaks atq=1/d, and de- VH(z)=mw(2)22/4 originating from the axial confinement
creases as [l + (4/7%)In*(qd, )] with increasing or decreas- with frequencyw,. For the incident wave characterized by
ing 0. Note that the 2D resonance is actually a resonance ithe wave vectoq of the motion in thex,y) plane and by the
the logarithmic scale of energies. The decrease by factor  quantum numbew of the state in the potentialy(z), the
2 from its maximum value requires a change of enesgy wave function of the relative motion satisfies the Sehro
=%29?%/m by factor 20. dinger equation

For qd, <1 one may omit the imaginary part in E), .
and the scattering amplitude becomes real and positive o)
[16,17. The positive sign of (q) has a crucial consequence B EA"'V(”-"VH(Z)_ 2 p()=ey(r), (8
for the mean-field interparticle interaction in purely 2D Bose
gases. In the ultracold limit, whergR,<1, the scattering wheree=7%2g%/m+ vhw,.
amplitude is related to the energy of interaction in a pair of The scattering depends crucially on the relation between
particles(coupling constang). For a short-range potential the radius of interatomic interactid®, and the characteristic
U(p), the energy of the mean-field interaction in a weaklyde Broglie wavelength of particled, . The latter is intro-
interacting gas is the sum of all pair interactions. In a uni-duced qualitatively, as the motion along thexis is tightly
form Bose-condensed gas the coupling consgafdr con-  confined. Accounting for the zero point axial oscillations one

densate atoms is equal to the amplitude of scattdrifih an  can write A, ~#/\/ms, with s = &+ w,/2. We will consider
extra factorf?/m for our definition off) at the energy of the  the wltracold limit where

relative motione =%2q%/m=2u, where u is the chemical
potential[18,19. Hence, we have 7\8>Re- 9

2

2 2
_ ﬁ_f _2mh 1 d Equation(9) immediately leads to the inequaligR.<1, as
g_ (qc)_ >O! qC *<11 (7) . . .
m m In(1/q.d,) the de Broglie wavelength for the motion in the,y) plane
_ _ _ _ is ~1/q. For small » the harmonic oscillator length,

WhereqC: \/Zm,LLIﬁ is the Inversg hea_lllng Iength In a dilute :(ﬁ/mwo)l/z p|ays the role of the axial de Brog"e wave-
thermal 2D gas, due to the logarithmic dependendeoofd,  |ength of atoms. Therefore, the ultra-cold lint@) also re-
the thermal average of the mean-field interaction leads to thguires the conditioh,>R,. For largev, the axial de Broglie

coupling constan'gz(hzlm)f(qT), where gr=\mT/% is  wavelength is~I,/\/v and, according to Eq9), this quan-
the thermal momentum of particles. At sufficiently low tem- tity should be much larger thaR, .
peratures, whergrd, <1, we again havg>0. Under the conditiomR,<1, the scattering amplitudes are
Thus, in an ultracold purely 2D gas the coupling constanijetermined by the contribution of treawave for the motion
for the mean-field interaction is always positive in the dilutej the (x,y) plane. In the case of identical bosons, theave
limit and, hence, the interaction is repulsive. This Strikingscattering requires even valuesoéndy’ as the wave func-
difference from the 3D case is a consequence of the 2[jon 4 should conserve its sign under the transformation
kinematics. For low energies, at interparticle distanpes _, _; The guantum numbers and»’ should be even also
>Re, the (free) relative motion of a pair of atoms is gov- for distinguishable particles. Otherwise at distances of inter-
emed by the wave functiofts>In(p/d). The probability den-  atomic interaction; <R, , the wave function will be small
sity |i|® of finding two atoms at a given separation in- at |east aRR./l,, ensuring the presence of this small param-
creases withp as the conditionp>d is always reached, eter in the expressions for the scattering amplitudes.

unless the atoms have a bound state with eneggy 0 (d The scattering amplitudes corresponding to transitions
—). This means that it is favorable for particles to be atfrom the initial statev [of the relative motion in the potential
largerp, i.e., they repel each other. Vi(2)] to final statesy’ are defined through the asymptotic
form of the wave function/ at an infinite separatiop in the
Ill. SCATTERING IN AXIALLY CONFINED (x,y) plane:

GEOMETRIES: GENERAL APPROACH
In this section we discuss elastic scattering of atoms )~ ¢ (2)ei4P—> f, .(£)p, () \ [ eldvp,
! 87Tq P
14 14

(tightly) confined in the axialz) direction, assuming that the

motion in two other §,y) directions is free. We analyze how (10

the scattering is influenced by the confinement and calculate ) _

a complete set of scattering amplitudes corresponding t¥heree,(z) ande,(z) are the(rea) eigenfunctions of the
collision-induced transitions between particle states in thétatesy andv’. For each of the scattered circular waves the
confining potential. We still call this scattering elastic as thevalue of the momentuny,. follows from the energy-
internal states of atoms are not changing. conservation Iavxhzqi,/m:e—hwov’>0.

For a harmonic axial confinement, the motion of two at- Relying on the conditior(9), we develop a method that
oms interacting with each other via the potentigt) can be  allows us to express the scattering amplitudes through the 3D
still separated into their relative and center-of-mass motionscattering length. At interparticle distanages R, the relative
The latter drops out of the scattering problem. The relativenotion in the §,y) plane is free, and the motion along the
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axis is governed only by the harmonic oscillator potential 227
V(2). Then, the solution of Eq(8) with V(r)=0 can be fooe)=4mei(0)an= ,
expressed through the Green funct®p(r,r’) of this equa- lo/a+(1N2m)wW(e/2h wo) 8

tion. Retaining only thes wave for the motion in thex,y)

| h
plane, we have f(8)=P,, fose)0(c—hwor)B(s—hwor'), (19

#h(r)=¢,(2)Jo(ap) +A,G.(r,0), (13) where
and the expression for the Green functi@g(r,0) reads
in)l)(q,,rp)/"r, qi,>0 PW/:QDV(O)QDV'(O):(V_l)”(V’_l)” . 20
Gs<r,0>=§ ©,1(2)¢,/(0)X <ollaulp)zm <0, ©2(0) V'l
12 One can see from Eq$18) and (19) that the scattering

Here the summation is also performed over closed scatteringmplitude is a universal function of the parameiafly, and
channels for which g%, <0. The function Ko(x) &/fwo, irrespective of the values of andv’. The quantity

— (im/2)Hy(ix) and it dchays as/m2xexp(—x) at x> 1. P, in Eq.(19) is nothing else than the relative probability
Thus, forp—s the terms corresponding to the closed chan-2MPlitude of having an axial interparticle separatiafi<lg
nels vanish. Then, comparing E(ll) at p— with Eq. ('n, particular,|z| <R.) for bqth incoming @). and outgc_)l_ng
(10, we find a relation between the scattering amplitudeé” ) channels of the scattering process. It is thus sufficient to

and the coefficientd - study only the behavior ofg(z). o _
Y We emphasize the presence of two distinct regimes of

f==A0,(0)0(e—-fiwgr’), (13)  scattering. The first one, which we call quasi2D, requires
relative energies <fiwq. In this case, the relative motion of
particles is confined to zero-point oscillations in the axial
direction, and the 2D kinematics of the relative motion at
interatomic distancep>1, should manifest itself in the de-
pendence of the scattering amplitudes&d@h wy anda/ly. In
the other regime, at energies already comparable fith,
the 2D kinematics is no longer pronounced in the scattering
process. Nevertheless, the latter is still influenced by the
(tight) axial confinement. Qualitatively, the scattering ampli-
Y(r)=ne,(0)(1—alr). (14) tudes become three dimensional, with a momentuil
) . ) related to the quantum character of the axial motion. Thus,
Equation(14) contains the 3D scattering lengthand serves \ye can say that this is a confinement-dominated 3D regime
as a boundary condition fag(r) Eq. (11) atr—0. _ of scattering. With increasing the relative energy 4o
For_r—>0, a straightforward calculation of the sum in Eq. >fw,, the momentum is increasing tgme/# and the
(12) yields confinement-dominated 3D regime continuously transforms
1 to ordinary 3D scattering.

&
dmr 2(2w)3’2|0W<2ﬁwo)’

where @ is the step function.

The conditionl >R, ensures that the relative motion of
atoms in the region of interatomic interaction is not influ-
enced by the axialtight) confinement. Therefore, the wave
function ¢(r) in the interval of distances wherR.<r
<A, differs only by a normalization coefficient from the
3D wave function of free motion at zero energy. Writing this
coefficient asp¢,(0), we have

Ge(r.0~

(19
IV. QUASI-2D REGIME

where the complex functiow(x) is given by In the quasi-2D regime, due to the conditiore w, the
incident and scattered waves have quantum numbers’

N .
w(x)= lim Z\ﬁlnﬁ—g (2j-nt In(j —x—i0) =0 for the motion in the axial harmonic potentidl,(z).
N T e2 Sh (2))! ' The relative energy =#2g%/m and the inequalityl,<1 is
(16)  satisfied. In this case E@16) gives
With the Green functior(15), the wave function11) at r W(el2iwg) =In(Bliwg/me) +im, (21
—0 should coincide withy(r) Eq. (14). This gives the co-
efficient (r) Eq. (14 g whereB~0.915. Then our equatidii8) recovers Eq(11) of

Ref.[9], obtained in this limif 20].
1 Using Eq.(21) we can represeriyy(e) Eq.(18) in the 2D
(17)  form (6), with

d, =(d/2)expC= /B lgexp(— m7/2ly/a). (22
and provides us with the values of the coefficiedis Then, * ° °

using Eq. (13) and explicit expressions ¢,(0)  This fact has a physical explanation. Relying on the same
=(1/27rl(2))1’4(v—1)!!/\/ﬁ, we immediately obtain the scat- arguments as in the purely 2D case, one finds that in the
tering amplitudefyo(e) and express all other scattering am- interval of distances wherg<p<1/q, the wave function
plitudes through this quantity: Jc@o(z)In(p/d). On the other hand, fop>l, we have

T (a2l g w(el2hwg)
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P(r)=oo(2) ¥s(p), whereys is given by the 2D expression
(5) with f(q)=fgy(&). This follows from Eqs(11)—(13), as
all closed scattering channels’'®#0) in Eq. (12 for the
Green functionG,(r,0) have momentéq,|= 11, and will
be exponentially suppressed@1,. Matching the two ex-
pressions for the wave functiof one immediately obtains
the 2D equatior{6). However, the parametel, in Eq. (22)

can be found only from the solution of the quasi-2D scatter- 51.--7 .-
ing problem. | IR )
We thus conclude that the scattering problem in the — S— ———rr
quasi-2D regime is equivalent to the scattering in an effec- 10* 107 10"
tive purely 2D potential that leads to the same valuel pf &/2ha,
For positivea<l, this potential can be viewed as(law)
barrier, with a height/,~#%2a/ml3 and radiud o. Hence, in FIG. 1. The function|fo|® versus the ratics/2hw, for a/lg
the case of positivea we have a smal(positive scattering = —1 (solid curve, a/lo== (dashed curveanda/lo=1 (dotted

amplitude, in accordance with E¢$) and(22). For a nega-  CUrve.

tive a satisfying the conditioha|<I,, the effective potential _ _

is a shallow well that has a depil,| and radiusl,. This Particle energy, whereas the dependenc@idp is a power
shallow well supports a weakly bound state with an expolaW. Fore<fiwo, Eq.(18) yields

nentially small binding energy,, which leads to an expo- 5

nentially larged, as follows from Eq.(22). As a result, we |fodl2= 16m (23)

have a resonance energy dependence of the scattering ampli- oo (\/Elo/a-i- IN(Bfiwg/me))?+ a

tudefyy at a fixed ratica/l 5, and a resonance behaviorfgf,

as a function of/l at a fixede/A wg. The quantity|foo? differs only by a factor of:/m from the

The resonance in the energy dependencéygfis quite  rate constant of elastic collisiofisee Eq.2)], and one can
similar to the logarithmic-scale resonance in the purely 2Dthink of observing the resonance dependencgfgf? on
case, discussed in Sec. Il. The quasi-2D resonance is alggl, in an experiment. For example, one can keeftem-
described by Eq(6), where the lengttd, is now given by  peratur¢ and w, constant and vana by using Feshbach
Eq.(22). As expected, the dependencefgfon ¢ is smooth.  resonances. The resonance is achievedaat—2ml,/

The resonance in the dependence of the quasi-2D scattan(Bhw,/e). This is a striking difference from the 3D case,
ing amplitude ona/l,, appearing aa<0, has been found where the cross section and rate constant of elastic collisions
and discussed ifB]. Relying on the above-introduced effec- monotonously increase with?’.
tive 2D potential for the quasi-2D scattering, we can now |n Fig. 2 we preseritf o> versusa/l, at a fixede/% wq. In
explain this resonance on the same grounds as the resonangigler to extend the results to the region of energies where the
in the energy dependence fof,. We will do this in terms of  validity of the quasi-2D approach is questionable, the quan-
the relative energy and the binding energy in the effective tity |f,|? was calculated by using E(L8) for the scattering
potential, eo=%2/md;=<exp(—y2mly/lal) (a<0). For  amplitude. The resonance is still visibleedti w,=0.06 and
eleg=(qd,)?>1, the scattering amplitude in E¢(p) is real it disappears foe/fiwy=0.2.
and negative. It increases in magnitude with decreasing ratio The obtained results allow us to conclude that faf
eleg, that is with decreasing or |,. In the opposite limit, =1, the approximate border line between the quasi-2D and
wheree/eq<1, the scattering amplitude is real and positive confinement-dominated 3D regimessis-¢, =0.1%4 w,y. For
and it increases with the ratie/e,. The region of energies |a|<l,, as we will see below, the confinement-dominated
elep~1 corresponds to the resonance, where both the reakgime is practically absent.
and imaginary parts offy, are important. The real part The output of kinetic studies in thermal gases is usually
reaches its maximum ai/e,=exp(—), drops to zero at related to the mean collisional frequen(ie rate of inter-
eleg=1, and acquires the maximum negative value foratomic collisiong Q) = an, wherea is the mean rate constant
eleg=expm. The dependence of lfg, on e/g is the same  of elastic collisions, anah the gas density. In the quasi-2D
as that of the quantityf 2. Both of them peak at/eq=1  regime, the rate constani follows directly from Eq.(2),
and decrease with increasing or decreasihg,. with twice as large rhs for identical bosons,

Quallitatively, the picture remains the same [faj~1,. In
Fig. 1 we present the dependencefgf|? on e/2hw, atall,
equal to—1, 1, and=. In the two last cases we always have
eleg<1, and|fqg? increases withe at s<fiwg. For allg
=—1 we have the above-described logarithmic-scale resonhere the symbol ) stands for the thermal average. Our
nance in the behavior df oo|2. numerical calculations show that the averagdfgf|® over

The quasi-2D resonance is much more pronounced in thtéhe Boltzmann distribution of particles only slightly broadens
dependence of the scattering amplitude on the parameténe resonances in Fig. 1 and Fig. 2. Due to the logarithmic
ally. The reason is thaty, logarithmically depends on the dependence dfy, on the relative energy, the thermal average

_ h
= E<|foo|2>, (24)
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0.2 a)
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I\ /7~ 0.06 1 R—
"' X S~ e 64 Imw(x}]  _ _4-V
10d I/ 002 ~TTTT=- ] T
If 1P :'-:/'l = 4 e 200"
o0 i e/hw,=0.006 3§<, 7 1 Rew(x)
s fi 1777
| 24 .
J a<0 \
0 T T T 0 J\ J\ A
0 2 4 6 8 N —r —F — <A
7 A A S A
154 -______._._-—-—' --------- X
] 7 006 .......... FIG. 3. The functions Re(x) (solid curvg and Imw(x)
104 ,'/ e (dashed lines The dotted curve shows the function/2x corre-
|f00|2 ;e _ _9,'(12 -------- sponding to the asymptotic behavior ofwrat largex.
1 /7 -
i '/ KA - .
5 /,;/ e/he,=0.006 Imw(x): As one can see directly from E@16), for x ap-
14 a>0 proaching an integej the analytical complex functionv
0 . : . : i : . o« In(j —x—i0).
0 2 4 6 8 The described behavior of the functian(e/2% wg) has a
lalvi, direct influence on the scattering amplitudes. Ed2% wq

_ 5 _ . close to an integgr, the amplitude is small and it is equal to
FIG. 2. The functionf,g* versusal/l, at various ratioz/# w, zero for e=2hw,j. This phenomenon originates from the
for a<0 (@) anda>0 (b). fact that fore close to Ziwpj, a new scattering channel
. ) ] ] ) opens(really or virtually). For this channel the momentum
is obtained with a good accuracy if one simply replacédsy |a,|=Vmle —2kwyj|/# is very small. Hence, at distances
the gas temperaturé. Thus, in order to observe the mani- ,<|1/q .| the wave functiony [Eq. (11)] will be determined
festation of the 2D features of the particle motion in thelrby the contribution of this low-momentum term i1,
collisional rates one has to achieve very low temperaturegis is clearly seen from Eq¢12) and (11) and makes the

T<0.Z wo. situation somewhat similar to that in the quasi-2D regime of
scattering. In the latter case, the wave functipm Eq. (11)
V. CONFINEMENT-DOMINATED 3D REGIME at distancep<<1/q is also determined by the contribution of

the low-momentum channel as long @5 1,. Then, as fol-

In the confinement-dominated 3D regime, whete |ows from the analysis in Sec. IV, this wave function and the
~hwy, the axial confinement influences the scattering proscattering amplitudd,, behave as 1/lf{wy/¢) in the limit
cess through the confined character of the axial motion. I 0. In the present case, the wave functiprand the scat-
order to analyze this influence, we first examine the functionering amplitudes are small as 1fngy/|e—2hwj) for &
w(e/2h wy) that determines the energy dependence of the_,zﬁwoj_

scattering amplitudes. The imaginary partxf), following The dependence dffo® on /2%, for a/ly equal to
from Eq. (16), is equal to —1, 1, andx is displayed in Fig. 4. Outside narrow energy
intervals in the vicinity of intege& /2% wg, the quantity| f 59|
D 25— 1)n T'([x]+3/2) is a smooth function of. One can also see a sort of a
Imw(x)=wzow=2\/; T (25 stepwise decrease dfy? with increasinge, originating
= " [

from the stepwise increase of the functionwWiz/2% w).

For e/2hi v close to integer valugs>0 we find a fine struc-
where[x] is the integer part ot. The function Imw(x) has a ture similar in nature to the behavior [df,y|? ate <# wq. For
stepwise behavior as shown in Fig. 3. It is constant at nona/l,=1 anda/l,=« there are narrow dips corresponding to
integerx and undergoes a jump at each integetaking a  the logarithmic decrease dfqy? as e—2%wej, and for
larger value for largex. With increasingx, the jumps be- a/l,=—1 these dips are accompanied by resonances. Note
come smaller and fork>1 we have Inw(x)~2\mx. The  that the thermal distribution of particles averages out this fine
real part ofw(x) was calculated numerically from E{L6) structure, and the latter will not be pronounced in kinetic
and is also given in Fig. 3. At anywe have|Rew(x)|<1, properties.

except for narrow intervals in the vicinity of integer In The difference between the confinement-dominated 3D
each of these intervals the functionVRe) logarithmically  regime and the ordinary 3D regime of scattering will mani-
goes to infinity asx approaches the corresponding integerfest itself in the rate of elastic collisiongnean collisional
value. This is consistent with the stepwise behavior offrequency(}). For the Boltzmann distribution of particles,
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FIG. 4. The function|foy? versus the ratia:/2% wq. In (a) the
parametera/lo=—1. In (b) the dashed curve corresponds to the
unitarity limit (a/l;=), and the dotted curve ta/l;=1.

one can find this quantity by turning to the thermal distribu-

tion for the relative motion of colliding partners. Collision-

induced transitions between the states of the relative motion

in the axial potentiaM,(z) are described by the rate con-
stants
aVVr(8)=(ﬁ/m)|fw/(8)|2,

where the scattering amplitudés, are given by Eqs(18)

(26)

PHYSICAL REVIEW A 64 012706

glie wavelengthA ,~7%/{m(e+hwy/2) accounting for the
zero-point axial oscillations. For the scattering length satis-
fying the condition|a|]<A,, the scattering amplitudes are
energy independent at ary except for extremely small en-
ergies in the quasi-2D regime. This follows directly from
Egs. (17—(19). The condition|a]<A, automatically leads
to the inequalitie$al <|, and|a|<7%/\/me. Hence, the func-
tion w(e/2hwg) is much smaller thariy/|al, unlesse
shweexp(ly/|a) [see Eq.(21) and Fig. 3. Accordingly,
Eqg. (17) gives =1 and Eqgs(18) and(19) lead to the scat-
tering amplitudes

.

=47ap,(0)¢, (0)0(c—hwyr)B(e—howgr').

(29

The amplitudeg29) are nothing else than the 3D scattering
amplitude averaged over the axial distribution of particles in
the incoming ¢) and outgoing ¢') scattering channels.
From Egs.(26) and(29) one obtains the same rate of transi-
tionsv— v’ as in the case of 3D scattering of particles har-
monically confined in the axial direction and interacting with
each other via the potentiad(r). This_is what one should
expect, since under the conditipa| <A, the amplitude of
3D scattering is momentum independent. The integration
overd?q in Eq. (27) leads to the mean collisional frequency

fiw
——max{v v'}H].

n
Q—ﬁmwa)zAz ¢%(0)¢° (O)exp( =

v, v

Thus, in the case wheta| <A, the tight confinement in
the axial direction can manifest itself in the collisional rates
only through the axial distribution of particles and the dis-
crete structure of quantum levels in the axial confining po-
tential. The expression for the collisional frequeiizycan be

and(19), and an extra factor 2 for identical bosons is takenreduced to the form

into account. The collisional frequendy=an, wheren is

the (2D) density, and the mean rate constant of elastic colli-

sions, a, is obtained by averaging,,. in Eq. (26) over the
thermal distribution of relative energiesand by making the

8mhn
m

O=

N (30)
0

summation over all possible scattering channels. We thu#here the coefficienf ranges from 1 al <% w, to 2/m for

have

nA2d3%q
(2m)?

Q=an= Ef a,,,,(s)AE!X[(—%). (27

Here A1=(274%/mT)Y? is the thermal de Broglie wave-
length e =%29%/m+#A wyr and the quantum numbersand
v’ take only even values. The distribution function ouer
andq is normalized to unity. The normalization coefficight
is obtained by the summation over both even and ndohd
is equal to

A=2[1—exp —hwy/T)]. (29)

T>fiw,. The conditiona| <A+ is equivalent tda|<I, and
drlal<1, whereqr=JmT/# is the thermal momentum of
particles. ForT>#%w,, Eqg. (30) gives the collisional fre-
quency that coincides with the three-dimensional result av-
eraged over the classical Boltzmann profile of the 3D density
in the axial directiomg(z),

B(Z)

Q3p= <0'3DU>J' (32)
Here o is the 3D elastic cross section, ands the relative
velocity of colliding particles. In other words, the quantity
(1/2)an?=(1/2)Qn coincides with the number of 3D colli-
sions per unit time and unit surface area in tRey} plane,

Note that the number of collisions per unit time and unitgiven by (1/2103Dv>fn25(z)dz.

surface area in thex(y) plane is equal taxn?/2=Qn/2.
The manifestation of the tight axial confinement of the

From Eg. (300 we conclude that for|aj<l, the
confinement-dominated 3D regime of scattering is not pro-

particle motion in collisional rates depends on the relatiomounced. At temperaturéB<f wq the collisional rate only

between the scattering lengtrand the characteristic de Bro-

slightly deviates from the ordinary 3D behavior. This has a
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simple physical explanation. Fba| <A, treating collisions ~ sion for the scattering amplitudgy is different. From Fig. 3

as three dimensional we ha¥e~8ma®vngy. At low tem-  and Eq.(18) one concludes that the real part of the function
peratures <7 w, the velocityv ~#/ml,, and the 3D density W can be neglected and the scattering amplitude takes the
is Ngp~n/lg. For T>hw, we havev~(T/m)¥2 andng, ~ form

~n(mw3/T)*2. In both cases the “flux"vnsp~ wen, and

there is only a small numerical difference between the Tow- _ 2yam
and highT collisional frequencies. 00 |0/a+i\/77/2'

The ultracold limit(9) assumes that the characteristic ra-
dius of interatomic interactioR.<|,. Therefore, the condi- Then, retaining only the scattering channet v’ =0, Egs.
tion |a|<l, is always satisfied, unless the scattering length ig26) and(27) yield
anomalously large|&|>R,). Below we will focus our atten-
tion on this case, assuming that=1,. 0= 8mfin
Let us first show how the 3D result follows from our T m
analysis atT>%w,, irrespective of the relation between
and A, . At these temperatures the main contribution to theThe difference of Eq(35) from the quasi-2D result of Egs.
sum in Eq.(27) comes frome>%w, and larger and »’'.  (23) and(24) is related to the absence of the logarithmic term
Accordingly, we can replace the summation owveand v’ in the denominator. This follows from the fact that now we
by integration. At energies much larger tham, the quan- omitted the real part of the function, which is logarithmi-
tity \/v/1, is nothing else than the axial momentdgand  cally large in the quasi-2D regime. _ .
we haves=7%2(q2+k2)/m. For these energies the function _Itis worth noting that foil;>|a|, Eq.(35) is only slightly
w(e/2hwo) in Eq. (18) takes its asymptotic formw different from the 3D resul(34). This is consistent with the

~i\2melhw,. Using Eq.(19), this immediately allows us aPove-given analysis leading to EGO).
o 0 9 Ba.(9 Y On the other hand, for larda|/l the difference between

a

21—exp(—hwy/T)
lo '

1+ mwa?/2l2

(35

to write
Eq. (35 and the 3D result33) is significant. This originates
- 87a? , 3o s frqm the fact that_for a large scattering_ Ie_ngthlhe 3D am-
If,.[°=P°, ST 55 =P ’<ﬁ—, plitude of scattering in the ultracold limit depends on the
lo(1+p©a) 15 @o particle momenta. For a tight axial confinement, treating col-

T ) lisions as three dimensional, the relative momentum of col-
v_vherep— gtk '2 the 3[3 r?o_mentum of the rglatlve MO~ iding particles at temperaturéB<fiw, is ~ 1/, and it no

tion, andosp=8ma”/(1+p®a’) is the cross section for the onger depends on temperature. Hence, the scattering rate is
3D elastlczsca,ttie/?ng. For large and »', Eq. (20) gives  gyjte different from that in 3D. Given these arguments, one
P,,,,/_=(4/7r vy')™ and th_e mtegrauon_ovem’ in Eq. (2_7) expects a strongly pronounced confinement-dominated 3D
multiplies o3p by the relative 3D velocity. Then, turning regime of scattering if the ratifa|/1;>1.

from the integration over to the integration over the axial This is confirmed by our numerical calculations for the

momentum, we reduce E(R7) to temperature dependence @f from Eq. (27). In Fig. 5 we
present the results foa/l, equal to—1, 1, ande«. The
nAZd® #2p? - o : .
Q:f T p(U u)Aexp{ _np ) (32) largest deviation from the 3D regime is observed in the uni-
(2m)° 3D mT /)’ tarity limit (a—«). From Fig. 5 we see that in the Stanford

_ o _ [6] and ENS[8] experiments performed in this limi21,22]
and one can easily check that H2) coincides with the one should have significant deviations of collisional rates

three-dimensional resuf2 ;5 in Eq. (31). from the ordinary 3D behavior.
In the limiting case, where the thermal momentum of par-
ticles satisfies the inequalityr|a|>1, we obtain VI. THERMALIZATION RATES
164N [ fhwg We will now discuss the collision-induced energy ex-

Qgpp=—" T

m

. arlal>1. (33 change between axial and radial degrees of freedom of the
particle motion in an ultracold Bose gas tightly confined in
In the opposite limit, whereg|aj<1, at temperature§  the axial direction of a pancake-shaped trap. It is assumed
>hw, we automatically havéa|< A and, accordingly, re- that the radial confinement is shallow and it does not influ-
cover Eq.(30) with £€=2/: ence the scattering amplitudes. In this geometry, using de-
generate Raman sideband cooling, the Stanf&r8] and
ENS|[7,8] groups created Cs gas clouds with different axial
(T, and radial T,) temperatures. After switching off the
cooling, interatomic collisions lead to energy exchange be-
As mentioned in Sec. 1V, foa| =1, the approximate bor- tween the axial and radial particle motion and the tempera-
der line between the quasi2D and confinement-dominated 3furesT, and T, start to approach each other. Ultimately, the
regimes ise, ~0.1%4 wq. In the temperature interval, <T  gas reaches a new equilibrium state, with a temperature in
<fhw,, the leading scattering channel will be the same as irbetween the initiall, and T, . The correspondingthermal-
the quasi-2D case, that is= v’ =0. However, the expres- ization) rate has been measured at Stanf@dand ENS[8]

2

164N
. Orlal<1. (34)

3D m

a

lo

012706-8



INTERATOMIC COLLISIONS IN A TIGHTLY . .. PHYSICAL REVIEW A 64 012706

wheree =#2g%/m+ fwyv, and the normalization coefficient
A depends now on both, andT, .

The radial energy of the gas 5,=2NT,, and the axial
energy is given byE,=N% o[ expfiwy/T,)—1] 1. The time

s derivatives of these energies take the form

g :

: NAZwqT E —2NT 38)
L ATSsinf(wl2T,) 0 T

Given the initial values off, and T,, Egs.(37) and (38)
provide us with the necessary information on the evolution
of T,(t) andT,(t).

For a small differencedT=T,—T,, these equations can
be linearized with respect t8T. As the total energy is con-
served, Eqs(38) reduce to

E,[1 4T%sint(fiwy/2T)

5'|'=N 2+ ﬁzwg . (39

mQ/hn

In Eqg. (37) we represent the exponent as (e/T

+ 6Thwyv/T?) and turn from the integration ovelq to in-
00 05 10 15 20 tegration overde. The zero-order term of the expansion in
powers ofST vanishes. Théleading linear term, being sub-

Tiho, stituted into Eq.(39), leads to the differential equation for

FIG. 5. The dimensionless quantitp{)/An versus the ratio oT(1):
Tlhwy. In () the parameter/l,=—1 (dashed curve and a/l, -
=1 (dotted curve In (b) a/l ;= (unitarity limit). The solid curves OT=—Q(T) 4T, (40)
in (a) and(b) show the 3D resul{31). The arrow in(b) indicates the o L
lowest ratioT/%w in the Stanford and ENS experiments. where the thermalization rat@,(T) is given by

2 2 2

and it provides us with the information on the regimes of QO _”(O)ATA h ‘*’OJr4 ink?
. . L . th=—2——| —— t4sinif (A wy/2T)
interatomic collisions in the gas. 167t 272

The radial motion of particles is classical. Therefore, we
will calculate the rate of energy exchange between the radial Ty 2 &
and axial degrees of freedom for a given value of the radial x 2:”, (v=2") woydslf””'(sﬂ ex T/

coordinatep and then average the result over the Boltzmann
density profile in the radial direction. The latter is given by (41)

2 2 The degeneracy parameterriéO)A%z N(%w/T)? and it is
Mw~p ot
n(p)= n(O)ex;{ _ ) (36) _sma_lll as the_g_as ob_eys th_e Bpltzmann statistics. The normal-
2T ization coefficientA is again given by Eq(28).

The quantum numbers and v’ take only even values
wheren(0)=mw?N/27T is the 2D density fop=0, w the  and, hence, in order to change the state of the axial motion
radial frequency, andN the total number of particles. one should have a relative energy-2fwq. Therefore, at
Collision-induced transitions— v’ change the energy of the temperatures lower thahw, the rate of transitions changing
axial motion byz wy(v'—v). We will assume that in the the axial and radial energy s exp(—2fwy/T). On the other
course of evolution the axial and radial distribution of par-hand, the axial energl,= exp(—#wy/T) and thus the ther-
ticles remain Boltzmann, with instantaneous value$,cind  malization rate);, exp(~#fwy/T). This can be easily found
T,. Then the rate of energy transfer from the radial to axiafrom Eq. (41) and shows that the quantum character of the
motion can be written on the same grounds as(B@. and  axially confined particle motion exponentially suppresses the
reads thermalization process at temperatuiies# wg. In particu-

lar, this is the case for the quasi-2D regime.
_ 1 A2 In the most interesting part of the confinement-dominated
EZ:_Ep:_f n%(p)d?p>, T hwo(v' —v) 3D regime, wheres, <T<f%w,, the energy exchange be-
2 )2 tween the axial and radial motion of particles is mostly re-
lated to transitions between the states with=0 andv=2.
ﬁwo”) (37) The relative energy should be larger thanf2vw, and, at the
’ same time, this energy is well belowi &,. Hence, the scat-
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i results with the data of the Stanfojél] and ENS[8] experi-

T ments. With the current error bars, the ENS results do not
show significant deviations from the classical 3D behavior.
These results agree fairly well with our calculations. The
Stanford experiment gives somewhat lower values of
O /1Q4 at the lowest temperatures of the experiment.

In the hydrodynamic regime for the gas cloud, where the
characteristic collisional frequency greatly exceeds the radial
frequencyw, our assumption of quasiequilibrium at instan-
taneous(time-dependentvalues of T, and T, may not be
valid. Nevertheless, the shape of the cuf¥g(T) qualita-
10 tively remains the same, including the exponential decrease

with temperature af <#wy and power-law decrease with
increasingT at temperatures larger thd@nw,. However, the

FIG. 6. Thermalization rat&, (in units of(),) versus tempera- aximum value of),, will be somewhat lowefin particu-
ture (in units of# wg) in the unitarity limit @=«). The solid curve lar, of the order ofw [6]).
shows the result of our calculations f8,,, and the dotted line the The number of particle@er “2D” sheet of atomgin the
3D resuIthhD. Squares and circles show the data of the StanfordStanford experimen6] was N~10 [23], which is by a
and ENS experiments. factor of 20 higher than at ENS foF~7%wg [8]. We then
estimate the 2D density of atoms for these temperatures to be
n~2.5x10® cm ? at Stanford ~90 Hz), and n~0.5
x10% cm 2 at ENS (@~180 H2. For these densities, the
ratio of the collisional frequency) in Fig. 5 to the radial

0.14

0.01 4

tering amplitudef ,o(&) is determined by Eqg18) and (19)
in which one can putv(e/2f wg)~i3w/2 (see Eq.(25) and
Fig. 3. This gives

227 frequency isQ}/w~0.3 in the ENS experiment, an@/w
fo0= : , ~3 in the experiment at Stanford. At temperatufes? wg
lo/a+i(3/2) /2 the densityn and the ratioQ)/w are smaller in both experi-

ments. We thus see that the ENS experinj@htwas in the
collisionless regime, although rather close to the hydrody-
namic regime at temperaturds=# w,. For these tempera-

and from Eq.(41) we obtain

:1%“’0 exp(—fwo/T) [1—exp(—hawo/T)]? tures, the Stanford experimef8] has already achieved the
th™9nT °°° 1+8I(2)/97Ta2 0 ' hydrodynamic regime, and this can explain the discrepancy
(42)  between our calculations and the Stanford results in Fig. 6.
The characteristic frequendy, is given by VII. INELASTIC TWO-BODY PROCESSES
Qo= 0N/ wy. (43 Inelastic scattering of atoms is also influenced by the tight

axial confinement of the particle motion. In this section we
At temperatures'>f w,, Eq. (41) leads to the 3D result will consider the inelastic two-body processes, such as spin

for the thermalization rate: relaxation, in which the internal states of colliding atoms are
5 changing, and the released internal-state energy of the atoms

Qso:i @) QO q-lal>1 (44) is transferred to their kinetic energy. Our goal is to establish

th 157\ T o AT ' a relation between the inelastic rates in 3D and those in the

(tightly) axially confined geometry. The analysis given be-
low relies on two important conditions widely met for the
two-body spin relaxatiof24].

(i) The energy release per collision greatly exceeds the
Comparing Eqgs(44) and (45) with Eq. (42) one sees that gas temperature and the frequency of the axial confinement.
Oy, should acquire its maximum value @at-# w,. For |a| Accordingly, the inelastic transitions occur at comparatively

a 2

lo

sp_ 16
th 157

fL(l)O
— | Qo arlal<1. (45

=, this maximum value is on the order 6¥y/27. short interparticle distancesR;, that are much smaller than
As one expects from the discussion in Sec. V, the differthe characteristic de Broglie wavelength of particles.
ence of the thermalization rate frofd3> is pronounced for (i) The inelastic transitions are caused by weagin-

large values of. For example, in the unitarity limit Eq44) ~ dipole, spin-orbit, etg.interatomic interactions and can be

gives Q3P 1/T2, whereas in the confinement-dominated re-tréated with perturbation theory. _ _
gime we have),, (1/T)exp(—iawy/T). To first order in perturbation theory the amplitude of in-

It should be emphasized that for aflyw,, anda the ratio ~ €lastic scattering, defined in the same way as in the previous
Q,,/Q, depends only on the parametéfthw, anda/l,. ~ SEctions, is given by a general expresdiaf]
This can be found directly from Eq41). In Fig. 6 we m
prgsent the temperat.ure dependencdlgf in the unitarity fi.(e)= _Zf Bi(1)U (1) (1) dBr (46)
limit, obtained numerically from Eq41), and compare our h
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Here ¢;(r) and ¢(r) are the true wave functions of the @ n%D(z)
initial and final states of the relative motion of colliding at- in= > f dz (50)
oms, andJ;(r) is the (weak interatomic potential respon- (1+p-a’) n

sible for inelastic transitions. This potential is the same as in

the 3D case. The functiog; is also the same as in 3D, since The density profilen;p(z) accounts for the discrete structure
the relative energy in the final state is much larger thag. of quantum levels in the axial confining potential and for the
Thus, the only difference of the amplitude, in Eq. (46) quantum spatial distribution of particles. Therefore, Ef)
from the amplitude of inelastic scattering in the 3D case igives the ordinary 3D result only at temperatufies fi w,
related to the form of the wave functiofj . wherensp(z) becomes the Boltzmann distribution(z).

The characteristic interatomic distanBg, at which the We first analyze the influence of axial confinementhg
inelastic transitions occur, satisfies the inequaRy<A, in Eq.(49) for the case wherga| <A+ or, equivalently/al
[see item(i)]. Therefore, we are in the ultracold limit similar <!o andqgr|aj<1. In this case we may pup=1 at anyT,
to that determined by Eq9) in the case of elastic scattering, except for extremely low temperatures in the quasi-2D re-
and the conditiongiR,,<1 andR;,<l, are satisfied. The gime. Then Eq(49) gives
former ensures a dominant contribution of gwave (of the

initial wave function;) to the scattering amplitud&,, in agn hwg
- - Qi ={(02%(0))agn= tanh? (51)
Eq. (46). Due to the conditiorR;,<l,, at distances ~R;, in=(¢3(0))ao 2ml ta T /-
0

the wave functiony;_has a three-dimensional character:
Pi(r)o<cap(r), whereysp(r) is the wave function of the 3D

relative motion at zero energy. FoB R, we haveTp3D(r)
=(1-a/r), and in order to be consistent with E{.4) we
should write

One can easily check that E¢.1) coincides with Eq(50) in
which p|a|<1. The reason for this coincidence is that, simi-
larly to the case of elastic scattering described by 2§),
for »=1 the scattering amplitudg, in Eq. (48) is indepen-
- dent of the relative energy. Hence, the inelastic rate is
Gi(r)y=mn(e)p,(0)ihp(r), (47) influenced by the axial confinement only through the axial
distribution of particles. However, this influence is signifi-
where the coefficieng(e) is given by Eq(17), andv isthe ~ cant, in contrast to the case of elastic scattering under the
quantum number of the initial state of the relative motion insame conditiongsee Eq.(30)]. Qualitatively, forqr|al<1
the axial harmonic potential(z). we have();,~ aghzp . At temperaturesI <fiwg, a charac-
In the 3D case, the amplitudg of inelastic scattering at teristic value of the 3D density is3p~n/ly and we obtain
zero initial energy is determined by E@6) with ; replaced Qin“ao?”o- For T>fiw,, the 3D density nzp
by ¥sp. Hence, Eq(47) directly gives a relation between ~n(me§/T)Y? and hence the frequency of inelastic colli-

the two scattering amplitudes sions isQin~ (aoh/l o) (hwe/T)Y2. _
We now discuss the temperature dependence of the in-
fin=1(£)@,(0)fo. (48) elastic rate for the case whel@ =1, which in the ultracold

limit (9) assumes thdl|>R,. In the quasi-2D regime and
in the temperature interval, <T<% w, of the confinement-
dominated 3D regime, the most important contribution to the

elastic rate in Eq49) comes from collisions with the axial
guantum number=0. Then, using Eq(18) we express the
parametern through the elastic amplitudi,, and obtain a
relation betweerf);, and the mean frequency of elastic col-
lisions QO(T):

Due to the high relative kinetic energy of particles in the
final state of the inelastic channel, the density of final state
in this channel is independent of the axial confinement
Therefore, relying on Eq48) the mean rate constant,, of
inelastic collisions in the axially confined geometry and the
corresponding collisional frequendy;, can be represented
in the form

aon

ain=(|n(e)|?0%(0)6(s —fwgv)) g,  Qin=ainn, Qin(T)=<|foo(s)|2>[4 —Q(T)B, (52

(49) mapg(0)]?

whereay is the 3D inelastic rate constant at zero energy. Where 8= (1/1287%Y4mlya,/%a?) is a dimensionless pa-
Note that in the ultracold limit the 3D inelastic rate con- rameter independent of temperature. The temperature depen-
stant is temperature independent and equalddf the scat- dence of(} is displayed in Fig. 1 and Fig. 5 and was dis-
tering lengthla]<R.. For|a|>R,, the wave function of the cussed in Secs. IV and V. Note that the paramgtes not
relative motion in the region of interatomic interaction takesequal to zero fota| —. In this case, since the amplitudig
the form ;(r) = 7ap ¥ap(r), where | 73p]?=(1+p%a?)~t is calculated with the wave functiap, that behaves aa/r
and p is the 3D relative momentum of colliding particles for r—o, we havea,>a? and 8= const.
(see, e.g.[26]). Hence, for the inelastic rate constant we At temperaturesT>%w,, using the same method as in
have (ag(1+p?a®)~1). In the presence of axial confine- Sec. V for the case of elastic scattering, from E4g) we
ment, averaging the frequency of inelastic collisions over theecover the 3D resulﬂ?nD given by Eq.(50) with n3p(2)
(quantum axial density profilensp(z), we obtain =ng(2). In the limiting case, whergy|a|>1, we find
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Comparing Eq.(53) with Eq. (52), we see that in the
confinement-dominated 3D regime the deviation of the in-
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10+ .
] *< 3D limit (~T°%)

FIG. 8. Inelastic rat€);, normalized t};, at T= 3% wg, versus
temperature(in units of Awg) in the unitarity limit @=«). The
solid curve shows the result of our numerical calculations, and the
dotted line the 3D limit. Circles show the data of the Stanford
experiment.

—exp(~fiwy/T)]. In order to compare our calculations with
the data of the Stanford experiment on spin relaxation, in
Fig. 8 we display;,(T) normalized td};, at T= 3% wq that

was the highest temperature in the experiment. The tempera-
ture dependence of the inelastic rate, following from the
Stanford results, agrees fairly well with the calculations and
shows significant deviations from the 3D behavior. It should
be noted that, in contrast to thermalization rates, the inelastic
decay rate is not sensitive to whether the gas is in the colli-
sionless or hydrodynamic reginié].

VIIl. CONCLUDING REMARKS

In conclusion, we have developed a theory that describes

elastic rate from the ordinary 3D behavior should be largethe influence of a tight axial confinement of the particle mo-

than that in the case of elastic scattering.
As follows from Eq.(52) and Fig. 5, for|a|=I, the in-

tion on the processes of elastic and inelastic scattering. The
most interesting case turns out to be the one in which the 3D

elastic frequency);, reaches its maximum at temperaturesscattering lengtta exceeds the extension of the wave func-
near the border between the quasi-2D and confinemention in the axial directionly. In the ultracold limit defined by

dominated 3D regimes. The maximum value(f, is close
to

~ 16h
Qjp=—p

— (54

From Eq.(49) one finds that at any the ratio Qin/()m
depends only on two parametelid# wy anda/l,. In Fig. 7

we present our numerical results fr,/();, as a function
of T/hwq for a/ly equal to—1, 1, and». As expected, the

Eq. (9), the conditiona| >1, automatically requires larga|
compared to the radius of interatomic interactRp. Then

we have a pronounced confinement-dominated 3D regime of
scattering at temperatures on the orderiaf,. Treating in-
teratomic collisions as three dimensional, the relative mo-
mentum of colliding atoms is related to the quantum charac-
ter of the axial motion in the confining potential and
becomes of the order of I}/ As a result, the scattering rate
can strongly deviate from the ordinary 3D behavior. The
axial extension of the wave function, achieved in the experi-

deviations from the 3D behavior are the largest in the unitarments at Stanford and ENG&—-8], is 1,~200 A. The re-

ity limit.
The inelastic rate of spin relaxation in a tightlsxially)

quired value of the scattering lengtla)>1, and|a|>R., is
characteristic for Cs atomsR{~100 A) and can also be

confined gas of atomic cesium has been measured for thgchieved for other alkali atoms by using Feshbach reso-

unitarity limit in the Stanford experimeni6]. Due to a

shallow radial confinement of the cloud in this experiment,

the 2D densityn~1/T [see EQq.(36)]. Then, Eq.(53) gives
the 3D inelastic frequency23®~1/T%? whereas in the
temperature intervale, <T<fAw, of the confinement-
dominated regime Eq$35) and (52) lead toQ;,~(1/T)[1

nances.

In order to observe the 2D features of the particle motion
in the rates of interatomic collisions one has to reach the
quasi-2D regime of scattering, which requires much lower
temperatures, at least by an order of magnitude smaller than
fwg. For wy=~80 kHz (hwg~4 uK) as in the Stanfor{5,6]

012706-12
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and ENS[7,8] experiments, these are temperatures belowarger than the radius of interatomic interactiBp. In this

400 nK. As one can see from Fig. 5, the rate of elastic colrespect, the situation is similar to the 3D case with a large
lisions is still rather large for these temperatures and, hencgcattering lengta>R, at densities wher@aa®>~1. The in-

one can think of achieving them by evaporative cooling.vestigation of the crossover to the BEC regime in such
Moreover, for realistic radial frequencies~100Hz there is  strongly interacting quasi-2D gases should bring in analogies
a hope to achieve quantum degeneracy and observe a crog§th condensed matter systems or dense 2D gases. Well-
over to the Bose-Einstein condensatiBEC) regime. Tne known examples of dense 2D systems in which the
cross-over temperature T%”Nmf“*f (see[27] and the dis-  kosterlitz-Thouless phase transitif®8] has been found ex-
cussion if9]), and forN~ 1000 particles in a quasi-2D layer perimentally, are monolayers of liquid heliufg] and the

we find T;~100 nK. . . . quasi-2D gas of atomic hydrogen on liquid-helium surface
Another approach to reach BEC in the quasi-2D regim 30].

will be to prepare initially a 3D trapped condensate and the On the other hand, fofa|<l, the collisional frequency

aldiaba'tically slowly'turn on the tight axial confinement. Ma- near the BEC crossovef)(T.)<T./%, and the(quasj2D
nipulating the obtainedquas)2D condensate and inducing g5 remains weakly interacting. Then, the nature of the
the appearance of thermal clouds with temperatireS.,  crossover is questionableee[9]). Generally speaking, one
one can observe interesting pha.se coherence phenomg% have both the ordinary BEC crossover like in an ideal
onglnatlng from the phase fluctuations of the condensate "?rapped ga$27] and the Kosterlitz-Thouless tyfjes] of a
qua5|-2D(§ee[9]). - crossover. We thus see that axially confined Bose gases in
Interestingly, at temperaturéb~T, the collisional fre- g quasi-2D regime are remarkable systems where by tuning

quency() can be on the order of the cross-over temperature, ., I, one can modify the nature of the BEC crossover.
if |a|=1,. This follows directly from Fig. 1 and Eq24) that

give O~ win/m even at temperatures by two orders of mag-
nitude smaller thak wy. As the 2D density of thermal par-
ticles is n~Nmw?/T, we immediately obtainzQ(T,)
~NY2,w~T,. This condition means that the trapped gas We acknowledge fruitful discussions with I. Bouchoule,
becomes a strongly interacting system. The mean free path. Salomon, A. J. Kerman, V. Vuléticand J. T. M.

of a particlev/Q(T,) is already on the order of its de Broglie Walraven. This work was financially supported by the
wavelength/i/\mT,. At the same time, the system remains Stichting voor Fundamenteel Onderzoek der Mat&f@M),
dilute, since the mean interparticle separation is still muchoy INTAS, and by the Russian Foundation for Basic Studies.
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