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Full-angular-momentum, three-dimensional, smooth-exterior complex dilated,
finite-element method for computing resonances in triatomic molecules:
Application to a model of the NelCl van der Waals complex
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Department of Physics, Stockholm University, Box 6730, S-11385 Stockholm, Sweden
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By combining a total-angular-momentum representation, the smooth-exterior complex dilation technique
and a three-dimensional finite-element code, a study of some resonances in a model of an electronic surface of
the van der Waals complex NelCl was performed. For zero angular momentum, our results show good
agreement with earlier calculations. Using the present formalism we believe that we are able to report a fully
guantum-mechanical calculation of predissociation widths for a triatomic molecule.
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Resonant states have for a long time been suspected ai@nnysonet al. [10] include the exact Hamiltonian in our
have very recently been shown to play an important role irformalism, the latter authof&0] use an approximate method
chemical reaction dynamidd]. Studies of van der Waals that they have analyzed and motivated.
complexes provide important information on intermolecular  With this paper we want to demonstrate how a recently
forces and on intermolecular energy trangfr Several ex- developed methof26,27 based on an exact Hamiltonian is
perimental studies have accordingly been conducted in elecapable of computing eigenenergies, associated predissocia-
tronically excited states of triatomic systems involving ation widths, and eigenvectors for rovibrational levels associ-
rare-gas atom and two halogen atof8s4]. ated with a single electronic surface of a triatomic molecule.

The energy interval between two close rotational levels ofWe first show that this method is capable of producing com-
many triatomic molecules are less than 1 ¢mThus, the plex energies for first three rotationless vibrational levels as-
influence of nonzero-momentum levels should be accountesociated with the ICIB 31+, v=2 vibrational level of a
for when comparing theory and experiment. The present letMorse potential model of the NelCl molecule in good agree-
ter reports a method that will allow such studies. ment with previously published studi¢8,9]. Energies and

A number of theoretical studies of the zero angular mo-redissociation widths for the three lowest nonzero angular
mentum levels of the NelCl system have been performeanomentaJ) including all their projectiongM) of the above
during the last few year§5-9] using the same potential. mentioned three vibrational levels are then presented.
Previously, quantum-mechanical studies of predissociation The total wave function?’™ of any system with the an-
phenomena in triatomic molecules do not, to our knowledgegular momentuml and its projectiorM can be expanded in
'tjusri a Hamiltonian that has a nonzero total angular momenRerms of Wigner D-function®y,(a,8,7) [28,29:

Tennyson and coworkelld0-15 solve the same equa-

tions as we do but have not yet, to our knowledge, treated J

any predissociation problems. Kendriekal. [16—18 use a PIM=N D}, +1(—1)°D),_ JUVI(R).
symmetrized hyperspherical-coordinate discrete-variable and "~ s V2+2684 Ms M=s Tt
finite-basis representation method to compute cross sections (1)

including nonzero angular momentum levels in théHol-

lision complex. Castillo and Manoloppould%9] use an ex-

act hyperspherical-coordinate method that involves nonzerdhe Euler anglesy, 8, andy define a rotation of the body

angular momenta for the collision complex to compute crossixed frame with respect to the laboratory fixed one &b

sections for the FFHD reaction. The adiabatic rotation ap- a three-dimensional coordinate in the body fixed frame. The

proximation method of Carter and BowmE20] plus a com-  index s varies ass=0,1, ...,) for the positive parityr=

plex £2 modification have, on the other hand, been used to+1 and ass=1,...J for r=—1. In the following, we

compute rovibrational energies and widths in the HCOomit the parity for sake of simplicity.

[21,22] and HOCI[23—-25 molecules. While both we and To describe the body fixed coordina® we have here
chosen Jacobi coordinates. Let particles 1, 2, and 3 represent
the Ne, |, and Cl atoms, respectively. Theis the distance

*On leave of absence from Department of Mathematical andetween particles 2 and @.e., Cl and | atomk y is the
Computational Physics, Institute for Physics, St. Petersburg Univerdistance between particle(lle atom) and the center of mass
sity, St. Petersburg, Russia. of pair (23) and ¢ is the angle betweex andy.

TInternational Solvay Institutes for Physics and Chemistry, Cam-  After substituting expansior(1) into the Schrdinger

pus Plaine ULB C.P.231, Bd. du Triomphe, Brussels 1050, Bel-equation and using an orthogonality relation frfunction

gium. [28], one can derive the system of equati¢pB9]:
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where . (J,5)=[J(J+1)—s(s=1)]*? and ¢V Y=0.
The reduced massegs have been defined in terms of the
particle masses m; as  woz=Moymg/(my+ms),
M1 2= My (My+mg)/[my+(my+mg)]. The components

2
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TABLE |. Parameters of two-body Morse potentials. The
masses adopted amay.=20.18 amu,m;=126.9 amu, andmg,

=34.97 amu.
D(cm ™) B(A™Y red (A)
Ne-I 26.0 1.80 5.40
Ne-ClI 34.7 1.90 3.61
I-Cl 1270.4 3.96 2.66

Numerically we have realized Ed2) using the finite-
element methodFEM). A detailed description of our FEM
implementation can be found elsewh¢83—35. The accu-
racy of the present method has earlier been tested in studies
of the helium atonf27] and the antiprotonic helium system
[26,36].

The mesh used in the calculations was fixed to meet con-
vergence criteria. The one-dimensional basis functions of the
angular variable=cos¢ were chosen to be associated Leg-
endre polynomial®;(c) for each component”®. Then the

% must satisfy the boundary conditions with respect to thenoundary condition3) are correctly taken into account. For

angle ¢ so that

PUI(xy, ) =sin® pyI(x,y, ¢), (3
where 7 U9(x,y, ¢) is a bounded function of its arguments.
A most important property of the set of equatid@s is that
they couple the three componemtss™%), 4’9 andys™1)
only.

The total potentialV(x,y,¢) is the sum of three pair
atom-atom pair potentials of the Morse tyjid.

To calculate resonant energies E—1(I")/(2) with the
complex scaling(CS method, we should replace the real-
valued three-dimensional coording®eby its complex ana-
logue. In fact, only the magnitudesandy of the vectors
have to be scalefB0]. In the present case it is sufficient to
scale the Ne-ICI coordinatey, since the ICI subsystem re-
mains bound. We define the transformationxads follows
[31]:

X— &(X)=X+Ag(X),
where

0,
(r—Ro){1—ex —

r<R,
r>Rg.

g(r)= (4)

U(r—Ro)z]},

Here,A=exp(6)—1, 0 is a rotation angleR, is the external

radius, ando is the curvature parameter. Both the function

and its derivative are continuousi§. The angular variable

the Ne-ICI (y) direction we chose to have exponentially
weighted Legendre polynomials on 28 elements within the
interval ynin=4 a.u.,Ymax=32 a.u.. The maximum polyno-
mial degree iny direction was fixed to be 6. One single
element was used to describe the ICI coordinade (t cov-
eredxmin=4 a.u. toXya,= 6.5 a.u. In this direction we used
four Morse type functions. In convergence studies, we used
up to eight Morse type functions. The external radiig
coincides with one of the box boundary and is equal to 16.6
a.u. When properly chosdr27], the curvature parameter
weakly influences the results. We use the vajuel.0.

The formalism, discussed above, yielded sparse matrices
of dimension 11 900 with a total bandwidth of 1074 for each
component. The code development work were performed on
a DEC/Alpha 433 a.u. workstation using 64 bit precision.
The final results were obtained on a parallel IBM SP2 Night-
hawk 8 node computer with the same precision. While the
total computer time for the DEC/Alpha 433 a.u. workstation
was of the order of 24 hours for obtaining a few eigenvalues,
the IBM SP Nighthawk requires only about three hours for
the same task.

Let us now discuss the NelCl resonances. The parameters
of potential are taken from Reff5] and given in Table I. To
facilitate comparison with the results of Reff8,9], we relate
the computed resonance energies to the energy ofvthe
=0,J=0 level of ICI system. The =0, 1, and 2 levels of
this system lie at 108.269 cm, 310.343 cm!, and
493.132 cm?, respectively, above the zero of ICI potential.

In Table Il, we present our results for the first ten reso-
nances of a total of 30 reported in Ref8,9]. For zero an-

¢ is obvjously not chapged_ by_the transformation. ThPT repgular momentum, we are in close agreement with results
resentation of the Hamiltonian in these complex coordinategbtained by the complex scaling discrete variable represen-

can be found in Ref.27].

tation method 8], the modified stabilization methd@], and

It is well known that positions and widths of resonancesthe optical potential discrete variable representation method

are independent of the rotation angle When a numerical
approximation is used, resonances becamgependent. In
this case, their position& and widthsI" are defined by
means of the complex variational princiglé2].

[9]. Small differences exist in the second decimal of the real
part with one exception for the tenth resonance. Although the
real parts almost coincide with each other, the imaginary part
varies considerably.
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TABLE II. Comparison of our result&;"" for J=0 and the results ofa) the complex scaling discrete
variable representation meth¢@SC-DVR) [8], (b) the modified stabilization methddod.St) [8], and(c)
the optical potential discrete variable representation meti@-DVR) [9]. Numbers in square brackets
denote powers of 10.

Egur rn Eﬁ'b’c FESC-DVR FnMOd' St. TrC])P-DVR
342531 2.5p—3] 342.544 1.8B-3] 2.07-3] 2.04-3]
350.033 1.77-3] 350.072 9.8—4] 1.17-3] 1.09-3]
354.516 1.2D-3] 354.540 8.6[l—4] 9.5 -14] 8.91—-4]
358.522 1.4p—3] 358.551 1.40-3] 1.73-3] 1.60 —3]
362.565 1.1p-3] 362.541 6.1p— 4] 6.79 4] 6.41 —4]
364.539 3.1p-3] 364.541 2.60—3] 2.99 - 3] 3.00-3]
366.631 7.5p—4] 366.659 6.8D—4] 9.0q — 4] 7.09 — 4]
367.290 1.84—4] 367.284 2.20—-4] 3.67—4] 2.43 - 4]
368.055 3.6p—4] 368.035 5.7 4] 7.87—4] 6.49 — 4]
369.126 5.4D—4] 369.047 9.1p-4] 9.69 — 4] 1.00-3]

Both previous studiegs,9] involve representations of the were calculated on the same mesh as the corresponding zero
ICI motion in form of basis set expansions fitted to give aangular momentum levels. Note that the present method and
correct eigenvalues for the ICI subsystem. Here we useode was used to compute energy for high-angular momen-
Morse-type functions that are the analytical solutions of theum (J~40) energy levels of antiprotonic heliurf26].
two-body ICI Hamiltonian. Hence, they provide both accu-These results yielded transition energies that predicted mea-
rate eigenenergies and eigenfunctions. We further used 4-fured, corrected to the zero pressure, experimental transition
Morse-type functions, representing=0,1,2 . .. ,5inthe ex-  energies within the experimental accuracy of 4 ppm. Hence,
pansion of the ICI motion within the NelCl molecule. We the obtained here absolute accuracy for nonzero NelCl angu-
find that we get converged results for four Morse functionslar momentum levels is the same as for the zero angular
already. momentum levels within the present NelCl model. To our

Nonzero angular-momentum results corresponding to th&nowledge, there are no data available from other studies
three lowest levels are presented in Table Ill. We show thevith which we can compare these results. We present the
results obtained with the solution of the entire set of equaresults for the three lowest resonances that are well separated
tions (2). This implies that thels component is coupled to (in comparison with higher-resonance statesid almost
the Js=1-components that in turn are coupled to the noninterfere with each other. The energy-level spectrum ob-
+2-components, etc. The nonzero angular-momentum levelsined has a form that agrees in general with common ex-

TABLE lll. Nonzero angular-momentum energy levels with the total angular momedtparity 7, and
the helicity quantum numbes: Numbers in square brackets denote powers of 10.

J(T) S E]_ Fl E2 Fz E3 F3
0(+) 0 342531  25p-3] 350033  1.77—-3] 354516  1.2p-3]
1(-) 1 342.823  2.48-3] 350563  1.8p-3]  356.022  1.4@—3]
1(+) 0 342.585 2.5p-3] 350.083 1.76—- 3] 354.563 1.26-3]
1 342.820 2.48-3] 350.561 1.8 3] 356.019 1.4 3]
2(-) 1 342.866  250-3]  350.605  1.7p-3]  356.066  1.4p—3]
2 343.646 2.3p-3] 351.808  1.95-3]  357.878  1.4p—3]
2(+) 0 342691  25p-3]  350.183  1.79-3]  354.657 1.1p-3]
1 342.923  248-3]  350.659 1.80-3]  356.115 1.48-3]
2 343.625  2.3p-3]  351.787 1.98-3]  357.863 1.4B-3]
3(-) 1 342.984  2.50-3] 350.716  1.7p-3]  356.177  1.4D-3]
2 343769  2.3p-3]  351.926  195-3]  357.997  1.4p-3]
3 344.942 2.1p-3] 353.560 2.1p-3] 359.909  1.4B-3]
3(+) 0 342.851  25p-3]  350.332  1.7B-3]  354.798  1.1B-3]
1 343.079 2.48-3] 350.807 1.8 3] 356.259 1.4p-3]
2 343786  2.3p-3]  351.941  1.95-3]  358.015  1.4p—3]
3 344.914 2.1p-3] 353.535 2.1p-3] 350.889  1.4B-3]
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perimental spectra of asymmetric top triatomic molecules This work was supported by the Natural Swedish Re-
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a more extensive forthcoming paper. dations and S.L. acknowledges the support of the Royal
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