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Nonlocal operations: Purification, storage, compression, tomography,
and probabilistic implementation
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We provide several applications of a previously introduced isomorphism between physical operations acting
on two systems and entangled states@Phys. Rev. Lett.86, 544 ~2001!#. We show ~i! how to implement
~weakly! nonlocal two-qubit unitary operations with a small amount of entanglement;~ii ! that a known, noisy,
nonlocal unitary operation as well as an unknown, noisy, local unitary operation can be purified;~iii ! how to
perform the tomography of arbitrary, unknown, nonlocal operations;~iv! that a set of local unitary operations
as well as a set of nonlocal unitary operations can be stored and compressed; and~v! how to implement
probabilistically two-qubit gates for photons. We also show how to compress a set of bipartite entangled states
locally, as well as how to implement certain nonlocal measurements using a small amount of entanglement.
Finally, we generalize some of our results to multiparty systems.
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I. INTRODUCTION

In recent years, much of the theoretical effort in quant
information~QI! theory was focused on establishing prop
ties of states and techniques to manipulate them. One o
main purposes was—and is—the characterization and q
tification of entanglement properties of multiparticle stat
as entangled states play an important role in several app
tions of QI. Many schemes and applications which invo
the manipulation of quantum states were discovered. Am
them, we have teleportation@2#, purification of noisy en-
tanglement@3–5#, quantum data compression@6#, quantum
cloning @7#, and quantum tomography@8#.

In practice, entangled states are created by some phy
action. This suggests that establishing properties of op
tions may play an important role in QI as well. The first ste
in this direction were recently reported@9–12#. In particular,
in Ref. @10# the entanglement capabilityof interaction
Hamiltonians between two systems was introduced and
lyzed. This quantity measures the maximum rate at wh
entanglement can be produced given some particular inte
tion. On the other hand, the entanglement cost for the im
mentation of nonlocal operations was also considered
cently @13–16#; in particular, several examples, all dealin
with an integer number of ebits required for the impleme
tation of certain nonlocal operations, were introduced.

In Ref. @1# we introduced an isomorphism which relat
physical operations~completely positive maps~CPM’s! E)
and states~positive operatorsE). This isomorphism turns ou
to be an important ingredient in the understanding of
tanglement properties of operations in general. In this pa
we will first review the results obtained in Ref.@1#

~i! In order to study the separability and entangling pro
erties of operationsE, it suffices to study the separabilit
properties of the associated operatorsE @1#. In particular, one
can use all the results obtained for the separability of st
@17#. This allows one to answer questions like ‘‘Given
CPM E, can it be used to create entanglement?’’ Such qu
tions may be relevant in experiments, where one might w
1050-2947/2001/64~1!/012317~14!/$20.00 64 0123
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to know whether a certain machine~setup! can be used to
create entangled states.

~ii ! One can easily construct physical operationsE which
can generate bound entangled states~BES’s!.

~iii ! An important problem in the context of distribute
quantum computation@18# is the implementation of nonloca
unitary operations. In@1#, it was shown that an arbitrary two
qubit unitary operation can be implemented using an amo
of entanglement which is proportional to the entanglem
capability of the operation@9,10#.

Then we will discuss several other applications of t
isomorphism:

~iv! One can perform two-qubit gatesprobabilistically in
the context of single-photon experiments via creation of
tangled states assisted by incomplete Bell measurement

~v! Several techniques concerning quantum states—
quantum teleportation@2#, quantum state purification@3,4#,
quantum data compression@6#, and quantum cloning
@7#—were considered in recent years. The isomorphism
lows one, in a simple way, to obtain similar results for o
erations. That is, noisy unitary operations can be purifi
and sets of them can be stored and compressed. Furtherm
it is possible to clone unitary operations as well as to telep
them@19,20#. Finally, one can easily see how to perform t
tomography@21,22# of general nonlocal operations locally.

~vi! One can perform certain nonlocal measurements
using a small amount of entanglement.

This paper is organized as follows. In Sec. II, the isom
phism between operations and states is reviewed and se
implications are discussed. This isomorphism provides
basic tool for a number of applications which are presen
in the preceding sections. In Sec III, we show how to imp
ment nonlocal two-qubit unitary operations with unit pro
ability, consuming an amount of entanglement which is p
portional to the entanglement capability of the operatio
Section IV is concerned with purification of noisy oper
tions, while Sec. V deals with tomography of arbitrary no
local operations. In Sec. VI it is shown how to impleme
probabilistically two-qubit operations in the context
single-photon experiments. Next, in Sec. VII, storage a
©2001 The American Physical Society17-1
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compression of nonlocal unitary operations are discus
while Sec. VIII is concerned with the implementation
nonlocal measurements. Finally, in Sec. IX the isomorph
is extended to multiparty systems. We summarize our res
in Sec. X.

II. ISOMORPHISM BETWEEN OPERATIONS AND
STATES

In Ref. @1#, an isomorphism which relates physical ope
tions ~equivalently completely positive mapsE) acting on
two systems and~unnormalized! states~positive operatorsE)
was introduced. This isomorphism is an extension of the
introduced by Jamiolkowski@23#. To be specific, let us con
sider two spatially separated partiesA and B, each of them
possessing several particles.1 Let S5$u i &% i 51

d be an orthonor-
mal basis, and

uF&A1,2
5

1

Ad
(
i 51

d

u i &A1
^ u i &A2

, ~1!

PA1,2
5uF&A1,2̂

Fu, ~2!

where uF& is a maximally entangled state~MES!, and P a
projector on this state. We consider a CPME acting on the
density operator of twod-level systems, one belonging toA
and one toB. Then, there exist an isomorphism~linear one to
one correspondence! between the CPME and a positive op-
eratorE @1# defined by the following relations:

EA1,2,B1,2
5E~PA1,2

^ PB1,2
!, ~3a!

E~rA1B1
!5d4trA2,3B2,3

~EA1,2,B1,2
rA3B3

PA2,3
PB2,3

!. ~3b!

These equations have a very simple interpretation: On
one hand, Eq.~3a! states that given a CPME, one can always
produce the stateE associated withE by applyingE to par-
ticles A1B1 if they are prepared in the stateP̃5PA1,2

^ PB1,2
.

Note thatP̃ is a product state with respect to partiesA andB,
while it is a local MES in the system belonging to partyA
and B respectively. On the other hand, Eq.~3b! states that
given the stateE ~of particlesA1,2 andB1,2), one can imple-
ment the operationE on an arbitrary stater of two d-level
systems~particlesA3B3) by measuring the projectorP lo-
cally in A2,3 and B2,3. After a successful measurement—
where the probability of success is given b
p51/d4—particlesA1B1 are found in the stateE(r). In sum-
mary, a CPME can be used to prepare a stateE, which in
turn can be used to implementE with a certain probability of
success.

1We will denote particles belonging to partyA by A1 , A2, andA3,
where each of the particles is ad-level system. We will also use th
notationA1,2 to refer to particlesA1 andA2. A similar notation is
used for particles belonging to partyB.
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III. IMPLEMENTATION OF NONLOCAL UNITARY
OPERATION WITH UNIT PROBABILITY

In Ref. @1#, it was shown how to implement an arbitrar
nonlocal two-qubit unitary operation with arbitrarily high a
curacy and unit probability, consuming an amount of e
tanglement which is proportional to the entangling capabi
of the operation. Here we review and improve this proc
dure. To this aim—as in Ref.@1#—we consider a family of
phase gates

U~aN![e2 iaNs
x

A1^ s
x

B1
, aN[p/2N ~4!

where thes ’s are Pauli matrices. We show the following:
~i! The operationU(aN) can be implemented with a prob

ability p51/2.
~ii ! By applying a finite sequence of operations of t

form of Eq. ~4!, each being implemented with probabilityp
51/2 using~i!, one can achieve that the operationU(aN) is
applied with probabilityp51.

~iii ! Using gates of the form of Eq.~4!, with binary angles
aN5p/2N, one can implement phase gates with an arbitr
anglea.

~iv! An arbitrary two-qubit unitary operation can b
implemented using a sequence of three operations of
form U(a), assisted by local unitary transformations.

While ~i!–~iii ! were already explained in Ref.@1#, the
implementation of~iv! is different to the implementation de
scribed in Ref.@1#. There, an infinite sequence of operatio
of the form U(a) was required in order to implement a
arbitrary two-qubit operation, while here a finite sequen
consisting of three operations suffices. The required amo
of entanglement is also smaller using our method.

Since steps~i!–~iii ! will be crucial for understanding
some procedures described in later sections, we discuss
in detail. We start out by showing~i!. First we note that the
operator associated with the unitary operationU(aN) @Eq.
~4!# is given byEA1,2,B1,2

5ucaN
&A1,2,B1,2̂

caN
u, where

ucaN
&A1,2,B1,2

5cos~aN!uF1&A1,2
uF1&B1,2

2 i sin~aN!uC1&A1,2
uC1&B1,2

, ~5!

and uF1&5(u00&1u11&)/A2,uC1&5l^ sxuF1&5(u01&
1u10&)/A2 are Bell states. In general, the Bell basis is d
fined as

uC i 1 ,i 2
&5l^ s i 1 ,i 2

uF1&, ~6!

where s1,15l,s1,25sx ,s2,15sy , s2,25sz and uC1,1&
5uF1&,uC1,2&5uC1&,uC2,1&5 i uC2&,uC2,2&5uF2& are
MES’s. Note that for convenience—to ensure a simple no
tion below as well as in the remaining sections—we us
redundant definition of the Bell basis. We consider a sit
tion similar to the one described in Eq.~3b!; that is, particles
A1,2B1,2 are prepared in state~5!, and rA3B3

is the state on

which a CPME—in our case, the unitary operationU(aN)
@Eq. ~4!#—should be applied. Now, a Bell measurement
performed on particlesA2,3 @B2,3#. Assume that the resul
7-2
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NONLOCAL OPERATIONS: PURIFICATION . . . PHYSICAL REVIEW A64 012317
associated touC i 1 ,i 2
& @ uC j 1 , j 2

&] is obtained. In this case, th

state of systemA1B1 is proportional to

E @~s i 1 ,i 2

A1 ^ s j 1 , j 2

B1 !rA1B1
~s i 1 ,i 2

A1 ^ s j 1 , j 2

B1 !#. ~7!

Thus, as a result of the measurement, we either implem
the CPME, or some unitary operation followed by the CPM
We now proceed as follows: In case the result of the m
surement wasi 1 ,i 2 @ j 1 , j 2#, the local unitary operation
s i 1 ,i 2

@s j 1 , j 2
# is applied onA1 @B1#. If E is given by the

unitary operationU(aN) @Eq. ~4!#, one readily observes tha
the resulting operation performed onrA1B2

after this proce-

dure will be ~i! U(aN) if i 15 j 1 and ~ii ! U(aN)†5U
(2aN) if i 1Þ j 1. Due to the fact that all measurement ou
comes are equally probable, we have that with probab
p51/2 the desired operationU(aN) was applied, while with
p51/2 the operationU(2aN) was performed, from which
~i! follows.

Before we proceed, we investigate the amount of nonlo
entanglement~between systemsA andB) which is required
to perform the described procedure. The amount of entan
ment of the stateucaN

& @Eq. ~5!# is given by its entropy of
entanglement,

E~caN
!52xNlog2~xN!2~12xN!log2~12xN!, ~8!

wherexN5cos2(aN)5cos2(p/2N). That is, the amount of en
tanglement required to implement the operationU(aN) with
probability p51/2 is given by Eq. ~8!. We have that
U(p/2)52 isx^ sx is a local gate, and thusE(ca1

)50,

while E(ca2
)51, i.e., one ebit of entanglement is require

For N>2, we have thatE(caN
) decreases monotonicall

with N. The amount of classical communication is given
one bit in both directions~the value ofi 1 or j 1, respectively,
has to be transmitted!.

Regarding~ii !, we have to show how to obtain a probab
ity of successp51 by making use of the procedure d
scribed above. Note that with probabilityp51/2, we succeed
and apply the desired gate, while withp51/2 we fail and
apply U(2aN) instead. Now, if we fail, we repeat the pro
cedure but with systemsA1,2B1,2 prepared in the stateuc2aN

&.
With a probability 1/2 we succeed, and otherwise we w
have appliedU(2aN)3 to the original state instead. We con
tinue in the same vain, that is in thekth step we use system
A1,2B1,2 prepared in the stateuc2k21aN

&, so that, if we fail

altogether, we will have appliedU(2aN)2k21. For k5N we
have thatU(2aN)2N2152U(aN), and therefore even if we
fail we will have applied the right gate, so that the proced
ends. In fact, theNth step will succeed withp51, asU(p/2)
is a local gate which can be implemented with unit proba
ity and without consuming entanglement. That is, a seque
of N operations of the form of Eq.~4! allows us to implement
the operationU(aN) with unit probability, which proves~ii !.

Let us investigate the average amount of entanglem
which is consumed during this procedure. We have
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Ē@U~aN!#5 (
k51

N S 1

2D k21

E~caN2k11
!5aNf N , ~9!

where

f N5
1

p (
k51

N

2kE~cak
!, f `55.97932. ~10!

In Eq. ~9!, the weight factorpk5(1/2)k21 gives the probabil-
ity that the kth step has to be performed. Thus we obta
Ē@U(aN)#,aNf ` ; that is, the average amount of entang
ment is bounded from above by a quantity which is prop
tional to the angleaN and thus—for smallaN—proportional
to the entangling capability of the operation@10#. The aver-
age amount of classical communication is given by
2(1/2)N22 bits.

To show ~iii !, we use the fact that any gateU(a) with
arbitrary phasea can be approximated with arbitrary hig
accuracy by a sequence of gates of the formU(aN). That is,
any angle 0<a<p can be written as

a5p(
k51

`

nk2
2k, nkP$0,1%. ~11!

For eachk, we have thatnk is either ‘‘0’’—which means that
the rotation U(ak) does not have to be performed—o
‘‘1’’—which means that the rotationU(ak) has to be per-
formed. Operations of the formU(ak) can be implemented
with unit probability using~i! and ~ii !. The average amoun
of entanglement consumed to implementU(a) is bounded
by Ē< f `a ebits.

Finally, to show~iv!, we use the result of Krauset al.
@11#. There, it was shown that an arbitrary two-qubit unita
operation can be written in the form

UAB5V^ We2 iHṼ^ W̃, ~12!

whereV,W,Ṽ, andW̃ are local operations, and

H5 (
k5x,y,z

3

mksk
A

^ sk
B[(

k51

3

Hk , ~13!

where 0<mk<p/2. We note that

e2 iH5e2 iH 1e2 iH 2e2 iH 3, ~14!

ande2 iH k are—up to a change of local basis—operations
the form of Eq.~4! for which we already provided a protoco
@see~i!–~iii !#. Using this, we obtain that an arbitrary two
qubit unitary operation can be performed using a sequenc
three operations of the formU(a), assisted by local unitary
operations, which proves~iv!. The required amount of en
tanglement is bounded byf `(m11m21m3) ebits.

IV. PURIFICATION OF NOISY OPERATIONS

In this section, we consider purification of a noisy ope
tions. We will discuss two different scenarios.
7-3
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W. DÜR AND J. I. CIRAC PHYSICAL REVIEW A64 012317
In the first scenario, we consider two spatially separa
parties A and B who want to perform aknown, nonlocal
~entangling! unitary operationU between two particles the
share. We will assume thatA andB are only able to perform
the operationU in an imperfect way. So instead of perform
ing U on their particles, they perform some CPMEU . The
problem we pose is the following: Given several applicatio
of the noisy operationEU and arbitrary local resources, ca
the partiesA andB use them to perform the~noiseless! op-
erationU on an arbitrary state of two qubits instead? Und
which circumstances is this possible? In case this is poss
we say that the noisy operation is purificable. In Sec. IV
we are going to show when and how it is possible to achi
this task.

The second scenario is concerned with the purification
an unknown, localnoisy unitary operationEU , where we
explicitly assume a specific form of noise. In Sec. IV B, w
provide a procedure to implement an unknown unitary
eration perfectly, given several applications of the noisy
eration.

In both cases, it turns out that the isomorphism@Eq. ~3!#
allows one to use results obtained for purification of sta
and thus for a very simple solution to the problem. Rega
ing the first scenario, the corresponding problem for state
the problem of entanglement distillation of mixed states@4#.
For the second scenario, the corresponding problem
states is the purification of a single qubit@24#.

A. Purification of a known nonlocal noisy unitary operation

We consider two partiesA andB, who want to perform a
joint unitary operationU among two particles they share. F
simplicity, let us assume thatUPSU(4), i.e., the particles
are qubits. The partiesA andB are only capable to perform
the operationU in an imperfect way, so they perform som
CPM EU instead. For example, a noisyN-qubit operation can
be of the form@25#

EU~r!5qUrU†1
12q

2N
l, ~15!

i.e. with probability q the desired operation is performe
while with 12q a completely depolarized state~described
by the identity operatorl) is produced. The following analy
sis is not restricted to this specific form of noisy operatio

The operationU is known to bothA andB. Furthermore,
they are allowed to use auxiliary systems, and are abl
perform all operations~including two-qubit operations! on
their individual sites perfectly. In the following, we are goin
to show that the noisy, entangling operationEU can be puri-
fied if and only if the operatorrE corresponding toEU @Eq.
~3a!# is distillable. We also provide a practical protocol
achieve this task. The purification procedure takes place
follows:

~a! EU is used to create several copies ofrE @see Eq.~3a!#.
~b! With the help of entanglement distillation for state

out of rE
^ M a number of MES’s are created.

~c! The MES’s are used to create a set of states of
form of Eq. ~5!, either via deterministic state transformatio
01231
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~single copy case! or via entanglement dilution@3#.
~d! Finally, these states are used to implementU with unit

probability and arbitrary high accuracy as described in S
III.

Now we will show that an operationEU—whereU is an
entangling operation—is purificable if and only ifrE is dis-
tillable. This can be seen as follows. On the one hand, ifrE
is distillable, one can use the procedure described abov
purify the noisy operationEU . On the other hand, ifEU is
purificable, this implies that the unitary operationU can be
performed on an arbitrary state of two qubits, using a
quence of noisy operationsEU assisted by local operation
and classical communication. SinceU is an entangling op-
eration, the corresponding pure stateEU is also entangled.
That is, the sequence of operationsEU , assisted by local
operations and classical communication is capable to cr
entangled states when acting on a certain separable s
Using the isomorphism@Eq. ~3!#, we can write this sequenc
of operations acting on a separable state in terms of a t
over several operatorsEi , where local operations in the se
quence correspond to separable operators@1#. That is, the
only entangled operators which appear in this expression
operatorsrE corresponding to the noisy operationEU and the
resulting state is entangled. This implies that from seve
copies of the mixed staterE , an entangled pure state can b
created. Note that using entanglement distillation for p
states@3#, this implies that one can also create a MES. W
thus have thatrE is distillable, which finishes the proof o
our statement.

Since EU is a general CPM,rE is a mixed state inC4

^ C4, where no operational necessary and sufficient con
tion for distillability is known ~however, see Refs.@27,28#!.
It is known that nonpositive partial transposition ofrE is a
necessary condition for distillability, however there a
strong evidences that this condition is not sufficient@27,28#.
Using entanglement purification for states, e.g. via the me
ods discussed in@27–29,4#, one may be able to obtain a ME
starting from several copies ofrE .

Given the error model@Eq. ~15!#, one can obtain a neces
sary and sufficient condition for purificability. It turns ou
that unitary operations which are only weakly entangli
@e.g., operations of the formU(a) with a!1] are much
more sensitive to noise than unitary operations which
strongly entangling, e.g. the controlled-not~CNOT! operation
@30#. This means that the tolerable error, specified by
2q)—such that purification of the noisy operation is st
possible—in the case of theCNOT operation is much bigge
than for U(a) with a!1. For theCNOT operation and the
error model @Eq. ~15!#, one obtainsq.1/9, in order that
purification of the noisy gate be possible@31#. For operations
of the formU(a), one findsq.@16 cos(a)sin(a)11#21 as a
necessary and sufficient condition that gate purification
possible. For a5p/213, this value is, e.g., given by
q.163/164'0.994, i.e., less than 1% of noise is allowed
this case.

Note that the process of entanglement distillation involv
two-qubit joint operations as well. The reason why we tre
these~local! operations differently than the~nonlocal! opera-
tion U can be viewed as follows. On the one hand, the par
7-4
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NONLOCAL OPERATIONS: PURIFICATION . . . PHYSICAL REVIEW A64 012317
A and B may be spatially separated and the interaction
tween the two parties—for example performed through
usage of a~noisy! quantum channel—is much more sensiti
to noise than the local operations performed by only one
the parties. On the other hand, each of the partiesA and B
may be considered to possess a single particle only, e
particle containing several levels. Here the additional lev
are used instead of auxiliary qubits. In this case, the op
tion U is concerned with the interaction between two diffe
ent particles, while all local operations~also including
multilevel—equivalently multiqubit—operations! are opera-
tions performed on a single particle, which are much ea
to implement. For example, using atoms or ions with seve
levels, all local operations can be easily performed@33#.
However, controlled interactions between two ions on ato
are very difficult to achieve, which leads to the fact th
two-particle gates are noisy while local gates are practic
not. Recall that in state purification, it is similarly assum
that local operations can be performed perfectly, and tha
has to be known which MES has a large overlap with
mixed state the parties share in order that they can distill
specific MES. Similarly, a knowledge of the perfect unita
operationU is required.

One may also consider that the local operations are no
In this case, both the process of distillation of states and
implementation of the operationU, using several differen
states and Bell measurements, will give rise to some imp
fections. The purification of states with imperfect means w
studied in Refs.@26,34#, and it was found that no MES ca
be obtained if the local operations are noisy and a cer
error model is assumed. However, one is still able to incre
the fidelity, i.e., the overlap of the produced state with
MES, where the maximal reachable fidelity is determined
the amount of noise introduced by the local operations.
instead of producing a MES, one produces some mixed s
r. This stater may then be transformed to a state which
close to states of the form of Eq.~5!. These states can then b
used to implement the operationU in an imperfect way,
since both the states which are used and the operations w
are performed are noisy. Furthermore, one should take
account that a sequence of noisy operations is require
order to implementU with unit probability, so the errors ma
accumulate. For almost perfect local operations and v
noisy nonlocal operations, one may, however, still expec
purification effect.

B. Purification of an unknown local noisy unitary operation

Here we consider a partyA who wants to perform a uni
tary operationUPSU(2) on a single qubit. The operatio
cannot be performed perfectly but is subjected to some no
We will explicitly assume that the imperfect operationEU is
of the form of Eq.~15! @25# with N51; that is, with prob-
ability q the desired unitary operationU is performed, while
with probability 12q the completely depolarized state 1/l
is produced. Here, in contrast to the previous discussion
will assume that the operation is local andunknownto A ~for
example,EU is provided toA by a second party via a blac
box!. Given that partyA is able to perform all operation
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perfectly, we will show that the unknown noisy unitary o
eration can be purified, i.e. via several applications ofEU ,
the noiseless operationU can be implemented on an arbitra
qubit. For simplicity, we assume that the unitary operationU
is of the form

U~a!5e2 iasx, ~16!

wherea is unknown; however, the analysis can be gene
ized to arbitrary single-qubit unitary operations. The posit
operatorE corresponding to the imperfect operationEU is
given by

E5quCU&^CUu1
12q

4
l4 , ~17!

whereuCU&5cos(a)uF1&2i sin(a)uC1&.
We proceed as follows. First we projectE on the subspace

spanned by$uF1&,uC1&%, and relabel the basis:

u0̃&5uF1&, u1̃&52 i uC1&. ~18!

If we succeed, which happens with probability (q11)/2, the
resulting state will be

Ẽ5luC̃U&^C̃Uu1~12l!
1

2
l2 , ~19!

where uC̃U&5cos(a)u0̃&1sin(a)u1̃& and l[(2q)/(11q).
Given N states of the form of Eq.~19!, one can use the
procedure described in Ref.@24# to purify the noisy state,
i.e., to increasel. For largeN, the average fidelity—that is
the overlap of the produced states with the st
uC̃U&—scales likeF'12(1/2N)@(12l)/l2#, whereas the
yield—i.e., the fraction of the number of produced states
the number of initial statesN—scales like D'l
1(1/N)@(12l)/l# @24#. That is, forN→` one obtains al-
most perfect statesuC̃U& with a yield l. Note that the states
uC̃U& are not uniformly distributed on the whole Bloc
sphere, but rather only on the equatorial plane. Neverthel
one can still use the same procedure as described in
@24#, where a uniform distribution was assumed. The cor
sponding values forF andD in our case are at least as larg
as the ones obtained in Ref.@24#, since we have additiona
knowledge of the state, which may be used to further
creaseF and D. Note that in order that purification is pos
sible, we need thatl.0 and thusq.0. So all noisy gates of
the form of Eq.~15! andU given by Eq.~16! can be purified
if q.0.

To summarize, we managed to produce an arbitrary nu
ber of~almost! perfect statesuC̃U& given several applications
of the noisy operationEU . Note that uC̃U& can be trans-
formed deterministically touCU& by undoing the basis
change@Eq. ~18!#. From the results of Sec. III, we know tha
the stateuCU& can be used to implementU with probability
p51/2. What remains is to show that one can implemenU
with probability p51. The simplest way to see this is th
following: If we fail, we try to implementU again; we make
a third attempt and try to implementU; and so on. Every odd
7-5



e

m
a

t

a
t
-

o
a

e
d
ra

a
de

nd

e

an

te
o

-
e

s

le
le

ss,
til-
ent

s.
ility
pa-

to

m

e
-

dy
-
d

er

uch

ts to
p-

te
s a

OT

ing

-
only

er-

g

ith

the
ete
e

ity

he

ell

t
the

W. DÜR AND J. I. CIRAC PHYSICAL REVIEW A64 012317
number of steps, say 2j 11, we stop the procedure if w
have succeeded inj 11 steps and did not succeed inj steps.
In this case, we have applied the operationU in total j 11
times and the operationU† j times, which is equivalent to
apply the operationU. This is a one-sided bounded rando
walk with probabilityp51/2, where one can easily see th
the total success probability converges top51. Alterna-
tively, one can also use the operationU to prepare states
uCU& with coefficient 2ka, which is possible with probabil-
ity p51/22k

. These states can then be used to implemenU
with p51 following the procedure described in Ref.@20#.
For a success probabilityp512o(e), in total o(e21) states
uCU& with coefficienta are required.

Alternatively to the procedure described above, one m
also use a method similar to that of Sec. V to implemenU
given several applications ofEU . By a sequence of measure
ments one first determines the stateE, from which uCU& can
be found and used to implement the operationU ~which is
now known toA).

V. TOMOGRAPHY OF OPERATIONS

In this section, we consider the problem of tomography
an arbitrary, unknown nonlocal CPM. Given many applic
tions of the unknown CPME and using the isomorphism
@Eq. ~3!#, it is straightforward to completely determine th
nonlocal CPM by a sequence oflocal measurements assiste
by classical communication. To this aim, we use the ope
tion E to prepare several copies of the associated stateE @Eq.
~3a!#. Now, using tomography for states@21#, the state
E—and thus, via Eq.~3b!, also the CPME—can be deter-
mined.

Next we show that a sequence of local measurements
sisted by classical communication suffices to completely
termine a nonlocal mixed stateE ~and thus a non-local CPM
E). Let A and B be two spatially separated parties a
$Ai% @$Bj%# be an orthonormal@35# basis of self-adjoint op-
erators inA @B#. We have thatEAB can be written as

EAB5(
i , j

l i j Ai ^ Bj , ~20!

where l i j 5tr(Ai ^ BjEAB) is the expectation value of th
operatorAi ^ Bj . Now, by measuring the operatorsAi (Bj )
locally in A(B), and using classical communication, one c
establish the values of alll i j and thus the stateEAB . In case
the operationE acts on two qubits, the corresponding sta
EAB is a state of two four-level systems. The set of operat
$Ai% can, e.g., chosen to be$s i 1 ,i 2

^ s i 3 ,i 4
%—where s i 1 ,i2

are defined in Sec. III@see Eq.~6!#—and similarly for$Bi%.

VI. PROBABILISTIC IMPLEMENTATION

In this section, we will show that the possibility to distin
guish the stateuF1& from the other three Bell states and th
capability to produce certain entangled states allows u
implementprobabilisticallyarbitrary two-particle unitary op-
erations. This has applications in the context of sing
photon experiments, since our method allows us to imp
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ment two-photon gates with a certain probability of succe
which is already sufficient to implement entanglement dis
lation. Note that this should be feasible even with pres
day technology.

In the following, we concentrate on two qubit gate
Given the results of Sec. III, one observes that the possib
of creating certain entangled states, together with the ca
bility of performing local Bell measurements, allows us
implement an arbitrary two-qubit operation@36#. That is, the
problem to perform two-qubit gates is shifted to the proble
of ~i! creating certain entangled states and~ii ! the capability
to perform perfect Bell measurements. In the following, w
will discuss ~i! and ~ii ! in the context of single photon ex
periments.

Regarding~i!, in single-photon experiments one is alrea
able to create certain MES’s~e.g., via parametric down con
version!. For example, MES’s of two qubits were create
and used in teleportation experiments@37#. In addition, the
creation of a three-qubit Greenberger-Horne-Zeiling
~GHZ! state was reported@38#. Although nonlinear elements
are required in order to produce entangled states, it is m
easier to use these elements in such a way that aknownstate
is generated rather than using some nonlinear elemen
perform a controlled interaction between arbitrary states. A
plying the isomorphism@Eq. ~3!#, one observes that the sta
E corresponding to a general two-qubit unitary operation i
pure state of two four-level systems~equivalently of four
qubits!. For example, the state corresponding to the CN
operation @30# is given by ECNOT5(u00&AuF1&B

1u11&AuC1&B)/A2, while the SWAP operation~which is
given by the mappingu i j &→u j i &) is specified byESWAP
5uF1&A1B2

uF1&A2B1
. Operations of the form of Eq.~4! are

specified by states of the form of Eq.~5!. Due to the fact that
states like Eq.~5!, as well asECNOT, only have two Schmidt
coefficients~when considered as a bipartite systemA-B), it
should be possible to create them in the laboratory us
present day technology.

What remains is~ii !, the problem of performing Bell mea
surements. For single photons, using nonlinear elements
~beam splitters and photodetectors!, one is able to perform
incompleteBell measurements. In particular, one can p
fectly distinguish the three sets of states$uF1&%, $uC1&%,
and$uF2&,uC2&% @39#. The optimality of this process usin
linear elements was discussed in Ref.@40#. Due to the fact
that Bell measurements cannot be performed perfectly w
linear elements@40# ~see Ref.@41#!, it follows that two-qubit
gates cannot be implemented with unit probability using
procedure described in Sec. III. However, even incompl
Bell measurements~which can already be performed in th
laboratory! still allow for a probabilistic implementation of
arbitrary two-qubit gates. That is, with a certain probabil
the desired gate is applied, while otherwise a different~pos-
sibly unknown! operation is performed. In the latter case, t
input state has to be discarded.

Let us investigate the consequences of incomplete B
measurements a bit closer. From Eq.~3!, we know that if
both partiesA andB obtain the stateuF1& as a measuremen
outcome, the desired operation was performed. Due to
7-6



er
ef
a

h
f

d

he
ou
n

es
a
o

tic
ti
or
um

-

as

te
di

P
T
w
in
e

er

as
-
,

—
w

in
tu
er
tio
e

en
r
s
o–
ar
—

hi
o

os
F

ead

ns
ed

abil-
er

b-
a-

ts to

ver-

local

ow-
s
-
re-

hen
al
ge

age

er-

ble.
the

f
t
hat
t
aller
f the

ry

e re-

NONLOCAL OPERATIONS: PURIFICATION . . . PHYSICAL REVIEW A64 012317
fact thatuF1& can be perfectly distinguished from the oth
three Bell states using the methods described in R
@39,40#, and the fact that all measurement outcomes
equally probable~in the case of two qubits,pF151/4), this
allows one to implement the desired unitary operation wit
probability p51/16. For unitary operations of the form o
Eq. ~4!, this probability can be further increased top51/4
given the fact that alsouC1& can be perfectly distinguishe
from the other Bell states. That is, if both partiesA and B
find either uF1& or uC1& as a measurement outcome, t
desired unitary operation was performed. In case the
come wasuC1&, additional application of the local operatio
sx is required~see Sec. III!.

Note that probabilistic implementation of two-qubit gat
is not useful in the context of quantum computation,
probabilistic operations may change the complexity class
the problem and may thus destroy the~exponential! speed up
of the quantum algorithm in question. However, probabilis
gates are useful for processes such as entanglement dis
tion @4#, which itself is already a probabilistic process. F
example, this may help in the implementation of quant
repeaters@26# using photons only~i.e., for quantum commu-
nication over arbitrary distances!. Due to the fact that pho
tons are ideal candidates for quantum communication~due to
their fast propagation!, it is highly desirable to manipulate
them directly~e.g., to perform entanglement purification
required in the quantum repeater protocol@26#! rather than
mapping their states on the states of another physical sys
e.g. of an ion or an atom, and vice versa. The method
cussed in this section may help to achieve this task.

Recently, an alternative approach was presented by
et al. @42#, where entanglement purification without CNO
operations was discussed. As this approach is concerned
a certain distillation procedure only, the solution provided
Ref. @42# to this specific problem is more efficient than th
one we obtain here. However, we provide a more gen
framework which allows us to implementarbitrary two-
quibit operations probabilistically. Another proposal w
presented by Knillet al. @41#, who showed the implementa
tion of a certain two-qubit operation with unit probability
taking full usage of all resources~i.e., using an arbitrary
number of modes!.

Note that similar techniques may be used to speed up
some sense—slow two-particle interactions. The scenario
have in mind is the following: At a certain time—e.g.,
course of a quantum computation—an entangling quan
operation should be performed on two particles. If the int
action between two particles is weak, the required interac
time in order that a entangling operation can be perform
will be large. Now, instead of performing the operation wh
it is required, we use the~slow! interaction at some earlie
stage to prepare certain entangled states. These state
then—at a later time—be used to implement the tw
particle operation almost immediately—once the two p
ticles on which the operation should be performed arrive
using the procedure described in Sec. III. Although t
procedure involves local Bell measurements, this will n
slow down the process, as, for the implementation of th
measurements, no two-particle interactions are required.
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example, we can use internal levels of atoms or ions inst
of local auxiliary qubits~also see Sec. IV!. Bell measure-
ments in this case involve only single-particle interactio
between the different levels of a particle, which we assum
to be much faster than two-particle interactions.

VII. STORAGE AND COMPRESSION OF UNITARY
OPERATIONS

In this section, we will discuss the storage@43,20# and
compression of unitary operations. We consider a~possibly
infinite! set of unitary operationsU1 ,U2 , . . . ,UN . Each op-
eration is assigned ana priori probability pi . We consider a
long sequence of those operations, where each elementUi of
this sequence is chosen at random according to the prob
ity distribution$pi%. We are interested in the average numb
of qubits which are required to store one of the operationsUi
and implement the operations at later time with unit pro
ability and high accuracy. We consider the following vari
tions of this problem.

~i! The operationsUi are local. That is, a partyA locally
stores a certain number of qubits and uses these qubi
implement one of the local operationUi on some unknown
state at later time. In this case, we are interested in the a
age number of qubits to be stored locally.

~ii ! The operationsUi arenonlocal. That is, two spatially
separated partiesA andB store a set of~possibly entangled!
states, and use these states later on to implement the non
operationUi . In this case, we allow partiesA andB to share
some initial entangled states. The storage procedure, h
ever, is restricted to local operations only. That is, partieA
andB store~and compress! their part of the system individu
ally. We are interested in the average number of qubits
quired inA (B) to store one of the operationsUi locally.

~iii ! The operationsUi are nonlocal. In contrast to~ii !,
one of the parties, sayA, stores the operationslocally. Using
quantum communication, part of the stored system is t
transferred toB and finally used to implement the nonloc
operationUi . In this case, we are interested in the avera
number of qubits which have to be stored locally inA as well
as in the required quantum communication, i.e. the aver
number of qubits which have to be transmitted fromA to B.

Note that in all cases, the unitary operation to be p
formed is at any stage unknown toA ~andB). We will show
that storage of certain sets of unitary operations is possi
Furthermore, the scheme we propose allows to compress
amount of required storage qubits@as well as the amount o
qubits transmitted fromA to B in ~iii !# if one restricts the se
of allowed operations to a certain subset. It turns out t
even for an infinite set of operationsUi , the average amoun
of required storage qubits per operation can be much sm
than 1. These results can be viewed as an extension o
Schumacher data compression for states@6# to unitary opera-
tions. In fact, we will use the results of Ref.@6# to achieve
this task.

Very recently, the problem of storage of a general unita
operation was considered by Vidal and Cirac@20#, and an
optimal solution was provided. In contrary to Ref.@20#, we
propose schemes which are capable of compressing th
7-7
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quired amount of storage qubits, and also discuss storag
nonlocal operations. We will propose two different schem
for storage, one dealing with a possible infinite set of unit
operationsUi and one with a finite set. We will discuss bo
schemes in the context of~i!–~iii !.

A. Local storage of local unitary operations

We start out with~i!, the local storage of a set of loca
unitary operations. We consider unitary operations acting
two qubits and assume that they are local, i.e., both qubit
which the operation should be performed are held by
same party, sayA.

1. Storage of an infinite set of unitary operations

Here we describe a procedure to storelocally a unitary
operation of the formU(a) @Eq. ~4!# with an arbitrary, un-
knowna using on average less than four@1.0095# qubits per
operation if 0<a<p @p/8#. We assume uniform distribu
tion of anglesa, i.e., any operation is equally likely.

We remind the reader that an operationU(a) for arbitrary
a can be implemented by a sequence of operations of
form U(ak) @Eq. ~4!# with binary anglesak5p/2k @see Sec.
III, ~i!–~iii !#. Using the fact thata can be written in binary
notation@Eq. ~11!#, and assuming that all angles are equa
likely, it follows that nk50 andnk51 are equal likely;k.

We first consider the implementation ofU(ak) for a cer-
tain k[N andaN5p/2N. Following the procedure describe
in Sec. III ~ii !, we have that ifnN51, the following set ofN
states is required to implement this operation with proba
ity p51:

GN5$uCaN
&,uC2aN

&, . . . ,uC2N21aN
&%, ~21!

where the corresponding probabilities are given bypl
51/2l 21 for the l th state. If howevernN50, no operation
has to be performed. In this case, one can store the se
statesG̃N5$uC0&,uC0&, . . . ,uC0&%, which corresponds to
the implementation of the identity operation in each st
However, each step can be considered independently,
involves, with probabilityp51/2, either the storage of th
state uC2laN

& for the l th step if nN51 or uC0& if nN50.
Thus one can use data compression of pure states@6# for
each step independently. The corresponding compres
factor Sj for the l th step is given by the entropy of the op
erator r̃, which is an equal mixture of the stateuCa j

& and

uC0&, where j [(N2 l ). One finds

Sj52xj log2~xj !2~12xj !log2~12xj !, ~22!

with xj5(11cosaj)/2 anda j5p/2j . Also recall that thel th
step has to be performed only with probabilitypl . That is,
the total amount of qubits required to store the operat
U(aN), where it is unknown whether it should be perform
or not, is given by

(
l 51

N

SN2 l

1

2l 21
. ~23!
01231
of
s
y

n
n
e

e

l-

of

.
nd

on

n

We now consider a sequence of operations of the fo
U(ak) for 1<k<`, i.e. the implementation ofU(a) with
arbitrary a (0<a<p). Using Eq.~23!, one finds that the
total number of qubits needed to store one of those op
tions is, on average, given by

(
k51

`

Sk(
l 50

k21
1

2l
<2(

k51

`

Sk , ~24!

which can evaluated to be 3.8942. That is, less than f
qubits per operation are required on average to store an
bitrary, unknown operations of the formU(a). In Ref. @20#,
it was found that on average two qubits suffice to sto
U(a).

However, if we restrict the possible values ofa to 0<a
<p/8 (p/32), we find that the average amount of requir
storage qubits is given by 1.0095~0.2800!. Thus we showed
that unitary operations of the formU(a) can be stored lo-
cally, and that the average amount of qubits required
storage can be decreased if one restricts the operations
stored. This result is similar to the one obtained by Schum
cher @6# for the compression of a set of pure states.

2. Compression of a finite set of unitary operations

Here we consider a finite set of unitary operations of
form U(aN) @Eq. ~4!#, whereaN5p/2N and 1<N<M , and
provide an alternative protocol for storage and compress
This set of operations can be viewed as the basic set requ
to implement arbitrary operations. We assume that each
the operation is equally likely. Again, we follow the proc
dure described in Sec. III~i! and~ii !, in order to implement a
certain operation of the form of Eq.~4!, say U(aN), with
unit probability. The set of statesGN @Eq. ~21!# is required,
where the corresponding probabilities are given bypk
51/2k21 for thekth state. Note that, for differentN, different
numbers, of steps are required, and thus a different num
of states has to be stored. As this may cause problems, w
the number of states to be stored for each operation to beM.
In case less thanM steps are required, the stateuC0& is
stored in the remaining cases, which corresponds to the id
tity operation. Now, the implementation of any operati
U(aN) consists of at mostM steps, where in steps (N
11), . . . ,M the identity operations is performed. The fo
lowing equation summarizes the states which are stored
each of the operations:

U~a1!:G15$uCp
2
&,uC0&,uC0&,uC0&, . . . ,uC0&

U~a2!:G25$uCp
4
&,uCp

2
&,uC0&,uC0&, . . . ,uC0&}

U~a3!:G35$uCp
8
&,uCp

4
&,uCp

2
&,uC0&, . . . ,uC0&}

. . .

U~aM !:GM5$uCaM
&,uC2aM

&,uC4aM
&, . . . uCp

2
&}.

~25!
7-8
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NONLOCAL OPERATIONS: PURIFICATION . . . PHYSICAL REVIEW A64 012317
Recall that thekth state is always used in thekth step. We
denote thekth column by Ck , which consists of thekth
element of eachGl . As the columnsCk correspond to the
different steps, we have that columnk is only required with
probability p51/2k21, and all steps—and thus all column
Ck—can be treated independently. That is, we store eac
the columnsCk independently. Due to the fact that all stat
within each columnCk are likely equal nonorthogonal, on
can use data compression@6#. The compression factorSk for
column Ck is given by the entropy of the density operat
rk , whererk is an equal mixture of all the states of colum
k, and column k is only required with probabilityp
51/2k21. Thus the total number of qubits required to sto
one of the operationsU(aN), 0<N<M is given by
(k51

M Sk/2
k21. For example, forM5100 ~1000!, we obtain

an average amount of 0.245~0.0361! qubits which has to be
stored on average to implement one of the 100~1000! opera-
tions picked at random.

B. Storage of nonlocal unitary operations inA and B

Here we consider~ii !, the storage of a set of nonloca
unitary operations. We will discuss variations of both pro
cols described in Sec. VII A, taking into account that we n
have two spatially separated parties and the operations
nonlocal. That is, the states to be stored are entangled s
and we consider local storage of the subsystem belongin
A (B). This means that both, the coding and decoding p
cedure has to be local, but may be assisted by classical c
munication.

We first consider the storage of an infinite set of unita
operations of the formU(a) ~see Sec. VII A 1!. We follow
the same protocol as described in Sec. VII A 1, however
now use a different kind of data compression. The proto
described in Sec. VII A 1 involves storage of two equ
likely states,uC0& or uCaN

& for someaN5p/2N. Note that

the stateuCaN
& is an entangled state, so in contrast to S

VII A, we cannot use standard data compression for p
states, as we are restricted to local operations o
However—as shown in Appendix A—it is also possible
achievelocal data compression for a set of entangled sta
That is, each of the parties manipulates only its own s
system, and can thereby reduce the average number of q
required to store its part of the entangled state, without
fecting the entanglement with the other system. Note t
this problem is equivalent to the data compression of mi
states with commuting density operators, where the entan
ment with some other system should be preserved. It tu
out that the compression factor forA (B) is given by the
entropy of an operatorr̃, which is an equal mixture of the
reduced density operatorsrA

i (rB
i ) corresponding to the

statesuC0&, uCaN
&. Note that this corresponds to the upp

bound on the number of qubits to be stored, in case entan
ment with another system is not required to be preser
@44#. While it is known that this is not the optimal compre
sion rate if entanglement with some other system is not
quired to be preserved, it is not clear whether the comp
01231
of

-

re
tes
to
-
m-

e
l

l

.
e
y.

s.
-
its

f-
at
d
le-
ns

r
le-
d

-
s-

sion rate is already optimal under this stronger restriction
our specific case, we obtain

SN52xN log2~xN!2~12xN!log2~12xN!, ~26!

with xN5(11cos2aN)/2. Now using this local compressio
protocol instead of Schumacher’s for pure states in the p
tocol of Sec. VII A 1, one finds that the the average num
of qubits which have to be stored locally inA (B) is given
by 4.7758 if 0<a<p. If we restrict the possible values ofa
to 0<a<p/8 (p/32), we find that the average amount
required storage qubits is reduced to 1.4311~0.4082!.

Regarding the storage of a finite set of unitary operatio
~see Sec. VII A 2!, we follow the same protocol as describe
in Sec. VII A 2, and again use a different kind of data co
pression due to the fact that we are restricted to local op
tions. This time, data compression for a finite set$uC i&% of
M entangled states is required. The entangled states ar
equally likely, and are of the formuCaN

&. It turns out~see

Appendix A! that one can achieve a compression rate wh

is given by the entropy of a density operatorr̃, which is
defined as an equal mixture of the reduced density opera
rA

i corresponding to the stateuC i&. One finds that the tota
number of qubits required on average, to store one of
operationsU(aN), 0<N<M locally in A (B), is given by
0.333~0.050! qubits forM5100 ~1000!.

C. Storage of nonlocal unitary operations inA

Finally, we consider~iii ! the local storage of a nonloca
unitary operation inA. That is, we consider a local memor
~in A only!, but we want to implement the operation nonl
cally. It turns out that this problem is a trivial combination
the previous two problems. We have that one can use
methods described in Sec. VII A to store the operations
cally in A, and one obtains the the same compression ra
The average amount of quantum communication fromA to
B—which is required to implement the operatio
nonlocally—can be found using the method described in S
VII B. That is, one part of the entangled system is co
pressed and send through a quantum channel toB. The com-
pression rate can be calculated in a similar way as in S
VII B; however, one has to take into account that the st
uCp/2& is a separable state, and thus no quantum comm
cation is required to transmit one part of this state. For
ample, one finds, in the case of an infinite set of operati
of the form U(a) with 0<a<p (p/8), that the required
amount of quantum communication fromA to B is given by
2.7758~0.3976! qubits.

This last method clearly distinguishes between the
quired amount of local storage qubits and the nonlocal c
tent of the operation, i.e., the average amount of quan
communication. Note that storing the operations locally~see
Sec. VII A! requires a smaller amount of storage qubits th
storing a nonlocal operation directly inA and B ~see Sec.
VII B !.
7-9
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VIII. NONLOCAL MEASUREMENTS

In this section, we consider the implementation of non
cal measurements. We consider two spatially separated
ties A and B, each possessing ad-level system. The two
parties want to perform a complete, joint measurement
their system, specified by a set of ranknk projectors$Pk%
such that(kPk

AB5lA^ lB . The questions we pose are th
following: How can the parties implement this nonlocal me
surement? What are the entanglement properties of th
measurements; that is,~i! what is the amount of entangle
ment required to implement a certain measurement and~ii !
what is the average amount of entanglement which can
produced given a single application of the nonlocal meas
ment?

We provide several procedures to implement arbitr
nonlocal von Neumann measurements, and discuss thei
tanglement properties. We show that the required amoun
entanglement depends on the measurement to be im
mented. We introduce examples of nonlocal measurem
which can be implemented using less than one ebit of
tanglement. One can easily generalize some of our resul
implement also arbitrary measurement, described by a p
tive operator valued measure, i.e., a set of positive opera
Ok

AB such that(kOk
AB5lA^ lB .

First, we note that the amount of entanglement require
implement the nonlocal measurement depends on~i! whether
one is only interested in the measurement outcome or~ii ! the
system should in addition be in a corresponding state a
the measurement. For example, one can perform a com
Bell measurement@i.e. a measurement on the basis of E
~6!# on a state of two qubits using one ebit of entanglem
regarding~i!, while two ebits are required in case of~ii !.

Proposal 1: A trivial procedure to perform an arbitrar
bipartite measurement is the following: The state of systemB
is teleported toA, consuming log2(d) ebits. Then, the mea
surement is performed locally inA, which already suffices in
case of~i!. Regarding~ii !, one also has to teleport the partic
back toB, again consuming log2(d) ebits. Note that in the
case of a complete Bell measurement, i.e., a measureme
the basis of Eq.~6!, where each basis state is a MES, th
procedure is in fact optimal. On the one hand, one consu
two ebits to implement the measurement. On the other h
one can also obtain an average amount of two ebits give
single application of a nonlocal Bell measurement. One
has to consider the operatorEi @Eq. ~3!# associated with each
possible outcome of the Bell measurement. One obse
that the nonlocal entanglement of allEi is given by two
ebits, and each measurement outcome is equal likely.
leads to an average amount of entanglement of two ebit
the amount of entanglement required to implement an op
tion Eim is equal to the amount of entanglement which can
obtained given a single application of the operationEcr , the
first process is optimal, andEim is the minimal amount of
entanglement required to implement the operation. This
due to the fact thatEcr<Eim ; otherwise one could creat
entanglement for free. However, if one wants to measure
joint systemA,B in a basis which is not maximally en
tangled, one might expect that the required amount of
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tanglement is smaller than 2 log2(d) ebits. With the following
method, we show that this is indeed the case.

Proposal 2: We consider the situation were allPk are
rank 2, i.e.,nk51, and thusPk5ufk&AB^fku. We define a
nonlocal unitary operationU by

U5 (
k51

d2

uk&AB^fku, ~27!

whereuk&AB5uak&Aubk&B , and$uai&% @$ubi&%] is some local
basis inA (B) respectively, with 1<k<d. The procedure
takes place as follows: First, the parties apply the nonlo
unitary operationU, using, e.g., the procedure described
Sec. III for d52, consuming an amount of entangleme
which is specified by the operationU. If U is only weakly
entangling, e.g. if̂ kufk&'1 ~i.e. ufk& are only weakly en-
tangled states!, the required entanglement is small~see Sec.
III ! @45#. Then partiesA andB both perform local measure
ments specified by projectors on the states$uai&% @$ubi&%],
respectively, and communicate the outcome of the meas
ment classically. If they obtain the outcomeak , bk , they
know that the outcome of the measurement isk, i.e., they
measure the projectorPk . Concerning~i!, the procedure
ends at this point. Regarding~ii !, A andB also implement the
operationU† to ensure that the system is also in the requi
state after the measurement. Alternatively, they could a
prepare the measured system in stateufk&, as, due to the
implementation of the measurement, any possible entan
ment with some auxiliary system is destroyed. We note t
the choice of the local basis inA, $uai&% andB, $ubi&% is not
fixed, and may also change the entanglement propertie
the operationU. This can be seen by considering the follow
ing trivial example: We haved52 and uf00&5u00&,uf01&
5u01&,uf10&5u10&, and uf11&5u11&. By choosingua1&ub1&
5u0& and ua2&ub2&5u1&, we have thatU5lAB , i.e., no en-
tanglement is required to perform the measurement. If, h
ever, we choose the mappinguf00&→u00&,uf01&
→u10&,uf10&→u01&,uf11&→u11&, we find that the operation
U5USWAP, which requires two ebits to implement@16#. In
this case, the choice of the proper local basis is trivial; ho
ever, we do not know the optimal choice for a general m
surement. Also note that this procedure fails to implem
nonlocal measurements where the rank of some projectoPk
is larger than 1. For example, ifP15u00&AB^00u and P2
5lAB2P1, this procedure fails to project in the subspa
spanned byP2, as it already gives a fine graining within th
subspace, which is a different problem. The next method
overcome this limitation.

Proposal 3: Here we consider a complete set ofM nonlo-
cal projectorsPk which might have an arbitrary ranknk .
Clearly,(k51

M nk5d2. Alice uses anM-level auxiliary system
initially prepared in stateu1&, which is used to label all pos
sible measurement outcomes. We define a unitary opera
U acting on the auxiliary systemÃ, and the joint systemAB
as follows:
7-10
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U5(
j 51

M

@~ u j & Ã^1u1u1& Ã^ j u! ^ Pj
AB

1~ lÃ2u1& Ã^1u2u j & Ã^ j u! ^ Pj
AB#. ~28!

After application ofU, the auxiliary systemÃ is measured
in the basis$u j &%. If the outcomek is found, one readily
observes that this corresponds to measuring the projectoPk
on the systemAB. Note that no further operations are r
quired, as systemAB is already in the appropriate state~ii !.
The amount of entanglement required to implement the n
local measurement is again specified by the operationU.

For example, ifd52 andP15(u00&^00u1u11&^11u), P2
5(u01&^01u1u10&^10u), it turns out that one can create on
ebit given a single measurement of this kind. To see this,
prepare system AB in the separable state r
51/2(uF1&^F1u1uC1&^C1u), and perform the measure
ment. If we obtain outcome ‘‘1’’~‘‘2’’ !, the state after the
measurement isuF1& (uC1&). In both cases, we created on
ebit. However, it is not clear whether one ebit of entang
ment also suffices to implement the corresponding unit

operationsU5lÃ^ P1
AB1sx

Ã
^ P2

AB . Although the stateEU

associated toU via Eq.~3! has an amount of entanglement
one ebit andU5U†, it is not clear whether a single copy o
the stateEU suffices to implementU. It would be interesting
to establish the minimal amount of entanglement required
implement a general, nonlocal measurement.

IX. MULTIPARTY OPERATIONS

In this section, we generalize some of the previous res
to multiparty systems. We consider several spatially se
rated systemsA,B, . . . ,Z, each possessing severald-level
systems. We first generalize the isomorphism@Eq. ~3!# be-
tween CPME and positive operatorsE to multiparty systems.
HereE acts on severald-level systems, one located in eac
site A,B, . . . ,Z, andE is a positive operator on the Hilbe
spaceHA1,2

^ •••^ HZ1,2
. We have thatHAi

5Cd and similar
for the remaining parties. For anN-party system, it is easy to
show that

EA1,2 . . . Z1,2
5E~PA1,2

^ •••^ PZ1,2
!, ~29a!

E~rA1 . . . Z1
!5d2NtrA2,3 . . . Z2,3

~EA1,2 . . . Z1,2
rA3 . . . Z3

PA2,3
. . . PZ2,3

!. ~29b!

The interpretation is similar to the one of Eq.~3!. On the one
hand, Eq.~29a! states thatE can be created from anN-party
product state, where each party prepares locally a MES.
the other hand, Eq.~29b! tells us that givenE ~particles
A1,2B1,2 . . . Z1,2), one can implement the multiparticle oper
tion E on an arbitrary stater of N d–level systems~particles
A3B3 . . . Z3) by measuring locally the projectorP @Eq. ~2!#
on particlesA2,3,B2,3, . . . ,Z2,3 in each of the locations. Note
that the probability of success is given byp51/d2N.

As in the bipartite case, one may ask for a certain maE
whether it is capable to create entanglement. Since for m
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tiparty systems, there exist many different kinds of entang
ment~see, e.g., Refs.@46–49#!, one may also ask which kind
of entanglement can be produced. Again, all these quest
can be answered by establishing the entanglement prope
of the operatorE associated to the CPME via Eq. ~29a!. In
particular, if E is bound entangled@48#, then E can only
create BES’s. In a similar way, given some BES one c
easily construct the corresponding map which is capable
generating BES’s of the same kind.

One may also consider the implementation of arbitra
N-qubit operations with unit probability. On one hand, a
N-qubit operation can be written as a sequence of bipa
CNOT operations and single qubit unitary operations,
which we already established a protocol. On the other ha
we may considerN-qubit unitary operations of a specifi
form, and show directly how to implement them with un
probability given certain states. We consider a unitary ope
tion of the form

UN~aM !5e2 iaMs
x

A1^ •••^ s
x

Z1
, ~30!

whereaM5p/2M. It turns out that a natural extension of th
protocol of Sec. III~i!–~iii ! allows us to implement opera
tions of the form of Eq.~30! with probability p51. The
operator associated with the unitary operationUN(aM) is
given byEA1,2, . . . ,Z1,2

5ucaM
&^caM

u, where

ucaM
&5cos~aM !uF1&A1,2

uF1&B1,2
. . . uF1&Z1,2

2 i sin~aN!uC1&A1,2
uC1&B1,2

. . . uC1&Z1,2
.

~31!

Regarding~i!, we just note that Bell measurements and t
corresponding local unitary operations are performed at
location A,B, . . . ,Z. For all possible measurement ou
comes, it is easy to observe that the operation performed
some staterA1 , . . . ,Z1

will either be ~i! U(aM) or ~ii ! U

(2aM), each possibility appearing with probabilityp51/2.
Steps~ii ! and ~iii ! can be adopted without changes, whi
finally allows to implement an operation of the form of E
~30! with arbitrary anglea and unit probability. Note that
operations~30! are capable of creating GHZ-like entangl
ment, and are thus trulyN-qubit entangling operations.

X. SUMMARY

To summarize, we have provided several applications
an previously introduced isomorphism between operati
and states. First we discussed how to use this isomorphis
establish separability and entangling properties of operat
E and to construct physical operations which are capable
creating bound entangled states. In addition, we showed
to implement an arbitrary nonlocal two-qubit operation, co
suming an amount of entanglement which is proportiona
the entangling capability of the operation.

Then we have shown how to implement several te
niques developed for states—such as purification or d
compression—and operations. In particular, we have sho
that a known, noisy, nonlocal unitary operation as well as
7-11
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unknown, noisy, local unitary operation, can be purified. I
similar way, we use these results to establish tomograph
arbitrary operations. Then we showed that unitary operati
can be stored locally and nonlocally, and that the amoun
required qubits for storage can be decreased, which ca
viewed as a generalization of data compression to uni
operations. In this context, we also provided a proto
which allows for local data compression of a set of entang
states. Note that it is straightforward to obtain a number
other results which were developed for states also for op
tions. For example, it is easy to show that unitary operati
can also be cloned~via cloning of the corresponding stateE)
or teleported~via teleportation of the states required to sto
the operation! @19,20#. In case of cloning, one has to tak
into account that the cloned states allow for a probabilis
imperfect implementation of the required operation only.

We also provided a method to implement arbitrary tw
photon gates probabilistically with present day technolo
which opens the way for practical quantum communicat
over arbitrary distances. Finally, we discussed the implem
tation of nonlocal measurements, and generalized som
our results to multiparty systems.
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APPENDIX: LOCAL DATA COMPRESSION FOR A SET
OF ENTANGLED STATES

In this appendix, we consider the problem of local da
compression of a set of pure, entangled states, where a
duced density operators commute. Note that this problem
equivalent to the problem of data compression of a se
commuting mixed states under the restriction that entan
ment with some other systems should be preserved. LeG
5$uC i&% i 51

L be a set ofL pure states, where

uC i&5ca i
u00&AB1sa i

u11&AB . ~A1!

andca i
[cos(ai), sa i

[sin(ai). Each state is assigned a pri

probability pi . Two spatially separated partiesA and B are
fed an unending sequence of statesuC j&, where each succes
sive state is chosen randomly and independently from the
G according to the probability distribution$pi%. A sequence
of lengthN is of the form

uC i 1i 2 . . . i N
&5uC i 1

&uC i 2
& . . . uC i N

&, ~A2!

and appears with probabilitypi 1i 2 . . . i N
5pi 1

pi 2
. . . pi N

. The
partiesA and B store the sequences locally, i.e., they a
allowed to perform local operations and classical commu
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cation. We are interested in the average amount of qubits
signal state which are required inA (B) to store the signals
faithfully. We will use as a criterion the so-called GLOBAL
FID criterion @44#; that is, we require that the average glob
fidelity of all possible sequences is 12e. Note that we con-
sider the so called ‘‘blind case’’@44#, that is neitherA nor B
know the specific sequence~A2!.

Let r i
A5trB(uC i&^C i u) be the reduced density operator

systemA of the stateuC i&, and

r̃A5(
i 51

L

pir i
A ~A3!

be the weighted average of the reduced density operato
our signal source. We denote byS( r̃A)5tr( r̃Alog2r̃

A) be the
von Neumann entropy ofr̃A. Given a sequence of lengthN,
N sufficiently large, we provide a protocol with the followin
properties.

~i! The required amount of storage qubits inA (B) is
given byNS( r̃A)1d.

~ii ! The average global fidelity~averaged over all possibl
sequences! F̄ is given by 12e.

We have thatd is some function which is of the formd
5mNb for somem.1,1/2,b,1 ande→0 asN→`. That
is, on average,S( r̃A) qubits per signal state have to be stor
locally in A (B). Note that we do not claim that this is th
optimal compression rate achievable.

For pedagogical reasons, we will prove our statemen
the simplest case, where the setG consists of two pure state
only. We will even assume thatuC1&5u00& and uC2&
5cau00&1sau11& andp15p251/2. Note that the proof can
be easily generalized to an arbitrary number of signal sta
and an arbitrary probability distribution.

We have that

r̃A5
11ca

2

2
u0&^0u1

12ca
2

2
u1&^1u. ~A4!

We define local projectorsPA (PB), acting onN qubits, as

PA5PB5 (
k5k2

k1

Pk , ~A5!

wherek65(11ca
2)/26mNb, m.0, 1/2,b,1, and

Pk5 (
perm

u0&^0u ^ k
^ u1&^1u ^ N2k. ~A6!

The sum in Eq. ~A6! runs over all possiblebN,k
[N!/ @k!(N2k)! # permutations~without repetitions! of k
zeros andN2k ones. ThusPk is a projector in the subspac
spanned by all states which contain exactlyk zeros and (N
2k) ones. The dimension ofPk is given bybN,k .

The projectorPA (PB) is measured locally inA (B). If
the measurement is successful, log2(d)—where d
5dim(PA))—qubits are used to store the resulting state inA.
This can be accomplished by relabeling the states which s
7-12
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PA to $u l &% l 51
d , and storing those states locally, which clea

requires log2(d) qubits. The decoding procedure consists
undoing the relabeling. In case the measurement is not
cessful, some stateu0E& is stored instead. We show that~i!
log2(d)5NS(r̃)1d and ~ii ! F̄5( i 1i 2 . . . i N

pi 1i 2 . . . i N
Fi 1i 2 . . . i N

.12e, where Fi 1i 2 . . . i N
5u^C i 1i 2 . . . i N

uPA

^ PBuC i 1i 2 . . . i N
&u2 and the sum runs over all possible s

quences. That is, the storage procedure requires the
nounced amount of qubits and the average fidelity is su
ciently large.

Regarding~i!, it is easy to see thatd5dim(PA)<(k2

1k111)bN,k0
, wherek0P@k2,k1# is the value that maxi-

mizesbN,k in this interval. Substituting the values ofk2,k1

in this bound, we find that log2(d)5NS(r̃A)1d as required.
We now concentrate on~ii !, the average global fidelityF̄.

Consider a sequence of the form of Eq.~A2! which contains
j statesuC1& and (N2 j ) statesuC2& ~i.e., the number ofi k
which are equal to 1 is given byj ). We denote such a se
quence byuC( j )&. Note that there arebN, j sequences of this
kind. For all those sequences, we find

F j5u^C~ j !uPA^ PBuC~ j !&u2

5U (
k;k2<( j 1k)<k1

ca
2ksa

2(N2k)bN2 j ,kU2

. ~A7!

The average fidelityF̄ is given by

F̄5
1

2N (
k2< j <k1

bN, jF j , ~A8!
v.

s,

m

J.

.

A

,

-

u,
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where 22N is the probability that a certain sequence appea
bN, j is the number of sequences of the formuC( j )&, andF j
is given in Eq.~A7!. We have that

F̄> (
j 5 j 2

j 1

1

2 j

1

2N2 j
bN, jF j , ~A9!

where j 65N/26m/3Nb. In this case, one can also boun
F j , and finds

F j>U (
k5 k̃2

k̃1

ca
2ksa

2(N2k)bN2 j ,kU2

, ~A10!

where k̃65ca
2(N2 j )6m/3Nb and we have thatk2<( j

1k)<k1 as required. By noting that a binomial distributio
is asymptotically equivalent to a normal~Gaussian! distribu-
tion, the fidelity F j ; j can be seen to be bounded fro
below by F(2mNb21/2), where F(x)[1/A2p*2x

x ey2/2dy.
For our choice ofm and b, we have thatF j→1 when N

→`. In a similar way, one also shows thatF̄→1 whenN
→`, as, after boundingF j as stated above, Eq.~A9! also
corresponds to a binomial distribution centered atj 5N/2.
This finishes the proof of the statements~i!–~ii !.

In a similar way, one can carry out an analysis for a se
L entangled states and an arbitrary probability distribut
$pi%. In this case,k65N( i 51

L pica i

2 6mNb and some of the

binomial distributions are replaced by multinomial distrib
tions. Also in this case, one finds thatF̄→1 for N→` and
that the dimension of the projectorPA (PB) is given byN

times the entropy of the operatorr̃A @Eq. ~A3!#.
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