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We provide several applications of a previously introduced isomorphism between physical operations acting
on two systems and entangled staffhys. Rev. Lett86, 544 (2001)]. We show (i) how to implement
(weakly) nonlocal two-qubit unitary operations with a small amount of entanglentiénthat a known, noisy,
nonlocal unitary operation as well as an unknown, noisy, local unitary operation can be piifidipw to
perform the tomography of arbitrary, unknown, nonlocal operati@ag;that a set of local unitary operations
as well as a set of nonlocal unitary operations can be stored and compresse#) aow to implement
probabilistically two-qubit gates for photons. We also show how to compress a set of bipartite entangled states
locally, as well as how to implement certain nonlocal measurements using a small amount of entanglement.
Finally, we generalize some of our results to multiparty systems.
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[. INTRODUCTION to know whether a certain machirisetup can be used to
create entangled states.
In recent years, much of the theoretical effort in quantum (i) One can easily construct physical operatiéhshich
information (QI) theory was focused on establishing proper-can generate bound entangled std&S’s).
ties of states and techniques to manipulate them. One of the (iii) An important problem in the context of distributed
main purposes was—and is—the characterization and qua@tantum computatiofiL8] is the implementation of nonlocal
tification of entanglement properties of multiparticle statesunitary operations. 1], it was shown that an arbitrary two-
as entangled states play an important role in several applic4UPit unitary operation can be implemented using an amount
tions of QI. Many schemes and applications which involve®f entanglement which is proportional to the entanglement
the manipulation of quantum states were discovered. Amonfjapablllty of th_e operatloﬁg,lo]. _
them, we have teleportatiof2], purification of noisy en- Then we will discuss several other applications of the

_ : isomorphism:
gellgrg]]ilrt]ag}i?l[:nj]aS:r?t:%ngog]aégr;gm@%ressnﬁﬁ], guantum (iv) One can perform two-qubit gat@sobabilistically in

In practice. entanaled states are created by some oh sic%age context of single-photon experiments via creation of en-
n practice, 9 o ys phy ngled states assisted by incomplete Bell measurements.
action. This suggests that establishing properties of opera-

. . . . (v) Several techniques concerning quantum states—e.g.
tions may play an important role in QI as well. The first Stepsquantum teleportatiofi2], quantum state purificatiof8,d],
in this direction were recently report¢d—12]. In particular,

! - _ . quantum data compressioh6], and quantum cloning

in Ref. [10] the entanglement capabilityof interaction  [7)_were considered in recent years. The isomorphism al-
Hamiltonians between two systems was introduced and angows one, in a simple way, to obtain similar results for op-
lyzed. This quantity measures the maximum rate at whickerations. That is, noisy unitary operations can be purified,
entanglement can be produced given some particular interagnd sets of them can be stored and compressed. Furthermore,
tion. On the other hand, the entanglement cost for the impleit is possible to clone unitary operations as well as to teleport
mentation of nonlocal operations was also considered rethem([19,20. Finally, one can easily see how to perform the
cently [13—14; in particular, several examples, all dealing tomography[21,22 of general nonlocal operations locally.

with an integer number of ebits required for the implemen-  (vi) One can perform certain nonlocal measurements by
tation of certain nonlocal operations, were introduced. using a small amount of entanglement.

In Ref. [1] we introduced an isomorphism which relates  This paper is organized as follows. In Sec. Il, the isomor-
physical operationgcompletely positive map$sCPM’s) £)  phism between operations and states is reviewed and several
and stategpositive operatorg). This isomorphism turns out implications are discussed. This isomorphism provides the
to be an important ingredient in the understanding of enpasic tool for a number of applications which are presented
tanglement properties of operations in general. In this papein the preceding sections. In Sec Ill, we show how to imple-
we will first review the results obtained in Ré¢fl] ment nonlocal two-qubit unitary operations with unit prob-

(i) In order to study the separability and entangling prop-ability, consuming an amount of entanglement which is pro-
erties of operations, it suffices to study the separability portional to the entanglement capability of the operation.
properties of the associated operatgid]. In particular, one  Section IV is concerned with purification of noisy opera-
can use all the results obtained for the separability of statefons, while Sec. V deals with tomography of arbitrary non-
[17]. This allows one to answer questions like “Given a local operations. In Sec. VI it is shown how to implement
CPM ¢, can it be used to create entanglement?” Such quesprobabilistically two-qubit operations in the context of
tions may be relevant in experiments, where one might wansingle-photon experiments. Next, in Sec. VII, storage and
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compression of nonlocal unitary operations are discussed, Ill. IMPLEMENTATION OF NONLOCAL UNITARY
while Sec. VIII is concerned with the implementation of OPERATION WITH UNIT PROBABILITY
nonlocal measurements. Finally, in Sec. IX the isomorphism

is extended to multiparty systems. We summarize our results In Ref. [1], it was s_hown how'to |m.pleme.nt an a(b|trary
in Sec. X. nonlocal two-qubit unitary operation with arbitrarily high ac-

curacy and unit probability, consuming an amount of en-

tanglement which is proportional to the entangling capability

Il. ISOMORPHISM BETWEEN OPERATIONS AND of the operation. Here we review and improve this proce-
STATES dure. To this aim—as in Refl]—we consider a family of

In Ref.[1], an isomorphism which relates physical opera-phase gates

tions (equivalently completely positive mag§ acting on e 0B N

two systems an¢unnormalized stategpositive operatorg) U(ay)=e "% "%, ay=m/2 (4)
was introduced. This isomorphism is an extension of the one , . . _
introduced by JamiolkowsKR23]. To be specific, let us con- Where theo’s are Pauli matrices. We show the following:
sider two spatially separated partidsand B, each of them (i) The operatior () can be implemented with a prob-

Enoa;issas;ilggasr]e(jvera particiese {[1)}i- 1 be an orthonor (i) By applying a finite sequence of operations of the

form of Eq. (4), each being implemented with probabiliy
=1/2 using(i), one can achieve that the operatid(ay) is

d
1 . . o

d), =— Va @[i)a, 1 applied with probabilityp=1.

| iz Jd =1 a1, @ (iii) Using gates of the form of E@4), with binary angles

an=m/2N, one can implement phase gates with an arbitrary
Py~ ®), (@, @ angea . |

1.2 1.2 (iv) An arbitrary two-qubit unitary operation can be
implemented using a sequence of three operations of the
form U(«), assisted by local unitary transformations.

While (i)—(iii) were already explained in Refl], the
implementation ofiv) is different to the implementation de-
scribed in Ref[1]. There, an infinite sequence of operations
of the form U(«) was required in order to implement an
arbitrary two-qubit operation, while here a finite sequence
consisting of three operations suffices. The required amount

EAl,z,Bl,zz & PA1,2® PBl,z)* (33 of entanglement is also smaller using our method.
Since steps(i)—(iii) will be crucial for understanding
=d%r E P, P. ). (3b some procedures described in later sections, we discuss them
Hpae,) hoifad gy PagesPa, Py - (30) in detail. We start out by showing). First we note that the
gperator associated with the unitary operatldtwy) [Eq.

fa)]is given byEa , 5,,= ) a, 5.8, { V- Where

where |®) is a maximally entangled statMES), andP a

projector on this state. We consider a CRMacting on the
density operator of twal-level systems, one belonging £

and one tdB. Then, there exist an isomorphigiimear one to
one correspondengéetween the CPM and a positive op-
eratorE [1] defined by the following relations:

These equations have a very simple interpretation: On th
one hand, Eq(3a) states that given a CP¥| one can always
produce the stat& associated witt€ by applying€ to par-

ticles A;B; if they are prepared in the sta=P, ®Pg_ .

Note thatP is a product state with respect to partieandB, —isin(an) W) J¥ e, (5
while it is a local MES in the system belonging to pafy

and B respectively. On the other hand, E@b) states that and |®TY=(|00)+|11))/\2,|¥ ") =1® 0\ |D ") =(]|01)
given the statd (of particlesA; , andB, ), one can imple- +|10>)/\/§ are Bell states. In general, the Bell basis is de-
ment the operatio on an arbitrary state of two d-level  fined as

systems(particlesAzB3) by measuring the projectd? lo-

cally in Ay3 and B, 5. After a successful measurement— [P i )=100 i|®7), (6)
where the probability of success is given by

p=1/d*—particlesA,B; are found in the stat§(p). In sum-  where o ,=1,01,=0y,051= oy, 0p,=0, and |V

[ay)ay 8, ,=COLan) [ @ )a JP e

mary, a CPME can be used to prepare a st&ewhich i =|d*),[W, )= |W*) [, y=i|¥),|¥V,)=|d") are
turn can be used to implemefiwith a certain probability of MES'’s. Note that for convenience—to ensure a simple nota-
success. tion below as well as in the remaining sections—we use a

redundant definition of the Bell basis. We consider a situa-
tion similar to the one described in E@b); that is, particles
we will denote particles belonging to payby A, A,, andAs, A12B1, are prepared in stas), and PAgB, 1S the state on
where each of the particles iddevel system. We will also use the Which a CPM&—in our case, the unitary operatidh(ay)
notationA, , to refer to particlesA; andA,. A similar notation is  [EQ. (4)}—should be applied. Now, a Bell measurement is
used for particles belonging to parB/ performed on particle®\, 3 [B,3]. Assume that the result
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associated to¥; ; ) [|¥; ; )] is obtained. In this case, the . N k-1
172 1412
state of systend\;B; is proportional to E[U(aN)]:gl (5) E(Yay, .)=anfn, (9
A B A B
5[(0'i11,i2®Ujll,jz)PAlsl(Uill,i2®G'jll,jz)]- (7)  where
N
Thus, as a result of the measurement, we either implement fn=— E 2kE(l//ak)<fw=5.97932. (10

the CPME, or some unitary operation followed by the CPM. k=1

We now proceed as follows: In case the result of the mea; . . kel s 4
surement wasiq,i» [j1.j2], the local unitary operation In Eq.(9), the weight factop, = (1/2) "~ gives the probabil

- [Ujl,jz] is applied onA,; [B,]. If £ is given by the ity that thekth step has to be performed. Thus we obtain

" . . E[U(aN)]<ame; that is, the average amount of entangle-
unitary op_eratlorU(o_[N) [Eq. (4)], one readily obs_erves that ment is bounded from above by a quantity which is propor-
the resulting operation performed PR B, after this proce-

. i S N tional to the anglery and thus—for smalky—proportional
dure will be (i) U(ay) if iy=j; and (i) U(an)"™=U  {g the entangling capability of the operatipt0]. The aver-
(—ay) if i;#],. Due to the fact that all measurement out- 3ge amount of classical communication is given by 2
comes are equally probable, we have that with probability_ (1/2)N-2 pjts.

p=1/2 the desired operatidd(«y) was applied, while with To show(iii), we use the fact that any gat&(a) with
p=1/2 the operatioJ (— ay) was performed, from which  arpitrary phaser can be approximated with arbitrary high

(i) follows. . _ accuracy by a sequence of gates of the fattar). That is,
Before we proceed, we investigate the amount of nonlocaény angle B a< can be written as

entanglementbetween system& andB) which is required

to perform the described procedure. The amount of entangle- *

ment of the stat¢¢//aN) [Eqg. (5)] is given by its entropy of a= 7Tk2 n2 % n.e{0,1. (11
entanglement, -

For eachk, we have thanh, is either “0”"—which means that
E(l!faN)I —Xnlogo(Xn) — (=X )log(1—xy),  (8)  the rotationU(«ay) does not have to be performed—or
“1"—which means that the rotatiotd(e«,) has to be per-
formed. Operations of the forid («y) can be implemented
with unit probability using(i) and (ii). The average amount
of entanglement consumed to impleméhta) is bounded

wherexy=cog(ay)=cos(m/2V). That is, the amount of en-
tanglement required to implement the operatibfwy) with

probability p=1/2 is given by Eq.(8). We have that i .
U(m/2)=—io,@ 0y is alocal gate, and thug(y, )=0, DY ESf.a ebits.

. T . . . Finally, to show(iv), we use the result of Kraust al.
while E(waz)_ 1,i.e., one ebit of entanglement is reqwred.[lll There, it was shown that an arbitrary two-qubit unitary

For N=2, we have thatE(y, ) decreases monotonically oneration can be written in the form
with N. The amount of classical communication is given by
one bit in both directiongthe value ofi, or j,, respectively, Uag=VoWe HVeW, (12
has to be transmitted

Regardingii), we have to show how to obtain a probabil- WhereV,W,v, andW are local operations, and
ity of successp=1 by making use of the procedure de-
scribed above. Note that with probabilipy= 1/2, we succeed A B
and apply the desired gate, while with=1/2 we fail and H= > wor®og=> Hy, (13
apply U(— ay) instead. Now, if we fail, we repeat the pro- K=y K=t
cedure but with system’, ;B, , prepared in the stat%aN). where 0< u,.< 7/2. We note that
With a probability 1/2 we succeed, and otherwise we will _ _ _ _
have appliedJ (— ay)® to the original state instead. We con- e H=g Hig TH2g M3 (14
tinue in the same vain, that is in ttké¢h step we use systems

A; B, prepared in the statgyx-1, ), so that, if we fail ande” " are—up to a change of local basis—operations of
o N the form of Eq.(4) for which we already provided a protocol

. . k_

altogether, we will have applied (- ay)* ! Fork=N we [see(i)—(iii)]. Using this, we obtain that an arbitrary two-
have thatl (— ay)® ~'=—U(ay), and therefore even if we qubit unitary operation can be performed using a sequence of
fail we will have applied the right gate, so that the procedurehree operations of the forttd(«), assisted by local unitary
ends. In fact, théth step will succeed witp=1, asU(w/2)  operations, which provegv). The required amount of en-
is a local gate which can be implemented with unit probabiltanglement is bounded by, (u;+ w,+ w3) ebits.
ity and without consuming entanglement. That is, a sequence
of N operations of the form of Eq4) allows us to implement IV. PURIEICATION OF NOISY OPERATIONS
the operatiorJ (ay) with unit probability, which provesii).

Let us investigate the average amount of entanglement In this section, we consider purification of a noisy opera-
which is consumed during this procedure. We have tions. We will discuss two different scenarios.

3 3
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In the first scenario, we consider two spatially separatedsingle copy caseor via entanglement dilutiof3].
parties A and B who want to perform &nown, nonlocal (d) Finally, these states are used to implengntith unit
(entangling unitary operatiorlJ between two particles they probability and arbitrary high accuracy as described in Sec.
share. We will assume thatandB are only able to perform Il
the operatiorlJ in an imperfect way. So instead of perform- ~ Now we will show that an operatiofi,—whereU is an
ing U on their particles, they perform some CP§yj. The entangling operation—is purificable if and onlygt is dis-
problem we pose is the following: Given several applicationgillable. This can be seen as follows. On the one hangg if
of the noisy operatiolfy, and arbitrary local resources, can is distillable, one can use the procedure described above to
the partiesA andB use them to perform théoiselessop-  purify the noisy operatiorf,. On the other hand, i, is
erationU on an arbitrary state of two qubits instead? Underpurificable, this implies that the unitary operatibhcan be
which circumstances is this possible? In case this is possibl@erformed on an arbitrary state of two qubits, using a se-
we say that the noisy operation is purificable. In Sec. IV Aquence of noisy operation§, assisted by local operations
we are going to show when and how it is possible to achievend classical communication. Sintkis an entangling op-
this task. eration, the corresponding pure stéig is also entangled.

The second scenario is concerned with the purification offhat is, the sequence of operatiofig, assisted by local
an unknown, localnoisy unitary operatior,, where we operations and classical communication is capable to create
explicitly assume a specific form of noise. In Sec. IV B, weentangled states when acting on a certain separable state.
provide a procedure to implement an unknown unitary op-Using the isomorphisrfEg. (3)], we can write this sequence
eration perfectly, given several applications of the noisy op-of operations acting on a separable state in terms of a trace
eration. over several operatois;, where local operations in the se-

In both cases, it turns out that the isomorphidig. (3)]  quence correspond to separable operaftfs That is, the
allows one to use results obtained for purification of statesnly entangled operators which appear in this expression are
and thus for a very simple solution to the problem. Regardoperators, corresponding to the noisy operatiép and the
ing the first scenario, the corresponding problem for states igesulting state is entangled. This implies that from several
the problem of entanglement distillation of mixed stk  copies of the mixed state:, an entangled pure state can be
For the second scenario, the corresponding problem fogreated. Note that using entanglement distillation for pure

states is the purification of a single qufi4]. stateg[3], this implies that one can also create a MES. We
thus have thap, is distillable, which finishes the proof of
A. Purification of a known nonlocal noisy unitary operation our statement.

Since &, is a general CPMp, is a mixed state inC*
®C*4 where no operational necessary and sufficient condi-
tion for distillability is known (however, see Ref$27,28).

It is known that nonpositive partial transposition @f is a

necessary condition for distillability, however there are

strong evidences that this condition is not sufficig2it,28.

Using entanglement purification for states, e.g. via the meth-

ods discussed if27-29,4, one may be able to obtain a MES

B starting from several copies of:.

qﬂ, (15) Given the error moddlEq. (15)], one can obtain a neces-

N sary and sufficient condition for purificability. It turns out
that unitary operations which are only weakly entangling

i.e. with probability q the desired operation is performed, [e.g., operations of the forr(a) with a<1] are much

while with 1—q a completely depolarized statdescribed more sensitive to noise than unitary operations which are

by the identity operatol) is produced. The following analy- strongly entangling, e.g. the controlled-{aiNOT) operation

sis is not restricted to this specific form of noisy operations[30]. This means that the tolerable error, specified by (1

The operatiorlJ is known to bothA andB. Furthermore, —q)—such that purification of the noisy operation is still
they are allowed to use auxiliary systems, and are able tpossible—in the case of thenoT operation is much bigger
perform all operationgincluding two-qubit operationson  than forU(a) with a<1. For thecNOT operation and the
their individual sites perfectly. In the following, we are going error model[Eq. (15)], one obtainsg>1/9, in order that
to show that the noisy, entangling operati§ncan be puri-  purification of the noisy gate be possi&l]. For operations
fied if and only if the operatop, corresponding t&, [Eq.  of the formU(«), one findsg>[16 cosg@)sin(@)+1] * as a
(3a)] is distillable. We also provide a practical protocol to necessary and sufficient condition that gate purification is
achieve this task. The purification procedure takes place gsossible. For a=/2'3 this value is, e.g., given by
follows: g>163/164=0.994, i.e., less than 1% of noise is allowed in

(& &y is used to create several copiespgfisee Eq(3a)].  this case.

(b) With the help of entanglement distillation for states, Note that the process of entanglement distillation involves
out of pg™ a number of MES’s are created. two-qubit joint operations as well. The reason why we treat
(c) The MES's are used to create a set of states of théhese(local) operations differently than th@onloca) opera-
form of Eq. (5), either via deterministic state transformation tion U can be viewed as follows. On the one hand, the parties

We consider two partie8 andB, who want to perform a
joint unitary operatiotJ among two particles they share. For
simplicity, let us assume thaf e SU(4), i.e., the particles
are qubits. The partie& andB are only capable to perform
the operatiorJ in an imperfect way, so they perform some
CPM &y instead. For example, a noiditqubit operation can
be of the form[25]

Eu(p)=qUpUT+
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A and B may be spatially separated and the interaction beperfectly, we will show that the unknown noisy unitary op-
tween the two parties—for example performed through theeration can be purified, i.e. via several applications£gf
usage of gnoisy) quantum channel—is much more sensitive the noiseless operatidh can be implemented on an arbitrary
to noise than the local operations performed by only one ofubit. For simplicity, we assume that the unitary operatibn
the parties. On the other hand, each of the paiesxdB  is of the form

may be considered to possess a single particle only, each .

particle containing several levels. Here the additional levels U(a)=e""", (16)
are used instead of auxiliary qubits. In this case, the opera-

tion U is concerned with the interaction between two differ—wherea is unknown; however, the analysis can be general-

ent particles, while all local operation&lso including ized t(t) arEb|trary smglgtqubtlt thﬂltary op?rattlons. Tr:_%pqsmve
multilevel—equivalently multiqubit—operationgre opera- operatork corresponding o the imperiect operatiog 1S

tions performed on a single particle, which are much easief'VEN by
to implement. For example, using atoms or ions with several 1—q
levels, all local operations can be easily perforni&d]. E=q|V )Pyl + 7] la,
However, controlled interactions between two ions on atoms

are very difficult to achieve, which leads to the fact thatwhere|‘lfu>=cos@)|<b+>—isin(a)|‘I’+>.
two-particle gates are ”OiSy.V.Vh”? Ioc_all gates are practically g proceed as follows. First we projdebn the subspace
not. Recall that in state purification, it is similarly ass“med,spanned by(|®*),|W*)}, and relabel the basis:

that local operations can be performed perfectly, and that it

has to be known which MES has a large overlap with the |6>=|<I>+>, |~1>=—i|\lf*>. (18)
mixed state the parties share in order that they can distill this

specific MES. Similarly, a knowledge of the perfect unitary If we succeed, which happens with probability4 1)/2, the

operationU is required. resulting state will be
One may also consider that the local operations are noisy.

In this case, both the process of distillation of states and the
implementation of the operatiob, using several different
states and Bell measurements, will give rise to some imper-

fections. The purification of states with imperfect means wasyhere |ﬁfu>=cos@)[6>+sin(a)|i> and A=(2q)/(1+q).
studied in Refs[26,34], and it was found that no MES can Gijven N states of the form of Eq(19), one can use the
be obtained if the local operations are noisy and a certaiprocedure described in Ref24] to purify the noisy state,
error model is assumed. However, one is still able to increasge, to increase.. For largeN, the average fidelity—that is
the fidelity, i.e., the _overlap of the produc_ed state_with athe overlap of the produced states with the state
MES, where the max[mal reachable fidelity is determmed by[\TfU>—scaIes likeF ~1— (1/2N)[ (1—\)/\2], whereas the
the amount of noise introduced by the local operations. S
instead of producing a MES, one produces some mixed sta
p. This statep may then be transformed to a state which is _ - ; )
close to states of the form of Ep). These states can then be FAMNIL=N/A] £24]' That IS'. forN—2 one obtains al
used to implement the operatidd in an imperfect way, nlost perfect statelsV ;) with a yield \. Note that the states
since both the states which are used and the operations whiti u) are not uniformly distributed on the whole Bloch
are performed are noisy. Furthermore, one should take intPhere, but rather only on the equatorial plane. Nevertheless,
account that a sequence of noisy operations is required iine can still use the same procedure as described in Ref.
order to implemenbt with unit probability, so the errors may [24], where a uniform distribution was assumed. The corre-
accumulate. For almost perfect local operations and vergponding values foF andD in our case are at least as large
noisy nonlocal operations, one may, however, still expect &S the ones obtained in R¢R4], since we have additional
purification effect. knowledge of the state, which may be used to further in-
creaseF and D. Note that in order that purification is pos-
sible, we need that>0 and thugy>0. So all noisy gates of
B. Purification of an unknown local noisy unitary operation the form of Eq.(15) andU given by Eq.(16) can be purified

Here we consider a part% who wants to perform a uni- if q>0. . _
tary operationU e SU(2) on a single qubit. The operation To summarize, we managed t‘? produce an arb|.trar.y num-
cannot be performed perfectly but is subjected to some nois®€r of (almos} perfect state§¥ ;) given several applications
We will explicitly assume that the imperfect operatifpis  of the noisy operatiorf,. Note that|W,) can be trans-
of the form of Eq.(15) [25] with N=1; that is, with prob- formed deterministically to|¥ ) by undoing the basis
ability q the desired unitary operatidi is performed, while  changdEq. (18)]. From the results of Sec. Ill, we know that
with probability 1—q the completely depolarized state 1L/2 the statgdW ;) can be used to implemeht with probability
is produced. Here, in contrast to the previous discussion, wp=1/2. What remains is to show that one can implemgnt
will assume that the operation is local ameknownto A (for  with probability p=1. The simplest way to see this is the
example, £, is provided toA by a second party via a black following: If we fail, we try to implemenU again; we make
box). Given that partyA is able to perform all operations a third attempt and try to implemebt, and so on. Every odd

17)

- - ~ 1
E:7\|‘1’u><‘1’u|+(1—)\)§12, (19

ield—i.e., the fraction of the number of produced states to
fle number of initial statesN—scales like D~\
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number of steps, sayjzZ 1, we stop the procedure if we ment two-photon gates with a certain probability of success,
have succeeded in+ 1 steps and did not succeedjisteps.  which is already sufficient to implement entanglement distil-
In this case, we have applied the operatidrin total j+1  lation. Note that this should be feasible even with present
times and the operatiod" j times, which is equivalent to day technology.
apply the operatiotJ. This is a one-sided bounded random |n the following, we concentrate on two qubit gates.
walk with probability p=1/2, where one can easily see that Given the results of Sec. Ill, one observes that the possibility
the total success probability convergesde=1. Alterna-  of creating certain entangled states, together with the capa-
tively, one can also use the operatibhto prepare states pjjity of performing local Bell measurements, allows us to
| W) with Eoefficient Za, which is possible with probabil- implement an arbitrary two-qubit operati¢d6]. That is, the
ity p=1/2%". These states can then be used to implenient problem to perform two-qubit gates is shifted to the problem
with p=1 following the procedure described in R§20].  of (i) creating certain entangled states diifithe capability
For a success probability=1—o0(e), in totalo(e~*) states  to perform perfect Bell measurements. In the following, we
|'Wy) with coefficienta are required. will discuss (i) and (i) in the context of single photon ex-
Alternatively to the procedure described above, one mayeriments.
also use a method similar to that of Sec. V to implemgnt Regarding(i), in single-photon experiments one is already
given several applications ¢f, . By a sequence of measure- g to create certain MES(g.g., via parametric down con-
ments one first determines the stetefrom which|Wy) can  yersion. For example, MES’s of two qubits were created
be found and used to implement the operatidriwhich is 504 ysed in teleportation experimefigs]. In addition, the
now known toA). creation of a three-qubit Greenberger-Horne-Zeilinger
(GH2) state was reportelB8]. Although nonlinear elements
are required in order to produce entangled states, it is much

In this section, we consider the problem of tomography ofé@sier to use these elements in such a way thabanstate
an arbitrary, unknown nonlocal CPM. Given many applica-iS generated rather than using some nonlinear elements to
tions of the unknown CPME and using the isomorphism Perform a controlled interaction between arbitrary states. Ap-
[Eq. (3)], it is straightforward to completely determine the Plying the isomorphisniEq. (3)], one observes that the state
nonlocal CPM by a sequence lotal measurements assisted E corresponding to a general two-qubit unitary operation is a
by classical communication. To this aim, we use the operapure state of two four-level systemigquivalently of four
tion € to prepare several copies of the associated &fFy.  qubits. For example, the state corresponding to the CNOT
(3a)]. Now, using tomography for staté®1], the state operation [30] is given by Ecnor=(|00)a|® ")
E—and thus, via Eq(3b), also the CPMEé—can be deter-  +|11)a| ¥ ")g)/y2, while the SWAP operatioiwhich is
mined. given by the mappindij)—|ji)) is specified byEgwap
Next we show that a sequence of local measurements as=|P ")a g,|P ")a,g,. Operations of the form of Ed4) are
sisted by classical communication suffices to completely despecified by states of the form of E&). Due to the fact that
termine a nonlocal mixed state(and thus a non-local CPM  states like Eq(5), as well asEcyot, Only have two Schmidt
£). Let A and B be two spatially separated parties and coefficients(when considered as a bipartite syst@aB), it
{Ai} [{B;}] be an orthonorméd35] basis of self-adjoint op- should be possible to create them in the laboratory using

V. TOMOGRAPHY OF OPERATIONS

erators inA [B]. We have thaE,g can be written as present day technology.
What remains igii), the problem of performing Bell mea-
Epp= z NiA®B;, (20) surements. For single photons, using nonlinear elements only
i

(beam splitters and photodetectorene is able to perform
incompleteBell measurements. In particular, one can per-
where )\ij=tl’(Ai®Bj Eag) is the expectation value of the fectly distinguish the three sets of staggg)*'», {|\If+>},
operatorA;®B; . Now, by measuring the operatofs (B;)  and{|®~),|¥ ")} [39]. The optimality of this process using
locally in A(B), and using classical communication, one canlinear elements was discussed in Ref0]. Due to the fact
establish the values of all; and thus the statB,g. In case that Bell measurements cannot be performed perfectly with
the operationg acts on two qubits, the corresponding statelinear element$40] (see Ref[41]), it follows that two-qubit
Eag is a state of two four-level systems. The set of operatorgjates cannot be implemented with unit probability using the
{A;} can, e.g., chosen to b@ilh@aiyu}—where oi iz  procedure described in Sec. Ill. However, even incomplete
are defined in Sec. lllsee Eq.(6)]l—and similarly for{B;}.  Bell measurementévhich can already be performed in the
laboratory still allow for a probabilistic implementation of
VI. PROBABILISTIC IMPLEMENTATION arbitrary two-qub@t gates. That _is, with a_certair! probability
the desired gate is applied, while otherwise a diffefgais-
In this section, we will show that the possibility to distin- sibly unknowrn) operation is performed. In the latter case, the
guish the stat¢d ™) from the other three Bell states and the input state has to be discarded.
capability to produce certain entangled states allows us to Let us investigate the consequences of incomplete Bell
implementprobabilistically arbitrary two-particle unitary op- measurements a bit closer. From E§), we know that if
erations. This has applications in the context of single-both partiesA andB obtain the stat¢d *) as a measurement
photon experiments, since our method allows us to impleoutcome, the desired operation was performed. Due to the
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fact that|® ") can be perfectly distinguished from the other example, we can use internal levels of atoms or ions instead
three Bell states using the methods described in Refsf local auxiliary qubits(also see Sec. IV Bell measure-
[39,40, and the fact that all measurement outcomes arénents in this case involve only single-particle interactions
equally probabldin the case of two qubit,+=1/4), this  between the different levels of a particle, which we assumed
allows one to implement the desired unitary operation with d0 be much faster than two-particle interactions.

probability p=1/16. For unitary operations of the form of

Eq (4), this probability can be further increased e 1/4 VII. STORAGE AND COMPRESSION OF UNITARY

given the fact that alsp¥ *) can be perfectly distinguished OPERATIONS

from the other Bell states. That is, if both partiésand B

find either|®*) or |W*) as a measurement outcome, the In this section, we will discuss the stora{#3,20 and
desired unitary operation was performed. In case the outcompression of unitary operations. We considepassibly
come wagW¥ "), additional application of the local operation infinite) set of unitary operations;,U,, ... Uy. Each op-

oy is required(see Sec. I, eration is assigned aa priori probability p; . We consider a

Note that probabilistic implementation of two-qubit gates!ong sequence of those operations, where each eletheoft
is not useful in the context of quantum computation, asthis sequence is chosen at random according to the probabil-
probabilistic operations may change the complexity class ofty distribution{p;}. We are interested in the average number
the problem and may thus destroy {lesponentiagl speed up  Of qubits which are required to store one of the operatldons
of the quantum algorithm in question. However, probabilisticand implement the operations at later time with unit prob-
gates are useful for processes such as entanglement distili@bility and high accuracy. We consider the following varia-
tion [4], which itself is already a probabilistic process. For tions of this problem.
example, this may help in the implementation of quantum (i) The operationdJ; arelocal. That is, a partyA locally
repeater$26] using photons onlyi.e., for quantum commu- Stores a certain number of qubits and uses these qubits to
nication over arbitrary distancesDue to the fact that pho- implement one of the local operatidy on some unknown
tons are ideal candidates for quantum communicaiioie to  State at later time. In this case, we are interested in the aver-
their fast propagation it is highly desirable to manipulate age number of qubits to be stored locally.
them directly(e.g., to perform entanglement purification as  (ii) The operationsJ; arenonlocal That is, two spatially
required in the quantum repeater protof®6)) rather than separated partie& andB store a set ofpossibly entangled
mapping their states on the states of another physical systestates, and use these states later on to implement the nonlocal
e.g. of an ion or an atom, and vice versa. The method disoperationU; . In this case, we allow parties andB to share
cussed in this section may help to achieve this task. some initial entangled states. The storage procedure, how-

Recently, an alternative approach was presented by Pagver, is restricted to local operations only. That is, parties
et al. [42], where entanglement purification without CNOT andB store(and compresstheir part of the system individu-
operations was discussed. As this approach is concerned wigdly. We are interested in the average number of qubits re-
a certain distillation procedure only, the solution provided inquired inA (B) to store one of the operatiots locally.

Ref. [42] to this specific problem is more efficient than the (i) The operationdJ; are nonlocal In contrast to(ii),

one we obtain here. However, we provide a more generabne of the parties, sa, stores the operatioriscally. Using
framework which allows us to implemeratrbitrary two-  quantum communication, part of the stored system is then
quibit operations probabilistically. Another proposal wastransferred tdB and finally used to implement the nonlocal
presented by Knilet al. [41], who showed the implementa- operationU;. In this case, we are interested in the average
tion of a certain two-qubit operation with unit probability, number of qubits which have to be stored locallAias well
taking full usage of all resource@.e., using an arbitrary as in the required quantum communication, i.e. the average
number of modées number of qubits which have to be transmitted frénto B.

Note that similar techniques may be used to speed up—in Note that in all cases, the unitary operation to be per-
some sense—slow two-particle interactions. The scenario widrmed is at any stage unknown Ao(andB). We will show
have in mind is the following: At a certain time—e.g., in that storage of certain sets of unitary operations is possible.
course of a quantum computation—an entangling quanturfrurthermore, the scheme we propose allows to compress the
operation should be performed on two particles. If the interamount of required storage qubfiss well as the amount of
action between two particles is weak, the required interactiomubits transmitted frond\ to B in (iii )] if one restricts the set
time in order that a entangling operation can be performeaf allowed operations to a certain subset. It turns out that
will be large. Now, instead of performing the operation wheneven for an infinite set of operatiotk , the average amount
it is required, we use théslow) interaction at some earlier of required storage qubits per operation can be much smaller
stage to prepare certain entangled states. These states ¢han 1. These results can be viewed as an extension of the
then—at a later time—be used to implement the two—Schumacher data compression for sta6d<o unitary opera-
particle operation almost immediately—once the two pardions. In fact, we will use the results of Ré6] to achieve
ticles on which the operation should be performed arrive—this task.
using the procedure described in Sec. lll. Although this Very recently, the problem of storage of a general unitary
procedure involves local Bell measurements, this will notoperation was considered by Vidal and Cif@®], and an
slow down the process, as, for the implementation of thoseptimal solution was provided. In contrary to Rg20], we
measurements, no two-particle interactions are required. F@ropose schemes which are capable of compressing the re-
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quired amount of storage qubits, and also discuss storage @We now consider a sequence of operations of the form
nonlocal operations. We will propose two different schemedJ(«a)) for 1<k=<wx, i.e. the implementation of)(«) with

for storage, one dealing with a possible infinite set of unitaryarbitrary « (0<a<). Using Eq.(23), one finds that the
operationdJ; and one with a finite set. We will discuss both total number of qubits needed to store one of those opera-
schemes in the context &f)—(iii). tions is, on average, given by

o]

k-1 1 0
2 S =22 S, (24)
k= =0 2 k=1

A. Local storage of local unitary operations

We start out with(i), the local storage of a set of local
unitary operations. We consider unitary operations acting on
two qubits and assume that they are local, i.e., both qubits owhich can evaluated to be 3.8942. That is, less than four
which the operation should be performed are held by theubits per operation are required on average to store an ar-

same party, saj. bitrary, unknown operations of the forth(«). In Ref.[20],
it was found that on average two qubits suffice to store
1. Storage of an infinite set of unitary operations U(a).
Here we describe a procedure to sttweally a unitary However, if we restrict the possible values @fto O< «

operation of the formU(a) [Eq. (4)] with an arbitrary, un- <w/8 (#/32), we find that the average amount of required
known « using on average less than fdar0095 qubits per ~ Storage qubits is given by 1.0096.280Q. Thus we showed
operation if 0<a< [7/8]. We assume uniform distribu- that unitary operations of the fortd(«) can be stored lo-
tion of anglesa, i.e., any operation is equally likely. cally, and that the average amount of qubits required for
We remind the reader that an operatldta) for arbitrary ~ Storage can be decreased if one restricts the operations to be
a can be implemented by a sequence of operatlons of thatored. This result is similar to the one obtained by Schuma-
form U(ey) [Eq. (4)] with binary anglesy,= m/2* [see Sec. cher[6] for the compression of a set of pure states.
[, (i)=(iii)]. Using the fact thatr can be written in binary _ - ) )
notation[Eq. (11)], and assuming that all angles are equally 2. Compression of a finite set of unitary operations
likely, it follows thatn,=0 andn,=1 are equal likelyvk. Here we consider a finite set of unitary operations of the
We first consider the implementation Of(«) for a cer-  form U(ay) [Eq. (4)], whereay=#/2N and I=N<M, and
taink=N anday=m/2". Following the procedure described provide an alternative protocol for storage and compression.
in Sec. Il (i), we have that ihy=1, the following set oN  This set of operations can be viewed as the basic set required
states is required to implement this operation with probabilto implement arbitrary operations. We assume that each of
ity p=1: the operation is equally likely. Again, we follow the proce-
dure described in Sec. I{l) and(ii), in order to implement a
Cn={|V o )| Wauy) - - [ Wan-14)}, (21)  certain operation of the form of Eq4), say U(ay), with
_ . _ unit probability. The set of stateSy [Eq. (21)] is required,
where the corresponding probabilities are given py where the corresponding probabilities are given py
=1/27* for the Ith state. If howeveny=0, no operation =1/~ for thekth state. Note that, for differei, different
has to be performed. In this case, one can store the set glimbers, of steps are required, and thus a different number
statesGy={| W),/ ¥y), ..., |¥o)}, which corresponds to of states has to be stored. As this may cause problems, we fix
the implementation of the identity operation in each stepthe number of states to be stored for each operation td.be
However, each step can be considered independently, and case less thaM steps are required, the stat®,) is
involves, with probabilityp=1/2, either the storage of the stored in the remaining cases, which corresponds to the iden-
state|\If2|a ) for the Ith step ifny=1 or |¥,) if ny=0. tity operation. Now, the implementation of any operation
Thus one can use data compression of pure sféegor U(an) consists of at mosM steps, where in stepsN(
each step independently. The corresponding compressiohl). . ..M the identity operations is performed. The fol-
factor S; for the Ith step is given by the entropy of the op- lowing equatlon summarizes the states which are stored for

eratorp, which is an equal mixture of the stajrdfaj> and each of the operations:
|\P0>, WhereJE(N—l) One finds U(al):G1:{|\P%>,|\I,0>,|\II0>,|\P0>, o ,|\If0>

Sj=—X; logy(X;) — (1 —xj)logx(1—x;), (22

. . U(ap):Go={[¥2),|W2).[Wo).[Wo), ... . [Wo)}
with x;=(1+ cose;)/2 anda;= /2. Also recall that theth

step has to be performed only with probabiliy. That is,
the total amount of qubits required to store the operation
U(ay), where it is unknown whether it should be performed
or not, is given by

U(ag):Ge={[ W), [WT),[W3),[Wo), ... | Vo)

N
1 Uam):Gu={|V o). Wau )| Vi) - - [¥D}.
Z‘ Thol-1 @3 ? (25)
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Recall that thekth state is always used in theh step. We  sion rate is already optimal under this stronger restriction. In
denote thekth column by C,, which consists of th&kth  our specific case, we obtain

element of eacls;. As the columnsC, correspond to the

different steps, we have that colurkris only required with Sn=—Xn 1002(Xn) = (1=Xn)l0ga(1—Xy),  (26)
probability p=1/2"*, and all steps—and thus all columns
Ci—can be treated independently. That is, we store each of ) ) )
the columnsC, independently. Due to the fact that all states Vit Xn= (1+coSay)/2. Now using this local compression
within each columrC, are likely equal nonorthogonal, one protocol instead of Schumgchers for pure states in the pro-
can use data compressifsi. The compression factd, for tocol of Sec. VII A 1, one finds that the the average number

column C is given by the entropy of the density operatorOf qubits V\,’hiCh hjve to be storgd Iocally,m_ (B) is given
P, Wherep, is an equal mixture of all the states of column by 4.7758 if O<sa< . If we restrlct the possible values af
k and columnk is only required with probabilityp to O<a<w/8 (w/32), we find that the average amount of

=1/2"1. Thus the total number of qubits required to storereCIUired sjtorage qubits is reduge_d to 1'43&4082' .

one of the operationdJ(ay), OSN<M is given by Regarding the storage of a finite set of unitary operations

sM S/2<°1. For example PON — 100 (1000, we obtain (see Sec. VII A 2, we follow the same protocol as described
k=1 . . = ,

an average amount of 0,246.0361 qubits which has to be in Sec. VII A 2, and again use a different kind of data com-

: pression due to the fact that we are restricted to local opera-
stored on average to implement one of the L0000 opera- tions. This time, data compression for a finite §ek;)} of
tions picked at random. : , p i

M entangled states is required. The entangled states are all
equally likely, and are of the forrh\PaN>. It turns out(see

B. Storage of nonlocal unitary operations inA and B Appendix A) that one can achieve a compression rate which

Here we considefii), the storage of a set of nonlocal iS given by the entropy of a density operafer which is
unitary operations. We will discuss variations of both proto-defined as an equal mixture of the reduced density operators
cols described in Sec. VII A, taking into account that we nowp), corresponding to the statd;). One finds that the total
have two spatially separated parties and the operations areimber of qubits required on average, to store one of the
nonlocal. That is, the states to be stored are entangled stateperationsU(«ay), 0<N<M locally in A (B), is given by
and we consider local storage of the subsystem belonging 1©.333(0.050 qubits forM =100 (1000).

A (B). This means that both, the coding and decoding pro-
cedure has to be local, but may be assisted by classical com-
munication. C. Storage of nonlocal unitary operations inA
We first consider the storage of an infinite set of unitary . e
Finally, we considefiii) the local storage of a nonlocal

operations of the fornJ («) (see Sec. VII A L We follow . O ) )

the same protocol as described in Sec. VII A 1, however Wéj_nltary operation im. That IS, We consider a Ioca_l memory

now use a different kind of data compression. The protoco‘In A only), but we Wan_t to |mplement the_ operat|(_)n r_10n|o-

described in Sec. VIIA 1 involves storage of two equal cally. It turns out that this problem is a trivial combination of

likely states,|W,) or | W, ) for someay=m/2V. Note that the previous two problems. We have that one can use the
N methods described in Sec. VII A to store the operations lo-

the statg¥ is an entangled state, so in contrast to Sec. . . .
9 “N> 9 cally in A, and one obtains the the same compression rates.

VIIA, we cannot use staqdard data compressiqn for PUpe average amount of quantum communication frsro
states, as we are restricted to local operations onIyB_WhiCh is required to implement the operation

However—as shown in Appendlx A—it s also possible to nonlocally—can be found using the method described in Sec.
achievelocal data compression for a set of entangled statesVII B. That is, one part of the entangled system is com-

That is, each of the parties manipulates only its own sub-
ressed and send through a quantum channil Tdhe com-
system, and can thereby reduce the average number of qubﬁs . . L )

; . ; pression rate can be calculated in a similar way as in Sec.
required to store its part of the entangled state, without af{ ; .

: . I B; however, one has to take into account that the state
fecting the entanglement with the other system. Note th ) is a separable state, and thus no quantum communi-
this problem is equivalent to the data compression of mixe catqiT(/)Zn is re uiF;ed 0 transrrylit one part ofG][his state. For ex-
states with commuting density operators, where the entangle- q P ’

ment with some other system should be preserved. It turn%mple’ one finds, in the case of an infinite set of operations

. e of the form U(a) with O<a<= (#/8), that the required
out that the compression factor fér (B) is given by the amount of quantum communication frofnto B is given by

entropy of an operatop, which is an equal mixture of the 2.7758(0.3978 qubits.

reduced density operators, (pg) corresponding to the  This last method clearly distinguishes between the re-
states| W), |V, ). Note that this corresponds to the upper quired amount of local storage qubits and the nonlocal con-
bound on the number of qubits to be stored, in case entangléent of the operation, i.e., the average amount of quantum
ment with another system is not required to be preservedommunication. Note that storing the operations locélye
[44]. While it is known that this is not the optimal compres- Sec. VII A) requires a smaller amount of storage qubits than
sion rate if entanglement with some other system is not restoring a nonlocal operation directly ih and B (see Sec.
quired to be preserved, it is not clear whether the compresvll B).
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VIll. NONLOCAL MEASUREMENTS tanglement is smaller than 2 lgg) ebits. With the following

In this section, we consider the implementation of nonlo-Method, we show that this is indeed the case.
cal measurements. We consider two spatially separated par- Proposal 2 We consider the situation were &, are
ties A and B, each possessing level system. The two 'ank 2, i.e.n=1, and thusPy=|@)ae(byl. We define a
parties want to perform a complete, joint measurement offoniocal unitary operatiol) by
their system, specified by a set of rank projectors{P,}
such that= P ®=1,®1lg. The questions we pose are the
following: How can the parties implement this nonlocal mea- U= 2 1K) ae(
surement? What are the entanglement properties of those &y T ABVEK
measurements; that i¢,) what is the amount of entangle-
ment required to implement a certain measurement(and

what is the. average amount of .entanglement which can bghere|k)as=|a)albi)s, and{|a;)} [{|b;)}] is some local
produced given a single application of the nonlocal measureysis inA (B) respectively, with k=<d. The procedure

ment? takes place as follows: First, the parties apply the nonlocal

We provide several procedures to implement arbitrary,hitary operationu, using, e.g., the procedure described in
nonlocal von Neumann measurements, and discuss their 8. ||| for d=2 consuming an amount of entanglement
tanglement properties. We show that the required amount hich is specifiea by the operatidd. If U is only weakly
entanglement_ depends on the measurement to be 'mplehtangling e.q. (k| ¢)~1 (i.e. |4 are only weakly en-
mented. We introduce examples of nonlocal measuremenfs A K = 17k

which can be implemented using less than one ebit of en_angled statgs the required entanglement is smegbe Sec.

tanglement. One can easily generalize some of our results {3 [45]. Then partiesA andB both perform local measure-
implement also arbitrary measurement, described by a posients specified by projectors on the staffs)} [{|bj)}],
tive operator valued measure, i.e., a set of positive operatof§SPectively, and communicate the outcome of the measure-
OB such thats, 0/ B=1,®1;. ment classically. If they obtain the outconag, pk, they
First, we note that the amount of entanglement required t(l)mow that the ochome of the megsur_emenk,m.e., they
implement the nonlocal measurement dependé)omhether ~ Measure the projectoP, . Concerning(i), the procedure
one is only interested in the measurement outcorr(@)othe ~ €NdS at th|sTp0|nt. Regardini@), A andB also implement the
system should in addition be in a corresponding state aftepperationU’ to ensure that the system is also in the required
the measurement. For example, one can perform a comple%ate after the measurement. A.Iternat|vely, they could also
Bell measuremenfi.e. a measurement on the basis of Eq.Prepare the measured system in stagg), as, due to the
(6)] on a state of two qubits using one ebit of entanglemen{mPlémentation of the measurement, any possible entangle-
regarding(i), while two ebits are required in case @if). ment W|_th some auxiliary gysﬁem is destroyed. We_ note that
Proposal 1 A trivial procedure to perform an arbitrary the choice of the local basis i, {|a;)} andB, {|b;)} is not
bipartite measurement is the following: The state of sysgem fixed, and may also change the entanglement properties of
is teleported toA, consuming log(d) ebits. Then, the mea- f[he operatiorl. This can be seen by considering the follow-
surement is performed locally i, which already suffices in 1N _trivial example: We haval=2 and| oo =|00),| $o1)
case of(i). Regardingii), one also has to teleport the particle =[01),/¢10)=|10), and|¢;)=[11). By choosing|a;)[b)
back toB, again consuming logd) ebits. Note that in the =|0) and|ay)|b)=]1), we have thall=1l,g, i.e., no en-
case of a complete Bell measurement, i.e., a measurement §'9lement is required to perform the measurement. If, how-
the basis of Eq(6), where each basis state is a MES, this€Vel, we choose the mapping|qo)—[00),|bos)
procedure is in fact optimal. On the one hand, one consumes’ |10,/ #10—[01),| 1) —|11), we find that the operation
two ebits to implement the measurement. On the other hand =Uswap, Which requires two ebits to implemeft6]. In
one can also obtain an average amount of two ebits given ®iS case, the choice of the proper local basis is trivial; how-
single application of a nonlocal Bell measurement. One jus€ver, we do not know the optimal choice for a general mea-
has to consider the operatif [Eq. (3)] associated with each Surement. Also note that this procedure fails to |mplement
possible outcome of the Bell measurement. One observe¥niocal measurements where the rank of some projégtor
that the nonlocal entanglement of & is given by two IS larger than 1. For example, P,=[00),(00 and P,
ebits, and each measurement outcome is equal likely. This las—P1, this procedure fails to project in the subspace
leads to an average amount of entanglement of two ebits. gPanned byP,, as it already gives a fine graining within this
the amount of entanglement required to implement an opera&ubspace, which is a different problem. The next method will
tion E,, is equal to the amount of entanglement which can bé@vercome this limitation.
obtained given a single application of the operatifp, the Proposal 3 Here we consider a complete set\fnonlo-
first process is optimal, anH;,, is the minimal amount of Cal projectorsPy which might have an arbitrary rant .
entanglement required to implement the operation. This i§learly, =l jn,=d?. Alice uses aM-level auxiliary system
due to the fact thaE,<E;,; otherwise one could create initially prepared in stat¢l), which is used to label all pos-
entanglement for free. However, if one wants to measure thgible measurement outcomes. We define a unitary operation
joint systemA,B in a basis which is not maximally en- U acting on the auxiliary syster, and the joint systerAB
tangled, one might expect that the required amount of enas follows:

42

, (27)
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M tiparty systems, there exist many different kinds of entangle-
U=> [(li)a(ll+|1aihePr® ment(see, e.g., Ref§46—49), one may also ask which kind

=1 of entanglement can be produced. Again, all these questions

+ (-3~ DD e PJAB]_ (28) can be answered by establishing the entanglement properties

of the operatoiE associated to the CPM via Eq. (293. In
particular, if E is bound entangled48], then & can only
create BES’s. In a similar way, given some BES one can
easily construct the corresponding map which is capable of
generating BES’s of the same kind.

After application ofU, the auxiliary systen is measured
in the basis{|j)}. If the outcomek is found, one readily
observes that this corresponds to measuring the projégtor

on the systemAB. Note that no further operations are re- ; : . .
Y P One may also consider the implementation of arbitrary

quired, as systerB is already in the appropriate stdie). e X . . >
The amount of entanglement required to implement the nonH_qEE:t gpg:ggﬂscg:hbgrwri?tfnbzz'lgyée?r;::cee hoint?i, Zrnti);e
local measurement is again specified by the operation q P q P

oy _ CNOT operations and single qubit unitary operations, for
_ For example, ifd=2 _and P1=(/00)(00 +[11)(11)), P, which we already established a protocol. On the other hand,
_(.|01.><01|+|.10><10|)’ It turns out tha_t one can create one we may considemMN-qubit unitary operations of a specific
ebit given a single measurement of this kind. To see this, We rm. and show directly how to implement them with unit
prepare system AB in the separable statep !

— 12D WD |+ | W)W ]), and perform the measure- probability given certain states. We consider a unitary opera-

ment. If we obtain outcome “1”(“2" ), the state after the tion of the form

measurement igsb*) (¥ ™)). In both cases, we created one _ miayee. @0l

ebit. However, it is not clear whether one ebit of entangle- Un(am)=e X o (30
ment also suffices to implement the corresponding unitaryypere o, = 7/2. It turns out that a natural extension of the
operationsU =1"® P18+ o4 ® P55 Although the stateE,  protocol of Sec. 111(i)—(iii) allows us to implement opera-
associated td) via Eq.(3) has an amount of entanglement of tions of the form of Eq.(30) with probability p=1. The
one ebit andJ=U", it is not clear whether a single copy of operator associated with the unitary operatidQ(ay) is
the stateE, suffices to implement. It would be interesting  given byE,_, ...z, ,=|ta,, (s, |, Where

to establish the minimal amount of entanglement required to ' '

implement a general, nonlocal measurement. | o) = COLap) [ @ )p JP g o [Pz,
IX. MULTIPARTY OPERATIONS —isin(an)|[ ¥ )a J¥ e, - W)z,
In this section, we generalize some of the previous results (31
to multiparty systems. We consider several spatially sep

aT?egarding(i), we just note that Bell measurements and the
corresponding local unitary operations are performed at all
location A,B, ... ,Z. For all possible measurement out-

Here £ acts on several-level systems, one located in each comes, it is easy to observe that the operation performed on

site A,B, ... ,Z, andE is a positive operator on the Hilbert some statep,, %1_Wi|| either.be (i? U(awm) or (i) U

spaceM ©- - ®Hz . We have that{, =C% and similar  (— aM(),)eacg (pO)SSIbIlIt)é appéearlnc? WI'[I:] probr?blhg/: 1/2.h A
2 : ' o Steps(ii) and (iii) can be adopted without changes, whic

for the remaining parties. For arparty system, it is easy to finally allows to implement an operation of the form of Eq.

rated system®\,B, ... ,Z, each possessing severklevel
systems. We first generalize the isomorphigag. (3)] be-
tween CPME and positive operatofs to multiparty systems.

.....

show that ; . . i
(30) with arbitrary anglea and unit probability. Note that
En 2, ,=EPp @ - @P7 ) (299  operations(30) are capable of creating GHZ-like entangle-
12412 1,2 1,2’ . H .
ment, and are thus truli-qubit entangling operations.
£ =d?Ntr
(PA1 . .zl) Agz--Zy3 X SUMMARY
(Bay,...20 PAy...2Pny 5+ Pz, )- (290 To summarize, we have provided several applications of

an previously introduced isomorphism between operations
The interpretation is similar to the one of Eg). On the one  and states. First we discussed how to use this isomorphism to
hand, Eq.(29a states thakE can be created from ax-party  establish separability and entangling properties of operations
product state, where each party prepares locally a MES. O# and to construct physical operations which are capable of
the other hand, Eq(29b) tells us that givenE (particles creating bound entangled states. In addition, we showed how
A1:B1,...7Z1 ), one canimplement the multiparticle opera- to implement an arbitrary nonlocal two-qubit operation, con-
tion £ on an arbitrary statp of N d—level systemgparticles  suming an amount of entanglement which is proportional to
A;B; .. .Z3) by measuring locally the projectét [Eq. (2)]  the entangling capability of the operation.
on particlesA; 3,B, 3, . . . ,Z, 3in each of the locations. Note Then we have shown how to implement several tech-
that the probability of success is given py= 1/d?N. niques developed for states—such as purification or data
As in the bipartite case, one may ask for a certain fiap compression—and operations. In particular, we have shown
whether it is capable to create entanglement. Since for mukhat a known, noisy, nonlocal unitary operation as well as an
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unknown, noisy, local unitary operation, can be purified. In acation. We are interested in the average amount of qubits per
similar way, we use these results to establish tomography dfignal state which are required & (B) to store the signals
arbitrary operations. Then we showed that unitary operationfaithfully. We will use as a criterion the so-called GLOBAL-
can be stored locally and nonlocally, and that the amount oFID criterion[44]; that is, we require that the average global
required qubits for storage can be decreased, which can Hilelity of all possible sequences is-J. Note that we con-
viewed as a generalization of data compression to unitargider the so called “blind case[44], that is neithe’ nor B
operations. In this context, we also provided a protocoknow the specific sequen¢a?2).

which allows for local data compression of a set of entangled Let p/*=trg(|¥;){(¥;|) be the reduced density operator of
states. Note that it is straightforward to obtain a number okystemA of the statg¥;), and

other results which were developed for states also for opera-

tions. For example, it is easy to show that unitary operations - L

can also be clonetVia cloning of the corresponding st PA:E DiPiA (A3)

or teleportedVvia teleportation of the states required to store =t

the operation [19,20. In case of cloning, one has to take e the weighted average of the reduced density operators of
into account that the cloned states allow for a probabilistic,

imperfect implementation of the required operation only. our signal source. We d~enote. BYp") =tr(p"log;p") be the

We also provided a method to implement arbitrary two-von Neumann entropy gi*. Given a sequence of lengl
photon gates probabilistically with present day technologyN sufficiently large, we provide a protocol with the following
which opens the way for practical quantum communicatiorPfOperties. . _ _
over arbitrary distances. Finally, we discussed the implemen- (i) The regwred amount of storage qubits An (B) is
tation of nonlocal measurements, and generalized some gfiven by NS(p")+ 6.

our results to multiparty systems. (i) The average global fidelittaveraged over all possible
sequencesF is given by 1-e.
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be easily generalized to an arbitrary number of signal states
APPENDIX: LOCAL DATA COMPRESSION FOR A SET and an arbitrary probability distribution.

OF ENTANGLED STATES We have that

In this appendix, we consider the problem of local data 1+ 2
compression of a set of pure, entangled states, where all re- = @ |0)(0|+
duced density operators commute. Note that this problem is 2
equivalent to the problem of data compression of a set of . . . .
commuting mixed states under the restriction that entangle’V€ define local projectorB, (Pg), acting onN qubits, as
ment with some other systems should be preservedGL et

={|¥;)}F_, be a set oL pure states, where

1-c2
> 111 (A4)

k+

Pa=Pg= 2 Py, (A5)
k=k~
[Wi)=C4,|00) ap+ Sy |11 a8 (A1)
wherek* = (1+c?)/2+ uN?, u>0, 1/2<B<1, and
andcaizcos(ai), saiEsin(ai). Each state is assigned a prior
probability p; . Two spatially separated partidsand B are P= >, |0)(0|®Ke|1)(1|®Nk, (AB)
fed an unending sequence of stai#s), where each succes- perm
sive state is chosen randomly and independently from the s
G according to the probability distributiofp;}. A sequence
of lengthN is of the form

%’the sum in Eqg. (A6) runs over all possibleby
=N!/[kI(N—K)!] permutations(without repetition$ of k
zeros and\—k ones. Thud?, is a projector in the subspace

_ spanned by all states which contain exadtlgeros and N
=[Wi)l¥i) - ¥y, (A2) —k) ones. The dimension @, is given byby .

) N The projectorP, (Pg) is measured locally i\ (B). If

and appears with probabilitg; ;, . =Ppi Pi,---Pi,- The  the measurement is successful, Jo—where d
partiesA and B store the sequences locally, i.e., they are=dim(P,))—qubits are used to store the resulting stata.in
allowed to perform local operations and classical communiThis can be accomplished by relabeling the states which span

| ¥

iy iy
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Pato{|I)};, and storing those states locally, which clearly where 27N is the probability that a certain sequence appears,
requires log(d) qubits. The decoding procedure consists ofby; is the number of sequences of the fo(j)), and Fi
undoing the relabeling. In case the measurement is not suts given in Eq.(A7). We have that

cessful, some statég) is stored instead. We show thaj
log,(d)= NSP)J”S and (i) F 2 'Np'lz""NF'lz""N
>1—k¢, where Fi i :|<\I’i i i |PA
1'2 N 1'2 N
®PB|\Ifil-2 iN>|2 and the sum runs over all possible se-

I12...

—22 ——2N -byiFj. (A9)

whereJ*—N/2+,u/3Nﬁ In this case, one can also bound

guences. That is, the storage procedure requires the ap and finds
nounced amount of qubits and the average fidelity is suffi-

ciently large.

Regarding(i), it is easy to see thad=dim(P,)<(k™
+k*+1)bN,ko, wherekgye [k~ ,k™] is the value that maxi-
mizesby x in this interval. Substituting the values kf k*
in this bound, we find that logd)=NSp")+ & as required.

We now concentrate ofii), the average global fidelitly.
Consider a sequence of the form of E42) which contains
j stateg W) and (N—j) stategW¥,) (i.e., the number of
which are equal to 1 is given bj). We denote such a se-
quence by W (j)). Note that there arby ; sequences of this
kind. For all those sequences, we find

Fi=¥(j)|PA®Pg|V(j))|?
2

= X s by (A7)
Kk~ =<(j+k)<k"
The average fidelity? is given by
F-o S b (A8)
= — N,' ,
2N St a

'R+

E c2kg2N=Rp (A10)

k=

where k*=c2(N—j)+u/3N? and we have thak <(j
+k)<k* as required. By noting that a binomial distribution
is asymptotically equivalent to a norm@aussiandistribu-
tion, the fidelity F; Vj can be seen to be bounded from
below by tI)(Z,uNB V2 where d(x) =127 [* &/ "2dy.
For our choice ofu and g, we have that-;—1 whenN

o, In a similar way, one also shows that-1 whenN
—, as, after boundingr; as stated above, EGA9) also
corresponds to a binomial distribution centeredj &tN/2.
This finishes the proof of the statemefits-(ii).

In a similar way, one can carry out an analysis for a set of
L entangled states and an arbitrary probability distribution
{pi}. In this casekizNEiL=1piciiiMNB and some of the
binomial distributions are replaced by multinomial distribu-

tions. Also in this case, one finds that-1 for N— and
that the dimension of the projectér, (Pg) is given byN

times the entropy of the operatpf [Eq. (A3)].
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