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Realization of quantum process tomography in NMR
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Quantum process tomography is a procedure by which the unknown dynamical evolution of an open
guantum system can be fully experimentally characterized. We demonstrate explicitly how this procedure can
be implemented with a nuclear magnetic resonance quantum computer. This allows us to measure the fidelity
of a controllednoT logic gate and to experimentally investigate the error model for our computer. Based on the
latter analysis, we test an important assumption underlying many models of quantum error correction, the
independence of errors on different qubits.
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[. INTRODUCTION for example, those realized using nuclear magnetic-
resonancéNMR) techniqueq7,8]. In fact, NMR quantum
Experimental characterization of the dynamical behavioProcess tomography has been performed on a single qubit
of open quantum systems has traditionally revolved aroun&®]- However, to date, this has not been extensively practiced
semiclassical concepts such as coupling strengths, relaxatid}gcause of two problems: first, it is desirable to explicitly
rates, and phase coherence tifig<]. However, quantum 'nclude the maximally mixed state as one of )&, so as to
information theory tells us that so few parameters barel)p'reCtly subtractllts contr.|but|on, but such a state cannot be
even begin to represent the full dynamics that quantum syg2rePared by unitary actions alone. Second, one can only
tems are capable of; for example, the evolution between tw easure traceless ob_servabl_es, and thus one cannot obtain
fixed times of a two-level quantum systdmqubi, coupled e entire output density matrix of a process.

: bit i is d ibed by 12 | i Here, we show explicitly how these hurdles can be over-
0 an arbitrary reservoir, 1S descrived by real parameter ome, and demonstrate the use of these methods in address-
[3]. For a two-qubit system, this number grows to 240, an

in general, fom qubits it is 16— 4 ng two outstanding issues in quantum computation: the fi-

of t all of th i | tr delity of a quantum logic gate, the controlledT gate, and
course, not all of these paramelers are relevant 1o, q validity of the independent error model, which is widely
every physical process, and understanding the physics ¢

) ; . : sumedthough not strictly necessaryor quantum error
boil down this huge parameter space to just a few importan d g Y anjor q

X . orrection and fault-tolerant computation.
numbers. On the other hand, when the physical origins of a The paper is divided into two major sections, which de-

quarllturl; ptrOEess ?hm(t)t ILIJE?erStOOd' ortln question, it !SI scribe the theory and our experiment. We begin with a re-
invaluable to know that all these parameters can, in principle, ., .~ quantum process tomograph@PT); then we ex-
tpIain our extensions to the basic procedure that enable QPT

. . : : with NMR, and present theoretical models for decoherence
mography This method is a direct quantum extension of thein NMR. We then describe our experiment and procedure,

classical concept_of system |dent|f|cat|(_)n, which enables and our two main experimental results.
control of dynamical systems and provides powerful mea-
surement techniques for characterizing unknown systems. Il. THEORY

For closed systems, process tomography is the analog of de-

termining the truth table of an unknown function; quantum- A. Quantum-process tomography

mechanically, this means the unitary transform involved ina  Quantum process tomography, as introduced by Chuang
quantum computation. and Nielsen3], can be summarized as follows. A general
The procedure for quantum process tomography has begfliantum operation on a quantum statis a superoperatd,
de_s_crlbed in detail in the literatuf@-5]. It relies upon the 4 Jinear, trace-preserving, completely positive map—12.
ability to prepare a complete set of quantum staiesas  \we consider only the case whefép) has the same dimen-

input to the unknown proces, and the ability to measure sjon asp. A common form for is the operator-sum repre-
the density matrices of the output quantum states from thgentation,

processé(p). As a result, one obtains a complete “black
box” characterization of; . By systematically repeating this T
procedure for increasing process titnene can also obtain a 5(p)=2k ApAyc 2)
complete master equation description of the pro¢éss

This procedure seems to provide an ideal way to charaONhereEkAlAkz I. One can easily demonstrate the transfor-
terize and test quantum gates on a small number of qubits -mation to a fixed-basis expansion of the quantum operation

(in n)—using a procedure known aglantum process to-
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such that the information about the process lies in a set af the Pauli operator for thgh spin along the direction of the

coefficientsy,, instead of a set of operators. In this foréh, magnetic field,w; is its Larmor frequency, and the sign of

maps an initial density matrig according to the first term is chosen so that the ground state is spin up.
The second term represents a small scalar coupling between

. + spins known as thé@ coupling.
8(p)_mzn XmrAmpAy 2) The initial state of an NMR quantum computer is the

thermal equilibrium state with density matrix

In this expression, thé,, are a basis for operators on the

space of density matrices, ads a positive Hermitian ma- €

trix with elementsy,,. In the following, we will omit ex- pw_tr(e—H/kBT)

plicit summations and adopt the convention that repeated

indices are summed over. Because of the restriction &hat wherec=2"" for a system oh spins[so that trp..)=1] and

must preserve the trace pf x containsN*—N? independent A _ is traceless. In general, we refer to the traceless part of

parameters for arN-dimensional systentfor n spins, N any density matrixp as the deviation density matrix. If we

—HikgT
=cl+A., 9

=2"). neglect the small coupling between spins and consider high
Let the N* matricesp; be a basis for density matrices. temperature with respect to the Larmor frequencies, the equi-
Applying £ to this basis gives librium density matrix is approximately
E(pj) =N jkpx - () hoZ
p~C| |+ 2KaT | (10

Using quantum state tomography3], one can experimen-
tally determine\ j, which fully specifiest. To determiney By performing unitary operations on the system, we may

from N, we defineg by rotate thew;Z; deviation, allowing us to prepare a linearly
f o independent set of inpuis; . Because all of the interesting
AmpiAr= Bijk Pk (4 information will lie in this deviation, we would like to be

o - ) able to prepare an input with no deviatidre., the maxi-
which is fully specified by the choice &, andp;. Then  mgajly mixed statg so that we may directly subtract the con-
one can show that tribution of the identity. Such an input clearly cannot be
mn prepared by unitary means. However, the maximally mixed
Bik Xmn=Nji- (5) statecan be prepared from the thermal state by applying a

. . . /2 pulse followed by a uniformly spatially varying rf pulse.
We may think off as a matrix and. andy as vectors, with  pirarent parts of the sample experience different amounts of

mn a composite colu.mn index arjd a COMPOSite rOW in- oiation, so that the ensemble is effectively dephased to the
dex; thenBy=N\. Using the pseudoinverse of g (also  maximally mixed state.

called the Moore-Penrose generalized invgrsehich may The second difficulty can be handled by calibrating mea-
be computed independent of measurement results, we havgyrements to the known initial state of the system. By state
- tomography, we can measuke=dA.. , where the constart
X= KN\ ® s arbitrary — it depends in detail on the gain of the ampli-
fiers, the efficiency of the rf coils, etc. But the initial devia-
B. QPT in NMR tion density matrix is known to be(% w;Z;/2kgT). Hence

Implementing QPT in high-temperature NMR presentswe may calibrate our apparatus by determining the value

two main obstacles. First, the part of the system that can b1at makes the measuredd closest to the theoretica., .
manipulated by unitary operations is but a small deviation" Practice, we effect this calibration by normalizing all mea-
from a maximally mixed state. Second, one can only meaSurementsintegrals of spectral peakfor spinj to a refer-
sure traceless observables, and the scaling of these obseRfIC€ measurement taken on that spinr/2 pulse applied to
ables with respect to the traceful part of the system is nothe thermal stagemultiplied by c(% w;/2kgT).

immediately known. Fortunately, both of these hurdles can

be overcome. C. Decoherence primitives

The Hamiltonian for solution NMR is well approximated  pocoherence of a single NMR spin in solution is gener-

by ally characterized by two well-known processes: amplitude
7. 7.7 damping and phase damping. Here, we present these pro-
H=—fio, 5‘ + hij'Tk, (7) cesses, as well as generalizations to multiple spins. To facili-

tate the description of multiple simultaneous processes, we
describe amplitude damping and phase damping as semi-
groups in terms of their generators.
Assuming that a quantum operation can be described by a
7. = ( 10 ) (g nhorm continuous one-parameter semigroup, given a superop-
eratoré&, satisfying the stationarity and Markovity condition

where
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EE=Es. 1 [14], its generatoiZ is defined a$15] 0 O 0 O
0o - 0O O
. gt(p)_p ZPD: Y (19)
Z(P)—!'_rgf- 11 0 0 -y 0
0 O 0 O

The generators have the advantage that they easily describe

the simultaneous action of multiple processes. In particulargeneralized amplitude damping is a process whereby the qu-
we have the Lie product formuld.5] bit may exchange energy with a reservoir at some fixed tem-
perature. It acts on a qubit as
EMD=lim (EGE™, (12
n—oo

kipoot Koprs € ""%pgy

GAD, \_
ES(p)= “Tt2

, (20
where e P10 KapootKap1r

(1+2)— =(1) (2) — —
Z ZEHES, 13 herek,=(1-m)(1—e 1Y), ke=n(1—e"), k;=1 ks,

andk,=1-—k,, with I" a damping rate and a temperature

with obvious generalization to more than two processes.
)parameter. Its generator acts as

Furthermore, we may return to the superoperator form b
exponentiating the generatf5]:

n 0 0 n-1
t \" 1
E=lim|1- -2 14 0 3 00
o n) e e D (21
2
:eZI_ (15) —F 0 0 l_ﬁ

This exponentiation may be defined by its Taylor series inComputing the fixed point of this process, we find that we
the case of interest where is bounded. To implement expanay interpret it as occurring at a temperature

nentiation in practice, it is useful to work with a manifestly

linear representation, i.e., that of E®). In this case, a su-

peroperator and its generator can be represented as matrices KT = AE 22)
that have the property that composition of superoperators B 1-n’
corresponds to matrix multiplication. Then the procedure of In—

Eq. (14) corresponds to matrix exponentiation. n

We now consider the single-qubit versions of phase and

amplitude damping. For further discussion of these prowhere AE is the splitting between the ground and excited
cesses, including operator-sum representations, se¢l®ef.  states of the system.

We write the density matrix of a qubit as Heuristically, we expect phase damping to describeTthe
(dephasing process of NMR. Similarly, generalized ampli-
Poo  Poi tude damping should describe thig process of NMR,
= P10 Pn) . (16) whereby a spin relaxes to align with the magnetic field. Note

from the geometry of the Bloch sphere that amplitude damp-
ing necessarily includes loss of phase information, so it also
AWntributes to ther , process. However, in typical systems,
T, is much longer thafT,, so the contribution of amplitude
_a damping to dephasing is small.

Poo € "Por 17) The simplest extension of these processes to a multiple-
e "o  pun /)’ spin system is to allow the individual processes to act inde-
pendently on each qubit. However, this is far from the most

for some damping rate: i.e., it has a generator that acts as general scenario: the decoherence_ might b_e correlated. Al-
though we have been unable to find a suitable correlated

dom phase kicks. It acts on a qubit as

EtPD(p)=(

0 p generalization of amplitude damping, we have incorporated a
ZPD(p)=— 7,( Ol) (18 simple model of correlated phase damping due to Zhou into
po O our analysis[17]. In this model, each spin experiences a

random phase shift with zero mean. The amount of damping
Ordering the matrix elements ofp in the vector and the extent of correlation are defined by the covariance
(Poo:Po1:P10,P11) " [Which effectively defines the basis used matrix of the phase shifts. By explicit calculation, one may
in Eq. (3)], we have easily find that this leads to a generator of the form
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ZCPP=diad 0,— y2,— y1,— (y1+ Y2+ ¥a),
—¥2.0=(y1+v2—7v3),— 71,
—v1,— (Y11 72— ¥3),0,— 72,

—(y1tv2tv3),—v1,— 720l (23

wherey, andy, may be interpreted as rates for independent
phase damping on spins 1 and 2, apdmay be interpreted
as a rate for correlated damping. Indeed, in the case0,
this model reproduces independent phase damping.

FIG. 1. x matrices for the controlledoT gate. The matrix on
the left was experimentally measured by QPT, and that on the right
is theoretical. Only the magnitudes of the matrix elements are

Our completed model has the generator shown; the phases also corresponded well between theory and ex-
53 CPD GAD GAD periment. The matrix element in the far left corner connélcts 1,
Z=2TH 222 (24 and the matrix elements are orderedigXl, ... ,YZZZ.

where a subscript indicates which spin is acted on Alds

2

the generator corresponding to the Hamiltonian 1 0 0O
2,7, 0 1 00
J_ = 2
H'=hJ (25 UcnoT 00 0 1 27
0 010

In this Hamiltonian, the Zeeman terms are dropped from Eq.
(7) because we work in a frame rotating at the Larmor fre-
quencies of the two spins. To produce the model superoperdhe NMR pulse sequence chosen to implement this gate was
tor at any given time, we simply exponentiate E24).

_ _ (1
ll. EXPERIMENT Y1X1Y1de(5) Y2Xz, (29)

We have implemented QPT on a system of two spins in
an NMR apparatus. The experiments were performed at the. ™~ =~ f N a bar d ) | q
IBM Almaden Research Center using an Oxford Instrument irection for spiny, a bar enotes an inverse pu 8¢,) de- .
wide-bore magnet and a 500-MHz Varian Unity Inova Spec_no'[es a time evolution during which no pulses are applied,

trometer with a Nalorac triple resonance HFX probe. The2ndJ=215 Hz s the coupling constant for the scalaou-

sample was approximately 0.5 ml of 200 millimolar isotopi- pling between the spins. Procedures similar to those used in

cally labeled chloroform@CHCL) in d6-acetone, where the _'?Ef' [18|] W‘Tre etlgopted to impler_nentt lthi_sw%ulse seqft:_ence.
two qubits were the protoffirst spin and carbon(second e puise lengins were approximately MS, sufhl-

spin). This volume was chosen to make the sample fairlyciently fast that the effect o coupling could be neglected

short, as this gave the most effective gradient pulse charaéj—u”n_g a pulse. L_Jsmg quantum-pr_ocess tomogrgphy, we de-
teristics. terminedy for this process, effectively determinirig This

result is shown in Fig. 1.
A. Results: Gate fidelities Given y, we may calculate gate fidelities. For the

o _ _controlledNoT gate, numerically minimizing over input
One application of quantum-process tomography is to distates gives cyor=0.80+0.04.

agnose the accuracy of a quantum computation. When one Thjs figure may be thought of as a rough benchmark for
applies a series of gates to perform the unitary operdion the quality of gates that can be implemented using current
the computer will actually perform a superoperafowhich  NMR quantum computers. However, several caveats should
one hopes is close td. That closeness can be captured byphe addressed. Foremost, the preparation and readout steps
many distance measures — for example, the minimum gatgerformed to do the process tomography contribute to much
fidelity, defined as of the error. Performing process tomography on a null com-
o + putation U=1), we find F;=0.90£0.03. The primary
F—rw)n(t/du EqPDUIP). (26) sources of error are most likely imperfect state preparation
and imperfect state tomography due to imperfect pulse cali-
F represents the smallest possible overlap between a stdeation and inhomogeneity of the rf fiel{i9].
acted on byU and the same state acted on fiyNote that Also, in a long computation, experimental results suggest
minimizing over pure states is sufficient because the fidelitythat there may be a significant cancellation of erfdi8].
is convex and because an arbitrary density matrix can b&ypically, the major contribution to the error introduced by
written as a convex sum of pure states. an individual gate will be largely due to systematic errors
Using QPT, we measured the minimum gate fidelity for arather than fundamentally irreversible decoherence. If the
controlledNoOT operation, a well-known member of universal pulse sequence exhibits some degree of symmetry, these sys-
gate sets, with tematic errors may at least partially cancel. Thus the fidelity

here time goes right to lef¥; denotes ar/2 pulse in thex
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of a long sequence of gates cannot be deduced from th
individual gate fidelities, though one would certainly expect g,
it to be subadditive. 06

Of course, the minimum gate fidelity is a pessimistic stan-°*
dard; it may be more reasonable to consideraweragegate o
fidelity. To numerically calculate the average fidelity, we ">
must be able to sample uniformly from quantum states ac-
cording to an appropriate probability measure. Although this
problem is subtle for the case of mixed states, there is ¢
straightforward choice for pure states: we take the unitary
transform of a fixed state, where the unitary operator is cho-z
sen according to the Haar measutbe unique invariant
measure on a Lie grolipUsing the procedure described in
Ref.[20], we calculated average fidelities with>i@ndomly s
chosen unitaries, giving=&1Jot=0.955 and F{"9=0.960.
Thus, the average fidelity is significantly better than the
worst case; the error rate-1F improves by about one order
of magnitude.

0.1

XX zz
Yy

B. Results: Decoherence characterization 0.05

To characterize the decoherence occurring in the chloro- oJ[J[4|}
form system, we used QPT to measyreover the various )
relevant time scales. For an NMR spin, the relevant scales
are 1/(3), T,, andT, [21]. We thus sampled at times given

by (3)11/(2) for integersj e[0,4], (3)'T, for je[—1,4], FIG. 2. y matrices for decoherence at various times. Matrices on
and (%)i'-“rz for je[0,9], whereJ=215 Hz is the known the left are experimentally measured using QPT, and those on the

o= . . right are fits to Eq.(24). Only the magnitudes of the matrix ele-
value of theJ coupling, T, =20 sis a time scale on the order ments are shown, but their phases were also described well by the

of Ty, andrl'2=0.5 s is an intermediate time scale on themodel. From top to bottom,t=0.065 s, 0.5 s, 20 s. Att
order of T,. =0.065 s, the time was chosen to be an integer number of
By executing process tomography, we are able to deters-coupling periods, which explains the lack df -=ZZ and
mine y as a function of time. Howevey; is a large, complex ZzZ—ZZ terms in the corners. At=0.5 s, note that théZ —Z|
collection of numbers that cannot be easily interpreted. Taerms arise from a combination af coupling andindependent
better understand the results, we fit the data to a model prghase damping, not from correlated phase dampingt=A20 s,
cessy,, Which hopefully provides a reasonable descriptionnote that the nonzero antidiagonal terms found in the experiment do

of the relevant physics. Specifically, we use the model thapot appear in the fit even though such terms may arise in our am-
results from exponentiating E(R4). plitude damping model. Due to the details of the fitting procedure,

For eachy, we determined the closest fit to our model by the optimal fit matches Iar_gg elements closely but does not capture
numerically minimizing tf(xm— x) (xm—x)1, Wherex,, is the detail of the small antidiagonal.
a model superoperator derived from E84). This figure of
merit was on the order of 5% for most fits. The experimen-T;=21.1 s for carbon. These values agree roughly with the
tally measuredy matrices as well as the corresponding fitstime scalesl“j’l for amplitude damping. Using the Carr-
Xm are shown in Fig. 2 for three delay times. Purcell-Meiboom-Gill sequence, we fouiid=4.7 s for the
Fitting the various rate parameters ygf, as a function of proton andT,=0.26 s for carbon. In an experiment that
time allows us to characterize the process. These fits aneses refocusingT, is the relevant time scale for phase co-
shown in Figs. 3-5. The error bars in these plots are comherence. However, because no refocusing was performed
puted numerically, and are derived solely from the statisticgluring the process tomography, the time sddle including
of the measurements and the fitting procedure. the effect of magnetic field inhomogenity, is more relevant to
Our results are summarized in Table I. In addition to theseur analysis. By fitting the free induction decay, we find
data, we found the correlated phase damping fatéo be  T5=0.86 s for the proton an@’ =0.20 s for carbon, val-
zero to within statistical precision. Unfortunately, insuffi- yes that agree more closely with the time scagt?é mea-
cient precision was available to determine the amplitudesyred by the QPT.
damping temperature parametegs This is not a significant As previously mentioned, the QPT preparation step is
difficulty, as they are certain to be near 1/2 for high- non-negligible for the controlledoT gate fidelity experi-
temperature systems. The data are consistent with this valument. However, this is not the case for the decoherence mea-
For comparison, the relevant decoherence parametesurements: the time scales are long compared to the time to
were measured by standard techniques. By the inversiorperform the QPT preparation, so small errors in the prepara-
recovery technique, we foun,=18.5 s for the proton and tion are unimportant. For the experiments at short times to
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FIG. 5. Determination of the amplitude damping ralgs The
circles represernjt=1 (proton, and the squares represg¢nt2 (car-
bon).

FIG. 3. Determination of the strength of the scalacoupling
between spins.

measure the parameter describing unitary evolutiin the  of the system—an assumption which can, in turn, be checked
preparation is non-negligible, but the operation is simpleusing QPT.

enough that we are still able to determideo within two Our measurements of gate fidelities underscore the diffi-
standard deviations. culty of implementing highly accurate logic gates in NMR.
These fidelity measurements suggest a per-gate error rate of
IV. CONCLUSIONS the order of 10%, in agreement with previous implementa-

tions of quantum algorithmgl8]. It has been suggested that
We have demonstrated the implementation of quantungrror rates of 10? can be achieved in solution NMR22].
process tomography to characterize the dynamics of a twandeed, if the previously discussed cancellation of errors in a
qubit NMR quantum computer. Such techniques shouldong sequence of gates leads t® alimited computatior(as
prove useful in the future for diagnosing quantum informa-observed in[18]), then an optimistic estimate of,=1 s
tion processing devices. However, we should stress that dughd J=100 Hz leads to an approximate error rate of 10
to the exponential size of, QPT can only be used to char- Nevertheless, even this falls far short of the requirements for
acterize the dynamics of sufficiently small systems. For larggault-tolerant quantum computif@3]: the least stringent es-
systems, one may only be able to perform QPT on a smalimates indicate a threshold for fault tolerance of about*.0
part of the total system, assuming independence from the regt4]. Clearly, the development of fault-tolerant NMR quan-
tum computers will require substantially modified tech-
. nigues. One might construct an alternative model for fault
tolerance, perhaps based on topological properfs.
However, with a conventional approach to fault tolerance,
we will either need significant improvement of gate fidelity
over what is currently achievable, specialization of fault tol-
erant protocols to the specific errors that occur in NMR, or
both.
In turn, analyses of the threshold for fault-tolerant quan-

10 ¢

=107t . . . : .
- tum computation typically involve an assumption of inde-
pendent errors. Although some special correlated errors are
TABLE |. Dynamical time scales fof*CHCl;, as measured by
107 QPT. Recall that the proton is spin 1 and tH€ nucleus is spin 2.
v3 Is fitted to zero to within experimental uncertainty.
. J 2203 Hz
107 107 -
ime 19 ", 0.73+0.03 s
) 0.21+0.01 s
FIG. 4. Determination of the phase damping ratgs The 1“;1 12.7+0.3 s
circles represerjt=1 (proton, and the squares represgrt2 (car- r,* 22.4+0.7 s

bon). vy; is fitted to zero to within experimental uncertainty.
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easier to correct than independent errors, specialized quaation” (in the terminology of NMR. For example, the
tum codes exploiting full knowledge of the error processessimple two-spin proton-carbon system provided by sodium
are necessary. Correlations that have complicated structufermate is known to possess cross relaxafi@®l. Investiga-
generally increase the requirements of error correction, bufon of such systems by QPT might be interesting not only
the exact nature of these requirements has yet to be analyzddr the purpose of quantum computing, but also for studying
Thus, for the experimental implementation of fault-tolerantcross relaxation in the context of conventional NMR.
computers, it is important to understand the error model in
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