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Realization of quantum process tomography in NMR
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Quantum process tomography is a procedure by which the unknown dynamical evolution of an open
quantum system can be fully experimentally characterized. We demonstrate explicitly how this procedure can
be implemented with a nuclear magnetic resonance quantum computer. This allows us to measure the fidelity
of a controlled-NOT logic gate and to experimentally investigate the error model for our computer. Based on the
latter analysis, we test an important assumption underlying many models of quantum error correction, the
independence of errors on different qubits.
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I. INTRODUCTION

Experimental characterization of the dynamical behav
of open quantum systems has traditionally revolved aro
semiclassical concepts such as coupling strengths, relax
rates, and phase coherence times@1,2#. However, quantum
information theory tells us that so few parameters bar
even begin to represent the full dynamics that quantum
tems are capable of; for example, the evolution between
fixed times of a two-level quantum system~a qubit!, coupled
to an arbitrary reservoir, is described by 12 real parame
@3#. For a two-qubit system, this number grows to 240, a
in general, forn qubits it is 16n24n.

Of course, not all of these parameters are relevant
every physical process, and understanding the physics
boil down this huge parameter space to just a few impor
numbers. On the other hand, when the physical origins
quantum process arenot understood, or in question, it i
invaluable to know that all these parameters can, in princi
be experimentally measured—albeit with exponential eff
~in n)—using a procedure known asquantum process to
mography. This method is a direct quantum extension of t
classical concept of ‘‘system identification,’’ which enabl
control of dynamical systems and provides powerful m
surement techniques for characterizing unknown syste
For closed systems, process tomography is the analog o
termining the truth table of an unknown function; quantu
mechanically, this means the unitary transform involved i
quantum computation.

The procedure for quantum process tomography has b
described in detail in the literature@3–5#. It relies upon the
ability to prepare a complete set of quantum statesr j as
input to the unknown processEt , and the ability to measure
the density matrices of the output quantum states from
processEt(r). As a result, one obtains a complete ‘‘blac
box’’ characterization ofEt . By systematically repeating thi
procedure for increasing process timet, one can also obtain a
complete master equation description of the process@6#.

This procedure seems to provide an ideal way to cha
terize and test quantum gates on a small number of qubit
1050-2947/2001/64~1!/012314~7!/$20.00 64 0123
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for example, those realized using nuclear magne
resonance~NMR! techniques@7,8#. In fact, NMR quantum
process tomography has been performed on a single q
@9#. However, to date, this has not been extensively practi
because of two problems: first, it is desirable to explici
include the maximally mixed state as one of ther j ’s, so as to
directly subtract its contribution, but such a state cannot
prepared by unitary actions alone. Second, one can o
measure traceless observables, and thus one cannot o
the entire output density matrix of a process.

Here, we show explicitly how these hurdles can be ov
come, and demonstrate the use of these methods in add
ing two outstanding issues in quantum computation: the
delity of a quantum logic gate, the controlled-NOT gate, and
the validity of the independent error model, which is wide
assumed~though not strictly necessary! for quantum error
correction and fault-tolerant computation.

The paper is divided into two major sections, which d
scribe the theory and our experiment. We begin with a
view of quantum process tomography~QPT!; then we ex-
plain our extensions to the basic procedure that enable Q
with NMR, and present theoretical models for decohere
in NMR. We then describe our experiment and procedu
and our two main experimental results.

II. THEORY

A. Quantum-process tomography

Quantum process tomography, as introduced by Chu
and Nielsen@3#, can be summarized as follows. A gener
quantum operation on a quantum stater is a superoperatorE,
a linear, trace-preserving, completely positive map@10–12#.
We consider only the case whereE(r) has the same dimen
sion asr. A common form forE is the operator-sum repre
sentation,

E~r!5(
k

AkrAk
† , ~1!

where(kAk
†Ak5I . One can easily demonstrate the transf

mation to a fixed-basis expansion of the quantum opera
©2001 The American Physical Society14-1
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such that the information about the process lies in a se
coefficientsxmn instead of a set of operators. In this form,E
maps an initial density matrixr according to

E~r!5(
m,n

xmnAmrAn
† . ~2!

In this expression, theAm are a basis for operators on th
space of density matrices, andx is a positive Hermitian ma-
trix with elementsxmn . In the following, we will omit ex-
plicit summations and adopt the convention that repea
indices are summed over. Because of the restriction thE
must preserve the trace ofr, x containsN42N2 independent
parameters for anN-dimensional system~for n spins, N
52n).

Let the N2 matricesr j be a basis for density matrice
Applying E to this basis gives

E~r j !5l jkrk . ~3!

Using quantum state tomography@13#, one can experimen
tally determinel jk , which fully specifiesE. To determinex
from l, we defineb by

Amr jAn
†5b jk

mnrk , ~4!

which is fully specified by the choice ofAm and r j . Then
one can show that

b jk
mnxmn5l jk . ~5!

We may think ofb as a matrix andl andx as vectors, with
mn a composite column index andjk a composite row in-
dex; thenbxW 5lW . Using the pseudoinversek of b ~also
called the Moore-Penrose generalized inverse!, which may
be computed independent of measurement results, we h

xW 5klW . ~6!

B. QPT in NMR

Implementing QPT in high-temperature NMR prese
two main obstacles. First, the part of the system that can
manipulated by unitary operations is but a small deviat
from a maximally mixed state. Second, one can only m
sure traceless observables, and the scaling of these ob
ables with respect to the traceful part of the system is
immediately known. Fortunately, both of these hurdles c
be overcome.

The Hamiltonian for solution NMR is well approximate
by

H52\v j

Zj

2
1hJjk

ZjZk

4
, ~7!

where

Zj5S 1 0

0 21D ~8!
01231
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is the Pauli operator for thej th spin along the direction of the
magnetic field,v j is its Larmor frequency, and the sign o
the first term is chosen so that the ground state is spin
The second term represents a small scalar coupling betw
spins known as theJ coupling.

The initial state of an NMR quantum computer is th
thermal equilibrium state with density matrix

r`5
e2H/kBT

tr~e2H/kBT!
5cI1D` , ~9!

wherec522n for a system ofn spins@so that tr(r`)51# and
D` is traceless. In general, we refer to the traceless par
any density matrixr as the deviation density matrix. If we
neglect the small coupling between spins and consider h
temperature with respect to the Larmor frequencies, the e
librium density matrix is approximately

r`'cS I 1
\v jZj

2kBT D . ~10!

By performing unitary operations on the system, we m
rotate thev jZj deviation, allowing us to prepare a linear
independent set of inputsr j . Because all of the interestin
information will lie in this deviation, we would like to be
able to prepare an input with no deviation~i.e., the maxi-
mally mixed state!, so that we may directly subtract the co
tribution of the identity. Such an input clearly cannot b
prepared by unitary means. However, the maximally mix
statecan be prepared from the thermal state by applying
p/2 pulse followed by a uniformly spatially varying rf pulse
Different parts of the sample experience different amounts
rotation, so that the ensemble is effectively dephased to
maximally mixed state.

The second difficulty can be handled by calibrating me
surements to the known initial state of the system. By st
tomography, we can measureD̃5dD` , where the constantd
is arbitrary — it depends in detail on the gain of the amp
fiers, the efficiency of the rf coils, etc. But the initial devia
tion density matrix is known to bec(\v jZj /2kBT). Hence
we may calibrate our apparatus by determining the valud

that makes the measuredD̃/d closest to the theoreticalD` .
In practice, we effect this calibration by normalizing all me
surements~integrals of spectral peaks! for spin j to a refer-
ence measurement taken on that spin~a p/2 pulse applied to
the thermal state! multiplied by c(\v j /2kBT).

C. Decoherence primitives

Decoherence of a single NMR spin in solution is gen
ally characterized by two well-known processes: amplitu
damping and phase damping. Here, we present these
cesses, as well as generalizations to multiple spins. To fa
tate the description of multiple simultaneous processes,
describe amplitude damping and phase damping as s
groups in terms of their generators.

Assuming that a quantum operation can be described
norm continuous one-parameter semigroup, given a supe
eratorEt satisfying the stationarity and Markovity conditio
4-2
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REALIZATION OF QUANTUM PROCESS TOMOGRAPHY IN NMR PHYSICAL REVIEW A64 012314
EsEt5Es1t @14#, its generatorZ is defined as@15#

Z~r!5 lim
t→0

Et~r!2r

t
. ~11!

The generators have the advantage that they easily des
the simultaneous action of multiple processes. In particu
we have the Lie product formula@15#

E t
(112)5 lim

n→`

~E t/n
(1)E t/n

(2)!n, ~12!

where

Z (112)5Z (1)1Z (2), ~13!

with obvious generalization to more than two processes.
Furthermore, we may return to the superoperator form

exponentiating the generator@15#:

E5 lim
n→`

S 12
t

n
ZD 2n

~14!

5eZt. ~15!

This exponentiation may be defined by its Taylor series
the case of interest where is bounded. To implement ex
nentiation in practice, it is useful to work with a manifest
linear representation, i.e., that of Eq.~3!. In this case, a su
peroperator and its generator can be represented as ma
that have the property that composition of superopera
corresponds to matrix multiplication. Then the procedure
Eq. ~14! corresponds to matrix exponentiation.

We now consider the single-qubit versions of phase
amplitude damping. For further discussion of these p
cesses, including operator-sum representations, see Ref.@16#.
We write the density matrix of a qubit as

r5S r00 r01

r10 r11
D . ~16!

Phase damping can be thought of as a consequence of
dom phase kicks. It acts on a qubit as

E t
PD~r!5S r00 e2gtr01

e2gtr10 r11
D , ~17!

for some damping rateg; i.e., it has a generator that acts

Z PD~r!52gS 0 r01

r10 0 D . ~18!

Ordering the matrix elements ofr in the vector
(r00,r01,r10,r11)

T @which effectively defines the basis use
in Eq. ~3!#, we have
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Z PD5S 0 0 0 0

0 2g 0 0

0 0 2g 0

0 0 0 0

D . ~19!

Generalized amplitude damping is a process whereby the
bit may exchange energy with a reservoir at some fixed te
perature. It acts on a qubit as

E t
GAD~r!5S k1r001k2r11 e2Gt/2r01

e2Gt/2r10 k3r001k4r11
D , ~20!

where k2[(12n̄)(12e2Gt), k3[n̄(12e2Gt), k1[12k3,
andk4[12k2, with G a damping rate andn̄ a temperature
parameter. Its generator acts as

ZGAD52GS n̄ 0 0 n̄21

0 1
2 0 0

0 0 1
2 0

2n̄ 0 0 12n̄

D . ~21!

Computing the fixed point of this process, we find that w
may interpret it as occurring at a temperature

kBT5
DE

ln
12n̄

n̄

, ~22!

where DE is the splitting between the ground and excit
states of the system.

Heuristically, we expect phase damping to describe theT2
~dephasing! process of NMR. Similarly, generalized ampl
tude damping should describe theT1 process of NMR,
whereby a spin relaxes to align with the magnetic field. N
from the geometry of the Bloch sphere that amplitude dam
ing necessarily includes loss of phase information, so it a
contributes to theT2 process. However, in typical system
T1 is much longer thanT2, so the contribution of amplitude
damping to dephasing is small.

The simplest extension of these processes to a multi
spin system is to allow the individual processes to act in
pendently on each qubit. However, this is far from the m
general scenario: the decoherence might be correlated.
though we have been unable to find a suitable correla
generalization of amplitude damping, we have incorporate
simple model of correlated phase damping due to Zhou
our analysis@17#. In this model, each spin experiences
random phase shift with zero mean. The amount of damp
and the extent of correlation are defined by the covaria
matrix of the phase shifts. By explicit calculation, one m
easily find that this leads to a generator of the form
4-3
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CHILDS, CHUANG, AND LEUNG PHYSICAL REVIEW A64 012314
Z CPD5diag@0,2g2 ,2g1 ,2~g11g21g3!,

2g2,0,2~g11g22g3!,2g1 ,

2g1 ,2~g11g22g3!,0,2g2 ,

2~g11g21g3!,2g1 ,2g2,0], ~23!

whereg1 andg2 may be interpreted as rates for independ
phase damping on spins 1 and 2, andg3 may be interpreted
as a rate for correlated damping. Indeed, in the caseg350,
this model reproduces independent phase damping.

Our completed model has the generator

Z5Z J1Z CPD1Z 1
GAD1Z 2

GAD, ~24!

where a subscript indicates which spin is acted on andZ J is
the generator corresponding to the Hamiltonian

HJ5hJ
Z1Z2

4
. ~25!

In this Hamiltonian, the Zeeman terms are dropped from
~7! because we work in a frame rotating at the Larmor f
quencies of the two spins. To produce the model superop
tor at any given time, we simply exponentiate Eq.~24!.

III. EXPERIMENT

We have implemented QPT on a system of two spins
an NMR apparatus. The experiments were performed at
IBM Almaden Research Center using an Oxford Instrume
wide-bore magnet and a 500-MHz Varian Unity Inova sp
trometer with a Nalorac triple resonance HFX probe. T
sample was approximately 0.5 ml of 200 millimolar isotop
cally labeled chloroform (13CHCl3) in d6-acetone, where th
two qubits were the proton~first spin! and carbon~second
spin!. This volume was chosen to make the sample fa
short, as this gave the most effective gradient pulse cha
teristics.

A. Results: Gate fidelities

One application of quantum-process tomography is to
agnose the accuracy of a quantum computation. When
applies a series of gates to perform the unitary operationU,
the computer will actually perform a superoperatorE, which
one hopes is close toU. That closeness can be captured
many distance measures — for example, the minimum g
fidelity, defined as

F5min
uc&

Šc zU†E~ uc&^cu!U zc‹. ~26!

F represents the smallest possible overlap between a
acted on byU and the same state acted on byE. Note that
minimizing over pure states is sufficient because the fide
is convex and because an arbitrary density matrix can
written as a convex sum of pure states.

Using QPT, we measured the minimum gate fidelity fo
controlled-NOT operation, a well-known member of univers
gate sets, with
01231
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UCNOT5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D ~27!

The NMR pulse sequence chosen to implement this gate

Ȳ1X1Y1Ȳ2dS 1

2JDY2X2 , ~28!

where time goes right to left,Xj denotes ap/2 pulse in thex
direction for spinj, a bar denotes an inverse pulse,d( ) de-
notes a time evolution during which no pulses are appli
andJ5215 Hz is the coupling constant for the scalarJ cou-
pling between the spins. Procedures similar to those use
Ref. @18# were adopted to implement this pulse sequen
The pulse lengths were approximately 10220 ms, suffi-
ciently fast that the effect ofJ coupling could be neglected
during a pulse. Using quantum-process tomography, we
terminedx for this process, effectively determiningE. This
result is shown in Fig. 1.

Given x, we may calculate gate fidelities. For th
controlled-NOT gate, numerically minimizing over inpu
states givesFCNOT50.8060.04.

This figure may be thought of as a rough benchmark
the quality of gates that can be implemented using curr
NMR quantum computers. However, several caveats sho
be addressed. Foremost, the preparation and readout
performed to do the process tomography contribute to m
of the error. Performing process tomography on a null co
putation (U5I ), we find FI50.9060.03. The primary
sources of error are most likely imperfect state prepara
and imperfect state tomography due to imperfect pulse c
bration and inhomogeneity of the rf fields@19#.

Also, in a long computation, experimental results sugg
that there may be a significant cancellation of errors@18#.
Typically, the major contribution to the error introduced b
an individual gate will be largely due to systematic erro
rather than fundamentally irreversible decoherence. If
pulse sequence exhibits some degree of symmetry, these
tematic errors may at least partially cancel. Thus the fide

FIG. 1. x matrices for the controlled-NOT gate. The matrix on
the left was experimentally measured by QPT, and that on the r
is theoretical. Only the magnitudes of the matrix elements
shown; the phases also corresponded well between theory an
periment. The matrix element in the far left corner connectsII ↔II ,
and the matrix elements are ordered asII ,XI, . . . ,YZ,ZZ.
4-4
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REALIZATION OF QUANTUM PROCESS TOMOGRAPHY IN NMR PHYSICAL REVIEW A64 012314
of a long sequence of gates cannot be deduced from
individual gate fidelities, though one would certainly expe
it to be subadditive.

Of course, the minimum gate fidelity is a pessimistic sta
dard; it may be more reasonable to consider theaveragegate
fidelity. To numerically calculate the average fidelity, w
must be able to sample uniformly from quantum states
cording to an appropriate probability measure. Although t
problem is subtle for the case of mixed states, there
straightforward choice for pure states: we take the unit
transform of a fixed state, where the unitary operator is c
sen according to the Haar measure~the unique invariant
measure on a Lie group!. Using the procedure described
Ref. @20#, we calculated average fidelities with 105 randomly
chosen unitaries, givingFCNOT

avg 50.955 and FI
avg50.960.

Thus, the average fidelity is significantly better than t
worst case; the error rate 12F improves by about one orde
of magnitude.

B. Results: Decoherence characterization

To characterize the decoherence occurring in the chlo
form system, we used QPT to measurex over the various
relevant time scales. For an NMR spin, the relevant sc
are 1/(2J), T1, andT2 @21#. We thus sampled at times give

by ( 1
2 ) j1/(2J̃) for integersj P@0,4#, ( 1

2 ) j T̃1 for j P@21,4#,

and (2
3 ) j T̃2 for j P@0,9#, where J̃5215 Hz is the known

value of theJ coupling,T̃1520 s is a time scale on the orde
of T1, and T̃250.5 s is an intermediate time scale on t
order ofT2.

By executing process tomography, we are able to de
minex as a function of time. However,x is a large, complex
collection of numbers that cannot be easily interpreted.
better understand the results, we fit the data to a model
cessxm , which hopefully provides a reasonable descripti
of the relevant physics. Specifically, we use the model t
results from exponentiating Eq.~24!.

For eachx, we determined the closest fit to our model
numerically minimizing tr@(xm2x)†(xm2x)#, wherexm is
a model superoperator derived from Eq.~24!. This figure of
merit was on the order of 5% for most fits. The experime
tally measuredx matrices as well as the corresponding fi
xm are shown in Fig. 2 for three delay times.

Fitting the various rate parameters ofxm as a function of
time allows us to characterize the process. These fits
shown in Figs. 3–5. The error bars in these plots are c
puted numerically, and are derived solely from the statis
of the measurements and the fitting procedure.

Our results are summarized in Table I. In addition to the
data, we found the correlated phase damping rateg3 to be
zero to within statistical precision. Unfortunately, insuf
cient precision was available to determine the amplitu
damping temperature parametersn̄ j . This is not a significant
difficulty, as they are certain to be near 1/2 for hig
temperature systems. The data are consistent with this v

For comparison, the relevant decoherence parame
were measured by standard techniques. By the invers
recovery technique, we foundT1518.5 s for the proton and
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T1521.1 s for carbon. These values agree roughly with
time scalesG j

21 for amplitude damping. Using the Carr
Purcell-Meiboom-Gill sequence, we foundT254.7 s for the
proton andT250.26 s for carbon. In an experiment th
uses refocusing,T2 is the relevant time scale for phase c
herence. However, because no refocusing was perfor
during the process tomography, the time scaleT2* , including
the effect of magnetic field inhomogenity, is more relevant
our analysis. By fitting the free induction decay, we fin
T2* 50.86 s for the proton andT2* 50.20 s for carbon, val-
ues that agree more closely with the time scalesg j

21 mea-
sured by the QPT.

As previously mentioned, the QPT preparation step
non-negligible for the controlled-NOT gate fidelity experi-
ment. However, this is not the case for the decoherence m
surements: the time scales are long compared to the tim
perform the QPT preparation, so small errors in the prepa
tion are unimportant. For the experiments at short times

FIG. 2. x matrices for decoherence at various times. Matrices
the left are experimentally measured using QPT, and those on
right are fits to Eq.~24!. Only the magnitudes of the matrix ele
ments are shown, but their phases were also described well by
model. From top to bottom,t50.065 s, 0.5 s, 20 s. Att
50.065 s, the time was chosen to be an integer number
J-coupling periods, which explains the lack ofII ↔ZZ and
ZZ↔ZZ terms in the corners. Att50.5 s, note that theIZ↔ZI
terms arise from a combination ofJ coupling and independent
phase damping, not from correlated phase damping. Att520 s,
note that the nonzero antidiagonal terms found in the experimen
not appear in the fit even though such terms may arise in our
plitude damping model. Due to the details of the fitting procedu
the optimal fit matches large elements closely but does not cap
the detail of the small antidiagonal.
4-5
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CHILDS, CHUANG, AND LEUNG PHYSICAL REVIEW A64 012314
measure the parameter describing unitary evolution (J), the
preparation is non-negligible, but the operation is sim
enough that we are still able to determineJ to within two
standard deviations.

IV. CONCLUSIONS

We have demonstrated the implementation of quan
process tomography to characterize the dynamics of a t
qubit NMR quantum computer. Such techniques sho
prove useful in the future for diagnosing quantum inform
tion processing devices. However, we should stress that
to the exponential size ofx, QPT can only be used to cha
acterize the dynamics of sufficiently small systems. For la
systems, one may only be able to perform QPT on a sm
part of the total system, assuming independence from the

FIG. 3. Determination of the strength of the scalarJ coupling
between spins.

FIG. 4. Determination of the phase damping ratesg j . The
circles representj 51 ~proton!, and the squares representj 52 ~car-
bon!. g3 is fitted to zero to within experimental uncertainty.
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of the system—an assumption which can, in turn, be chec
using QPT.

Our measurements of gate fidelities underscore the d
culty of implementing highly accurate logic gates in NMR
These fidelity measurements suggest a per-gate error ra
the order of 1021, in agreement with previous implementa
tions of quantum algorithms@18#. It has been suggested th
error rates of 1022 can be achieved in solution NMR@22#.
Indeed, if the previously discussed cancellation of errors i
long sequence of gates leads to aT2-limited computation~as
observed in@18#!, then an optimistic estimate ofT251 s
andJ5100 Hz leads to an approximate error rate of 1022.
Nevertheless, even this falls far short of the requirements
fault-tolerant quantum computing@23#: the least stringent es
timates indicate a threshold for fault tolerance of about 1024

@24#. Clearly, the development of fault-tolerant NMR qua
tum computers will require substantially modified tec
niques. One might construct an alternative model for fa
tolerance, perhaps based on topological properties@25#.
However, with a conventional approach to fault toleran
we will either need significant improvement of gate fideli
over what is currently achievable, specialization of fault t
erant protocols to the specific errors that occur in NMR,
both.

In turn, analyses of the threshold for fault-tolerant qua
tum computation typically involve an assumption of ind
pendent errors. Although some special correlated errors

FIG. 5. Determination of the amplitude damping ratesG j . The
circles representj 51 ~proton!, and the squares representj 52 ~car-
bon!.

TABLE I. Dynamical time scales for13CHCl3, as measured by
QPT. Recall that the proton is spin 1 and the13C nucleus is spin 2.
g3 is fitted to zero to within experimental uncertainty.

J 22063 Hz
g1

21 0.7360.03 s
g2

21 0.2160.01 s
G1

21 12.760.3 s
G2

21 22.460.7 s
4-6



ua
e
tu
b
z
n

l i
n

III

rr
p
i

ex
rr

o
la

um

nly
ing

ion
eri-
ll as
ng
ipt,
un-
T
O

REALIZATION OF QUANTUM PROCESS TOMOGRAPHY IN NMR PHYSICAL REVIEW A64 012314
easier to correct than independent errors, specialized q
tum codes exploiting full knowledge of the error process
are necessary. Correlations that have complicated struc
generally increase the requirements of error correction,
the exact nature of these requirements has yet to be analy
Thus, for the experimental implementation of fault-tolera
computers, it is important to understand the error mode
detail, and in particular, the extent to which the indepe
dence assumption holds. The results presented in Sec.
show that this modelis well understood for the13CHCl3
NMR system, and furthermore, that the errors are unco
lated. The data are fit well by a combination of phase dam
ing and independent generalized amplitude damping, w
the phase damping essentially uncorrelated. Thus there
simple computational systems in which an uncorrelated e
model is reasonable.

However, note that there are systems that do exhibit c
related decoherence, namely those that exhibit ‘‘cross re
n

ci

o
0

ro

l

of

01231
n-
s
re

ut
ed.
t
n
-
B

e-
-

th
ist

or

r-
x-

ation’’ ~in the terminology of NMR!. For example, the
simple two-spin proton-carbon system provided by sodi
formate is known to possess cross relaxation@26#. Investiga-
tion of such systems by QPT might be interesting not o
for the purpose of quantum computing, but also for study
cross relaxation in the context of conventional NMR.
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