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Entanglement in the quantum HeisenbergXY model

Xiaoguang Wang
Institute of Physics and Astronomy, Aarhus University, DK-8000, Aarhus C, Denmark

~Received 4 January 2001; published 12 June 2001!

We study the entanglement in the quantum HeisenbergXY model in which the so-calledW entangled states
can be generated for 3 or 4 qubits. By the concept of concurrence, we study the entanglement in the time
evolution of theXY model. We investigate the thermal entanglement in the two-qubit isotropicXY model with
a magnetic field and in the anisotropicXY model, and find that the thermal entanglement exists for both
ferromagnetic and antiferromagnetic cases. Some evidences of the quantum phase transition also appear in
these simple models.
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I. INTRODUCTION

Quantum entanglement has been studied intensely in
cent years due to its potential applications in quantum co
munication and information processing@1# such as quantum
teleportation@2#, superdense coding@3#, quantum key distri-
bution @4#, and telecoloning@5#. Recently, Du¨r et al. @6#
found that truly tripartite pure state entanglement of th
qubits is either equivalent to the maximally entangl
Greenberger-Horne-Zeilinger~GHZ! state@7# or to the so-
calledW state@6#

uW&5
1

A3
~ u100&1u010&1u001&). ~1!

For the GHZ state, if one of the three qubits is traced out,
remaining state is unentangled, which means that this sta
fragile under particle losses. Oppositely, the entanglemen
theW state is maximally robust under disposal of any one
the three qubits@6#.

A natural generalization of theW state toN qubits and
arbitrary phases is

uWN&5
1

AN
~eiu1u1000 . . . 0&1eiu2u0100 . . . 0&

1eiu3u0010 . . . 0&1•••1eiuNu0000 . . . 1&).

~2!

For the above stateuWN&, the concurrences@6,8# between
any two qubits are all equal to 2/N and do not depend on th
phasesu i ( i 51,2, . . . ,N). This shows that any two qubits i
theW state are equally entangled. Recently, Koashiet al. @9#
shows that the maximum degree of entanglement~measured
in the concurrence! between any pair of qubits of aN-qubit
symmetric state is 2/N. This tight bound is achieved whe
the qubits are prepared in the stateuWN&.

The Heisenberg interaction has been used to implem
quantum computer@10#. It can be realized in quantum do
@10#, nuclear spins@11#, electronic spins@12#, and optical
lattices@13#. By suitable coding, the Heisenberg interacti
alone can be used for quantum computation@14#.
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Here we consider the quantum HeisenbergXY model,
which was intensively investigated in 1960 by Lieb, Schul
and Mattis@15#. Recently, Imamoḡlu et al. have studied the
quantum information processing using quantum dot sp
and cativity QED@16# and obtained an effective interactio
Hamiltonian between two quantum dots, which is just t
XY Hamiltonian. The effective Hamiltonian can be used
construct the controlled-NOT gate@16#. TheXY model is also
realized in the quantum-Hall system@17# and in cavity QED
system@18# for a quantum computer.

The XY Hamiltonian is given by@15#

H5J(
n51

N

~Sn
xSn11

x 1Sn
ySn11

y !, ~3!

whereSa5sa/2 (a5x,y,z) are spin 1/2 operators,sa are
Pauli operators, andJ.0 is the antiferromagnetic exchang
interaction between spins. We adopt the periodic bound
condition, i.e.,SN11

x 5S1
x , SN11

y 5S1
y .

One role of theXY model in quantum computation is tha
it can be used to construct the swap gate. The evolu
operator of the corresponding two-qubitXY model is given
by

U~ t !5exp@2 iJt~s1
xs2

x1s1
ys2

y!/2#. ~4!

ChoosingJt5p/2, we have

US p

2JD u00&5u00&, US p

2JD u11&5u11&,

~5!

US p

2JD u01&52 i u10&, US p

2JD u10&52 i u01&.

The above equation shows that the operatorU(p/2J) acts as
a swap gate up to a phase. Another gateAswap that is uni-
versal can also be constructed simply asU(p/4J). A swap
gate can be realized by successive threeCNOT gates@19#,
while here we only need one-time evolution of theXY
model. This shows that theXY model has some potentia
applications in quantum computation.

The entanglement in the ground state of the Heisenb
model has been discussed by O’Connor and Wootters@20#.
Here we study the entanglement in theXY model. We first
©2001 The American Physical Society13-1
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consider the generation ofW states in theXY model. It is
found that for 3 and 4 qubits, theW states can be generate
at certain times. By the concept of concurrence, we study
entanglement properties in the time evolution of theXY
model. Finally, we discuss the thermal entanglement in
two-qubit XY model with a magnetic field and in the anis
tropic XY model.

II. SOLUTION OF THE XY MODEL

With the help of raising and lowering operatorssn
65Sn

x

6 iSn
y , the HamiltonianH is rewritten as (J51)

H5
1

2 (
n51

N

~sn
1sn11

2 1sn11
1 sn

2!. ~6!

Obviously the states with all spins downu0& ^ N or all spins
up u1& ^ N are eigenstates with zero eigenvalues.

The eigenvalue problem of theXY model can be exactly
solved by the Jordan-Wigner transformation@21#. Here we
are only interested in the time-evolution problem and in
‘‘one-particle’’ states (N21 spins down, one spin up!,

uk&5 (
n51

N

ak,nsn
1u0& ^ N. ~7!

The eigenequation is given by

HuC&5
1

2 (
n51

N

~ak,n111ak,n21!sn
1u0& ^ N

5Ek(
n51

N

ak,nsn
1u0& ^ N. ~8!

Then the coefficientsak,n satisfy

1

2
~ak,n111ak,n21!5Ekak,n . ~9!

The solution of the above equation is

ak,n5expS i2pnk

N D ~k51, . . . ,N!, ~10!

Ek5cosS 2pk

N D , ~11!

where we have used the periodic boundary condition.
So the eigenvectors are given by

uk&5
1

AN
(
n51

N

expS i2pnk

N Dsn
1u0& ^ N, ~12!

which satisfŷ kuk8&5dkk8 . It is interesting to see that all th
eigenstates are generalizedW states@Eq. ~2!#.

Note that theXY HamiltonianH commutes with the op-
erator
01231
e

e

e

Q5sx
^ N5sx^ sx^ , . . . ,^ sx , ~13!

then the state

uk&85
1

AN
(
n51

N

expS i2pnk

N Dsn
2u1& ^ N ~14!

are also the eigenstates ofH with eigenvalues cos(2pk/N).
Now we choose the initial state of the system

s1
1u0& ^ N, and in terms of the eigenstatesuk&, it can be ex-

pressed as

uC~0!&5
1

AN
(
k51

N

expS 2 i2pk

N D uk&. ~15!

The state vector at timet is easily obtained as

uC~ t !&5 (
n51

N

bn~ t !sn
1u0& ^ N, ~16!

where

bn~ t !5
1

N (
k51

N

ei2p(n21)k/N2 i t cos(2pk/N). ~17!

If we choose the initial state ass1
2u1& ^ N, then the wave

vector at timet will be (n51
N bn(t)sn

2u1& ^ N.

III. GENERATION OF W STATES

From Eq. ~16!, the probabilities at timet for state
sn

1u0& ^ N is obtained as

P~n,N,t !5ubn~ t !u2. ~18!

For N52, it is easy to see that the probabilityP(1,2,t)
5cos2 t, P(2,2,t)5sin2 t. The state vector at timet is

uC~ t !&5costu10&2 i sintu01&. ~19!

When t5p/4, the above state is the maximally entangl
state.

Now we consider the caseN53. The probabilities are
analytically obtained as

P~1,3,t !5
1

9 F514 cosS 3

2
t D G ,

~20!

P~2,3,t !5P~3,3,t !5
1

9 F222 cosS 3

2
t D G .

Figure 1~a! gives a plot of the probabilities versus time. It
clear that there exist some cross points of the probabilit
At these special times, the probabilitiesP(n,3,t) are all equal
to 1/3, which indicates theW states are generated. From E
~20!, we see that if the timet satisfies the equation

cosS 3

2
t D52

1

2
, ~21!
3-2
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the probabilities are the same. The solution of Eq.~21! is

tn5
4p

9
1

4np

3
,

~22!

tn85
8p

9
1

4np

3
~n50,1,2, . . . ,!.

Explicitly at these time points, the corresponding state v
tors are

uC~ tn!&5
1

A3
~ u100&1e2 i2p/3u010&1e2 i2p/3u001&),

~23!

uC~ tn8!&5
1

A3
~ u100&1ei2p/3u010&1ei2p/3u001&),

which are the generalizedW state forN53.
For the caseN54, the probabilities are given by

P~1,4,t !5cos4S t

2D , P~3,4,t !5sin4S t

2D ,

~24!

P~2,4,t !5P~4,4,t !5
1

4
sin2t.

As seen from Fig. 2~a!, there also exists some cros
points, which indicates the four-qubitW states are generated
The probabilities are the same when

tn5
p

2
12np,

~25!

tn85
3p

2
12np ~n50,1,2, . . . ,!.

FIG. 1. Time evolution of the probabilities and concurrences
N53. ~a! The probability plus 1 forn51 ~solid line! and n52,
n53 ~dotted line!; ~b! the concurrencesC12(t), C13(t) ~solid line!,
andC23(t) ~dotted line!.
01231
-

Explicitly the four-qubitW states are

uC~ tn!&5
1

2
~ u1000&2 i u0100&2u0010&2 i u0001&),

~26!

uC~ tn8!&5
1

2
~ u1000&1 i u0100&2u0010&1 i u0001&).

Can we generateW states for more than 4 qubits in theXY
model? Figure 3~a! shows that there is no cross points f
N55. Further numerical calculations for long time and lar
N show no evidence that there exist some times at which
W states can be generated. We see that theW states appea
periodically for 3 and 4 qubits. In order that a certain sta
occurs periodically in a system, a necessary condition is
the ratio of any two frequencies available in the system i
rational number. From Eq.~11!, it is easy to check that the
necessary condition is satisfied for 2, 3, 4, and 6 qubits.

r FIG. 2. Time evolution of the probabilities and concurrences
N54. ~a! The probability plus 1 forn51 ~solid line!, n53 ~dotted
line!, andn52, n54 ~dashed line!; ~b! The concurrencesC12(t)
~solid line! andC23(t) ~dotted line!.

FIG. 3. Time evolution of the probabilities and concurrences
N55. ~a! The probability plus 1 forn51 ~solid line!, n53, n
54 ~dotted line!, and n52, n55 ~dashed line!; ~b! The concur-
rencesC12(t) ~solid line! andC23(t) ~dotted line!.
3-3
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6 qubits the corresponding probabilities evolve periodica
with time; however, the numerical calculations show th
there exists no cross points, i.e., we cannot create six-q
W state.

The three-qubit and four-qubitW states are readily gene
ated by only one-time evolution of theXY system. This idea
is similar to the concurrent quantum computation@22# in
which some functions of computation are realized by o
one-time evolution of multiqubit interaction systems.

The W entangled states can be generated by other m
ods, such as couplingN spins with a quantized electromag
netic field. However, here we only use the interaction ofN
spins themselves and do not need to introduce additio
degree of freedoms.

IV. TIME EVOLUTION OF ENTANGLEMENT

We first briefly review the definition of concurrence@8#.
Let r12 be the density matrix of a pair of qubits 1 and 2. T
density matrix can be either pure or mixed. The concurre
corresponding to the density matrix is defined as

C125max$l12l22l32l4,0%, ~27!

where the quantitiesl1>l2>l3>l4 are the square roots o
the eigenvalues of the operator

%125r12~sy^ sy!r12* ~sy^ sy!. ~28!

The nonzero concurrence implies that the qubits 1 and 2
entangled. The concurrenceC1250 corresponds to an unen
tangled state andC1251 corresponds to a maximally en
tangled state.

We consider the entanglement in the stateuC(t)& ~16!. By
direct calculations, the concurrence between any two qubi
and j are simply obtained as

Ci j ~ t !52ubi~ t !bj~ t !u. ~29!

The numerical results for the concurrence are shown in
1~b!, Fig. 2~b!, and Fig. 3~b!.

For N53, Fig. 1~b! shows that the entanglement is pe
odic with period 4p/3. At times 4np/3 (n51,2,3, . . . ,), the
state vectors are disentangled and become the stateu100& up
to a phase. The concurrences ofC12(t) and C13(t) are the
same, and have two maximum points in one period, wh
the concurrenceC23(t) has only one maximum point. Figur
2~b! shows the concurrences forN54. They are periodic
with period 2p. In one period there are two unentangleme
points,t5p, 2p. For both concurrencesC12(t) andC23(t),
there are two maximum points in one period. If we choo
largeN @see Fig. 3~b! for N55#, there exists no exact per
odicity for the entanglements of two qubits. From the tim
evolution of the concurrences we can see clearly when
system becomes disentangled and when the system m
mally entangled.
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V. THERMAL ENTANGLEMENT

Recently, the concept of thermal entanglement was in
duced and studied within one-dimensional isotropic Heis
berg model@23#. Here we study this kind of entangleme
within both the isotropicXY model with a magnetic field and
the anisotropicXY model.

A. Isotropic XY model with a magnetic field

We consider the two-qubit isotropic antiferromagneticXY
model in a constant external magnetic fieldB,

H5
B

2
~s1

z1s2
z!1J~s1

1s2
21s2

1s1
2!. ~30!

The eigenvalues and eigenvectors ofH are easily obtained a

Hu00&52Bu00&, Hu11&5Bu11&,
~31!

HuC6&56JuC6&,

where uC6&5(1/A2)(u01&6u10&) are maximally entangled
states.

The state of the system at thermal equilibrium isr(T)
5exp(2H/kT)/Z, whereZ5Tr@exp(2H/kT)# is the partition
function andk is the Boltzmann’s constant. Asr(T) repre-
sents a thermal state, the entanglement in the state is c
thermal entanglement@23#.

In the standard basis,$u00&,u01&,u10&,u11&%, the density-
matrix r(T) is written as (k51)

r~T!5
1

2S cosh
J

T
1cosh

B

TD

3S e2B/T 0 0 0

0 coshJ/T 2sinhJ/T 0

0 2sinhJ/T coshJ/T 0

0 0 0 eB/T

D .

~32!

From Eqs.~27!, ~28!, and~32!, the concurrence is given by

C5maxS sinh
J

T
21

cosh
J

T
1cosh

B

T

, 0D . ~33!

Then we knowC50 if sinhJ/T<1, i.e., there is a critical
temperature

Tc5
J

arcsin h~1!
'1.1346J, ~34!

the entanglement vanishes forT>Tc . It is interesting to see
that the critical temperature is independent on the magne
field B.
3-4
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For B50, the maximally entangled stateuC2& is the
ground state with eigenvalue2J. Then the maximum en
tanglement is atT50, i.e., C51. As T increases, the con
currence decreases as seen from Fig. 4 due to the mixin
other states with the maximally entangled state. For a h
value ofB ~sayB51.2), the stateu00& becomes the ground
state, which means there is no entanglement atT50. How-
ever, by increasingT, the maximally entangled statesuC6&
will mix with the stateu00&, which makes the entangleme
increase~see Fig. 4!. From Fig. 5 we see that there is ev
dence of phase transition for small temperature by increa
magnetic field. Now we do the limitT→0 on the concur-
rence~33!, we obtain

lim
T→0

C51 for B,J,

lim
T→0

C5
1

2
for B5J, ~35!

lim
T→0

C50 for B.J.

FIG. 4. The concurrences versus temperature for different m
netic fields. The parameterJ is set to one.

FIG. 5. The concurrences versus magnetic-fieldB for different
temperatures. The parameterJ is set to one.
01231
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So we can see that atT50, the entanglement vanishes asB
crosses the critical valueJ. This is easily understand sinc
we see that ifB.J, the ground state will be the unentangle
stateu00&. This special pointT50, B5J, at which entangle-
ment becomes a nonanalytic function ofB, is the point of
quantum phase transition@24#. It should be pointed out tha
the results of thermal entanglement in the present isotro
XY model is qualitatively the same as but quantitatively d
ferent from that in the isotropic Heisenberg model@23#. An
important conclusion is that the concurrences are the s
for both positiveJ and negativeJ in theXY model. That is to
say, the entanglement exists for both antiferromagnetic
ferromagnetic cases. In contrary to this, for the case of
two-qubit Heisenberg model, no thermal entanglement ex
for the ferromagnetic case.

B. Anisotropic XY model

Now we consider the two-qubit anisotropic antiferroma
netic XY model which is described by the Hamiltonian@15#

Ha5
J

2
@~11g!s1

xs2
x1~12g!s1

ys2
y#,

5J~s1
1s2

21s2
1s1

2!1Jg~s1
1s2

11s2
2s1

2!, ~36!

whereg is the anisotropic parameter. Obviously, the eige
values and eigenvectors of the HamiltonianHa is given by
HauC6&56JuC6& and HauF6&56JguF6&, whereuF6&
5(1/A2)(u00&6u11&). Then the four maximally entangle
Bell states are the eigenstates of the HamiltonianHa . Al-
though the anisotropic parameter can be arbitrary, we res
ourselves on 0<g<1. The parameterg50 and 1 corre-
spond to the isotropicXY model and Ising model, respec
tively. Thus, the anisotropicXY model can be considered a
an interpolating Hamiltonian between the isotropicXY
model and the Ising model. The anisotropic parameterg con-
trols the interpolation.

The density-matrixr(T) in the standard basis is given b

r~T!5
1

2S cosh
J

T
1cosh

Jg

T D

3S cosh
Jg

T
0 0 2sinh

Jg

T

0 cosh
J

T
2sinh

J

T
0

0 2sinh
J

T
cosh

J

T
0

2sinh
Jg

T
0 0 cosh

Jg

T

D .

~37!

The square root of the eigenvalues of the operator%12 are
e6J/T/2(coshJ/T1coshJg/T) and e6Jg/T/2(coshJ/T
1coshJg/T). Then from Eq.~27!, the concurrence is given
by

g-
3-5
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C5maxS sinh
J

T
2cosh

Jg

T

cosh
J

T
1cosh

Jg

T

, 0D . ~38!

As we expected Eq.~38! reduces to Eq.~33! with B50 when
g50. Wheng51, the concurrenceC50, which indicates
that no thermal entanglement appears in the two-qubit Is
model. In this anisotropic model, the concurrences are
same for both positiveJ and negativeJ, i.e, the thermal
entanglement is the same for the antiferromagnetic and
romagnetic cases. The critical temperatureTc is determined
by the nonlinear equation

sinh
J

T
5cosh

Jg

T
,

which can be solved numerically.
In Fig. 6 we give a plot of the concurrence as a functi

of temperatureT for different anisotropic parameters. At ze
temperature the concurrence is 1 since no matter what
sign of J is and what the values ofg are, the ground state i
one of the Bell states, the maximally entangled state.
concurrence monotonically decreases with the increas
temperature until it reaches the critical value ofT and be-
comes zero. The numerical calculations also show that
critical temperature decreases as the anisotropic param
increases from 0 to 1.

VI. CONCLUSIONS

In conclusion, we have presented some interesting res
in the simpleXY model. First, we can useXY interaction to
generate the three-qubit and four-qubitW entangled states
Second, we see that the time evolution of entanglement
periodic for 2, 3, 4, and 6 qubits, and there is no exact p
rs
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odicity for large N. At some special points the states b
comes disentangled. Finally, we study the thermal entan
ment within a two-qubit isotropicXY model with a magnetic
field and an anisotropicXY model, and find that the therma
entanglement exists for both ferromagnetic and antifer
magnetic cases. Even in the simple model we see some
dence of the quantum phase transition.

The entanglement is not completely determined by
partition function, i.e., by the usual quantum statistical ph
ics. It is a good challenge to study the entanglement in m
tiqubit quantum spin models.
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FIG. 6. The concurrences versus temperature for different
isotropic parameters:g50 ~solid line!, g50.6 ~dashed line!, and
g50.8 ~dotted line!. The parameterJ is set to one.
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