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Entanglement in the quantum HeisenbergXY model
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We study the entanglement in the quantum Heisenkéfgnodel in which the so-called/ entangled states
can be generated for 3 or 4 qubits. By the concept of concurrence, we study the entanglement in the time
evolution of theXY model. We investigate the thermal entanglement in the two-qubit isotkopimodel with
a magnetic field and in the anisotropicY model, and find that the thermal entanglement exists for both
ferromagnetic and antiferromagnetic cases. Some evidences of the quantum phase transition also appear in
these simple models.
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[. INTRODUCTION Here we consider the quantum Heisenb&ty model,
which was intensively investigated in 1960 by Lieb, Schultz,

Quantum entanglement has been studied intensely in r@nd Mattis[15]. Recently, Imamolg et al. have studied the
cent years due to its potential applications in quantum comeuantum information processing using gquantum dot spins
munication and information processifig] such as quantum and cativity QED[16] and obtained an effective interaction
teleportation 2], superdense codirl@], quantum key distri- Hamiltonian between two quantum dots, which is just the
bution [4], and telecoloning5]. Recently, Du et al. [6] XY Hamiltonian. The effective Hamiltonian can be used to
found that truly tripartite pure state entanglement of threeconstruct the controlledoT gate[16]. The XY model is also
qubits is either equivalent to the maximally entangledrealized in the quantum-Hall systdrh7] and in cavity QED
Greenberger-Horne-ZeilingdGHZ) state[7] or to the so- system[18] for a quantum computer.

called W state[6] The XY Hamiltonian is given by 15]
N
1 _
W)= ~=(1100+]010+[003). &) H=J2 (SiS) 1+ SiShe0), ®

whereS*=0“/2 (a=X,y,z) are spin 1/2 operatorg® are
For the GHZ state, if one of the three qubits is traced out, theogyli operators, and>0 is the antiferromagnetic exchange
remaining state is unentangled, which means that this state jgteraction between spins. We adopt the periodic boundary
fragile under particle losses. Oppositely, the entanglement cfondition, i.e..SY, =S¢, S, ,=S).

the W state is maximally robust under disposal of any one of - ope role of thex'Y model in quantum computation is that

the three qubit§6]. _ it can be used to construct the swap gate. The evolution
A natural generalization of the/ state toN qubits and  gperator of the corresponding two-qubity model is given
arbitrary phases is by

1 _ U(t)=exd —idt(oyos+ a)o)/2]. (4)
| W) (e'™| Q+e'%| 0
Wy)=—=(€'"1]1000...0+¢€'%|0100...

VN ChoosingJt=#/2, we have

+€%]0010. .. 0+ - - +€'"N|0000 . . . 3).

e (”
@ U >3 |00)=|00), U 2J)|11)—|11>,
€

For the above statBW\y), the concurrencef6,8] between
any two qubits are all equal toR/and do not depend on the
phased, (i=1,2,... N). This shows that any two qubits in
the W state are equally entangled. Recently, Koaghil.[9]  The above equation shows that the oper&t¢rr/2J) acts as
shows that the maximum degree of entanglentergasured a swap gate up to a phase. Another gasevap that is uni-
in the concurrengebetween any pair of qubits of l[d-qubit ~ versal can also be constructed simplylgm/4J). A swap
symmetric state is BI. This tight bound is achieved when gate can be realized by successive thoe®T gates[19],
the qubits are prepared in the stiié,). while here we only need one-time evolution of they

The Heisenberg interaction has been used to implememhodel. This shows that th&Y model has some potential
guantum computerlQ]. It can be realized in quantum dots applications in quantum computation.

U |10)=—i01).

%)|01>=—i|10>, u(%

[10], nuclear spind11], electronic spind12], and optical The entanglement in the ground state of the Heisenberg
lattices[13]. By suitable coding, the Heisenberg interactionmodel has been discussed by O'Connor and Woof®s
alone can be used for quantum computafib4]. Here we study the entanglement in tk& model. We first
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consider the generation &V states in theXY model. It is Q:gf’N:gX@gX@, 0y, (13
found that for 3 and 4 qubits, th& states can be generated
at certain times. By the concept of concurrence, we study théhen the state
entanglement properties in the time evolution of K
. . . N
model. Finally, we discuss the thermal entanglement in the Ky = E I27'rnk
two-qubit XY model with a magnetic field and in the aniso- k)= =
tropic XY model.

o, [1)EN (14)

are also the eigenstates ldfwith eigenvalues cos¢z/N).
Il. SOLUTION OF THE XY MODEL Now we choose the initial state of the system as
a1 |0)®N, and in terms of the eigenstatdg, it can be ex-

With the help of raising and lowering operatarg =S}, pressed as

*=iS), the HamiltoniarH is rewritten as J=1)
—i2wk

1 N
|‘P(O)>:\/_Nk21 ex )|k>. (15)

1 N
:EZ ‘TrTUrT+1+0'rT+1U'r:)- (6)

The state vector at timeis easily obtained as
Obviously the states with all spins dow@)®N or all spins

up |1)®N are eigenstates with zero eigenvalues. . N

The eigenvalue problem of théY model can be exactly |‘I’(t)>:nZl bn(t)oy [0)°F, (16)
solved by the Jordan-Wigner transformati@i]. Here we N
are only interested in the time-evolution problem and in theyhere

“one-particle” states N—1 spins down, one spin Wp
N

N i2m(n—1)k/IN—it COS(2’7Tk/N)
ba(t) = 2 e (17)
)= 2 anoy [0)°" )
' o If we choose the initial state as; |1)®", then the wave
The eigenequation is given by vector at timet will be =)_ b, (t) o, [1)®N.
N
1
H|‘If)= - 2 (A 1+ Acn 1)0'rT|0>®N Ill. GENERATION OF W STATES
From Eq. (16), the probabilities at timet for state
N N o, 10)®N is obtained as
=E, >, agqon]0)°N. 8 ,
n=1 P(n,N,t):|bn(t)| . (18)
Then the coefficientsy , satisfy For N=2, it is easy to see that the probabilig(1,2})
=cogt, P(2,21)=sir’t. The state vector at timeis
5 @n+1t 8n-1) =Ei@cn- ©) | (1)) = cost|10) —i sint|01). (19
The solution of the above equation is V\t/hten t=/4, the above state is the maximally entangled
state.
i2mnk Now we consider the cas®d=3. The probabilities are
ak n=eXF< N ) (k=1,...N), (100 analytically obtained as
27k P(1,3t)= 154—4 3(3”
T co
EKZCOS< W) ) (11) 2

(20

1 3
where we have used the periodic boundary condition. P(2,31)=P(3,3t)= = [2 2 cos(
So the eigenvectors are given by 2

|

Figure Xa) gives a plot of the probabilities versus time. It is
k)= ) ol |oyeN (12) clear that there exist some cross points of the probabilities.
\/— n ’ At these special times, the probabilitiegn,3;) are all equall

to 1/3, which indicates th#V states are generated. From Eq.
which satisfy(k|k’)= &, . It is interesting to see that all the (20), we see that if the time satisfies the equation
eigenstates are generalizédstateq Eq. (2)].
Note that theXY HamiltonianH commutes with the op- 3| 1
erator coqzt|="3 21)

i2mnk

Zex
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FIG. 1. Time evolution of the probabilities and concurrences for
N=3. (a) The probability plus 1 fom=1 (solid line) andn=2,
n=23 (dotted ling; (b) the concurrence€,(t), C14(t) (solid line),
and C,4(t) (dotted ling.

the probabilities are the same. The solution of &{) is

47  4dnw
T T
(22
87 4dnw
té:?‘FT (n=0,1,2...,).
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FIG. 2. Time evolution of the probabilities and concurrences for
N=4. (a) The probability plus 1 fon=1 (solid line), n=3 (dotted
line), andn=2, n=4 (dashed ling (b) The concurrence€,(t)
(solid line) and C,4(t) (dotted ling.

Explicitly the four-qubitW states are
1 . :
|W(t,))= §(|lOOQ—||OlOQ— |0010 —i|0001)),
(26)
1
W (1)) = 5(]1000 +]0100 - 0010 +[000D).

Explicitly at these time points, the corresponding state veCtan we generat@V states for more than 4 qubits in they

tors are
(W (tn)= \/1§(|100>+eiz”’3|010>+ei2”’3| 001)),
(23
|W(t)))= \/l§(|100>+ei2”’3|010>+ e'2™3001)),

which are the generalized/ state forN= 3.
For the casdN=4, the probabilities are given by

|

2

P(1,4t)=co¢ ;_) . P(3,41)= sin“(

(29)

P(2,41)=P(4,41)= %sinzt.

As seen from Fig. @), there also exists some cross
points, which indicates the four-qubi¥ states are generated.
The probabilities are the same when

o
§+2n77,

t,=
(25)

3

2

t=

+2n7 (n=0,1,2...).

model? Figure @&) shows that there is no cross points for
N=5. Further numerical calculations for long time and large
N show no evidence that there exist some times at which the
W states can be generated. We see thatthstates appear
periodically for 3 and 4 qubits. In order that a certain state
occurs periodically in a system, a necessary condition is that
the ratio of any two frequencies available in the system is a
rational number. From Ed11), it is easy to check that the
necessary condition is satisfied for 2, 3, 4, and 6 qubits. For

.

N=5 (a)

Probability
1.5

Concurrence
0.5

0 8 10

FIG. 3. Time evolution of the probabilities and concurrences for
N=5. (a) The probability plus 1 fom=1 (solid ling, n=3, n
=4 (dotted ling, andn=2, n=5 (dashed ling (b) The concur-

rencesC,(t) (solid line) and C,4(t) (dotted ling.
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6 qubits the corresponding probabilities evolve periodically V. THERMAL ENTANGLEMENT
with time; however, the numerical calculations show that
there exists no cross points, i.e., we cannot create six—qub(i}u
W state.

The three-qubit and four-qubi¥/ states are readily gener-
ated by only one-time evolution of theY system. This idea
is similar to the concurrent quantum computati®®] in
which some functions of computation are realized by only _ _ o
one-time evolution of multiqubit interaction systems. A. Isotropic XY model with a magnetic field

The W entangled states can be generated by other meth- we consider the two-qubit isotropic antiferromagneéti¢

ods, such as couplinly spins with a quantized electromag- model in a constant external magnetic fiéld
netic field. However, here we only use the interactiorNof

spins themselves and do not need to introduce additional
degree of freedoms.

Recently, the concept of thermal entanglement was intro-
ced and studied within one-dimensional isotropic Heisen-
berg model[23]. Here we study this kind of entanglement
within both the isotropicXY model with a magnetic field and
the anisotropicXY model.

B
H=§(0i+oé)+J(UI0£+0’;UI). (30)

The eigenvalues and eigenvectord-bére easily obtained as
IV. TIME EVOLUTION OF ENTANGLEMENT

We first briefly review the definition of concurrentg]. H|00)=—B|00), H[11)=B[11),
Let p;, be the density matrix of a pair of qubits 1 and 2. The . . (32)
density matrix can be either pure or mixed. The concurrence HIW=)==J|v=),

corresponding to the density matrix is defined as . i
where | ¥ *)=(1/42)(]01) +|10)) are maximally entangled

states.
Cro=max\1—N2—N3— 4,0}, (27) The state of the system at thermal equilibriumpigr)
=exp(—H/KT)/Z, whereZ=Tr[ exp(—H/KT)] is the partition
where the quantities ;=\ ,=\;=\, are the square roots of function andk is the Boltzmann’s constant. AX(T) repre-
the eigenvalues of the operator sents a thermal state, the entanglement in the state is called
thermal entanglemen23].
. In the standard basig|00),|01),|10),|11)}, the density-
012= p1A oy® ay) pr( oY@ Ty). (28 matrix p(T) is written as k=1)

The nonzero concurrence implies that the qubits 1 and 2 are _
_ p(T)=

entangled. The concurren€y,=0 corresponds to an unen-

tangled state an€,,=1 corresponds to a maximally en- 2| cosh +cosh

tangled state.

We consider the entanglement in the stalt¢t)) (16). By e ® 0 0 0
direct calculations, the concurrence between any two qubits 0 cosh)/T  —sinhd/T ©
andj are simply obtained as X _

0 —sinhJ/T coshd/T O
B/T
Cij(H)=2[by(t)b(1)]. (29 o 0 0 ¢

(32

The numerical results for the concurrence are shown in Fig
1(b), Fig. 2b), and Fig. 3b).

For N=3, Fig. b) shows that the entanglement is peri- J
odic with period 47/3. At times ©#/3 (n=1,2,3 .. .,), the sinh=—-1
state vectors are disentangled and become the|41afg up C=max —T ol. (33)
to a phase. The concurrences ©@f,(t) and C,5(t) are the
same, and have two maximum points in one period, while
the concurrenc€,4(t) has only one maximum point. Figure
2(b) shows the concurrences fdt=4. They are periodic Then we knowC=0 if sinhJ/T<1, i.e., there is a critical
with period 2. In one period there are two unentanglementtemperature
points,t= 7, 27r. For both concurrenceS,(t) andC,4(t),
there are two maximum points in one period. If we choose -
large N [see Fig. 8) for N=5], there exists no exact peri- ¢ arcsinfil)
odicity for the entanglements of two qubits. From the time
evolution of the concurrences we can see clearly when ththe entanglement vanishes foeT,. It is interesting to see
system becomes disentangled and when the system maxhat the critical temperature is independent on the magnetic-
mally entangled. field B.

From Egs.(27), (28), and(32), the concurrence is given by

coshf + coshf

~1.1346), (34)
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So we can see that at=0, the entanglement vanishesis
crosses the critical valué This is easily understand since
we see that iB>J, the ground state will be the unentangled
state|00). This special poinT =0, B=J, at which entangle-
ment becomes a nonanalytic function Bf is the point of
guantum phase transitid24]. It should be pointed out that
the results of thermal entanglement in the present isotropic
XY model is qualitatively the same as but quantitatively dif-
ferent from that in the isotropic Heisenberg mof28]. An
important conclusion is that the concurrences are the same
for both positiveJ and negative in the XY model. That is to
say, the entanglement exists for both antiferromagnetic and
ferromagnetic cases. In contrary to this, for the case of the
0 0.2 0.4 0,6 0.8 1 1.2 two-qubit Heisenberg model, no thermal entanglement exists
for the ferromagnetic case.
FIG. 4. The concurrences versus temperature for different mag-
netic fields. The parametdris set to one. B. Anisotropic XY model

Concurrence

0.4

Now we consider the two-qubit anisotropic antiferromag-

For B=0, the maximally entangled stalel”) is the netic XY model which is described by the Hamiltonigtb]

ground state with eigenvalue J. Then the maximum en-
tanglement is af =0, i.e.,C=1. As T increases, the con- J
currence decreases as seen from Fig. 4 due to the mixing of H,= E[(1+ y)oro5+(1—y)oio?],

other states with the maximally entangled state. For a high

value ofB (sayB=1.2), th_e staté00) becomes the ground =J(o] o, +os07)+Iy(of o5 +0,07), (36)
state, which means there is no entanglemerii-ad. How-

ever, by increasind, the maximally entangled stat¢¥ =)  Wherey is the anisotropic parameter. Obviously, the eigen-
will mix with the state|00), which makes the entanglement values and eigenvectors of the Hamiltonidg is given by
increase(see Fig. 4 From Fig. 5 we see that there is evi- Ha| ¥ )=®J|¥*) andH,|®*)=*=Jy|®~), where|d~)
dence of phase transition for small temperature by increasing (l/\/f)(|00>i|1l>). Then the four maximally entangled
magnetic field. Now we do the limiT—0 on the concur- Bell states are the eigenstates of the Hamiltortgn Al-

rence(33), we obtain though the anisotropic parameter can be arbitrary, we restrict
ourselves on &+y<1. The parametery=0 and 1 corre-
imC=1 for B<J, spond to the isotropiXY model and Ising model, respec-
T—0 tively. Thus, the anisotropiXY model can be considered as

an interpolating Hamiltonian between the isotropicY
1 model and the Ising model. The anisotropic parameteon-
limC= - for B=J, (35 trols the interpolation.

-0 2 The density-matrip(T) in the standard basis is given by
. 1
imC=0 for B>J. —
cosh?+cos -
1
_ J J
T=0.01 cosh—y 0 0 — sinh—y
0.8 T T
0 J i hJ 0
cos —sinh=
0.6 h? T
=05 X J J
Concurrence
0 —sinh= 0
o4 \ smh_l_ coshf
Jy Jy
—sinh— O 0
o sinh T cosh?
k (37)
0 0.5 ]g 1.5 2 The square root of the eigenvalues of the operatprare

e*IT/2(coshl/T+coshly/T) and  e*?T/2(coshIIT
FIG. 5. The concurrences versus magnetic-fltbr different ~ +coshJy/T). Then from Eq.(27), the concurrence is given
temperatures. The parametkis set to one. by
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o J Jy =
smh?—cosh?

C=max| J—J’Y' of. (38 0.8
coshTJrcosh?

0.6

As we expected Eq38) reduces to Eq.33) with B=0 when
y=0. Wheny=1, the concurrenc€=0, which indicates
that no thermal entanglement appears in the two-qubit Ising
model. In this anisotropic model, the concurrences are the
same for both positive]l and negative], i.e, the thermal 0.2
entanglement is the same for the antiferromagnetic and fer-

romagnetic cases. The critical temperatligeis determined
by the nonlinear equation 0 0.2 0.4 0,6 0.8 1 1.2

Concurrence

0.4

o J Jy FIG. 6. The concurrences versus temperature for different an-
S'nh$:C°Sh?, isotropic parametersy=0 (solid ling), y=0.6 (dashed ling and

y=0.8 (dotted ling. The parameted is set to one.
which can be solved numerically.

In Fig. 6 we give a plot of the concurrence as a functionodicity for large N. At some special points the states be-
of temperaturd for different anisotropic parameters. At zero comes disentangled. Finally, we study the thermal entangle-
temperature the concurrence is 1 since no matter what th@ent within a two-qubit isotropiX'Y model with a magnetic
sign of J is and what the values of are, the ground state is field and an anisotropiXY model, and find that the thermal
one of the Bell states, the maximally entangled state. Th&ntanglement exists for both ferromagnetic and antiferro-
concurrence monotonically decreases with the increase dhagnetic cases. Even in the simple model we see some evi-
temperature until it reaches the critical valueTfind be- dence of the quantum phase transition.
comes zero. The numerical calculations also show that the The entanglement is not completely determined by the
critical temperature decreases as the anisotropic parameteartition function, i.e., by the usual quantum statistical phys-
increases from 0 to 1. ics. It is a good challenge to study the entanglement in mul-

tiqubit quantum spin models.

VI. CONCLUSIONS
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