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Encoding a qubit in an oscillator
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Quantum error-correcting codes are constructed that embed a finite-dimensional code space in the infinite-
dimensional Hilbert space of a system described by continuous quantum variables. These codes exploit the
noncommutative geometry of phase space to protect against errors that shift the values of the canonical
variablesq and p. In the setting of quantum optics, fault-tolerant universal quantum computation can be
executed on the protected code subspace using linear optical operations, squeezing, homodyne detection, and
photon counting; however, nonlinear mode coupling is required for the preparation of the encoded states.
Finite-dimensional versions of these codes can be constructed that protect encoded quantum information
against shifts in the amplitude or phase ofi-atate system. Continuous-variable codes can be invoked to
establish lower bounds on the quantum capacity of Gaussian quantum channels.
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[. INTRODUCTION pared, a universal set of fault-tolerant quantum gates can be
implemented using, in the language of quantum optics, linear
Classical information can be carried by either a discreteoptical operations, squeezing, homodyne detection, and pho-
(digital) signal or a continuoug&nalog signal. Although in  ton counting. However, for preparation of the encoded states,
principle an analog signal can be processed, digital compuonlinear couplings must be invoked.
ing is far more robust—a digital signal can be readily restan- Our continuous-variable quantum error-correcting codes
dardized and protected from damage caused by the graduate effective in protecting against sufficiently weak diffusive
accumulation of small errors. phenomena that cause the position and momentum of an os-
Quantum information can also be carried by either a dis<illator to drift, or against losses that cause the amplitude of
crete (finite-dimensional system, such as a two-level atom an oscillator to decay. By concatenating with conventional
or an electron spin, or by a continuodisfinite-dimensiongl  finite-dimensional quantum codes, we can also provide pro-
system, such as to a harmonic oscillator or a rotor. Even itection against errors that heavily damagesafficiently
the finite-dimensional case, quantum information is in a cersmall) subset of all the oscillators in a code block. A differ-
tain sense continuous — a state is a vector in a Hilbert spacent scheme for realizing robust and efficient quantum com-
that can point in any direction. Nevertheless, we have knowmputation based on linear optics has been recently proposed by
for nearly five years that cleverly encoded quantum state&nill, Laflamme, and Milburn3,4].
can be restandardized and protected from the gradual accu- We begin in Sec. Il by describing codes that embed an
mulation of small errors, or from the destructive effects ofn-state quantum system in a largistate system, and that
decoherence due to uncontrolled interactions with the enviprotect the encoded quantum information against shifts in the
ronment[1,2]. amplitude or phase of thebstate system. A realization of this
One is tempted to wonder whether we can go still furthercoding scheme based on a charged particle in a magnetic
and protect the quantum state of a system describembby field is discussed in Sec. Ill. Our continuous-variable codes
tinuous quantum variablesProbably this is too much to are obtained in Sec. IV by consideringda-c limit. For-
hope for, since even the problem of protecting analog clasmally, the code states of the continuous-variable codes are
sical information seems to pose insuperable difficulties.  nonnormalizable states, infinitely squeezed in both position
In this paper we achieve a more modest goal: we describand momentum; in Sec. V we describe the consequences of
guantum error-correcting codes that protect a statefiofte-  using more realistic approximate code states that are finitely
dimensionaluantum systenfor “qudit” ) that is encoded in  squeezed. In Sec. VI we outline the theory of more general
an infinite-dimensional system. These codes may be usefantinuous-variable codes based on lattice sphere packings
for implementing quantum computation and quantum comin higher dimensional phase space.
munication protocols that use harmonic oscillators or rotors We discuss in Sec. VII how continuous-variable codes
that are experimentally accessible. protect against quantum diffusion, amplitude damping, and
We also explain how encoded quantum states can be pramitary errors. In Sec. VIII we establish a lower bound on the
cessed fault tolerantly. Once encoded states have been pigantum capacity of the Gaussian quantum channel.
We then proceed to develop schemes for fault-tolerant
manipulation of encoded quantum information, starting in

*Email address: gottesma@eecs.berkeley.edu Sec. IX with a discussion of the symplectic operations that
"Email address: kitaev@microsoft.com can 3be implemented with linear optics and squeezing. In
*Email address: preskill@theory.caltech.edu Sec. X we discuss the measurement of the error syndrome
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and error recovery, which can be achieved with symplectic Fortunately, the general “stabilizer” frameworf®,10]
operations and homodyne detection. Completion of the faultfor constructing quantum codes can be adapted to this set-
tolerant universal gate set by means of photon counting ising. In this framework, one divides the elements of a unitary
described in Sec. Xl, and the preparation of encoded states @perator basis into two disjoint and exhaustive classes: the
explained in Sec. XIl. Finally, Sec. Xlll contains some fur- set& of “likely errors” that we want to protect against, and
ther remarks about the physical realization of our codinghe rest; the “unlikely errors.” A code subspace is con-
schemes, and Sec. XIV contains concluding comments.  structed as the simultaneous eigenspace of a set of commut-
ing “stabilizer generators,” that generate an Abelian group,
Il. SHIFT-RESISTANT QUANTUM CODES the “code stabilizer.” The code can reverse errors in the set
. _ Eif, for each pair of error&, andE,, eitherE;Eb liesin the
An unusual feature c_)f our codes is that they are designed;ypilizer group, orE;Eb fails to commute with some ele-
to protect against a different type of error than has beep,ont of the stabilizer(In the latter case, the two errors alter
considered in previous discussions of quantum coding. Thig,o gjgenvalues of the generators in distinguishable ways: in
distinction is more _easny explained if we first con3|der NOtine former case they do not, but we can successfully recover
the case of a continuous quantum variable, but instead thﬁ'om an error of typea by applying eitherE; or Eg_) In

t(S:f]OS'gigﬁsglfgﬂifnfozegggg’b:g;)?\';‘ﬁ;?&”g:a?ﬁ{; g4 pical discussions of quantum coding,is assumed to be
y ' he set of all tensor products of Pauli operators with weight

chgﬁgtggnqggltselrrf]eitF lorgléod\fe?:g'itfs ,usct)t tt%ltit;h(:\rznggri?d up tot (those that act trivially on all but at mostjudity. But
g ed. ires ec'fi)ve of t)(\e ature of thep dgmé@eS] Error the same principles can be invoked to design codes that pro-
ged, P ‘ tect against errors in a sé€twith other properties.

recovery will be effective if errors that act on many qudits at Quantum codes for continuous variables have been de-

once are rare. More precisely, a general error superoperatgr. . . i
acting onN qudits can be expanded in terms of a basis o cribed previously by Braunstejil] and by Lioyd and Slo

operators, each of definite “weight(the number of qudits tine [12]. For example, one code they constructed can be
perators, gnti o' 4 regarded as the continuous limit of a qudit code of the type
on which the operator acts nontriviallyEncoded informa- riginally introduced by Shor in the binand€2) case, an
tion is well protected if the error superoperator has nearly al [N=9k=1,2t+1=3]] code that protects a single ,qudit
Its support on operators of we|ghbr Igss. . . . encoded in a block of 9 from arbitrary damage inflicted on
But consider instead a different situation, in which the

: o ny one of the 9. The 8 stabilizer generators of the code can
amplitude for an error to occur on each qudit is not small, bu
! . . be expressed as
the errors are of a restricted type. The possible errors acting

on a single qudit can be expanded in terms of a unitary 7.7 7 7715 5-1 5 5-1 5 5-1 5 5-1

operator basis withl?> elements, the “Pauli operators:” 172 27208 2TATs 2 EET6 2 TITE 2 TETe
Xaz°  ab=012...d—1. (1) (X1X2X3) - (XaXsXe) ™ (XaX5Xg) - (X7XeXo) ~H,  (4)

and encoded operations that commute with the stabilizer and

HereX andZ are generalizations of the Pauli matriegsand hence act on the encoded qudit can be chosen to be

o,, which act in a particular basigj),j=0,1,2...,d-1}
according to 22212427,
X:[j)=1j+1 (modd)), _

X:X1X2X3. (5)

Z:|j)—o'lj), ) - : : .
In thed— oo limit, we obtain a code that is the simultaneous
wherew= exp(2mi/d). Note that it follows that eigenspace of eight commuting operators acting on nine par-
ticles, which are
ZX=wXZ. ()

017 02,92— 03,94~ 05,95~ 06,97~ 0s,0s— o

For N qudits, there is a unitary operator basis witH' ele-

ments consisting of all tensor products of single-qudit Pauli (P1t P2+ P3) —(PsatPs+Ps),
operators.
We will now imagine that errors witha|,|b| small com- (Pa+Ps+pPe) —(P7+PgtPo). (6)

pared tod are common, but errors with lardga| and|b| are . .
rare. This type of error model could be expected to apply in-ogical operators that act in the code space are
the case of a continuous quantum variable, which is formally

the d— oo limit of a qudit. For example, decoherence causes EZQDL 0std7,
the positiong and momentunp of a particle to diffuse with o
some nonzero diffusion constant. In any finite time interyal p=p;+po+Ps. 7

and p will drift by some amount that may be small, but is
certainly not zero. How can we protect encoded quantunThis code is designed to protect against errors in which one
information under these conditions? of the particles makes a large jumpgror p (or both), while
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the others hold still. But it provides little protection against by adjustingj to the nearest multiple of 3. Phase errors are
small diffusive motions of all the particles, which allogy ~ Shifts in the Fourier transformed conjugate basis, and can be
andp to drift corrected similarly.

Entanglement purification protocols for continuous vari- This code is actuallyperfect meaning that each possible

- . 6 . .
able systems have also been proposed — good entangl@&" of eigenvalues of the generatot§ and Z° is a valid

states can be distilled from noisy entangled states via a pr y”dm?eb for correcting a shift. There are nine possible er-
tocol that requires two-way classical communicafiod,14. 'S 1X°Z .|al,|b|=1}, and the Hilbert space of the qudit

These purification protocols work well against certain sort<CONtaiNs nine copies of the two-dimensional code space, one

of errors, but their reliance on two-way classical Communi__correspondipg to each possible error. These “error spaces”

cation makes them inadequate for accurately preserving uAdSt Parely fitin the qudit space far=18=9.2.

known states in an imperfect quantum memory, or for robust Similar perfect codes can be constructed that protect

quantum computation. against larger shifts. Fod=r,r,n, consider the stabilizer
Returning to qudits, let us consider an example of a quandenerators

tum code that can protect against small shifts in both ampli-

tude and phase, but not against large shifts. It is already X"an o zran, (12

interesting to discuss the case of a system consisting of a

single qudit, but where the dimensionof the encoded sys-

tem is (of course less thand. For example, a quditn=2)

can be encoded in a system with dimensibn18, and pro-

tected against shifts by one unit in the amplitude or phase of X=X1

the qudit; that is, against errors of the forXfZ® where '

|al,|b|<1. The stabilizer of this code is generated by the

two operators Z=27", (13

There is an encodegunit, acted on by logical operators

X8, Z° ®) L : - :
which evidently commute with the stabilizer and satisfy
and the commutation relations of the Pauli operators with
these generators are ZX = o' 112X 7 = e27INX 7. (14)

(Xazb) A X6: w6bx6 . (Xazb)'
The commutation relations of the Pauli operators with the
(Xazb) . ZGZ ;Gazﬁ. (Xazb) ) (9) generators are

Therefore, a Pauli operator commutes with the stabilizer only (X2zP). X "= ¢ 1"bX 1. (X3ZP) = g27b/raxran. (X2zP),
if a andb are both multiples of 3 18/6; this property en-
sures that the code can correct single shifts in both amplitude _ ‘
and phase. Logical operators acting on the encoded qudit aréX?Z°) - Z"2"= @'2"az"2". (X3ZP) = 2718/l z"2". (XaZt(’). |
15
X=X3 z=2Z3, (10
The phases are trivial only # is an integer multiple of ;
which evidently commute with the stabilizer and are not CoN-gnd b an integer mu|tip|e Ofrz. Therefore, this code can
tained in it. correct all shifts with
Since the code words are eigenstatesZ®fwith eigen-
value one, the only allowed valuesjddre multiples of three.
And since there are also eigenstatesx8fwith eigenvalue al <r_1
one, the code words are invariant under a shiff oy six 2’
units. A basis for the two-dimensional code space is

Iz
— 1 |b|<—=. (16)
0)=—(|0)+|6)+]12)), 2
|0) ﬁ(l )+[6)+]12)
1 The number of possible error syndromesis,=d/n, so the
|T>: —(|3)+]9)+|15)). (12) code is perfec_t. _
J3 Expressed in terms & eigenstates, the code words con-

tain only values ofj that are multiples ofr; (since Z'2"
If an amplitude error occurs that shifty =1, the errorcan =1), and are invariant under a shift ¢fby r,n (since
be diagnosed by measuring the stabilizer generayr X"1"=1). Hence a basis for tha-dimensional code sub-
which reveals the value ¢fmodulo 3; the error is corrected space is
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function are stored in each of thgr, cells. But of course

|0)= i(|0)+|nrl)+ o H|(ra=1)nry)), there is only one electron, so if we detect the electron in one
\/G cell its state is destroyed in all the cells.

This picture of the state encoded in a Landau level cau-

— 1 tions us about the restrictions on the type of error model that

1= \/TZ(“lH (=Dt Dry)), the code can fend off successfully. If the environment

strongly probes one of the cells and detects nothing, the

wave function is suppressed in that cell. This cause$ a
error in the encoded state with a probability of aboutr1/2

R | and aZ error with a probability of about 1f2. The code is
In—1)= \/—_(|(n— Dry)+ ... +[(ron=1)rq)). (17 more effective if the typical errors gently deform the state in
2 each cell, rather than strongly deforming it in one cell.

If the states undergo an amplitude shift, the valuej of
modulor, is determined by measuring the stabilizer genera-
tor Z'2", and the shift can be corrected by adjustjrig the

in the Fourier transformed conjugate ba@ise basis ofX  gescribed by continuous quantum variables by considering
eigenstates but withr, andr, interchanged. Therefore, am- the |arged limit of the shift-resistant codes described in Sec.
plitude shifts by less than,/2 and phase shifts by less than ||, we might have hoped to increaseo infinity while hold-

IV. CONTINUOUS VARIABLE CODES FOR A SINGLE
OSCILLATOR

ro/2 can be corrected. ing r,/d andr,/d fixed, maintaining the ability to correct
shifts in both amplitude and phase that are a fixed fraction of
Ill. A QUDIT IN A LANDAU LEVEL the ranges of the qudit. However, since the perfect codes
satisfy

A single electron in a uniform magnetic field in two di-
mensions provides an enlightening realization of our codes. r, 1 r, 1
General translations in a magnetic field are noncommuting, T, T=—, (18
: : d nr,” d nry
since an electron transported around a closed path acquires

ied i H
an Aharonov-Bohm phase™”, where® s the magnetic s js not possible. Nonetheless, interesting codes can be

flux enclosed by the paﬂ} T‘f’o translatichandScommute  ,pyained as the amplitude and phase of the qudit approach
only if the operatoiT ST “S™ - translates an electron around o positiong and momentunp of a particle—we can hold

a path that encloses a fldx=kdo, wherebo=27/eisthe  fyqq the size of the shiftdq andAp that can be corrected,
flux quantum and is an integer. o as the ranges af andp become unbounded.

Translations commute with the Hamiltonidh and two Another option is to takel— o with r,/d=1/m fixed and
translationsT,; and T, form a maximally commuting set if r,=m/n fixed, obtaining arotor Z=e'? (or a particle in a
they generate a lattice that has a unit cell enclosing one qualteiggically identified finite box that can be protected
tum of flux. Simultaneously diagonalizirtg, T, andT,, we 5 aingt finite shifts in both the orientatignof the rotor and
obtain a Landau level of degenerate energy eigenstates, og: (quantized angular momentunt.. The stabilizer of this
state corresponding to each quantum of magnetic flux. Theg,yq is generated by
T, and T} are the stabilizer generators of a code, whére

=T}’” andX= T, are the logical operators on a code space
of dimensionn. o wdir —2mil (nim)
Suppose the system is in a periodically identified bax X=X"2—e (19)
rp_ mro_ 7
torus, so thatT,'=(T3)'2=1 are translations around the and the logical operations are
cycles of the torus. The number of flux quanta through the
torus, and hence the degeneracy of the Landau level, is Z— gifmin
nrir,. The code, then, embeds asdimensional system in a
system of dimensiond=rr,n.
In this situation, the logical operatior’$é and Z can be

Y|su§I|zed as t-r.anslanons of_the torus In two different (_j'reC'SinceYshifts the value of) by 27r/m, andZ shifts the value
tions; the stabilizer generati” is a translation by a fraction ot | by m/n=r,, this code can correct shifts if with A g

1/r3 of the length of the torus in one direction, and the sta-< ;/m and shifts inL with |AL|<m/2n.

bilizer generatoiZ" is a translation by 14 of the length in Alternatively, we can consider a limit in whiah andr,
the other direction. Therefore, for any state in the code spac@oth become large. We may writg=a/e andr,=1/nae,
the wave function of the electron in a cell containimflux  whered=nr;r,=1/¢2, obtaining a code with stabilizer gen-
guanta is periodically repeated altogether, times to fill  erators

the entire torus. Our code can be regarded as a kind of

“quantum repetition code”—identical “copies” of the wave Z"2"— (g?mae)(Vae) = g2miala

Zrzn*)ei am’

Y: e—Z’ITiL/m. (20)
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e LN oo b I
and logical operations g . |‘2—a'| | | | | » 4

Z=g?mana Y= g-ipa, (22) 10)+1T): JM" | | | |=”
where « is an arbitrary real number. Using the identity 10)-1T): < |‘M'| | | | >t

e”eB=elABlgBeA (which holds if A and B commute with
their commutator and the canonical commutation relation
[g,p]=i, we verify that

FIG. 1. Code words of the=2 code. The state®), |1) are
superpositions off eigenstates, periodically spaced with periag 2
the two basis states differ by a displacementjipy «. The states
. _ (Joy= |1>)/\/§ are superpositions op eigenstates, periodically
IX=wXZ, w=e>"N, (23)  spaced with period 2/ «; the two basis states differ by a displace-
ment inp by 7/ a.

SinceYtranslatesq by « andftranslatesp by 2@/nea, the

code protects against shifts with W(j)(q,p)E%J'j;dxépxw(j)(q_i_xlz)* D (q—x/2)
[2al<3. .3 <—1>S‘5(p—1s)6(q—aj—n—“t)-
Si—ew Na 2 )
|Ap|<—. (24) 29
nNa

the 6 functions are negative on the sublattice wsth odd. If
we integrate ovep, the oscillating sign causes the terms with
Note that the shifts in momentum and position that the codeddt to cancel in the sum oves; and the surviving positive
can correct obey the condition 6 functions have support af=(nXintegert+j)«. If we in-
tegrate oven, the terms with odd cancel in the sum over
and the surviving positived functions have support gb

a
ApAg<z . (25 —(2x/na)xinteger. Wigner functions for th¥ eigenstates
are similar, but with the roles af andp interchanged.
It is also of interest to express the encoded states in terms
of the basis of coherent states. Consider for example the

encoded state witl=1, which is the unique simultaneous
eigenstate with eigenvalue one of the operaesig?'« and
~'P@_In fact starting with any stathy), we can construct

— /2 — /2
Z= exp(iq —Tr) X= exp(—ip —W) (26) e
n n the encoded stat@ip to normalizatiohas

. .Fprmally, the code words are coherent_superpositions of i o-ispa i e2itala || gy
infinitely squeezed states, e.@up to normalizatioh it

In typical situations, errors i and p are of comparable
magnitude, and it is best to chooae= \27/n so that

D

|Z:wj>: i Iq=a(j+ns)), 222 exdi(—spa+2ntg/a+wst)]| ). (29

In particular, if we chooséy) to be the ground staf@®) of
2 the oscillator, then the operatdy; exdi(—spa+2ntg/a
pP=r, U +ns)>. (27)  +ms)] displaces it to a coherent state centered at the point
(q,p) =(sa,2mt/a) in the quadrature plane. Thus the en-
coded state is an equally weighted superposition of coherent
(See Fig. 1. Of course, realistic code words will be normal- states, with centers chosen from the sites of a lattice in the
izable finitely squeezed states, rather than nonnormalizablguadrature plane whose unit cell has area Since the co-
infinitely squeezed states. But squeezing in at least orpe of herent states are overcomplete , the expansion is not unique;
andq is required to comfortably fulfill conditior25). indeed, if we choospy) to be a coherent state rather than the
The Wigner function associated with the code word waveyacuum, then the lattice is rigidly translated, but the encoded
function ¢)(q)=(q|Z= ') is a sum of delta functions po- state remains invariant.
sitioned at the sites of a lattice in phase space, where three We can envision the stabilizer of the code as a lattice of
quarters of the delta functions are positive and one quartdranslations in phase space that preserve the code words; the
are negative. Explicitly, we have lattice generated by the translatioe¥™* ande™'"P“. In

[

X=a)= 3

=—
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fact, this lattice need not be rectangular—we can encode an Probability
n-dimensional system in the Hilbert space of a single oscil-
lator by choosingany two variablesQ andP that satisfy the
canonical commutation relatigrQ,P]=i, and constructing
the code space as the simultaneous eigenstag@™™? and

e '"P. The unit cell of the lattice has arearZn, in keeping
with the principle that each quantum state “occupies” an
area 2r# in the phase space of a system with one continuous
degree of freedom.

V. FINITE SQUEEZING o -
FIG. 2. Probability distribution in position spac®(q)

Strictly speaking, our code words are nonnormalizable=1(q|([0)+[1))]? for an approximate code word witth = «
states, infinitely squeezed in bothand p. In practice, we  =0.25. The dashed line is the distribution’s Gaussian envelope.
will have to work with approximate code words that will be
finitely squeezed normalizable states. We need to considehis approximate code word can be rewritten as
how using such approximate code words will affect the prob-
ability of error.

We will replace a position eigensta%0) by a normal- (|6>+|1))/\/§m<
ized Gaussian of widtih centered at the origin,

_w(ﬂ_/AZ)lm Ko

K2a2)1/4j‘oo dp o 12022 V2=

v

- 1 2@ \2
« dqg _ 2/02 X exp{—_( __m) / )
|¢0>:f—m(7TA2)l’4e Y2 ) . 2\P" % «2|Ip)
= dp 472\ V4 )
w dp B :j —<_) e~ 12A%
:J-m(ﬂ'/AZ)lMe 1/2A2p2|p>- (30) —o(rK?) V4 a? mzz_oo
1 27 \?
A code word, formally a coherent superposition of an infinite XQXF{_E(p_ ~ m) /Kz p), (34

number of § functions, becomes a sum of Gaussians
weighted by a Gaussian envelope function of wigth'; in
the special case of a two-dimensional code space, the a
proximate code words become

again a superposition of Gaussians weighted by a Gaussian
Bnvelope (See Fig. 2.
The approximate code wordi),|1) have a small overlap
% if A is small compared tax, and « is small compared to
|6> =N, 2 e~ 12 KZ(ZSa)ZT(ZSa)| o), 7l a. For estimating the error probability caused by the over-
§=— lap, let's consider the special case whgrandp are treated
symmetrically,a= \/w andk=A, then

D)=N, 3 e #21Gs 09T 25+ 1all i), I R
31) |<Q|0>|2”J_E 2 et et —(a-2s(m)?IA%)

— 35
whereT(a) translates) by a, Ny ; are normalization factors, 39
and we use, e.g|£~)) rather than0) to denote the approxi- and
mate code word. We will assume that andA/« are small
compared to one, so th&ly~N;~(4«?a?/m)* then in 1 5
momentum space, the approximate code word becomes, e.g., E|<p|f)>+<p|1>|2%\/__ E e~ A%?
am

=—o

~ ~ K2a2 4 ro dp 1 2.2 2 2

~ _ P -5a% xexd — (p—2my7)2/A2]. (36)

([0)+1))/\2 ( — ) f—m(wmz)lme >
" To perform error recovery, we measure the valug ahdp

% E e 112 KZ(Sa)Zeip(as)|p>_ (32) modulo 7 and then correct for the observed shift. In the

s=—w state|f)>, the probability of failure is the probability thatis
) ) ) closer to an odd multiple of 7~ than an even multiple, and in
By applying the Poisson summation formula, the state |(6)+ |1))h/§, the error probability is the probabil-

- w ity that p is closer to an odd multiple of/7 than an even
—ma(m-b)2_ (4 —1/2 — ws?lan2misb multiple. For both the amplitude and phase errors, the intrin-
> e (a) 122 e mlagmsd (33 M 1 the am _ !
m=—o s=—o sic error probability arising from the imperfections of the
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approximate code words becomes exponentially small
for small A. Using the asymptotic expansion of the error <771|772>:f dudv 7,(u,v)* 7,(u,v). (43

function,
f dte =
X

we may estimate the error probability by summing the con
tributions from the tails of all the Gaussians, obtaining

1) . , VI. CONTINUOUS VARIABLE CODES FOR MANY
o€ 10K, (37) OSCILLATORS

The continuous variable codes described in Sec. IV are
‘based on simple lattices in the two-dimensional phase space
of a single particle. We can construct more sophisticated

5 o . codes from lattices in theN-dimensional phase space Mdf
Error prob<_( > e‘”TAZ“Z)ZJ dqe 978’ particles. Then codes of higher quality can be constructed
\/; n=—o Nl that take advantage of efficient packings of spheres in higher
dimensions.
_ iizAi — nlan? For a system oN oscillators, a tensor product of Pauli
Jm 207 n operators can be expressed in terms of the canonical vari-
ablesq; andp; as
2 5
= 76 AT (38) N

U.p= ex;{i \/E(E a;p;i+ Biq;

i=1

: (44)
This error probability is about 1% foh~.5, and is al- }
ready less than 10 for a still modest value\ ~.25. Using
finitely squeezed approximate code words does not badiyhere thea;’s andg;’s are real numbersin this setting, the
compromise the error-correcting power of the code, since &auli operators are sometimes called “Weyl operatdrs.”
gentle spreading ip andq is just the kind of error the code TWwo such operators commute up to a phase:
is intended to cope with.

The mean photon number of a finitely squeezed approxi- UaBUa’B’:ezm[w(aﬁ’a/ﬁ/)]ua’ﬁ'uaﬁa (45)
mate code word is

1 where
(a'a)+1/2= 5 (p*+q*)~A"2 (39
w(ap,a'B)=a-p'—a’- B (46)
for small A. Therefore, an error probability of order 10 ) ] )
can be achieved with Gaussian approximate code words thi the symplectic form. Thus two Pauli operators commute if
have mean photon number of about (.25} 16. and only if their symplectic form is an integer.
More generally, a finitely squeezed code wi can be Now a general continuous variable stabilizer code is the

regarded as a perfect code wdg) that has undergone an simultaneoqs eigenspace of commuting Pauli operators, the
error; we may write code’s stabilizer generators. If the continuous variable phase

space is N-dimensional and the code space is a finite-
. dimensional Hilbert space, then there must ¢ idepen-
|l//>:f dudy 7(u,v)e'"UPHeD|g), (40 dent generators. The elements of the stabilizer group are in
one-to-one correspondence with the points of a latticie
where 7(u,v) is an error “wave function.” In the special phase space, via the relation
case of a Gaussian finitely squeezed code word, we have

2N
1 1 UKy Ko, ...k )=exp{i\/2w(z kv) .47
n(u,v)= exp(——(uZ/A2+UZ/K2)), (41) prE e &y e
VKA 2
: ) Here{v,,a=1,2,...,N} are the basis vectors of the lattice
whereA and are the squeezing parameters defined above(.each a linear combination @f's and p's), thek,’s are ar-
If 7(u,v) vanishes fotu|> a/2 or|v|>m/(na), then the bitrary integers, andl (k; ks, . . .k,y) is the corresponding

error is correctable. In this case, the interpretatiomi,v)

as a wave function has a precise meaning, since there is
unambiguous decomposition of a state into code word an
error. Indeed, if &), |£,) are perfect code words ang),
|4,) are the corresponding finitely squeezed code words with
error wave functionsy,, 7,, then

element of the stabilizer. For the stabilizer group to be Abe-
An, the symplectic inner product of any pair of basis vectors
ust be an integer; that is, the antisymmetrid>22N ma-

Asp= w(va Up) (48)
(Y1l 2y = (&1l &) ml m2), (42) ) ) )
has integral entries. The lattic® has a 2N X 2N generator
where matrix M whose rows are the basis vectors,
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vy MtoMT=I. (57)
U2 It follows from Eq. (48) and Eq.(55) that the £ basis
M = : _ (49) vectors can be expanded in terms of the basis vectors as
Vo va= 20 Aasllp, (58)
In terms ofM, the matrixA can be expressed as or
A=MoMT, (50) M=AM", (59)
wherew denotes the B X 2N matrix and hence that
0 | (Ug,Up) = (A)pq s (60)
w= ( — | 0) y (51) or
Mto(MHT=A"HT. (61)

andl is theNX N identity matrix.
I The generator matrix of a lattice is not unique. The e~ i, |attice basis vectors are chosen so #hatas the stan-
placement dard form Eq.(54), then

M—M’'=RM (52)

0 D!
—1\T_ _
leaves the lattice unmodified, wheleis an invertible inte- (A=l -p* o | (62)
gral matrix with determinant- 1 (whose inverse is also in-

tegra). Under this replacement, the matAchanges accord- | he special case of a self-dual lattice, corresponding to a

ing to code with a one-dimensional code space, batand A~1
H . —_—n-1
ALA —RAR (53 ir;]ust be integral;, hende =D * and the standard form &
By Gaussian elimination, aR can be constructed such that 0 |
the antisymmetric matriA is transformed to
A=| _| o|=o. (63
0 D
A=l -D o (54) Since the code subspace is invariant under the translations

in £, we can think of the encoded information as residing on
whereD is a positive diagonal x N matrix a torus, the unit cell off. The encoded Pauli operators

There are also Pauli operators that provide a basis for theX"Z"} are a lattice of translations on this torus, correspond-
operations acting on the code subspace—these are the Paif O the coset spacé*/L. The number of encoded Pauli
operators that commute with the stabilizer but are not conoperators is the ratio of the volume of the unit cell®fo the
tained in the stabilizer. The operators that commute with thezolume of the unit cell ofZ*, namely the determinant &,
stabilizer themselves form a latticg* that is dual(in the ~ Which is therefore the square of the dimension of the Hilbert
symplectic form to the stabilizer lattice. The basis vectors of space of the code. Thus the dimension of the code space is

this lattice can be chosen to be,,b=1,2,3...,2N} such
that ke 3 ! n=|PfA|=deD, (64)

o(Ug,0p)=ap’ (55) where PA denote_s thePfaffi_an the_square root of the deter-
minant of the antisymmetric matrii.
then the generator matrix The stabilizer lattice unit cell has voluni®fA| in units
with h=27#A=1, and the unit cell of the lattice of encoded
Uy operations has volumgPfA| ~! in these units. So the code
fits ann-dimensional code space intounits of phase space
volume, as expected.

ML = : (56) Codes of the CSS typé&hose analogous to the binary
guantum codes first constructed by Calderbank and @fgr
and by Stean¢l6]) are constructed by choosing one lattice

Uan L, describing stabilizer generators that are linear combina-
tions of theq’s, and another Iatticeipcﬁé describing sta-
of £+ has the property bilizer generators that are linear combinations of fpis.
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P An important special class of quantum codes for many
4+ oscillators are theoncatenated codefn particular, we can
4 N LA encode a qudit in each &f oscillators using the code of Sec.

IV. Then we can use a binary stabilizer code that encédes
qudits in a block ofN oscillators, and protects against arbi-
trary errors on anyt oscillators, where 2+ 1 is the binary
code’s distance. The concatenated codes have the important
advantage that they can protect against a broader class of
> errors than small diffusive shifts applied to each oscillator —
if most of the oscillators undergo only small shiftsgandq,
< > but a few oscillators sustain more extensive damage, then
v MLV concatenated codes still work effectively.
J For example, there is a binafy7,1,3]] quantum code,
well suited to fault-tolerant processing, that encodes one
FIG. 3. The stabilizer lattice and its dual for as=2 code of a  logical qudit in a block of seven qudits and can protect
single oscillator. Solid lines indicate the stabilizer lattice; solid andagainst heavy damage on any one of the sd@nGiven
dotted lines together comprise the dual lattice. In units af¥,  seven oscillators, we can encode a qudit in each one that is
the unit cell of the stabilizer latticeshadeglhas area 2, and the unit ggsistant to quantum diffusion, and then use th&,1,3]]

a
v
Q

cell of its dual has area 1/2. block code to protect one logical qudit against severe dam-
age to any one of the oscillators.
(Hereﬁé denotes thé&uclideandual of the latticeC.) The For n=5, there is g[5,1,3]] polynomial codd17], also
generator matrix of a CSS code has the form well suited to fault-tolerant processing, encoding one qunit in
a block of 5.(Actually, [[5,1,3]] quantum codes exist for
M= Mg O ) 65) n<5 as well[6,7], but these codes are less conducive to
0 M)’ fault-tolerant computing.The larger value of increases the

vulnerability of each qunit to shift errors. Hence, whether the
whereM, andM, areNX N matrices, and the integral ma- [[7,1,3]] binary code or th¢[5,1,3]] should be preferred de-
trix A has the form pends on the relationship of the size of the typical shift errors
- to the rate of large errors.
0 Mqu
A=l -mMI 0 |- (66) VIl. ERROR MODELS

_ . _ _ What sort of errors can be corrected by these codes? The
For single-oscillator codes described in Sec. Ais the  codes are designed to protect against errors that shift the

2X 2 matrix values of the canonical variablgsand g. In fact the Pauli
operators are a complete basis, so the action of a general
0 n superoperato€ acting on the input density matrig of a
A=l —_n o] (67) single oscillator can be expanded in terms of such shifts, as
in
wheren is the code’s dimension. For a single-oscillator CSS
code, the lattice is rectangular, as shown in Fig. 3. 5(p)=j dadBda’dB'C(a,B;a’'B")
The closest packing of circles in two dimensions is
achieved by the hexagonal lattice. The generator matrix for a x gl (@p+pa) po—ila’p+p'a) (70)

hexagonally encoded qunit can be chosen to be
If the support ofC(a,B;a’,B') is concentrated on suffi-
) 1’2< 10 ) ciently small values of its arguments, then the inpwan be

M=|—=n

J3

and the dual lattice is generated by

112 312 (68 recovered with high fidelity.

A useful model of decoherence is the special case of a
“Pauli channel” in which C(«,B;a’,8’) is diagonal and
the superoperator can be expressed as

Mi=3 M. (69) 5(p)=f dadBP(a, B)e! (@ Aa) ye-ilaptpa) (71

The shortest vector of the dual lattice has lengtm ()2, Since £ is positive and trace preserving, we infer that
compared to length ¥ for the square lattice. Therefore the P(,8)=0 and

size of the smallest uncorrectable shift is larger for the hex-

agonal code than for the square lattice code, by the factor

(2/\3)Y2~1.07457. f dadBP(a,B)=1. (72
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Thus, we may interpre®(a,3) as a probability distribution: applied often enough; roughly, the time interve between

the phase space translation error correction steps should be small compared to the char-
acteristic diffusion timeD ~ 1.
(q,p)—(q—a,p+p) (73 Interactions with the environment might also damp the
amplitude of the oscillator, as described by the master equa-
is applied with probabilityP(«,3). tion

Weak interactions between an oscillator and its environ-
ment drive a diffusive process that can be well modeled by a . 1o "
Pauli channel. If the environment quickly “forgets” what it p=T|apa’— Ea ap—zpa aj; (79
learns about the oscillator, the evolution of the oscillator can
be described by a master equation. Over a short time intervﬂerea:(quip)/\/i is the annihilation operator arfd is a
dt, the shifts applied to the oscillator may be assumed to b@ecay rate. This master equation cannot be obtained from a
small, so that the Pauli operator can be expanded in powesay|i channel, but as for quantum diffusion, the effects of
of a and 8. Suppose that the shifts are symmetrically dis-amplitude damping over short-time intervals can be ex-

tributed in phase space such that pressed in terms of small phase-space displacements.
The master equation for amplitude damping can be ob-
(@)=(B)=0, tained as thalt—O0 limit of the superoperator
(a?)=(B?), p(t+dt) =E(p(1))=(yTdta)p(t)(VTdtah)
= rdt r
(aB)=0, (74 +1- TaTa p(t)| 11— Ta*a . (80

where(-) denotes the mean value determined by the prob-

ability distribution P(«,8). Suppose further that the shifts For dt small, the annihilation operator can be expanded in
are diffusive, so that the mean square displacement increasteyms of Pauli operators as

linearly with dt; we may write

i —
I ~ _ _ (aiNTdi2q__ —iTdt2q
<a2)=<32)=Ddt, (75) I'dta 2(6 e )
whereD is a diffusion constant. We then obtain N E(ei G20 _ - 1\TT20) @1
2 .
t+dt =J dadBP(a,p)e'(*P* B pei(ap+Aa) : o : :
pl ) adpP(a.f) P Thus, if the time intervalAt between error correction steps is
1 1 small compared to the damping tirbe *, the displacements
=p(t)+ Ddt( ppp— =p?p— _pp2) applied to code words are small, and error correction will be
2 2 effective.
1 1 Aside from decoherence, we also need to worry about
+ Ddt( qpd— =9%p— = pqg? | +0O(dt%?), “unitary errors.” For example, an inadvertent rotation of the
2 2 phase of the oscillator induces the unitary transformation
(76) .
U(d)=expina'a). (82
or
Like any unitary transformation, this phase rotation can be
) D D expanded in terms of Pauli operators. It is convenient to
p=- E[p,[p,p]]— 5[q,[q,p]]. (77 introduce the notation for the phase-space displacement op-
erator
The interpretation oD as a diffusion constant can be con- .
frmed by comoutin D(y)= explya—y*a")= exi V2[(Imy)a—(Rey)p],
y puting (83
d d i ; ;
—tr(p2p)=D = —tr(q2p): 78 wherey is a complex number. The displacements satisfy the
at"(P°p) airae) 78 identity
the mean square values pfindq increase with time abt. tr(D(y)D(P N =78(y—7), (84

More generally, the master equation contains a diffusive _ _
term determined by the covariance of the distributionso the operatod(6) can be expanded in terms of displace-
P(a,B), and perhaps also a nondissipative drift term deterinents as
mined by the mean ofP(«,B8). Our quantum error- 1
correcting codes can successfully suppress decoherence _ - f 2
caused by quantum diffusion, if the recovery operation is () T d™7us(7)D (), (85)
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where capacity(in qudits is a function of the dimensionless vari-
able#/o?, wheret: is Planck’s constant.
Us(y)=tr(U(0)D(y)"). (86) An upper bound on the quantum capacity of the Gaussian
uantum channel was derived by Holevo and Wefriéx;

Evaluating the trace in the coherent state basis, we find thg ey obtainedreverting now to units with = 1)

ie!?? i < 2
Up(y) = mexp( 5 vl7cot( 9/2)) . (87 Cq=log,(1/o?), (91
for 0<o?<1, andCo=0 for ¢?=1. They also computed
For small g, the coefficient the coherent informatiohy of the Gaussian quantum chan-
nel, and maximized it over Gaussian signal states, finding
i [ [19]
Ug(y)~gexp — 4l (88)
(I Q)max: |ng(l/e()'2), (92

has a rapidly oscillating phase, and can be regarded aS¢8. < s2<1/e (Wheree=2.718 B
distribution with support concentrated on valuesjokuch X i
that|y|?>~ 6; indeed, formally

..). The coherent in-
formation isconjecturedo be an attainable rafd—3]; if this
conjecture is true, then E§92) provides a lower bound on
. @2 Co.
L'TOU"( V)=m(y). (89 QUsing our continuous variable codes, rigorous lower
bounds orCq, can be established. For® sufficiently small,
Thus a rotation by a small anglé can be accurately ex- & nhonzero attainable rate can be established asymptotically
panded in terms of small displacements—error correction i$0r largeN by either of two methods. In one method, the
effective if an oscillator is slightly overrotated or underro- =2 code described in Sec. IV is invoked for each oscillator,
tated. and concatenated with a binary quantum code. In the other
method, which more closely follows Shannon’s construction,
VIIl. THE GAUSSIAN QUANTUM CHANNEL a code forN o;cillators is congtruct_ed as.in Sec. VI, based on
a close packing of spheres irN2dimensional phase space.
At what rate can error-free digital information be con- However(in contrast to the classical caseeither method
veyed by a noisy continuous signal? In classical informatiorworks if o is too large. For larger?, encodings can be
theory, an answer is provided by Shannon’s noisy channathosen that protect agairgshifts or againsp shifts, but not
coding theorem for the Gaussian chanlrid]. This theorem against both.
establishes the capacity that can be attained by a signal with To establish an attainable rate using concatenated coding
specified average power, for a channel with specified bandthe method that is easier to explaime first recall a result
width and specified Gaussian noise power. The somewhafoncerning the quantum capacities of binary channels
surprising conclusion is that a nonzero rate can be attaingd5,20. If X and Z errors are independent and each occur
for any nonvanishing value of the average signal power. with probability p., then binary CSS codes exist that
A natural generalization of the Gaussian classical channedchieve a rate
is the Gaussian quantum channeThe Gaussian quantum
channel is a Pauli channelt oscillators are transmitted, and R>1—2H5(pe) =1+ 2pclogape+2(1—pe)logz(1—pe);
the g andp displacements acting on the oscillators are inde- (93
pendent Gaussian random variables with mean 0 and va
ancecd?. A code is arM-dimensional subspace of the Hilbert
space of theN oscillators, and the rat® of the code(in
qudits is defined as

"his rate is nonzero fop,<.1100.

Now, for the Gaussian quantum channel, if we userthe
=2 continuous variable code, errors afflicting the encoded
qudit are described by a binary channel with independent
andZ errors. Since the code can correct shiftgjior p that

1
R=5l0g:M. (90)  satisfyAq,Ap<\/m/2, the error probability is
The quantum-information capacity, of the channel is the Pe<2 f_ dxe ¥20%, (94)
maximal rate at which quantum information can be transmit- V2o w2

ted with fidelity arbitrarily close to one.

The need for a constraint on the signal power to define th
capacity of the Gaussian classical channel can be understo T !
on dimensional grounds. The classical capafiitybits) is a  cannel has nonvanishing quantum capa@y provided
dimensionless function of the varianeé, but o2 has di- Nt
mensions. Another quantity with the same dim.ensione2as o< .555. (95)
is needed to construct a dimensionless variable, and the
power fulfills this role. But no power constraint is needed to  One might expect to do better by concatenating hibg-
define the quantum capacity of the quantum channel. Thagonal n=2 single-oscillator code with a binary stabilizer

eQ,ince the expression boundipg in Eq. (94) has the value
0 for o~.555, we conclude that the Gaussian quantum
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code, since the hexagonal code can correct larger shifts thajtoup of UnN) that we can implement “easily;” but to
the code derived from a square lattice. For the GaussiaBomplete a set of universal gates we must add further trans-
quantum channel, the symmetry of the hexagonal lattice erformations that are “difficult.” In the case of our continuous
sures thak, Y, andZ errors afflicting the encoded qudit are variable codes, the easy gates will be accomplished using
equally likely. A shift is correctable if it lies within the Jinear optical element¢phase shifters and beam splitters
“Voronoi cell” of the dual lattice, the cell containing all the along with elements that can “squeeze” an oscillator. For
points that are closer to the origin than to any other latticahe “difficult” gates we will require the ability to count pho-
site. By integrating the Gaussian distribution over the hextons.
agonal Voronoi cell, we find that the probabilipy o Of an The easy gates are the gates in the Clifford group. In
uncorrectable error satisfies general, the Clifford group of a system bf qunits is the
group of unitary transformations that, acting by conjugation,
i 12 erXJx/V@d eﬁ(szryz)/Zo-? (96) take tensor products of Pauli operators to tensor products of
Pe,total 270209, @Y ’ Pauli operators(one says that they preserve the “Pauli
group”). Since forN oscillators the tensor products of Pauli
wherer = (7/2/3)"2is the size of the smallest uncorrectable operators have the forii#4), the Clifford group transforma-
shift. For a binary quantum channel with equally likedyY, tions, acting by conjugation, are linear transformations of the
andZ errors, it is knowr{21] that there are stabilizer codes p's and g's that preserve the canonical commutation rela-
achieving a nonvanishing rate fpg ;o<<.1905; our bound tions. Such transformations are called symplectic transforma-
0N Pe oa '€ACHES this value far~.547. tions. The symplectic group has a subgroup that preserves
Somewhat surprisingly, for very noisy Gaussian quantunthe photon number
channels, square lattice codes concatenated with CSS codes
seem to do better than hexagonal codes concatenated with
stabilizer codes. The reason this happens is that a CSS code
can correct independeMt and Z errors that occur with total
probability pe o= Px+ Pz~ Px- Pz, Which approaches The transformations in this subgroup can be implemented
0.2079>0.1905 agpx=pz—0.1100. For a given value af, with linear optics[22]. The full symplectic group also con-
the qudit encoded in each oscillator will have a lower errortains “squeeze operators” that take arto a linear combi-
probability if the hexagonal code is used. But if the squarenation ofa’s anda'’s; equivalently, the squeeze operators
lattice is used, a higher qudit error rate is permissible, andescale canonical operators by a real numbeslong one
this effect dominates when the channel is very noisy. axis in the quadrature plane, and by* along the conjugate
We remark that this analysis is readily extended to moreaxis, as in(for example
general Gaussian quantum channels. We may consider Pauli
channels acting on a single oscillator in which the probability q:—A\dz,  P1—A"'py. (98)
distributionP(«,B) is a more general Gaussian function, not
necessarily symmetric ip andq. In that case, a symplectic
transformation(one preserving the commutator pfand q) . X . .
can be chosen that transforms the covariance matrix of the Aside from t.he symplectic Fransformatlons, we \.N'" also
Gaussian to a multiple of the identity; therefore, this case?SSUme that it is easy to do displacements that graftdp

reduces to that already discussed above. We may also cofY constants. A d|splace_ment qi by IS actually the I]m—
sider channels acting o oscillators that apply shifts in the iting case of a symplectic transformation on two oscillators
2N-dimensional phase space, chosen from a Gaussian eflt 2nddz:
semble. Again there is a symplectic transformation that di-
agonalizes the covariance matrix; therefore, this case reduces

to N independent single oscillator channels, each with its

own value ofa?.

N
(total photon number= >, a'a;. (97)
i=1

With squeezing and linear optics, we can in principle imple-
ment any symplectic transformation.

q:—0:tedx, P1—P1tep:

0>—02—&qy, P2—P2—€P1, (99

wheree—0 with eq,=c held fixed.
IX. SYMPLECTIC OPERATIONS Since for the code with stabilizer generat®$) the Pauli

B . ip —
To use these codes for fault-tolerant quantum computa2Perators acting on our encoded qunits Aree™® and Z

. . — a2miq/n P . .
tion, we will need to be able to prepare encoded states, per- €. the Clifford group transformations acting &

form error recovery, and execute quantum gates that act ofUnits constitute a subgroup of the symplectic transforma-

the encoded quantum information. The most difficult task isions (including shifts acting onN oscillators, the subgroup
encoding; we will postpone the discussion of encoding untithat preserves a specified lattice in phase space. Thus we can

after we have discussed encoded operations and error recdt? @ny encoded Clifford group gate we please by executing
ery. an appropriate symplectic transformatigossibly including

Suppose, for example, that we haMeoscillators, each & Shiff.

encoding a qunit. We wish to apply bY) transformations ) A similgr cqmment appli.es to the_case of a qun_it encoded
that preserve the code subspace ofMhgunits. As is typical N a qudit. Since the logical Pauli operators aXe=X':
of quantum codes, we will find that there is a discrete suband Z=2Z"2, each Clifford group transformation in the
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n-dimensional code space is also a Clifford group transfor- data ——¢——
mation on the underlying qudit. (a) _

But we must also be sure that our implementation of the |X = 1)—{SUM}—Measure ¢
Clifford group is fault tolerant In previous discussions of
guantum fault tolerance fgf N,k,2t+ 1]] codes, the central data SUM
theme has been that propagation of error from one qudit to (b)
another in the same code block must be very carefully con- |Z = 1)——e—Measure p
trolled [23,24]. For shift-resistant codes the main issue is
rather different. Since each qudit typically hagenall) error FIG. 4. Measurement of the error syndrorte.To diagnose the
anyway, propagation of error from one qudit to another is nof shift, an ancilla is prepared in the encodéd 1 state, ssum gate
necessarily so serious. But what must be controlleahipli-  is executed with the data as control and the ancilla as target, and the
fication of errors—gates that turn small errors into large er-position of the ancilla is measureth) To diagnose the shift, the
rors should be avoided. ancilla is prepared in thE= 1 state, UM gate is executed with the

The Clifford group can be generated by gates that arancilla as control and the data as target, and the momentum of the
fault-tolerant in this sense. The Clifford group for qunits canancilla is measured.
be generated by three elements. Bua gate is a two-qunit
gate that acts by conjugation on the Pauli operators accord- X. ERROR RECOVERY

Ing to If we are willing to destroy the encoded state, then mea-

sum: X8XB—xaxh-a,  z8zB.73*Pzb (100  suring the encodeX or Z is easy—we simply conduct a
homodyne measurement of tiyeor p quadrature of the os-
Here qunit 1 is said to be the control of tBem gate, and  cillator. For example, suppose that we measuyfer a state
qunit 2 is said to be its target; in the binany£2) casesuM  in the code subspace. If there are no errors and the measure-
is known as controlledioT, or cCNOT. The Fourier gat€& acts  ment has perfect resolution, the only allowed valueg will
by conjugation as be integer multiples ok. If there are errors or the measure-
ment is imperfect, classical error correction can be applied to

. —-1.
Fi X—=Z, Z-X5 (10D the outcome, by adjusting it to the nearask, wherek is an
for n=2 the Fourier Transform is called the Hadamard gateinteger. Then the outcome of the measuremert & o,
The phase gatP acts as To diagnose errors in a coded data state, we must measure
the stabilizer generators. This measurement can be imple-
P: X—=(np)XZ, Z-Z, (102 mented by “feeding” the errors from the code block to a

_ o _ coded ancilla, and then measuring the ancilla destructively,
where then-dependent phasg is o™“if nisevenand 1ih  following the general procedure proposed by Stef2f

is odd. Any element of the Clifford group can be expressedsee Fig. 4 For example, to measure the generatf '«

as a product of these three generatdhs.Ref. [8] another  (j.e., the value oty moduloa), we prepare the ancilla in the

gate S was included among the generators of the Clifford tate (6+|T)/\/§ the e ; i
. , qually weighted superposition of
group, but in fact thé&s gate can be expressed as a product on” |q=s>- a>,>s being an integer. Then aum gate is ex-

SuM gates) ecuted with the data as control and the ancilla as target—

I_:or an n-dimensional system encoded in a contlnuousactmg according to
variable system, these Clifford group generators can all be

realized as symplectic transformations. In the case where the Up— 01+ s, (105

stabilizer generators are symmetricgrandp,
— ) 2
X=exp —ip\/— ! . . .
n suringq of the ancilla, the value aofj; + q, is obtained, and
) . . this value modulax determines the shift that should be ap-
the required symplectic transformations are plied to the data to recover from the error.

, Similarly, to measure the stabilizer genera&jt*®, we
SUM:Q;— 0y, P1—P1— P2, S — .
prepare the ancilla in the stat), the equally weighted

1/2

where q;,q, are the values ofy for the data and ancilla
. Z= exp( iq /2777) (103 respectively, prior to the execution of tsem gate. By mea-

Uo—01+ 0y, Pr—Po, superposition of allp=s-2m/na), sbeing an integer. Then
a SuM gate is executed with the ancilla as control and the
F: g—p, p——q, data as target. Finally, thequadrature of the ancilla is mea-
sured. The outcome reveals the valuepef- p; prior to the
P: gq—g, p—p-q+c, (104 SuUM gate, wherep; is the momentum of the data, apd is

the momentum of the ancilla. The measured value modulo
where then-dependent shift is 0 for n even andyw/2n for 2mIna then determines the shift that should be applied to
n odd. Under these symplectic transformations, small deviathe data to recover from the error.
tions of g and p from the stabilizer lattice remain small; in Of course, the ancilla used in the syndrome measurement
this sense the transformations are fault tolerant. can also be faulty, resulting in errors in the syndrome and
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imperfect recovery. Similarly, the measurement itself will modulo four; we can measure the eigenvalue of the encoded
not have perfect resolution, and the shift applied to recoveHadamard transformation by counting photons.

will not be precisely correct. Furthermore, as is discussed in In fact the photon number in the code space is even—all
Sec. V, the ideal code words are unphysical nonnormalizableode words are invariant under a 180° rotation in the quadra-
states, so that the encoded information will always be carrieture plane. Because of this feature, the preparation of the
by approximate code words. For all these reasons, deviatiortdadamard eigenstate has some fault tolerance built in; if the
from the code subspace are unavoidable. But if a fresh sugshoton count is off by one, the number will be odd and an

ply of ancilla oscillators is continuously available, we canerror will be detected. In that case we reject the state we have
prevent these small errors from accumulating and eventuallprepared and make a new attempt. If the photon number is

damaging the encoded quantum information. large, then obtaining a reliable determination of the photon
number modulo four will require highly efficient photodetec-
XI. UNIVERSAL QUANTUM COMPUTATION tion. But on the other hand, the photon number need not be

. . . very large — the mean value affa is aboutA ~2, whereA
Symplectic transformations together with homodyne mea;s the squeeze factor, and we have seen that the intrinsic error

surements are adequate.for Clifford group computation anghte que to imperfect squeezing is quite smallfor 1/4, or
for error recovery(assuming we have a supply of encoded<a*ra>~16_

stateg. But to achieve universal computation in the code  ap giternative to preparing an encoded EPR pair and de-

space, we need to introduce additional operations. Fortusiyctively measuring one member of the pair is to prepare
nately, the quantum optics laboratory offers us another tool—

. : )y and then perform a quantum nondemolition measurement
tmhgggﬂt?]ee L;zﬁg;?oggozi)t/%?%ttgﬁssymplectlc computation oa the photon number modulo 4. This might be done by

There are a variety of ways in which photon counting Car]couphng the oscillator to a two-level atom as proposed in

be exploited to complete a universal set of fault—toleranﬁef' [28]. Indeed, since only one bit of information needs to

gates. We will describe two possible ways, just to illustratethe collectedthe ;;hotolz Eumbedr IS eltherIOI orb2 mog.ul)) 4 i

how universal fault-tolerant quantum computation might be 1€ measurement could be made In principie by reading out a

realized with plausible experimental tools. For this discus-.s’Ingle atom. Suppose that th_e coupling of oscillator to atom
: . . . is described by the perturbation

sion, we will consider the binary case=2.

A. Preparing a Hadamard eigenstate H :)\aTaoZ’ (109
We can completg the universal gate set if we have th'@vhereazz —1 in the atomic ground staje) ando,=1 in
ability to prepare eigenstates of the Hadamard operdtor {he atomic excited stafe). By turning on this coupling for

[26,27). For this purpose it suffices to be abledestructively o timet= 7l4N, we execute the unitary transformation
measureH of an encoded qudit. Assuming we are able to
prepare a supply of the encod&deigenstate 0), we can U= exd —i(w/4)atas,]. (110
make an encoded Einstein-Podolsky-Ro&eRR) pair using z
symplectic gates. Then by destructively measutihfpr one
encoded qudit in the pair, we prepare the other qudit in a
encoded eigenstate &f with the known eigenvalue.

But how can we destructively measui® The Hadamard _ iatama _iatan/2
gate acts by conjugation on the encoded Pauli operators ac- Y- E(|9>+ |e>)—>ﬁe (lg)+e e)).

cording to (111)

Jhen the atomic stated)+ le))/y2 evolves as

H: X—Z, Z—X. 106
- - (109 By measuring the atomic state in the bagig)(-|e))/ /2,

If we use the code that treatsand p symmetrically so that We read out the value of the photon number modul@e+

X= exp(—ipy7) and Z= exp(qy7), then the Hadamard sumed to be either 2 or)4Since this is a nondemolition

ate can be implemented by the symplectic transformation.measur?mem’ it can be repeated to improve_reliability. By
g P y ymp measuring the photon number mod 4 many tin@srhaps

q—p, p—-—q (107 with rounds of error correction in between the measure-
mentg, we obtain a Hadamard eigenstate with excellent fi-
(recalling thatx?=Z2=1 on the code subspaceThis trans-  delity.
formation is just the Fourier transform How does the ability to construct the Hadamard eigenstate
enable us to achieve universal quantum computation? We
T can make contact with constructions that have been de-
F: exp<|§a a (108 scribed previously in the literature by observing that the
Hadamard eigenstate can be transformed by applying sym-
(WhereaTa is the photon numbé’rwhich describes the natu- plectiC gates to the %’/8-phase state.” First note that the two
ral evolution of the oscillator for one quarter cycle. Thus theHadamard eigenstates can be converted to one another by
phase of the Hadamard operator is simply the photon numbepplying the encoded ga®Z, which can be implemented
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e—im/4 Recall that the imperfections of the code words arising
e APp = from finite squeezing can be described by an “embedded
0 ein/4 error” | ») as in Eq.(40); a Gaussian approximate code word
has a Gaussian embedded error
) 1 1
n(u,v)= —eX[<——(U2/A2+UZ/K2) (117
|w7r/8> mAk 2

FIG. 5. Implementation of th& gate. An ancilla is prepared in WhereA is the width ing and« is the width inp. Symplectic
the statd ), and acNoT gate is executed with the data as control gates act separately on the encoded qudit and the “embedded
and the ancilla as target; then the ancilla is measured in the basfTor” |7); for example, the Fourier transform gate and the
{]0), |1)}. A P gate is applied to the data conditioned on the mea-SUM gate act on the error according to
surement outcome.
F:luv)—|v,—u),
by shifting bothp andq. Therefore it is sufficient to consider

the eigenstate corresponding to the eigenvalue 1, SUM:|Uq,01;Up,00)—|Uq, 01+ 00 Us—Uq,05).
118

| y=1) = cog 7/8)|0) + sin(/8)|1). (112 (118
By measuring the photon number modulo 4, we actually
By applying the symplectic single-qudit gate measure th@roductof the eigenvalue of the Hadamard gate

, acting on the code word and the eigenvalug=adicting on

., 1 11 10 1 (1 7 the embedded error. The latter always equalg§ e use

H-P EE 1 —-1]°{0 i~ E 1 i) symmetrically squeezed code words, Witk «.

Symmetric squeezing is not in itself sufficient to ensure

(113 that the measurement of the photon number modulo 4 will
btain ther/8 stat prepare the Qeswed encoded Hadamard eigenstate. We also
e obtan them/e state need to consider how the embedded error is affected by the
1 preparation of the EPR pair that precedes the measurement.
| i) = _(e—iq-r/8|o>+ei7r/8| 1)). (114 To prepare the EPR pair, we use them gate. Suppose that
V2 we start with two symmetrically squeezed states. Then the

) SUM gate yields the error wave function
Now this 7/8 state can be used to perform the nonsym-

plectic phase gate 7' (Ug,01;Uz,05)= exp{—[Us+ (v1—v) 2+ (U +Uy)?
e8| +0v3]/A%}. (119
S= 0 g8, (119
Not only is it not symmetric, but the error is entangled be-

tween the two oscillators. The Fourier transform measure-
which completes the universal gate $29,30. The gate is ment will not give the desired result when applied to either
constructed by executing the circuit shown in Fig. 5. Wegoscillator.
perform acNoT gate with the arbitrary single-qudit state  To ameliorate this problem, we could perform error cor-
|¢)=a|0)+b|1) as the control, and the/8 phase state as rection after the preparation of the EPR pair and before the
the target; then the target qudit is measured in the basi;easurement, where the error correction protocol has been
{10),]1)}. If the measurement outcome|®) (which occurs  designed to produce symmetrically squeezed states. Or we
with probability 1/2, then the control qudit has become could avoid preparing the EPR state by using the nondemo-
a€™®0)+be '™1)=S|y) and we are done. If the mea- lition measurement of photon number modulo 4, as described
surement outcome i), then the control qudit has become above.
ae '8 0)+be™1), and we obtairs|¢) by applying the

symplectic single-qudit gate B. Preparing a cubic phase state

e"im4 Now we will describe another way to use photon counting
e '"P=| il | (116  to implement nonsymplectic gates, which is less sensitive to
the code word quality. Again, we will complete the universal

Completing the universal gate set by measuring the Hadd@te et by constructing the/8 phase gat&
amard transformation has some drawbacks. For one thing, FOr our binary (1=2) code, the code subspace has the
while photon number modulo four corresponds to the Had®as!s

amard eigenvalue in the ideal code space, this correspon- oo
dence will not apply to approximate code words unless they @: E lq=2sa)
are of a special type. s=—o ’
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) —— V. If the function ¢(q) is cubic, then the argument of the ex-
ponential is quadratic and henced)(is a symplectic trans-
formation.

el ASUM_IH&“W‘J‘ Now the problem of implementing universal quantum

computation in the code subspace has been reduced to the
problem of preparing the cubic phase stage. We can ac-
complish this task by preparing an EPR pair, and then per-
?orming a suitable photon counting measurem@ntonideal
homodyne measuremegrin one member of the pair.

Of course, the EPR pair will not be perfect. To be definite,

FIG. 6. Implementation of the cubic phase gate. An ancilla is
prepared in the statey), and asum~ 1 gate is executed with the
data as control and the ancilla as target; then the position of th
ancilla is measured. A symplectic gated)(is then applied to the
data, conditioned on the outcoraeof the measurement.

oo let us supposé€although this assumption is not really neces-
T = —(2s+1)a). 120 sary) that it is a Gaussian state
[1)=_2 la=(2s+ D)) (120 N 2
Wy o )= To dg,dg, ex —102 LY

(For now we ignore the embedded error due to imperfect Tp g Toy 9:002 2P 2
squeezing; it will be taken into account lajeAn S gate 1
acting on the encoded qudit is implementeg to an irrel- 2 2
evant overall phageby the unitary operator xexp = 5 (A1 02)7 o 192.92) (128

i 3 ) with O'p,O'q<1.
W= exg -[2(a/a)*+(a/@)*~2(a/e)] | (12D) Now suppose that the second oscillator is mixed with a
coherent light beam, resulting in a large shift in momentum,
Indeed, we can check that . 4
[y—e"y), weogtopt; (129

0, ifx=2s, .
(122  then the photon number is measured anphotons are de-

1, ifx=2s+1. tected. Thus the state of the first oscillator becorfuas to

) ) normalization
The operatokV is the product of a symplectic gate and the

cubic phase gate

2x3+x%—2x(mod8) = [

1/2
|lp(n)>~ Op d | >e— 1/2 ozqf
1 _mrq d1191 P

V., = expliyg®), (123

. _ _ 2 0_2
where y=/(2a°). But how do we implement the cubic XJ daye} (gy)e™92e™ V2@ og (130
gate? In fact, if we are able to prepare a “cubic phase state”
where|¢,,) denotes the photon number eigenstate, the eigen-
|7>:f dxéyx3|x>’ (124) it?the) with eigenvalue+ 5 of the HamiltonianH=3 (p
_ o We can evaluate thg, integral in Eq.(130) by appealing
then we can perform the ga¥, by executing the circuit to the semiclassical approximation. Fapy in the classically

shown in Fig. 6. o . allowed region and far from the classical turning points, we
To understand how the circuit works, consider the moremay write

general problem of implementing a phase gate that acts on

the position eigenstates according to 1 o
* .
. ¢ (q2)~—exr{—|f dxp(x)
Vyila)—e?@q) (125 " V27p(ay)
i i i 1 q
(where ¢(q) is a real-valued function using the prepared " +.J g 131
phase state 27D(0a) exp +1 xp(x) |, (13D
~ h
|4)= f dxeé *09]x). (126 O
p(X)=+2n+1—x2. (132)

If we perform the gatesum™ 1 with position eigenstaté) . . o

as control andi$) as target, and then measure the position of~0r W>a =, the rapid phase oscillations strongly suppress
the target obtaining the outcon), the state of the control the contribution to the integral arising from the left-moving
oscillator has become'#(@+3)|q). We can therefore com- Part of ¢ (qy). A contribution from the right-moving part
plete the construction of, by applying the transformation ~Survives provided that

U(a)=ell¢(@—d(a+a) (127 |p(ql)—w|<a;1. (133
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When this condition is satisfied, it is a reasonable approxi- Is this procedure fault tolerant? Before considering the
mation to replace the Gaussian fackort/2@1- %)% in the eLrors intrtoduced r<]jurilgg Lhe kinsrﬁ)ltiTﬁntati?n dof the ctubic;
integral by\/27wa25(q;—d5), so that we obtain phase gate, we snould check that the gate does not cata-

G2 g yN2moqd(di—d2) strophically amplify any preexisting errors. In general, a
- 1 phase gate can transform a small position shift error into a

|,r/,(1”)>~(2gpgq)1/2f dg,|g;)e” Y2l —— potentially dangerous momentum shift error. Commuting

V2mp(dy) V(¢)=e'? through the shift operatae "“P, we find
a1 id(A)g=iup= g=iupaify(a)gid(a)
xexp(—if dx[p(x)—w]). (134 ere e e e (140

where f,(q) = ¢(q+u) — ¢(q); the operatore'’u(® can be
The probability thain photons are detected is given by the expanded in terms of momentum shift operators of the form
norm of this|¢(1”)). The values oh that occur with appre- €'"% by evaluating the Fourier transform
ciable probability satisfy Eq(133 for someq; with |q,|

-1. ; ; ~ dg .
<o, ", thus typical measurement outcomes are in the range fL(v)= J' %el(fu(q)*vq)_ (141)
1 —1\2 1 -2 . .
n+5~5Wxog )™+ 50,7, (139  Assuming we use a code where the parametés of order
one, uncorrectable errors will be likely Tf,(v) has signifi-
with a flat probability distribution cant support on values of that are order one.

Suppose tha¥(¢) acts on an approximate code word
o whose wave function is concentrated on valuesjah the
Protin)=<</f§”>|¢‘1“)>~wq- (136 domain |g|<L. Phase cancellations will strongi?/ suppress
f,(v), unless the stationary phase conditfdq) =v is sat-
Heuristically, after the momentum shift is applied, the oscil-isfied for some value ofj in the domain of the approximate
lator that is measured has momentum of onderogl, and  code word. Therefore/(¢) can propagate a preexisting po-
position of ordero,*, so that the value of the energyris  sition shiftu to a momentum shift error of magnitude
+3=3(p7+ )~ 2(Wrog )P+ 3oy ”
For a particular typical outcome of the photon-counting
measurement, sincey{”) has its support orfgy<o,"

<w, we can Taylor expang(x) aboutx=q,; to express The cubic phase gate needed to implement the enc&ded

lo[~max{fi(q)|. (142
lal<L

|y as gate isW=e'?@  where ¢(q)=7q%2a3, so thatf,(q)
=37ug?/2a3+ - - (ignoring small terms linear and con-
q1 i 4 — 3.
(n . e Tan i stant inq), and f(q)=3wuaq/«”; the gate transforms the
Yi(Gy)= ex;{ If (V(zn+1) w)dx position shiftu to a momentum shift

— 3
—2n+1—w)q1 v~3wLul/a®. (143
For « of order one, then, to ensure thats small we should
use approximate code words with the property that the typi-
_ (137  cal embedded position shift satisfies

i
o exp| ———q3—i
p(G\/ZnJrlql (

+0(a3/w?)

lul<L™1 (144
This is a cubic phase state to good precisionvifs large
enough. In particular, if the approximate code word’s embedded er-
The coefficienty’ of qi in the phase ofy, is of order  rors are Gaussian, whekeis the typical size of a momentum
n~%2, while the phasey of the operatoV,, that we wish to shift andA is the typical size of a position shift, we require
execute is of order one. However, we can constxicfrom

vV, as A<k. (145
_ -1 We assume that shift errors due to other causes are no larger
Vy=Syy) Ny Sy, 139 than the embedded error.
whereS; is a squeeze operation that acts according to In the circuit Fig. 6 that implements the cubic phase gate,
position shift errors in either the encoded sthté or the
S :q— ()3, ancilla statey) might cause trouble. A shift by in |¢) is
transformed to a phase erref«(9, and a shift byu in |y)
p— (1)~ ¥3p. (139  infects|y) with a phase errog''u(1*2). Therefore, we should

require that position shift errors in botly) and|y) satisfy
Alternatively, we could squeeze the phase state before the criterion(144), wherelL is the larger of the two wave
we use it to implement the cubic phase gate. packet widths.
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When a cubic phase state is prepared by measuring half of

an EPR pair, the packet width is of orde{jl and typical
position shift errors havei~o,. However, we must also
take into account that either the encoded state or the ancill
must be squeezed as in E439. Suppose that the ancilla is
squeezed, by a factor of ordet®~ w3 the wave packet is
rescaled so that, after squeezing, the widthand the typical
shiftsu’ are given by

13

L'~o,'w™ u' ~oqw (146
Then the conditiofju’|<L’ ! is satisfied provided that,
<0_pW2/3
large width compared to 1, ar,<w 3
For the derivation of Eq(137), we used the approxima-
tionswo,>1 andwo,>1. We also need to check that the
remainder terms in the Taylor expansion give rise to a phas
error that is acceptably small. This error has the fefHfl?),
where f(q1)=O(qi/W3), corresponding to a momentum
shift
v~f'(q)~o, w2 (147
Squeezing amplifies this momentum shift error 0
~vwB~ o w83 which will be small compared to 1 pro-
vided thato,>w~ 2?3 To summarize, our implementation of
the cubic phase gate works well if the approximate cod
words have embedded errors satisfyiligg x, and if widths
o4 ando, of the approximate EPR state satisiy 0;1 and
w B> o >w R (148
Finally, how accurately must we count the photons? An
error An in the photon number results in a phase eg'éfit
with [v]~n~Y2An in ¥{"(q,), which will be amplified by
squeezing tdv'|~|v|w®~n"Y3An. Therefore, the preci-
sion of the photon number measurement should satisfy
An<n?? (149

to ensure that this error is acceptably small.

C. Purification

A
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FIG. 7. Construction of the three-qudit gaté(Z). (a) A A(P)
gate can be constructddp to an overall phagdrom two S gates,
an S~ ! gate, and twaNoT's. The circuit is executed from left to
right. (b) A A%(Z) gates can be constructed from tiiqP) gates,
aA(P™ 1) gate, and twaNOT'S.

. We also require that the rescaled packet has a

An example of a nonsymplectic state that admits such a
purification protocol is a variant of the state originally intro-
duced by Shof23], the three-qudit state

e
273/2 2

a,b,ce{0,1}

(_1)abc|a>1|b>2|c>3i (150

it can be characterized as the simultaneous eigenstate of
three commuting symplectic operators:(Z),; ;X3 and its

two cyclic permutations, wherd (Z) is the two-qudit con-
ditional phase gate

A(Z):]a,b)—(-1)%

a,b). (151

s Shor explained, this nonsymplectic state can be employed

to implement the Toffoli gate
T:|a,b,c)—|a,b,coab), (152

and so provides an alternative way to complete the universal

gate set.

To purify our supply of nonsymplectic states, symplectic
gates are applied to a pair of nhonsymplectic states and then
one of the states is measured. Based on the outcome of the
measurement, the other state is either kept or discarded. If
the initial ensemble of states approximates the nonsymplectic
states with adequate fidelity, then as purification proceeds,
the fidelity of the remaining ensemble converges rapidly to-
ward one.

The details of the purification protocol will be described
elsewhere; here we will only remark that these Shor states

Either of the above two methods could be used to imple€an be readily created using symplectic gates af8iphase
ment a nonsymplectic phase transformation that completegates. The Shor state is obtained if we apply the transforma-
the universal gate set. Of course, experimental limitationgion
might make it challenging to execute the gate with very high

fidelity. One wonders whether it is possible to refine the
method to implement fault-tolerant universal gates of im-
proved fidelity.

In fact, such refinements are possible. We have seen th
we can reach beyond the symplectic transformations an

achieve universal quantum computation if we have a supply

A%(Z):]a,b,c)—(—1)3"%a,b,c) (153
to the state
at
d H,H,H;|0,000=2"% > |ab,c). (154
a,b,ce{0,1}

of appropriate “nonsymplectic states” that cannot be created
with the symplectic gates. If the nonsymplectic states havés shown in Fig. 7,A%(Z) can be applied by executing a
the right properties, then we can carry out a purification pro<ircuit containing 5S gates, 45~ ! gates, and &NOT gates.

tocol to distill from our initial supply of noisy nonsymplectic
states a smaller number of nonsymplectic states with muc
better fidelity[31,32.

Therefore, if we can apply symplectic gates accurately,
Bnd are also able to create a supplynd8 states of reason-
able fidelity (or can otherwise implemer8 gates of reason-
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able fidelity), then we can use the purification protocol to
implement Toffoli gates with very good fidelity.

(a)

XIl. ENCODING

Now we have discussed how to execute universal quan-
tum computation fault tolerantly, and how to perform error
recovery. But the discussion has all been premised on the
assumption that we can prepare encoded states. It is finally
time to consider how this can be done. In fact, preparing [ .
simultaneous eigenstates of the stabilizer generators ) o i
exp(2mg/a) and exp(inpa) is a challenging task.

For the[[N,k]] stabilizer codes that have been discussed FIG- 8. Preparation of an encoded stag An eigenstate of is
previously, encoding is not intrinsically difficult in that it can Prepared, which has an indefinite value f(b) The value ofq
be accomplished with Clifford group gates. Acting by con- modulon_a is measured, projecting out a state that differs from the
jugation, Clifford group transformations take tensor productsencodedZ eigenstate by a shift ig.
of Pauli matrices to tensor products of Pauli operators. In
particular, there is a Clifford group transformation that takesthen if this coupling is turned on for a tinte=27/\An«, the
the statg0)®N (the simultaneous eigenstate with eigenvaluephase of the meter advances by

one of allN single-quditZ’s) to the encodedﬁ}®k (the si-
multaneous eigenstate with eigenvalue oneMf-(k) stabi- A bOmete=2m0/Na. (157

lizer generators anll encodedZ’s).

~Where our codes are different, in both their finite- By reading out the phase, we can determine the valug of
dimensional and infinite-dimensional incarnations, is that nodulona. and apply a shift if necessary to obtain the state

singlequdit or oscillator is required to obdwo independent with q=0 (mod na), the known statqﬁ) in the code sub-

stabilizer conditions—i.e., to be the simultaneous eigenstate ;
; . . .Space(See Fig. 8.
of two independent Pauli operators. Hence there is no Clif* : . . .
Of course, in practice the state squeezeg prepared in

ford group encoder. In the continuous variable case, th%1 X . .
. o . e first step will be only finitely squeezed, and the measure-
problem can be stated in more familiar language: the sym-

plectic transformations take Gaussi@oherent or squeezgd meur;te(;fec:j msﬁgtuelo ga (\BNAILIJQS?;;} 'znpden;ﬁgt rrise(:sslroe%gntthias a
states to Gaussian states. Hence no symplectic transform qaussian accentance. then this procedure will produce an
tion can take(say the oscillator's ground state to a state in : P ’ P ) vill p
the code subspace. approximate code word of the sort described in Sec. V.

So encoding requires nonsymplectic operations, and as far If we are able to prepare goc_)d_enc_)ugh encod_ed states,
as we know it cannot be accomplished by counting photon e can distill better ones. The distillation protocol is similar

. . : o the error recovery procedure, but where the ancilla used
either—we must resort to a nonlinear coupling between os; yp

cillators, such as @® coupling. We will describe one pos- for syndrome measurement may be fairly noisy. We might

sible encoding scheme: First, we prepare a squeezed state,'zﬁnrprove the convergence of the distillation procedure by dis-

cigenstate of the momentum wigh=0. This state is alread carding the data oscillator if the measurement of the ancilla

ger e : o Y oscillator yields a value ad or p that is too distant from the
an eigenstate with eigenvalue one of the stabilizer genera’[Q/ralues allowed by the code stabilizer
e"P%, but nqt an _ei.genstate eF.mq/a; rather its value of is So far, we have described how to .prepare encoded states
completely indefinite. To obtain an encoded state, we musTtOr '

. ! L the “single-oscillator” codes described in Sec. IV. To
erJeCt out the component with a definite valueqaiodulo prepare an encoded state for one of Mescillator codes

described in Sec. VI, we proceed in two steps. First we pre-
are each oN oscillators in a single-oscillator encoded state.
hen we apply a symplectic transformation to obtain the

encoded state of thi-oscillator code.

, t A particular known encoded state of a lattice stabilizer

H'=\q(b’b), (159 code can itself be regarded as a code with an

(n=1)-dimensional code space. Hence it can be character-

ized by aself-dual symplectic lattice. For example, the
=1 state of a qunit encoded in a single oscillator is the
simultaneous eigenstate with eigenvalue of one of the opera-
A @pmere=\0; (156 tors e 'P* and e>™%*—the state associated with the self-
dual lattice whose basis vectors are/ 27 andq27/ «.
One encoded state can be transformed to another by sym-
There is an extensive literature on the experimental realizatioplectic gates if there is a symplectic linear transformation
and applications of this kind of coupling; sg&3]. that takes the self-dual lattice associated with the first state to

<

This can be achieved by coupling the oscillator to anothe
oscillator that serves as a meter, via the perturbation of th
Hamiltonian

whereb is the annihilation operator of the mefeThis per-
turbation modifies the frequency of the meter,
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the self-dual lattice associated with the second. In fact, such Continuous variable coding suggests possible approaches
a symplectic transformation exists for any pair of self-dualto implementing this type of physical fault tolerance. For

lattices. example, the Hamiltonian
A linear transformation acting on thgs andq’s modifies
the generator matri¥! of a lattice according to H=2—[cosp+ cog27nq)] (163

has ann-fold degeneratébut nonnormalizableground state
that is just the code space of a continuous variable code.
(The operators cgs and cos Znq commute and can be si-
multaneously diagonalizedThe low-lying states of a real
SwST=w (159 system whose Hamiltonian is a reasonable approxima_\tion to
' H would resemble the approximate code words described in
Sec. V.
One possible way to realize physical fault tolerance is
( 0 |) suggested by the codes for an electron in a Landau level,
0=

M—MS; (158

this transformation is symplectic if

where

(160 described in Sec. lll. The wave functions in the code space
are doubly periodic with a unit cell that enclosasflux
_ quanta, wheren is the code’s dimension. If we turn on a
We saw in Sec. VI that we can always choose the generatq(inaple periodic potential whose unit cell matches that of the
form the code words are the states with vanishing Bloch momen-
T tum. Therefore, an encoded state could be prepared by turn-
A=MoM = w; (161 ing on the potential, waiting for dissipative effects to cause
) ) ) ) the electrons to relax to the bottom of the lowest band, and
that is, so thaM is a symplectic matrix. Therefore, the gen- then adiabatically turning off the potential. If dissipative ef-
erator matriced; andM of two self-dual lattices can each fects cause electrons to relax to the bottom of a band on a
be chosen to be symplectic; then the linear transformation tjmescale that is short compared to spontaneous decay from
_ one band to another, then more general encoded states could
S=M; ‘M, (162 be prepared by a similar method. Furthermore, turning on the
potential from time to time would remove the accumulated
that takes one lattice to the other is also symplectic. Thusgjoch momentum introduced by errors, allowing the electron
while the task of preparing the encoded states of the singlep relax back to the code space.
oscillator codes can be accomplished only by introducing a
nonlinear coupling between oscillators, proceeding from XIV. CONCLUDING COMMENTS
single-oscillator encoded states to many-oscillator encoded
states can be achieved with linear optical operations and We have described codes that protect quantum states en-
squeezing. coded in a finite-dimensional subspace of the Hilbert space
of a system described by continuous quantum variables.
With these codes, continuous variable systems can be used
for robust storage and fault-tolerant processing of quantum

In a physical setting, making use of the continuous vari-information.
able quantum error-correcting codes proposed hene For example, the coded information could reside in the
“digital” quantum codes that have been proposed previ-Hilbert space of a single-particle system described by ca-
ously) is a daunting challenge. We must continually measuranonical quantum variableg and p. In practice, these vari-
the stabilizer operator@he “error syndrome’j to diagnose ables might describe the states of a mode of the electromag-
the errors; to recover we must apply frequent shifts of thenetic field in a high-finesse microcavity, or the state of the
canonical variables that are conditioned on the measuremenénter of mass motion of an ion in a trap. Or the continuous
outcomes. Cold ancilla oscillators must be provided that arélilbert space could be the state space of a rotor described by
steadily consumed by the syndrome measurements. The aan angular variabl# and its conjugate angular momentum
cillas must be discardetbr refreshetlto rid the system of L; in practice, these variables might be the phase and charge
excess entropy that has been introduced by the accumulatedl a superconducting quantum dot. Our coding scheme can
errors. also be applied to a charged particle in a magnetic field.

An alternative to this complex scheme was suggested in Our codes are designed to protect against small errors that
Ref.[34]. Perhaps we can engineer a quantum system whossecur continually—diffusive drifts in the values of the ca-
(degenerateground state is the code subspace. Then th@&onical variables. The codes are less effective in protecting
natural coupling of the system to its environment will allow against large errors that occur rarely. In some settings, we
the system to relax to the code space, removing errors intranay desire protection against both kinds of errors. One way
duced by quantum and thermal noise, or through the imperto achieve that would be tconcatenateour continuous-
fect execution of quantum gates. Such a system, if it could beariable codes with conventional finite-dimensional quantum
built, would be a highly stable quantum memory. codes.

-1 0/

Xlll. PHYSICAL FAULT TOLERANCE?
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When we consider how to manipulate continuous-variableeven in cases where the protocol makes no direct use of the
guantum information fault tolerantly, the issues that arise arencoded statd85]. With continuous-variable codes, we can
rather different than in previous discussions of quantum fauldemonstrate the security of key distribution protocols based
tolerance. With continuous variable codes, propagation obn the transmission of continuous variable quantum informa-
error from one oscillator to another is not necessarily a serition. This application is discussed in a separate papelr
ous problem. More damaging are processes that amplify a
small shift pf the canon!cal variables to. a large shift. We ACKNOWLEDGMENTS
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tion can be avoided as the encoded state is processed. Chuang, Sumit Daftuar, David DiVincenzo, Andrew
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construction of robust quantum memories and computerdurn, Michael Nielsen, and Peter Shor. This work was sup-
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