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Encoding a qubit in an oscillator

Daniel Gottesman,1,2,* Alexei Kitaev,1,† and John Preskill3,‡

1Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052
2Computer Science Division, EECS, University of California, Berkeley, California 94720

3Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125
~Received 9 August 2000; published 11 June 2001!

Quantum error-correcting codes are constructed that embed a finite-dimensional code space in the infinite-
dimensional Hilbert space of a system described by continuous quantum variables. These codes exploit the
noncommutative geometry of phase space to protect against errors that shift the values of the canonical
variablesq and p. In the setting of quantum optics, fault-tolerant universal quantum computation can be
executed on the protected code subspace using linear optical operations, squeezing, homodyne detection, and
photon counting; however, nonlinear mode coupling is required for the preparation of the encoded states.
Finite-dimensional versions of these codes can be constructed that protect encoded quantum information
against shifts in the amplitude or phase of ad-state system. Continuous-variable codes can be invoked to
establish lower bounds on the quantum capacity of Gaussian quantum channels.
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I. INTRODUCTION

Classical information can be carried by either a discr
~digital! signal or a continuous~analog! signal. Although in
principle an analog signal can be processed, digital com
ing is far more robust—a digital signal can be readily rest
dardized and protected from damage caused by the gra
accumulation of small errors.

Quantum information can also be carried by either a d
crete ~finite-dimensional! system, such as a two-level ato
or an electron spin, or by a continuous~infinite-dimensional!
system, such as to a harmonic oscillator or a rotor. Even
the finite-dimensional case, quantum information is in a c
tain sense continuous — a state is a vector in a Hilbert sp
that can point in any direction. Nevertheless, we have kno
for nearly five years that cleverly encoded quantum sta
can be restandardized and protected from the gradual a
mulation of small errors, or from the destructive effects
decoherence due to uncontrolled interactions with the e
ronment@1,2#.

One is tempted to wonder whether we can go still furth
and protect the quantum state of a system described bycon-
tinuous quantum variables. Probably this is too much to
hope for, since even the problem of protecting analog c
sical information seems to pose insuperable difficulties.

In this paper we achieve a more modest goal: we desc
quantum error-correcting codes that protect a state of afinite-
dimensionalquantum system~or ‘‘qudit’’ ! that is encoded in
an infinite-dimensional system. These codes may be us
for implementing quantum computation and quantum co
munication protocols that use harmonic oscillators or rot
that are experimentally accessible.

We also explain how encoded quantum states can be
cessed fault tolerantly. Once encoded states have been
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pared, a universal set of fault-tolerant quantum gates can
implemented using, in the language of quantum optics, lin
optical operations, squeezing, homodyne detection, and p
ton counting. However, for preparation of the encoded sta
nonlinear couplings must be invoked.

Our continuous-variable quantum error-correcting cod
are effective in protecting against sufficiently weak diffusi
phenomena that cause the position and momentum of an
cillator to drift, or against losses that cause the amplitude
an oscillator to decay. By concatenating with conventio
finite-dimensional quantum codes, we can also provide p
tection against errors that heavily damage a~sufficiently
small! subset of all the oscillators in a code block. A diffe
ent scheme for realizing robust and efficient quantum co
putation based on linear optics has been recently propose
Knill, Laflamme, and Milburn@3,4#.

We begin in Sec. II by describing codes that embed
n-state quantum system in a largerd-state system, and tha
protect the encoded quantum information against shifts in
amplitude or phase of thed-state system. A realization of thi
coding scheme based on a charged particle in a magn
field is discussed in Sec. III. Our continuous-variable cod
are obtained in Sec. IV by considering ad→` limit. For-
mally, the code states of the continuous-variable codes
nonnormalizable states, infinitely squeezed in both posit
and momentum; in Sec. V we describe the consequence
using more realistic approximate code states that are fini
squeezed. In Sec. VI we outline the theory of more gene
continuous-variable codes based on lattice sphere pack
in higher dimensional phase space.

We discuss in Sec. VII how continuous-variable cod
protect against quantum diffusion, amplitude damping, a
unitary errors. In Sec. VIII we establish a lower bound on t
quantum capacity of the Gaussian quantum channel.

We then proceed to develop schemes for fault-toler
manipulation of encoded quantum information, starting
Sec. IX with a discussion of the symplectic operations t
can ³be implemented with linear optics and squeezing.
Sec. X we discuss the measurement of the error syndr
©2001 The American Physical Society10-1
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and error recovery, which can be achieved with symple
operations and homodyne detection. Completion of the fa
tolerant universal gate set by means of photon countin
described in Sec. XI, and the preparation of encoded stat
explained in Sec. XII. Finally, Sec. XIII contains some fu
ther remarks about the physical realization of our cod
schemes, and Sec. XIV contains concluding comments.

II. SHIFT-RESISTANT QUANTUM CODES

An unusual feature of our codes is that they are desig
to protect against a different type of error than has b
considered in previous discussions of quantum coding. T
distinction is more easily explained if we first consider n
the case of a continuous quantum variable, but instead
~also interesting! case of a ‘‘qudit,’’ ad-dimensional quan-
tum system. Quantum codes can be constructed that enck
protected qudits in a block ofN qudits, so that the encode
qudits can be perfectly recovered if up tot qudits are dam-
aged, irrespective of the nature of the damage@5–8#. Error
recovery will be effective if errors that act on many qudits
once are rare. More precisely, a general error superope
acting onN qudits can be expanded in terms of a basis
operators, each of definite ‘‘weight’’~the number of qudits
on which the operator acts nontrivially!. Encoded informa-
tion is well protected if the error superoperator has nearly
its support on operators of weightt or less.

But consider instead a different situation, in which t
amplitude for an error to occur on each qudit is not small,
the errors are of a restricted type. The possible errors ac
on a single qudit can be expanded in terms of a unit
operator basis withd2 elements, the ‘‘Pauli operators:’’

XaZb, a,b50,1,2, . . . ,d21. ~1!

HereX andZ are generalizations of the Pauli matricessx and
sz , which act in a particular basis$u j &, j 50,1,2, . . . ,d21%
according to

X:u j &→u j 11 ~mod d!&,

Z:u j &→v j u j &, ~2!

wherev5 exp(2pi/d). Note that it follows that

ZX5vXZ. ~3!

For N qudits, there is a unitary operator basis withd2N ele-
ments consisting of all tensor products of single-qudit Pa
operators.

We will now imagine that errors withuau,ubu small com-
pared tod are common, but errors with largeuau and ubu are
rare. This type of error model could be expected to apply
the case of a continuous quantum variable, which is form
the d→` limit of a qudit. For example, decoherence caus
the positionq and momentump of a particle to diffuse with
some nonzero diffusion constant. In any finite time intervaq
and p will drift by some amount that may be small, but
certainly not zero. How can we protect encoded quant
information under these conditions?
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Fortunately, the general ‘‘stabilizer’’ framework@9,10#
for constructing quantum codes can be adapted to this
ting. In this framework, one divides the elements of a unita
operator basis into two disjoint and exhaustive classes:
setE of ‘‘likely errors’’ that we want to protect against, an
the rest; the ‘‘unlikely errors.’’ A code subspace is co
structed as the simultaneous eigenspace of a set of com
ing ‘‘stabilizer generators,’’ that generate an Abelian grou
the ‘‘code stabilizer.’’ The code can reverse errors in the
E if, for each pair of errorsEa andEb , eitherEa

†Eb lies in the
stabilizer group, orEa

†Eb fails to commute with some ele
ment of the stabilizer.~In the latter case, the two errors alte
the eigenvalues of the generators in distinguishable ways
the former case they do not, but we can successfully reco
from an error of typea by applying eitherEa

† or Eb
† .! In

typical discussions of quantum coding,E is assumed to be
the set of all tensor products of Pauli operators with wei
up to t ~those that act trivially on all but at mostt qudits!. But
the same principles can be invoked to design codes that
tect against errors in a setE with other properties.

Quantum codes for continuous variables have been
scribed previously by Braunstein@11# and by Lloyd and Slo-
tine @12#. For example, one code they constructed can
regarded as the continuous limit of a qudit code of the ty
originally introduced by Shor in the binary (d52) case, an
@@N59,k51,2t1153## code that protects a single qud
encoded in a block of 9 from arbitrary damage inflicted
any one of the 9. The 8 stabilizer generators of the code
be expressed as

Z1Z2
21 ,Z2Z3

21 ,Z4Z5
21 ,Z5Z6

21 ,Z7Z8
21 ,Z8Z9

21 ,

~X1X2X3!•~X4X5X6!21,~X4X5X6!•~X7X8X9!21, ~4!

and encoded operations that commute with the stabilizer
hence act on the encoded qudit can be chosen to be

Z̄5Z1Z4Z7 ,

X̄5X1X2X3 . ~5!

In thed→` limit, we obtain a code that is the simultaneo
eigenspace of eight commuting operators acting on nine
ticles, which are

q12q2 ,q22q3 ,q42q5 ,q52q6 ,q72q8 ,q82q9 ,

~p11p21p3!2~p41p51p6!,

~p41p51p6!2~p71p81p9!. ~6!

Logical operators that act in the code space are

q̄5q11q41q7 ,

p̄5p11p21p3 . ~7!

This code is designed to protect against errors in which
of the particles makes a large jump inq or p ~or both!, while
0-2
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ENCODING A QUBIT IN AN OSCILLATOR PHYSICAL REVIEW A 64 012310
the others hold still. But it provides little protection again
small diffusive motions of all the particles, which allowq̄
and p̄ to drift.

Entanglement purification protocols for continuous va
able systems have also been proposed — good entan
states can be distilled from noisy entangled states via a
tocol that requires two-way classical communication@13,14#.
These purification protocols work well against certain so
of errors, but their reliance on two-way classical commu
cation makes them inadequate for accurately preserving
known states in an imperfect quantum memory, or for rob
quantum computation.

Returning to qudits, let us consider an example of a qu
tum code that can protect against small shifts in both am
tude and phase, but not against large shifts. It is alre
interesting to discuss the case of a system consisting
single qudit, but where the dimensionn of the encoded sys
tem is ~of course! less thand. For example, a qudit (n52)
can be encoded in a system with dimensiond518, and pro-
tected against shifts by one unit in the amplitude or phas
the qudit; that is, against errors of the formXaZb where
uau,ubu<1. The stabilizer of this code is generated by t
two operators

X6, Z6, ~8!

and the commutation relations of the Pauli operators w
these generators are

~XaZb!•X65v6bX6
•~XaZb!,

~XaZb!•Z65v̄6aZ6
•~XaZb!. ~9!

Therefore, a Pauli operator commutes with the stabilizer o
if a and b are both multiples of 3518/6; this property en-
sures that the code can correct single shifts in both amplit
and phase. Logical operators acting on the encoded qudi

X̄5X3, Z̄5Z3, ~10!

which evidently commute with the stabilizer and are not co
tained in it.

Since the code words are eigenstates ofZ6 with eigen-
value one, the only allowed values ofj are multiples of three.
And since there are also eigenstates ofX6 with eigenvalue
one, the code words are invariant under a shift inj by six
units. A basis for the two-dimensional code space is

u0̄&5
1

A3
~ u0&1u6&1u12&),

u1̄&5
1

A3
~ u3&1u9&1u15&). ~11!

If an amplitude error occurs that shiftsj by 61, the error can
be diagnosed by measuring the stabilizer generatorZ6,
which reveals the value ofj modulo 3; the error is correcte
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by adjustingj to the nearest multiple of 3. Phase errors a
shifts in the Fourier transformed conjugate basis, and can
corrected similarly.

This code is actuallyperfect, meaning that each possibl
pair of eigenvalues of the generatorsX6 and Z6 is a valid
syndrome for correcting a shift. There are nine possible
rors $XaZb,uau,ubu<1%, and the Hilbert space of the qud
contains nine copies of the two-dimensional code space,
corresponding to each possible error. These ‘‘error spac
just barely fit in the qudit space ford51859•2.

Similar perfect codes can be constructed that pro
against larger shifts. Ford5r 1r 2n, consider the stabilizer
generators

Xr 1n, Zr 2n. ~12!

There is an encodedqunit, acted on by logical operators

X̄5Xr 1,

Z̄5Zr 2, ~13!

which evidently commute with the stabilizer and satisfy

Z̄X̄5v r 1r 2X̄Z̄5e2p i /nX̄Z̄. ~14!

The commutation relations of the Pauli operators with
generators are

~XaZb!•Xr 1n5v r 1nbXr 1n
•~XaZb!5e2p ib/r 2Xr 1n

•~XaZb!,

~XaZb!•Zr 2n5v̄ r 2naZr 2n
•~XaZb!5e22p ia/r 1Zr 2n

•~XaZb!.
~15!

The phases are trivial only ifa is an integer multiple ofr 1
and b an integer multiple ofr 2. Therefore, this code can
correct all shifts with

uau,
r 1

2
,

ubu,
r 2

2
. ~16!

The number of possible error syndromes isr 1r 25d/n, so the
code is perfect.

Expressed in terms ofZ eigenstates, the code words co
tain only values ofj that are multiples ofr 1 ~since Zr 2n

51), and are invariant under a shift ofj by r 1n ~since
Xr 1n51). Hence a basis for then-dimensional code sub
space is
0-3
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u0̄&5
1

Ar 2

~ u0&1unr1&1 . . . 1u~r 221!nr1&),

u1̄&5
1

Ar 2

~ ur 1&1 . . . 1u~~r 221!n11!r 1&),

A

un̄21̄&5
1

Ar 2

~ u~n21!r 1&1 . . . 1u~r 2n21!r 1&). ~17!

If the states undergo an amplitude shift, the value oj
modulor 1 is determined by measuring the stabilizer gene
tor Zr 2n, and the shift can be corrected by adjustingj to the
nearest multiple ofr 1. The code words have a similar form
in the Fourier transformed conjugate basis~the basis ofX
eigenstates!, but with r 1 andr 2 interchanged. Therefore, am
plitude shifts by less thanr 1/2 and phase shifts by less tha
r 2/2 can be corrected.

III. A QUDIT IN A LANDAU LEVEL

A single electron in a uniform magnetic field in two d
mensions provides an enlightening realization of our cod
General translations in a magnetic field are noncommut
since an electron transported around a closed path acq
an Aharonov-Bohm phaseeieF, where F is the magnetic
flux enclosed by the path. Two translationsT andScommute
only if the operatorTST21S21 translates an electron aroun
a path that encloses a fluxF5kF0, whereF052p/e is the
flux quantum andk is an integer.

Translations commute with the HamiltonianH, and two
translationsT1 and T2 form a maximally commuting set i
they generate a lattice that has a unit cell enclosing one q
tum of flux. Simultaneously diagonalizingH, T1, andT2, we
obtain a Landau level of degenerate energy eigenstates
state corresponding to each quantum of magnetic flux. T
T1 and T2

n are the stabilizer generators of a code, whereZ̄

5T1
1/n and X̄5T2 are the logical operators on a code spa

of dimensionn.
Suppose the system is in a periodically identified box~a

torus!, so that T1
r 15(T2

n) r 251 are translations around th
cycles of the torus. The number of flux quanta through
torus, and hence the degeneracy of the Landau leve
nr1r 2. The code, then, embeds ann-dimensional system in a
system of dimensiond5r 1r 2n.

In this situation, the logical operationsX̄ and Z̄ can be
visualized as translations of the torus in two different dire
tions; the stabilizer generatorX̄n is a translation by a fraction
1/r 2 of the length of the torus in one direction, and the s
bilizer generatorZ̄n is a translation by 1/r 1 of the length in
the other direction. Therefore, for any state in the code sp
the wave function of the electron in a cell containingn flux
quanta is periodically repeated altogetherr 1r 2 times to fill
the entire torus. Our code can be regarded as a kind
‘‘quantum repetition code’’—identical ‘‘copies’’ of the wave
01231
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function are stored in each of ther 1r 2 cells. But of course
there is only one electron, so if we detect the electron in o
cell its state is destroyed in all the cells.

This picture of the state encoded in a Landau level c
tions us about the restrictions on the type of error model t
the code can fend off successfully. If the environme
strongly probes one of the cells and detects nothing,
wave function is suppressed in that cell. This causesX̄
error in the encoded state with a probability of about 1/2r 2,
and aZ̄ error with a probability of about 1/2r 1. The code is
more effective if the typical errors gently deform the state
each cell, rather than strongly deforming it in one cell.

IV. CONTINUOUS VARIABLE CODES FOR A SINGLE
OSCILLATOR

Formally, we can construct quantum codes for syste
described by continuous quantum variables by conside
the large-d limit of the shift-resistant codes described in Se
II. We might have hoped to increased to infinity while hold-
ing r 1 /d and r 2 /d fixed, maintaining the ability to correc
shifts in both amplitude and phase that are a fixed fraction
the ranges of the qudit. However, since the perfect co
satisfy

r 1

d
5

1

nr2
,

r 2

d
5

1

nr1
, ~18!

this is not possible. Nonetheless, interesting codes can
obtained as the amplitude and phase of the qudit appro
the positionq and momentump of a particle—we can hold
fixed the size of the shiftsDq andDp that can be corrected
as the ranges ofq andp become unbounded.

Another option is to taked→` with r 1 /d[1/m fixed and
r 25m/n fixed, obtaining arotor Z5eiu ~or a particle in a
periodically identified finite box! that can be protected
against finite shifts in both the orientationu of the rotor and
its ~quantized! angular momentumL. The stabilizer of this
code is generated by

Zr 2n→eium,

Xr 1n5Xd/r 2→e22p iL (n/m) ~19!

and the logical operations are

Z̄5eium/n,

X̄5e22p iL /m. ~20!

SinceX̄ shifts the value ofu by 2p/m, andZ̄ shifts the value
of L by m/n5r 2, this code can correct shifts inu with Du
,p/m and shifts inL with uDLu,m/2n.

Alternatively, we can consider a limit in whichr 1 andr 2
both become large. We may writer 15a/« and r 251/na«,
whered5nr1r 251/«2, obtaining a code with stabilizer gen
erators

Zr 2n→~e2p iq«!(1/a«)5e2p iq/a,
0-4
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ENCODING A QUBIT IN AN OSCILLATOR PHYSICAL REVIEW A 64 012310
Xr 1n→~e2 ip«!(na/«)5e2 inpa, ~21!

and logical operations

Z̄5e2p iq/na, X̄5e2 ipa, ~22!

where a is an arbitrary real number. Using the identi
eAeB5e[A,B]eBeA ~which holds if A and B commute with
their commutator! and the canonical commutation relatio
@q,p#5 i , we verify that

Z̄X̄5vX̄Z̄, v5e2p i /n. ~23!

SinceX̄ translatesq by a and Z̄ translatesp by 2p/na, the
code protects against shifts with

uDqu,
a

2
,

uDpu,
p

na
. ~24!

Note that the shifts in momentum and position that the c
can correct obey the condition

DpDq,
p

2n
\. ~25!

In typical situations, errors inq and p are of comparable
magnitude, and it is best to choosea5A2p/n so that

Z̄5 expS iqA2p

n D , X̄5 expS 2 ipA2p

n D . ~26!

Formally, the code words are coherent superposition
infinitely squeezed states, e.g.,~up to normalization!

uZ̄5v j&5 (
s52`

`

uq5a~ j 1ns!&,

uX̄5v̄ j&5 (
s52`

` Up5
2p

na
~ j 1ns!L . ~27!

~See Fig. 1.! Of course, realistic code words will be norma
izable finitely squeezed states, rather than nonnormaliz
infinitely squeezed states. But squeezing in at least onep
andq is required to comfortably fulfill condition~25!.

The Wigner function associated with the code word wa
functionc ( j )(q)[^quZ̄5v j& is a sum of delta functions po
sitioned at the sites of a lattice in phase space, where t
quarters of the delta functions are positive and one qua
are negative. Explicitly, we have
01231
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W( j )~q,p![
1

2pE2`

`

dxeipxc ( j )~q1x/2!* c ( j )~q2x/2!

} (
s,t52`

`

~21!stdS p2
p

na
sD dS q2a j 2

na

2
t D ;

~28!

thed functions are negative on the sublattice withs,t odd. If
we integrate overp, the oscillating sign causes the terms wi
odd t to cancel in the sum overs, and the surviving positive
d functions have support atq5(n3 integer1 j )a. If we in-
tegrate overq, the terms with odds cancel in the sum overt,
and the surviving positived functions have support atp
5(2p/na)3 integer. Wigner functions for theX̄ eigenstates
are similar, but with the roles ofq andp interchanged.

It is also of interest to express the encoded states in te
of the basis of coherent states. Consider for example
encoded state withX̄51, which is the unique simultaneou
eigenstate with eigenvalue one of the operatorse2p iq/a and
e2 ipa. In fact starting with any stateuc&, we can construct
the encoded state~up to normalization! as

S (
s52`

`

e2 ispaD S (
t52`

`

e2p i tq/aD uc&

5(
s,t

exp@ i ~2spa12ptq/a1pst!#uc&. ~29!

In particular, if we chooseuc& to be the ground stateu0& of
the oscillator, then the operator(s,t exp@i(2spa12ptq/a
1pst)# displaces it to a coherent state centered at the p
(q,p)5(sa,2pt/a) in the quadrature plane. Thus the e
coded state is an equally weighted superposition of cohe
states, with centers chosen from the sites of a lattice in
quadrature plane whose unit cell has area 2p. Since the co-
herent states are overcomplete , the expansion is not uni
indeed, if we chooseuc& to be a coherent state rather than t
vacuum, then the lattice is rigidly translated, but the enco
state remains invariant.

We can envision the stabilizer of the code as a lattice
translations in phase space that preserve the code words
lattice generated by the translationse2p iq/a and e2 inpa. In

FIG. 1. Code words of then52 code. The statesu0̄&, u1̄& are
superpositions ofq eigenstates, periodically spaced with period 2a;
the two basis states differ by a displacement inq by a. The states
(u0&6u1&)/A2 are superpositions ofp eigenstates, periodically
spaced with period 2p/a; the two basis states differ by a displac
ment inp by p/a.
0-5
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fact, this lattice need not be rectangular—we can encode
n-dimensional system in the Hilbert space of a single os
lator by choosingany two variablesQ andP that satisfy the
canonical commutation relation@Q,P#5 i , and constructing
the code space as the simultaneous eigenstate ofe2p iQ and
e2 inP. The unit cell of the lattice has area 2p\n, in keeping
with the principle that each quantum state ‘‘occupies’’
area 2p\ in the phase space of a system with one continu
degree of freedom.

V. FINITE SQUEEZING

Strictly speaking, our code words are nonnormaliza
states, infinitely squeezed in bothq and p. In practice, we
will have to work with approximate code words that will b
finitely squeezed normalizable states. We need to cons
how using such approximate code words will affect the pr
ability of error.

We will replace a position eigenstated(0) by a normal-
ized Gaussian of widthD centered at the origin,

uc0&5E
2`

` dq

~pD2!1/4
e2 1/2 q2/D2

uq&

5E
2`

` dp

~p/D2!1/4
e2 1/2 D2p2

up&. ~30!

A code word, formally a coherent superposition of an infin
number of d functions, becomes a sum of Gaussia
weighted by a Gaussian envelope function of widthk21; in
the special case of a two-dimensional code space, the
proximate code words become

u0̃&5N0 (
s52`

`

e2 1/2 k2(2sa)2
T~2sa!uc0&,

u1̃&5N1 (
s52`

`

e2 1/2 k2[(2s11)a)] 2
T@~2s11!a#uc0&,

~31!

whereT(a) translatesq by a, N0,1 are normalization factors
and we use, e.g.,u0̃& rather thanu0̄& to denote the approxi
mate code word. We will assume thatka andD/a are small
compared to one, so thatN0'N1'(4k2a2/p)1/4; then in
momentum space, the approximate code word becomes,

~ u0̃&1u1̃&)/A2'S k2a2

p D 1/4E
2`

` dp

~p/D2!1/4
e2

1
2 D2p2

3 (
s52`

`

e2 1/2 k2(sa)2
eip(as)up&. ~32!

By applying the Poisson summation formula,

(
m52`

`

e2pa(m2b)2
5~a!21/2 (

s52`

`

e2ps2/ae2p isb, ~33!
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this approximate code word can be rewritten as

~ u0̃&1u1̃&)/A2'S k2a2

p D 1/4E
2`

` dp

~p/D2!1/4
e2 1/2 D2p2 A2p

ka

3 (
m52`

`

expF2
1

2S p2
2p

a
mD 2Y k2G up&

5E
2`

` dp

~pk2!1/4S 4pD2

a2 D 1/4

(
m52`

`

e21/2D2p2

3expF2
1

2S p2
2p

a
mD 2Y k2G up&, ~34!

again a superposition of Gaussians weighted by a Gaus
envelope.~See Fig. 2.!

The approximate code wordsu0̃&,u1̃& have a small overlap
if D is small compared toa, and k is small compared to
p/a. For estimating the error probability caused by the ov
lap, let’s consider the special case whereq andp are treated
symmetrically,a5Ap andk5D, then

u^qu0̃&u2'
2

Ap
(

s52`

`

e24pD2s2
exp@2~q22sAp!2/D2#

~35!

and

1

2
z^pu0̃&1^pu1̃& z2'

2

Ap
(

m52`

`

e2D2p2

3exp@2~p22mAp!2/D2#. ~36!

To perform error recovery, we measure the value ofq andp
modulo Ap and then correct for the observed shift. In th
stateu0̃&, the probability of failure is the probability thatq is
closer to an odd multiple ofAp than an even multiple, and in
the state (u0̃&1u1̃&)/A2, the error probability is the probabil
ity that p is closer to an odd multiple ofAp than an even
multiple. For both the amplitude and phase errors, the int
sic error probability arising from the imperfections of th

FIG. 2. Probability distribution in position spaceP(q)

5
1
2 z^qu(u0̃&1u1̃&) z2 for an approximate code word withD5k

50.25. The dashed line is the distribution’s Gaussian envelope
0-6
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ENCODING A QUBIT IN AN OSCILLATOR PHYSICAL REVIEW A 64 012310
approximate code words becomes exponentially sm
for small D. Using the asymptotic expansion of the err
function,

E
x

`

dte2t25S 1

2xDe2x2
@12O~1/x2!#, ~37!

we may estimate the error probability by summing the c
tributions from the tails of all the Gaussians, obtaining

Error Prob,
2

Ap
S (

n52`

`

e24pD2n2D 2E
Ap/2

`

dqe2q2/D2

;
2

Ap

1

2D
2D

D

Ap
e2p/4D2

5
2D

p
e2p/4D2

. ~38!

This error probability is about 1% forD;.5, and is al-
ready less than 1026 for a still modest valueD;.25. Using
finitely squeezed approximate code words does not ba
compromise the error-correcting power of the code, sinc
gentle spreading inp andq is just the kind of error the code
is intended to cope with.

The mean photon number of a finitely squeezed appr
mate code word is

^a†a&11/25
1

2
^p21q2&'D22 ~39!

for small D. Therefore, an error probability of order 1026

can be achieved with Gaussian approximate code words
have mean photon number of about (.25)22;16.

More generally, a finitely squeezed code worduc& can be
regarded as a perfect code worduj& that has undergone a
error; we may write

uc&5E dudvh~u,v !ei (2up1vq)uj&, ~40!

whereh(u,v) is an error ‘‘wave function.’’ In the specia
case of a Gaussian finitely squeezed code word, we hav

h~u,v !5
1

ApkD
expS 2

1

2
~u2/D21v2/k2! D , ~41!

whereD andk are the squeezing parameters defined abo
If h(u,v) vanishes foruuu.a/2 or uvu.p/(na), then the

error is correctable. In this case, the interpretation ofh(u,v)
as a wave function has a precise meaning, since there
unambiguous decomposition of a state into code word
error. Indeed, ifuj1&, uj2& are perfect code words anduc1&,
uc2& are the corresponding finitely squeezed code words w
error wave functionsh1 , h2, then

^c1uc2&5^j1uj2&^h1uh2&, ~42!

where
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^h1uh2&5E dudvh1~u,v !* h2~u,v !. ~43!

VI. CONTINUOUS VARIABLE CODES FOR MANY
OSCILLATORS

The continuous variable codes described in Sec. IV
based on simple lattices in the two-dimensional phase sp
of a single particle. We can construct more sophistica
codes from lattices in the 2N-dimensional phase space ofN
particles. Then codes of higher quality can be construc
that take advantage of efficient packings of spheres in hig
dimensions.

For a system ofN oscillators, a tensor product of Pau
operators can be expressed in terms of the canonical v
ablesqi andpi as

Uab5 expF iA2pS (
i 51

N

a i pi1b iqi D G , ~44!

where thea i ’s andb i ’s are real numbers.~In this setting, the
Pauli operators are sometimes called ‘‘Weyl operators!
Two such operators commute up to a phase:

UabUa8b85e2p i [v(ab,a8b8)]Ua8b8Uab , ~45!

where

v~ab,a8b8![a•b82a8•b ~46!

is the symplectic form. Thus two Pauli operators commute
and only if their symplectic form is an integer.

Now a general continuous variable stabilizer code is
simultaneous eigenspace of commuting Pauli operators,
code’s stabilizer generators. If the continuous variable ph
space is 2N-dimensional and the code space is a fini
dimensional Hilbert space, then there must be 2N indepen-
dent generators. The elements of the stabilizer group ar
one-to-one correspondence with the points of a latticeL in
phase space, via the relation

U~k1 ,k2 , . . .k2N!5 expF iA2pS (
a51

2N

kavaD G . ~47!

Here$va ,a51,2, . . . ,2N% are the basis vectors of the lattic
~each a linear combination ofq’s and p’s!, the ka’s are ar-
bitrary integers, andU(k1 ,k2 , . . .k2N) is the corresponding
element of the stabilizer. For the stabilizer group to be Ab
lian, the symplectic inner product of any pair of basis vect
must be an integer; that is, the antisymmetric 2N32N ma-
trix

Aab5v~va ,vb! ~48!

has integral entries. The latticeL has a 2N32N generator
matrix M whose rows are the basis vectors,
0-7



re

-
-

at

th
P
on
th

of

o a

ions
on
s
nd-
li

ert
e is

-

d
e

y

ce
na-

DANIEL GOTTESMAN, ALEXEI KITAEV, AND JOHN PRESKILL PHYSICAL REVIEW A 64 012310
M5S v1

v2

•

•

v2N

D . ~49!

In terms ofM, the matrixA can be expressed as

A5MvMT, ~50!

wherev denotes the 2N32N matrix

v5S 0 I

2I 0D , ~51!

and I is theN3N identity matrix.
The generator matrix of a lattice is not unique. The

placement

M→M 85RM ~52!

leaves the lattice unmodified, whereR is an invertible inte-
gral matrix with determinant61 ~whose inverse is also in
tegral!. Under this replacement, the matrixA changes accord
ing to

A→A85RART. ~53!

By Gaussian elimination, anR can be constructed such th
the antisymmetric matrixA is transformed to

A85S 0 D

2D 0 D , ~54!

whereD is a positive diagonalN3N matrix.
There are also Pauli operators that provide a basis for

operations acting on the code subspace—these are the
operators that commute with the stabilizer but are not c
tained in the stabilizer. The operators that commute with
stabilizer themselves form a latticeL' that is dual~in the
symplectic form! to the stabilizer lattice. The basis vectors
this lattice can be chosen to be$ub ,b51,2,3, . . . ,2N% such
that

v~ua ,vb!5dab ; ~55!

then the generator matrix

M'5S u1

u2

•

•

u2N

D ~56!

of L' has the property
01231
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M'vMT5I . ~57!

It follows from Eq. ~48! and Eq.~55! that theL basis
vectors can be expanded in terms of theL' basis vectors as

va5(
b

Aabub , ~58!

or

M5AM', ~59!

and hence that

v~ua ,ub!5~A!ba
21 , ~60!

or

M'v~M'!T5~A21!T. ~61!

If the lattice basis vectors are chosen so thatA has the stan-
dard form Eq.~54!, then

~A21!T5S 0 D21

2D21 0 D . ~62!

In the special case of a self-dual lattice, corresponding t
code with a one-dimensional code space, bothA and A21

must be integral; henceD5D21 and the standard form ofA
is

A5S 0 I

2I 0D 5v. ~63!

Since the code subspace is invariant under the translat
in L, we can think of the encoded information as residing
a torus, the unit cell ofL. The encoded Pauli operator

$X̄aZ̄b% are a lattice of translations on this torus, correspo
ing to the coset spaceL'/L. The number of encoded Pau
operators is the ratio of the volume of the unit cell ofL to the
volume of the unit cell ofL', namely the determinant ofA,
which is therefore the square of the dimension of the Hilb
space of the code. Thus the dimension of the code spac

n5uPfAu5detD, ~64!

where PfA denotes thePfaffian, the square root of the deter
minant of the antisymmetric matrixA.

The stabilizer lattice unit cell has volumeuPfAu in units
with h52p\51, and the unit cell of the lattice of encode
operations has volumeuPfAu21 in these units. So the cod
fits ann-dimensional code space inton units of phase space
volume, as expected.

Codes of the CSS type~those analogous to the binar
quantum codes first constructed by Calderbank and Shor@15#
and by Steane@16#! are constructed by choosing one latti
Lq describing stabilizer generators that are linear combi
tions of theq’s, and another latticeLp,L q

' describing sta-
bilizer generators that are linear combinations of thep’s.
0-8
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~HereL q
' denotes theEuclideandual of the latticeLq .) The

generator matrix of a CSS code has the form

M5S Mq 0

0 M p
D , ~65!

whereMq andM p areN3N matrices, and the integral ma
trix A has the form

A5S 0 MqM p
T

2M pMq
T 0 D . ~66!

For single-oscillator codes described in Sec. IV,A is the
232 matrix

A5S 0 n

2n 0D , ~67!

wheren is the code’s dimension. For a single-oscillator C
code, the lattice is rectangular, as shown in Fig. 3.

The closest packing of circles in two dimensions
achieved by the hexagonal lattice. The generator matrix f
hexagonally encoded qunit can be chosen to be

M5S 2

A3
nD 1/2S 1 0

1/2 A3/2D , ~68!

and the dual lattice is generated by

M'5
1

n
M . ~69!

The shortest vector of the dual lattice has length (2/nA3)1/2,
compared to length 1/An for the square lattice. Therefore th
size of the smallest uncorrectable shift is larger for the h
agonal code than for the square lattice code, by the fa
(2/A3)1/2'1.07457.

FIG. 3. The stabilizer lattice and its dual for ann52 code of a
single oscillator. Solid lines indicate the stabilizer lattice; solid a
dotted lines together comprise the dual lattice. In units of (2p\)2,
the unit cell of the stabilizer lattice~shaded! has area 2, and the un
cell of its dual has area 1/2.
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An important special class of quantum codes for ma
oscillators are theconcatenated codes. In particular, we can
encode a qudit in each ofN oscillators using the code of Sec
IV. Then we can use a binary stabilizer code that encodek
qudits in a block ofN oscillators, and protects against arb
trary errors on anyt oscillators, where 2t11 is the binary
code’s distance. The concatenated codes have the impo
advantage that they can protect against a broader clas
errors than small diffusive shifts applied to each oscillator
if most of the oscillators undergo only small shifts inp andq,
but a few oscillators sustain more extensive damage, t
concatenated codes still work effectively.

For example, there is a binary@@7,1,3## quantum code,
well suited to fault-tolerant processing, that encodes o
logical qudit in a block of seven qudits and can prote
against heavy damage on any one of the seven@2#. Given
seven oscillators, we can encode a qudit in each one th
resistant to quantum diffusion, and then use the@@7,1,3##
block code to protect one logical qudit against severe da
age to any one of the oscillators.

For n>5, there is a@@5,1,3## polynomial code@17#, also
well suited to fault-tolerant processing, encoding one quni
a block of 5. ~Actually, @@5,1,3## quantum codes exist fo
n,5 as well @6,7#, but these codes are less conducive
fault-tolerant computing.! The larger value ofn increases the
vulnerability of each qunit to shift errors. Hence, whether t
@@7,1,3## binary code or the@@5,1,3## should be preferred de
pends on the relationship of the size of the typical shift err
to the rate of large errors.

VII. ERROR MODELS

What sort of errors can be corrected by these codes?
codes are designed to protect against errors that shift
values of the canonical variablesp and q. In fact the Pauli
operators are a complete basis, so the action of a gen
superoperatorE acting on the input density matrixr of a
single oscillator can be expanded in terms of such shifts
in

E~r!5E dadbda8db8C~a,b;a8b8!

3ei (ap1bq)re2 i (a8p1b8q). ~70!

If the support ofC(a,b;a8,b8) is concentrated on suffi
ciently small values of its arguments, then the inputr can be
recovered with high fidelity.

A useful model of decoherence is the special case o
‘‘Pauli channel’’ in which C(a,b;a8,b8) is diagonal and
the superoperator can be expressed as

E~r!5E dadbP~a,b!ei (ap1bq)re2 i (ap1bq). ~71!

Since E is positive and trace preserving, we infer th
P(a,b)>0 and

E dadbP~a,b!51. ~72!
0-9
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Thus, we may interpretP(a,b) as a probability distribution:
the phase space translation

~q,p!→~q2a,p1b! ~73!

is applied with probabilityP(a,b).
Weak interactions between an oscillator and its envir

ment drive a diffusive process that can be well modeled b
Pauli channel. If the environment quickly ‘‘forgets’’ what
learns about the oscillator, the evolution of the oscillator c
be described by a master equation. Over a short time inte
dt, the shifts applied to the oscillator may be assumed to
small, so that the Pauli operator can be expanded in pow
of a and b. Suppose that the shifts are symmetrically d
tributed in phase space such that

^a&5^b&50,

^a2&5^b2&,

^ab&50, ~74!

where^•& denotes the mean value determined by the pr
ability distribution P(a,b). Suppose further that the shift
are diffusive, so that the mean square displacement incre
linearly with dt; we may write

^a2&5^b2&5Ddt, ~75!

whereD is a diffusion constant. We then obtain

r~ t1dt!5E dadbP~a,b!ei (ap1bq)re2 i (ap1bq)

5r~ t !1DdtS prp2
1

2
p2r2

1

2
rp2D

1DdtS qrq2
1

2
q2r2

1

2
rq2D1O~dt3/2!,

~76!

or

ṙ52
D

2
†p,@p,r#‡2

D

2
†q,@q,r#‡. ~77!

The interpretation ofD as a diffusion constant can be co
firmed by computing

d

dt
tr~p2r!5D5

d

dt
tr~q2r!; ~78!

the mean square values ofp andq increase with time asDt.
More generally, the master equation contains a diffus

term determined by the covariance of the distributi
P(a,b), and perhaps also a nondissipative drift term de
mined by the mean ofP(a,b). Our quantum error-
correcting codes can successfully suppress decoher
caused by quantum diffusion, if the recovery operation
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applied often enough; roughly, the time intervalDt between
error correction steps should be small compared to the c
acteristic diffusion timeD21.

Interactions with the environment might also damp t
amplitude of the oscillator, as described by the master eq
tion

ṙ5GS ara†2
1

2
a†ar2

1

2
ra†aD ; ~79!

herea5(q1 ip)/A2 is the annihilation operator andG is a
decay rate. This master equation cannot be obtained fro
Pauli channel, but as for quantum diffusion, the effects
amplitude damping over short-time intervals can be
pressed in terms of small phase-space displacements.

The master equation for amplitude damping can be
tained as thedt→0 limit of the superoperator

r~ t1dt!5E„r~ t !…5~AGdta!r~ t !~AGdta†!

1S I 2
Gdt

2
a†aD r~ t !S I 2

Gdt

2
a†aD . ~80!

For dt small, the annihilation operator can be expanded
terms of Pauli operators as

AGdta'2
i

2
~eiAGdt/2q2e2 iAGdt/2q!

1
1

2
~eiAGdt/2p2e2 iAGdt/2p!. ~81!

Thus, if the time intervalDt between error correction steps
small compared to the damping timeG21, the displacements
applied to code words are small, and error correction will
effective.

Aside from decoherence, we also need to worry ab
‘‘unitary errors.’’ For example, an inadvertent rotation of th
phase of the oscillator induces the unitary transformation

U~u![ exp~ iua†a!. ~82!

Like any unitary transformation, this phase rotation can
expanded in terms of Pauli operators. It is convenient
introduce the notation for the phase-space displacement
erator

D~g![ exp~ga2g* a†!5 expiA2@~ Img!q2~Reg!p#,
~83!

whereg is a complex number. The displacements satisfy
identity

tr~D~g!D~h!†!5pd2~g2h!, ~84!

so the operatorU(u) can be expanded in terms of displac
ments as

U~u!5
1

pE d2guu~g!D~g!, ~85!
0-10
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ENCODING A QUBIT IN AN OSCILLATOR PHYSICAL REVIEW A 64 012310
where

uu~g!5tr~U~u!D~g!†!. ~86!

Evaluating the trace in the coherent state basis, we find

uu~g!5
ieiu/2

2 sin~u/2!
expS 2

i

2
ugu2cot~u/2! D . ~87!

For smallu, the coefficient

uu~g!'
i

u
expS 2

i

u
ugu2D ~88!

has a rapidly oscillating phase, and can be regarded
distribution with support concentrated on values ofg such
that ugu2;u; indeed, formally

lim
u→0

uu~g!5pd2~g!. ~89!

Thus a rotation by a small angleu can be accurately ex
panded in terms of small displacements—error correctio
effective if an oscillator is slightly overrotated or underr
tated.

VIII. THE GAUSSIAN QUANTUM CHANNEL

At what rate can error-free digital information be co
veyed by a noisy continuous signal? In classical informat
theory, an answer is provided by Shannon’s noisy chan
coding theorem for the Gaussian channel@18#. This theorem
establishes the capacity that can be attained by a signal
specified average power, for a channel with specified ba
width and specified Gaussian noise power. The somew
surprising conclusion is that a nonzero rate can be atta
for any nonvanishing value of the average signal power.

A natural generalization of the Gaussian classical chan
is the Gaussian quantum channel. The Gaussian quantum
channel is a Pauli channel:N oscillators are transmitted, an
the q andp displacements acting on the oscillators are in
pendent Gaussian random variables with mean 0 and v
ances2. A code is anM-dimensional subspace of the Hilbe
space of theN oscillators, and the rateR of the code~in
qudits! is defined as

R5
1

N
log2M . ~90!

The quantum-information capacityCQ of the channel is the
maximal rate at which quantum information can be transm
ted with fidelity arbitrarily close to one.

The need for a constraint on the signal power to define
capacity of the Gaussian classical channel can be unders
on dimensional grounds. The classical capacity~in bits! is a
dimensionless function of the variances2, but s2 has di-
mensions. Another quantity with the same dimensions ass2

is needed to construct a dimensionless variable, and
power fulfills this role. But no power constraint is needed
define the quantum capacity of the quantum channel.
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capacity~in qudits! is a function of the dimensionless var
able\/s2, where\ is Planck’s constant.

An upper bound on the quantum capacity of the Gauss
quantum channel was derived by Holevo and Werner@19#;
they obtained~reverting now to units with\51)

CQ< log2~1/s2!, ~91!

for 0,s2,1, andCQ50 for s2>1. They also computed
the coherent informationI Q of the Gaussian quantum chan
nel, and maximized it over Gaussian signal states, find
@19#

~ I Q!max5 log2~1/es2!, ~92!

for 0,s2,1/e ~where e52.718 28 . . . !. The coherent in-
formation isconjecturedto be an attainable rate@1–3#; if this
conjecture is true, then Eq.~92! provides a lower bound on
CQ .

Using our continuous variable codes, rigorous low
bounds onCQ can be established. Fors2 sufficiently small,
a nonzero attainable rate can be established asymptoti
for largeN by either of two methods. In one method, then
52 code described in Sec. IV is invoked for each oscillat
and concatenated with a binary quantum code. In the o
method, which more closely follows Shannon’s constructi
a code forN oscillators is constructed as in Sec. VI, based
a close packing of spheres in 2N-dimensional phase space
However ~in contrast to the classical case!, neither method
works if s2 is too large. For larges2, encodings can be
chosen that protect againstq shifts or againstp shifts, but not
against both.

To establish an attainable rate using concatenated co
~the method that is easier to explain!, we first recall a result
concerning the quantum capacities of binary chann
@15,20#. If X and Z errors are independent and each occ
with probability pe , then binary CSS codes exist th
achieve a rate

R.122H2~pe![112pelog2pe12~12pe!log2~12pe!;
~93!

this rate is nonzero forpe,.1100.
Now, for the Gaussian quantum channel, if we use thn

52 continuous variable code, errors afflicting the encod
qudit are described by a binary channel with independenX
andZ errors. Since the code can correct shifts inq or p that
satisfyDq,Dp,Ap/2, the error probability is

pe,2
1

A2ps2EAp/2

`

dxe2x2/2s2
. ~94!

Since the expression boundingpe in Eq. ~94! has the value
.110 for s'.555, we conclude that the Gaussian quant
channel has nonvanishing quantum capacityCQ provided
that

s,.555. ~95!

One might expect to do better by concatenating thehex-
agonal n52 single-oscillator code with a binary stabilize
0-11
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code, since the hexagonal code can correct larger shifts
the code derived from a square lattice. For the Gaus
quantum channel, the symmetry of the hexagonal lattice
sures thatX, Y, andZ errors afflicting the encoded qudit ar
equally likely. A shift is correctable if it lies within the
‘‘Voronoi cell’’ of the dual lattice, the cell containing all the
points that are closer to the origin than to any other latt
site. By integrating the Gaussian distribution over the h
agonal Voronoi cell, we find that the probabilitype,total of an
uncorrectable error satisfies

pe,total,12
12

2ps2E
0

r

dxE
0

x/A3
dye2(x21y2)/2s2

, ~96!

wherer 5(p/2A3)1/2 is the size of the smallest uncorrectab
shift. For a binary quantum channel with equally likelyX, Y,
andZ errors, it is known@21# that there are stabilizer code
achieving a nonvanishing rate forpe,total,.1905; our bound
on pe,total reaches this value fors'.547.

Somewhat surprisingly, for very noisy Gaussian quant
channels, square lattice codes concatenated with CSS c
seem to do better than hexagonal codes concatenated
stabilizer codes. The reason this happens is that a CSS
can correct independentX andZ errors that occur with tota
probability pe,total5pX1pZ2pX•pZ , which approaches
0.2079.0.1905 aspX5pZ→0.1100. For a given value ofs,
the qudit encoded in each oscillator will have a lower er
probability if the hexagonal code is used. But if the squ
lattice is used, a higher qudit error rate is permissible,
this effect dominates when the channel is very noisy.

We remark that this analysis is readily extended to m
general Gaussian quantum channels. We may consider P
channels acting on a single oscillator in which the probabi
distributionP(a,b) is a more general Gaussian function, n
necessarily symmetric inp andq. In that case, a symplecti
transformation~one preserving the commutator ofp andq)
can be chosen that transforms the covariance matrix of
Gaussian to a multiple of the identity; therefore, this ca
reduces to that already discussed above. We may also
sider channels acting onN oscillators that apply shifts in the
2N-dimensional phase space, chosen from a Gaussian
semble. Again there is a symplectic transformation that
agonalizes the covariance matrix; therefore, this case red
to N independent single oscillator channels, each with
own value ofs2.

IX. SYMPLECTIC OPERATIONS

To use these codes for fault-tolerant quantum comp
tion, we will need to be able to prepare encoded states,
form error recovery, and execute quantum gates that ac
the encoded quantum information. The most difficult task
encoding; we will postpone the discussion of encoding u
after we have discussed encoded operations and error re
ery.

Suppose, for example, that we haveN oscillators, each
encoding a qunit. We wish to apply U(nN) transformations
that preserve the code subspace of theN qunits. As is typical
of quantum codes, we will find that there is a discrete s
01231
an
n

n-

e
-

des
ith
de

r
e
d

e
uli

y
t

e
e
n-

n-
i-
es
s

a-
r-

on
s
il
ov-

-

group of U(nN) that we can implement ‘‘easily;’’ but to
complete a set of universal gates we must add further tra
formations that are ‘‘difficult.’’ In the case of our continuou
variable codes, the easy gates will be accomplished u
linear optical elements~phase shifters and beam splitters!,
along with elements that can ‘‘squeeze’’ an oscillator. F
the ‘‘difficult’’ gates we will require the ability to count pho
tons.

The easy gates are the gates in the Clifford group.
general, the Clifford group of a system ofN qunits is the
group of unitary transformations that, acting by conjugatio
take tensor products of Pauli operators to tensor product
Pauli operators~one says that they preserve the ‘‘Pau
group’’!. Since forN oscillators the tensor products of Pau
operators have the form~44!, the Clifford group transforma-
tions, acting by conjugation, are linear transformations of
p’s and q’s that preserve the canonical commutation re
tions. Such transformations are called symplectic transfor
tions. The symplectic group has a subgroup that prese
the photon number

~ total photon number!5(
i 51

N

ai
†ai . ~97!

The transformations in this subgroup can be implemen
with linear optics@22#. The full symplectic group also con
tains ‘‘squeeze operators’’ that take ana to a linear combi-
nation of a’s and a†’s; equivalently, the squeeze operato
rescale canonical operators by a real numberl along one
axis in the quadrature plane, and byl21 along the conjugate
axis, as in~for example!

q1→lq1 , p1→l21p1 . ~98!

With squeezing and linear optics, we can in principle imp
ment any symplectic transformation.

Aside from the symplectic transformations, we will als
assume that it is easy to do displacements that shiftq andp
by constants. A displacement ofq1 by c is actually the lim-
iting case of a symplectic transformation on two oscillato
q1 andq2:

q1→q11«q2 , p1→p11«p2

q2→q22«q1 , p2→p22«p1 , ~99!

where«→0 with «q25c held fixed.
Since for the code with stabilizer generators~21! the Pauli

operators acting on our encoded qunits areX̄5eipa and Z̄
5e2p iq/na, the Clifford group transformations acting onN
qunits constitute a subgroup of the symplectic transform
tions ~including shifts! acting onN oscillators, the subgroup
that preserves a specified lattice in phase space. Thus we
do any encoded Clifford group gate we please by execu
an appropriate symplectic transformation~possibly including
a shift!.

A similar comment applies to the case of a qunit encod
in a qudit. Since the logical Pauli operators areX̄5Xr 1

and Z̄5Zr 2, each Clifford group transformation in th
0-12
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n-dimensional code space is also a Clifford group trans
mation on the underlying qudit.

But we must also be sure that our implementation of
Clifford group is fault tolerant. In previous discussions o
quantum fault tolerance for@@N,k,2t11## codes, the centra
theme has been that propagation of error from one qud
another in the same code block must be very carefully c
trolled @23,24#. For shift-resistant codes the main issue
rather different. Since each qudit typically has a~small! error
anyway, propagation of error from one qudit to another is
necessarily so serious. But what must be controlled isampli-
fication of errors—gates that turn small errors into large
rors should be avoided.

The Clifford group can be generated by gates that
fault-tolerant in this sense. The Clifford group for qunits c
be generated by three elements. TheSUM gate is a two-qunit
gate that acts by conjugation on the Pauli operators acc
ing to

SUM: X1
aX2

b→X1
aX2

b2a , Z1
aZ2

b→Z1
a1bZ2

b . ~100!

Here qunit 1 is said to be the control of theSUM gate, and
qunit 2 is said to be its target; in the binary (n52) case,SUM

is known as controlled-NOT, or CNOT. The Fourier gateF acts
by conjugation as

F: X→Z, Z→X21; ~101!

for n52 the Fourier Transform is called the Hadamard ga
The phase gateP acts as

P: X→~h!XZ, Z→Z, ~102!

where then-dependent phaseh is v1/2 if n is even and 1 ifn
is odd. Any element of the Clifford group can be express
as a product of these three generators.~In Ref. @8# another
gate S was included among the generators of the Cliffo
group, but in fact theSgate can be expressed as a produc
SUM gates.!

For an n-dimensional system encoded in a continuo
variable system, these Clifford group generators can al
realized as symplectic transformations. In the case where
stabilizer generators are symmetric inq andp,

X̄5 expS 2 ipA2p

n D , Z̄5 expS iqA2p

n D , ~103!

the required symplectic transformations are

SUM:q1→q1 , p1→p12p2 ,

q2→q11q2 , p2→p2 ,

F: q→p, p→2q,

P: q→q, p→p2q1c, ~104!

where then-dependent shiftc is 0 for n even andAp/2n for
n odd. Under these symplectic transformations, small de
tions of q and p from the stabilizer lattice remain small; i
this sense the transformations are fault tolerant.
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X. ERROR RECOVERY

If we are willing to destroy the encoded state, then m
suring the encodedX̄ or Z̄ is easy—we simply conduct a
homodyne measurement of theq or p quadrature of the os
cillator. For example, suppose that we measureq for a state
in the code subspace. If there are no errors and the mea
ment has perfect resolution, the only allowed values ofq will
be integer multiples ofa. If there are errors or the measur
ment is imperfect, classical error correction can be applied
the outcome, by adjusting it to the nearesta•k, wherek is an
integer. Then the outcome of the measurement ofZ̄ is vk.

To diagnose errors in a coded data state, we must mea
the stabilizer generators. This measurement can be im
mented by ‘‘feeding’’ the errors from the code block to
coded ancilla, and then measuring the ancilla destructiv
following the general procedure proposed by Steane@25#
~see Fig. 4!. For example, to measure the generatore2p iq/a

~i.e., the value ofq moduloa), we prepare the ancilla in the
state (u0̄&1u1̄&)/A2, the equally weighted superposition o
all uq5s•a&, s being an integer. Then aSUM gate is ex-
ecuted with the data as control and the ancilla as targe
acting according to

q2→q11q2 , ~105!

where q1 ,q2 are the values ofq for the data and ancilla
respectively, prior to the execution of theSUM gate. By mea-
suringq of the ancilla, the value ofq11q2 is obtained, and
this value moduloa determines the shift that should be a
plied to the data to recover from the error.

Similarly, to measure the stabilizer generatoreinpa, we
prepare the ancilla in the stateu0̄&, the equally weighted
superposition of allup5s•2p/na&, s being an integer. Then
a SUM gate is executed with the ancilla as control and
data as target. Finally, thep quadrature of the ancilla is mea
sured. The outcome reveals the value ofp22p1 prior to the
SUM gate, wherep1 is the momentum of the data, andp2 is
the momentum of the ancilla. The measured value mod
2p/na then determines the shift that should be applied
the data to recover from the error.

Of course, the ancilla used in the syndrome measurem
can also be faulty, resulting in errors in the syndrome a

FIG. 4. Measurement of the error syndrome.~a! To diagnose the

q shift, an ancilla is prepared in the encodedX̄51 state, aSUM gate
is executed with the data as control and the ancilla as target, an
position of the ancilla is measured.~b! To diagnose thep shift, the

ancilla is prepared in theZ̄51 state, aSUM gate is executed with the
ancilla as control and the data as target, and the momentum o
ancilla is measured.
0-13
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imperfect recovery. Similarly, the measurement itself w
not have perfect resolution, and the shift applied to reco
will not be precisely correct. Furthermore, as is discusse
Sec. V, the ideal code words are unphysical nonnormaliza
states, so that the encoded information will always be car
by approximate code words. For all these reasons, deviat
from the code subspace are unavoidable. But if a fresh s
ply of ancilla oscillators is continuously available, we c
prevent these small errors from accumulating and eventu
damaging the encoded quantum information.

XI. UNIVERSAL QUANTUM COMPUTATION

Symplectic transformations together with homodyne m
surements are adequate for Clifford group computation
for error recovery~assuming we have a supply of encod
states!. But to achieve universal computation in the co
space, we need to introduce additional operations. Fo
nately, the quantum optics laboratory offers us another
that can be used to go beyond the symplectic computati
model—the ability to count photons.

There are a variety of ways in which photon counting c
be exploited to complete a universal set of fault-toler
gates. We will describe two possible ways, just to illustr
how universal fault-tolerant quantum computation might
realized with plausible experimental tools. For this disc
sion, we will consider the binary casen52.

A. Preparing a Hadamard eigenstate

We can complete the universal gate set if we have
ability to prepare eigenstates of the Hadamard operatoH
@26,27#. For this purpose it suffices to be able todestructively
measureH of an encoded qudit. Assuming we are able
prepare a supply of the encodedZ̄ eigenstateu0̄&, we can
make an encoded Einstein-Podolsky-Rosen~EPR! pair using
symplectic gates. Then by destructively measuringH for one
encoded qudit in the pair, we prepare the other qudit in
encoded eigenstate ofH with the known eigenvalue.

But how can we destructively measureH? The Hadamard
gate acts by conjugation on the encoded Pauli operators
cording to

H: X̄→Z̄, Z̄→X̄. ~106!

If we use the code that treatsq andp symmetrically so that
X̄5 exp(2ipAp) and Z̄5 exp(iqAp), then the Hadamard
gate can be implemented by the symplectic transformati

q→p, p→2q ~107!

~recalling thatX̄25Z̄25I on the code subspace!. This trans-
formation is just the Fourier transform

F: expS i
p

2
a†aD ~108!

~wherea†a is the photon number!, which describes the natu
ral evolution of the oscillator for one quarter cycle. Thus t
phase of the Hadamard operator is simply the photon num
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modulo four; we can measure the eigenvalue of the enco
Hadamard transformation by counting photons.

In fact the photon number in the code space is even—
code words are invariant under a 180° rotation in the quad
ture plane. Because of this feature, the preparation of
Hadamard eigenstate has some fault tolerance built in; if
photon count is off by one, the number will be odd and
error will be detected. In that case we reject the state we h
prepared and make a new attempt. If the photon numbe
large, then obtaining a reliable determination of the pho
number modulo four will require highly efficient photodete
tion. But on the other hand, the photon number need no
very large — the mean value ofa†a is aboutD22, whereD
is the squeeze factor, and we have seen that the intrinsic e
rate due to imperfect squeezing is quite small forD;1/4, or
^a†a&;16.

An alternative to preparing an encoded EPR pair and
structively measuring one member of the pair is to prep
u0̄& and then perform a quantum nondemolition measurem
of the photon number modulo 4. This might be done
coupling the oscillator to a two-level atom as proposed
Ref. @28#. Indeed, since only one bit of information needs
be collected~the photon number is either 0 or 2 modulo 4!,
the measurement could be made in principle by reading o
single atom. Suppose that the coupling of oscillator to at
is described by the perturbation

H85la†asz , ~109!

wheresz521 in the atomic ground stateug& andsz51 in
the atomic excited stateue&. By turning on this coupling for
a time t5p/4l, we execute the unitary transformation

U5 exp@2 i ~p/4!a†asz#. ~110!

Then the atomic state (ug&1ue&)/A2 evolves as

U:
1

A2
~ ug&1ue&)→

1

A2
eia†ap/4~ ug&1e2 ia†ap/2ue&).

~111!

By measuring the atomic state in the basis (ug&6ue&)/A2,
we read out the value of the photon number modulo 4~as-
sumed to be either 2 or 4!. Since this is a nondemolition
measurement, it can be repeated to improve reliability.
measuring the photon number mod 4 many times~perhaps
with rounds of error correction in between the measu
ments!, we obtain a Hadamard eigenstate with excellent
delity.

How does the ability to construct the Hadamard eigens
enable us to achieve universal quantum computation?
can make contact with constructions that have been
scribed previously in the literature by observing that t
Hadamard eigenstate can be transformed by applying s
plectic gates to the ‘‘p/8-phase state.’’ First note that the tw
Hadamard eigenstates can be converted to one anothe
applying the encoded gateX̄Z̄, which can be implemented
0-14
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ENCODING A QUBIT IN AN OSCILLATOR PHYSICAL REVIEW A 64 012310
by shifting bothp andq. Therefore it is sufficient to conside
the eigenstate corresponding to the eigenvalue 1,

ucH51&5 cos~p/8!u0&1 sin~p/8!u1&. ~112!

By applying the symplectic single-qudit gate

H•P21[
1

A2
S 1 1

1 21D •S 1 0

0 2 i D 5
1

A2
S 1 2 i

1 i D ,

~113!

we obtain thep/8 state

ucp/8&5
1

A2
~e2 ip/8u0&1eip/8u1&). ~114!

Now this p/8 state can be used to perform the nonsy
plectic phase gate

S5S e2 ip/8 0

0 eip/8D , ~115!

which completes the universal gate set@29,30#. The gate is
constructed by executing the circuit shown in Fig. 5. W
perform a CNOT gate with the arbitrary single-qudit sta
uc&5au0&1bu1& as the control, and thep/8 phase state a
the target; then the target qudit is measured in the b
$u0&,u1&%. If the measurement outcome isu0& ~which occurs
with probability 1/2!, then the control qudit has becom
aeip/8u0&1be2 ip/8u1&5Suc& and we are done. If the mea
surement outcome isu1&, then the control qudit has becom
ae2 ip/8u0&1beip/8u1&, and we obtainSuc& by applying the
symplectic single-qudit gate

e2 ip/4P5S e2 ip/4 0

0 eip/4D . ~116!

Completing the universal gate set by measuring the H
amard transformation has some drawbacks. For one th
while photon number modulo four corresponds to the H
amard eigenvalue in the ideal code space, this corres
dence will not apply to approximate code words unless t
are of a special type.

FIG. 5. Implementation of theS gate. An ancilla is prepared in
the stateucp/8&, and aCNOT gate is executed with the data as cont
and the ancilla as target; then the ancilla is measured in the b
$u0&, u1&%. A P gate is applied to the data conditioned on the m
surement outcome.
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Recall that the imperfections of the code words aris
from finite squeezing can be described by an ‘‘embedd
error’’ uh& as in Eq.~40!; a Gaussian approximate code wo
has a Gaussian embedded error

h~u,v !5
1

ApDk
expS 2

1

2
~u2/D21v2/k2! D , ~117!

whereD is the width inq andk is the width inp. Symplectic
gates act separately on the encoded qudit and the ‘‘embe
error’’ uh&; for example, the Fourier transform gate and t
SUM gate act on the error according to

F:uu,v&→uv,2u&,

SUM:uu1 ,v1 ;u2 ,v2&→uu1 ,v11v2 ;u22u1 ,v2&.
~118!

By measuring the photon number modulo 4, we actua
measure theproductof the eigenvalue of the Hadamard ga
acting on the code word and the eigenvalue ofF acting on
the embedded error. The latter always equals 1if we use
symmetrically squeezed code words, withD5k.

Symmetric squeezing is not in itself sufficient to ensu
that the measurement of the photon number modulo 4
prepare the desired encoded Hadamard eigenstate. We
need to consider how the embedded error is affected by
preparation of the EPR pair that precedes the measurem
To prepare the EPR pair, we use theSUM gate. Suppose tha
we start with two symmetrically squeezed states. Then
SUM gate yields the error wave function

h8~u1 ,v1 ;u2 ,v2!5 exp$2@u1
21~v12v2!21~u11u2!2

1v2
2#/D2%. ~119!

Not only is it not symmetric, but the error is entangled b
tween the two oscillators. The Fourier transform measu
ment will not give the desired result when applied to eith
oscillator.

To ameliorate this problem, we could perform error co
rection after the preparation of the EPR pair and before
measurement, where the error correction protocol has b
designed to produce symmetrically squeezed states. O
could avoid preparing the EPR state by using the nonde
lition measurement of photon number modulo 4, as descri
above.

B. Preparing a cubic phase state

Now we will describe another way to use photon counti
to implement nonsymplectic gates, which is less sensitive
the code word quality. Again, we will complete the univers
gate set by constructing thep/8 phase gateS.

For our binary (n52) code, the code subspace has t
basis

u0̄&5 (
s52`

1`

uq52sa&,

l
sis
-

0-15
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u1̄&5 (
s52`

1`

uq5~2s11!a&. ~120!

~For now we ignore the embedded error due to imperf
squeezing; it will be taken into account later.! An S gate
acting on the encoded qudit is implemented~up to an irrel-
evant overall phase! by the unitary operator

W5 expS ip

4
@2~q/a!31~q/a!222~q/a!# D . ~121!

Indeed, we can check that

2x31x222x~mod8!5H 0, if x52s ,

1, ifx52s11 .
~122!

The operatorW is the product of a symplectic gate and t
cubic phase gate

Vg5 exp~ igq3!, ~123!

where g5p/(2a3). But how do we implement the cubi
gate? In fact, if we are able to prepare a ‘‘cubic phase sta

ug&5E dxeigx3
ux&, ~124!

then we can perform the gateVg by executing the circuit
shown in Fig. 6.

To understand how the circuit works, consider the m
general problem of implementing a phase gate that acts
the position eigenstates according to

Vf :uq&→eif(q)uq& ~125!

~wheref(q) is a real-valued function!, using the prepared
phase state

uf&5E dxeif(x)ux&. ~126!

If we perform the gateSUM21 with position eigenstateuq&
as control anduf& as target, and then measure the position
the target obtaining the outcomeua&, the state of the contro
oscillator has becomeeif(q1a)uq&. We can therefore com
plete the construction ofVf by applying the transformation

U~a!5ei [f(q)2f(q1a)] . ~127!

FIG. 6. Implementation of the cubic phase gate. An ancilla
prepared in the stateug&, and aSUM21 gate is executed with the
data as control and the ancilla as target; then the position of
ancilla is measured. A symplectic gate U(a) is then applied to the
data, conditioned on the outcomea of the measurement.
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If the function f(q) is cubic, then the argument of the ex
ponential is quadratic and hence U(a) is a symplectic trans-
formation.

Now the problem of implementing universal quantu
computation in the code subspace has been reduced to
problem of preparing the cubic phase stateug&. We can ac-
complish this task by preparing an EPR pair, and then p
forming a suitable photon counting measurement~a nonideal
homodyne measurement! on one member of the pair.

Of course, the EPR pair will not be perfect. To be defini
let us suppose~although this assumption is not really nece
sary! that it is a Gaussian state

ucsp ,sq
&5S sp

psq
D 1/2E dq1dq2 expF2

1

2
sp

2S q11q2

2 D 2G
3expF2

1

2
~q12q2!2/sq

2G uq1 ,q2& ~128!

with sp ,sq!1.
Now suppose that the second oscillator is mixed with

coherent light beam, resulting in a large shift in momentu

uc&→eiwquc&, w@sq
21 ,sp

21 ; ~129!

then the photon number is measured andn photons are de-
tected. Thus the state of the first oscillator becomes~up to
normalization!

uc1
(n)&'S sp

psq
D 1/2E dq1uq1&e

2 1/2 sp
2q1

2

3E dq2wn* ~q2!eiwq2e2 1/2(q12q2)2/sq
2
, ~130!

whereuwn& denotes the photon number eigenstate, the eig
state with eigenvaluen1 1

2 of the HamiltonianH5 1
2 (p2

1q2).
We can evaluate theq2 integral in Eq.~130! by appealing

to the semiclassical approximation. Forq2 in the classically
allowed region and far from the classical turning points,
may write

wn* ~q2!;
1

A2pp~q2!
expS 2 i Eq2

dxp~x! D
1

1

A2pp~q2!
expS 1 i Eq2

dxp~x! D , ~131!

where

p~x!5A2n112x2. ~132!

For w@sq
21 , the rapid phase oscillations strongly suppre

the contribution to the integral arising from the left-movin
part of w (n)(q2). A contribution from the right-moving par
survives provided that

up~q1!2wu,sq
21 . ~133!

s

e
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When this condition is satisfied, it is a reasonable approx

mation to replace the Gaussian factore21/2(q12q2)2/sq
2

in the
q2 integral byA2psq

2d(q12q2), so that we obtain

uc1
(n)&'~2spsq!1/2E dq1uq1&e

21/2sp
2q1

2 1

A2pp~q1!

3expS 2 i Eq1
dx@p~x!2w# D . ~134!

The probability thatn photons are detected is given by th
norm of this uc1

(n)&. The values ofn that occur with appre-
ciable probability satisfy Eq.~133! for someq1 with uq1u
,sp

21 ; thus typical measurement outcomes are in the ra

n1
1

2
;

1

2
~w6sq

21!21
1

2
sp

22 , ~135!

with a flat probability distribution

Prob~n!5^c1
(n)uc1

(n)&;
sq

w
. ~136!

Heuristically, after the momentum shift is applied, the osc
lator that is measured has momentum of orderw6sq

21 , and
position of ordersp

21 , so that the value of the energy isn

1 1
2 5 1

2 (p21q2); 1
2 (w6sq

21)21 1
2 sp

22 .
For a particular typical outcome of the photon-counti

measurement, sinceuc1
(n)& has its support onuq1u,sp

21

!w, we can Taylor expandp(x) about x5q1 to express
uc1

(n)& as

c1
(n)~q1!} expS 2 i Eq1

~A~2n11!2x22w!dxD
} expS i

6A2n11
q1

32 i ~A2n112w!q1

1O~q1
5/w3!D . ~137!

This is a cubic phase state to good precision ifw is large
enough.

The coefficientg8 of q1
3 in the phase ofc1 is of order

n21/2, while the phaseg of the operatorVg that we wish to
execute is of order one. However, we can constructVg from
Vg8 as

Vg5~Sg/g8!
21Vg8~Sg/g8!, ~138!

whereSr is a squeeze operation that acts according to

Sr :q→~r !1/3q,

p→~r !21/3p. ~139!

Alternatively, we could squeeze the phase stateug8& before
we use it to implement the cubic phase gate.
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Is this procedure fault tolerant? Before considering
errors introduced during the implementation of the cu
phase gate, we should check that the gate does not c
strophically amplify any preexisting errors. In general,
phase gate can transform a small position shift error int
potentially dangerous momentum shift error. Commuti
V(f)5eif(q) through the shift operatore2 iup, we find

eif(q)e2 iup5e2 iupei f u(q)eif(q), ~140!

where f u(q)5f(q1u)2f(q); the operatorei f u(q) can be
expanded in terms of momentum shift operators of the fo
eivq by evaluating the Fourier transform

f̃ u~v !5E dq

2p
ei ( f u(q)2vq). ~141!

Assuming we use a code where the parametera is of order
one, uncorrectable errors will be likely iff̃ u(v) has signifi-
cant support on values ofv that are order one.

Suppose thatV(f) acts on an approximate code wo
whose wave function is concentrated on values ofq in the
domain uqu,L. Phase cancellations will strongly suppre
f̃ u(v), unless the stationary phase conditionf u8(q)5v is sat-
isfied for some value ofq in the domain of the approximat
code word. Therefore,V(f) can propagate a preexisting po
sition shift u to a momentum shift error of magnitude

uvu; max
uqu<L

u f u8~q!u. ~142!

The cubic phase gate needed to implement the encodS
gate is W5eif(q), where f(q)5pq3/2a3, so that f u(q)
53puq2/2a31••• ~ignoring small terms linear and con
stant inq), and f u8(q)53puq/a3; the gate transforms the
position shiftu to a momentum shift

v;3pLu/a3. ~143!

For a of order one, then, to ensure thatv is small we should
use approximate code words with the property that the ty
cal embedded position shiftu satisfies

uuu!L21. ~144!

In particular, if the approximate code word’s embedded
rors are Gaussian, wherek is the typical size of a momentum
shift andD is the typical size of a position shift, we requir

D!k. ~145!

We assume that shift errors due to other causes are no la
than the embedded error.

In the circuit Fig. 6 that implements the cubic phase ga
position shift errors in either the encoded stateuc& or the
ancilla stateug& might cause trouble. A shift byu in uc& is
transformed to a phase errorei f u(q), and a shift byu in ug&
infectsuc& with a phase errorei f u(q1a). Therefore, we should
require that position shift errors in bothuc& and ug& satisfy
the criterion~144!, whereL is the larger of the two wave
packet widths.
0-17
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When a cubic phase state is prepared by measuring ha
an EPR pair, the packet width is of ordersp

21 and typical
position shift errors haveu;sq. However, we must also
take into account that either the encoded state or the an
must be squeezed as in Eq.~139!. Suppose that the ancilla i
squeezed, by a factor of ordern1/6;w1/3; the wave packet is
rescaled so that, after squeezing, the widthL8 and the typical
shifts u8 are given by

L8;sp
21w21/3, u8;sqw21/3. ~146!

Then the conditionuu8u!L821 is satisfied provided thatsq
!spw2/3. We also require that the rescaled packet ha
large width compared to 1, orsp!w21/3.

For the derivation of Eq.~137!, we used the approxima
tions wsq@1 andwsp@1. We also need to check that th
remainder terms in the Taylor expansion give rise to a ph
error that is acceptably small. This error has the formei f (q1),
where f (q1)5O(q1

5/w3), corresponding to a momentum
shift

v; f 8~q1!;sp
24w23. ~147!

Squeezing amplifies this momentum shift error tov8
;vw1/3;sp

24w28/3, which will be small compared to 1 pro
vided thatsp@w22/3. To summarize, our implementation o
the cubic phase gate works well if the approximate co
words have embedded errors satisfyingD!k, and if widths
sq andsp of the approximate EPR state satisfyw@sq

21 and

w21/3@sp@w22/3. ~148!

Finally, how accurately must we count the photons?
error Dn in the photon number results in a phase erroreivq1

with uvu;n21/2Dn in c1
(n)(q1), which will be amplified by

squeezing touv8u;uvuw1/3;n21/3Dn. Therefore, the preci-
sion of the photon number measurement should satisfy

Dn!n1/3 ~149!

to ensure that this error is acceptably small.

C. Purification

Either of the above two methods could be used to imp
ment a nonsymplectic phase transformation that compl
the universal gate set. Of course, experimental limitati
might make it challenging to execute the gate with very h
fidelity. One wonders whether it is possible to refine t
method to implement fault-tolerant universal gates of i
proved fidelity.

In fact, such refinements are possible. We have seen
we can reach beyond the symplectic transformations
achieve universal quantum computation if we have a sup
of appropriate ‘‘nonsymplectic states’’ that cannot be crea
with the symplectic gates. If the nonsymplectic states h
the right properties, then we can carry out a purification p
tocol to distill from our initial supply of noisy nonsymplecti
states a smaller number of nonsymplectic states with m
better fidelity@31,32#.
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An example of a nonsymplectic state that admits suc
purification protocol is a variant of the state originally intr
duced by Shor@23#, the three-qudit state

223/2 (
a,b,cP$0,1%

~21!abcua&1ub&2uc&3 ; ~150!

it can be characterized as the simultaneous eigenstat
three commuting symplectic operators:L(Z)1,2X3 and its
two cyclic permutations, whereL(Z) is the two-qudit con-
ditional phase gate

L~Z!:ua,b&→~21!abua,b&. ~151!

As Shor explained, this nonsymplectic state can be emplo
to implement the Toffoli gate

T:ua,b,c&→ua,b,c% ab&, ~152!

and so provides an alternative way to complete the unive
gate set.

To purify our supply of nonsymplectic states, symplec
gates are applied to a pair of nonsymplectic states and
one of the states is measured. Based on the outcome o
measurement, the other state is either kept or discarde
the initial ensemble of states approximates the nonsymple
states with adequate fidelity, then as purification procee
the fidelity of the remaining ensemble converges rapidly
ward one.

The details of the purification protocol will be describe
elsewhere; here we will only remark that these Shor sta
can be readily created using symplectic gates andp/8-phase
gates. The Shor state is obtained if we apply the transfor
tion

L2~Z!:ua,b,c&→~21!abcua,b,c& ~153!

to the state

H1H2H3u0,0,0&5223/2 (
a,b,cP$0,1%

ua,b,c&. ~154!

As shown in Fig. 7,L2(Z) can be applied by executing
circuit containing 5S gates, 4S21 gates, and 8CNOT gates.

Therefore, if we can apply symplectic gates accurate
and are also able to create a supply ofp/8 states of reason
able fidelity ~or can otherwise implementS gates of reason-

FIG. 7. Construction of the three-qudit gateL2(Z). ~a! A L(P)
gate can be constructed~up to an overall phase! from two S gates,
an S21 gate, and twoCNOT’S. The circuit is executed from left to
right. ~b! A L2(Z) gates can be constructed from twoL(P) gates,
a L(P21) gate, and twoCNOT’S.
0-18
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ENCODING A QUBIT IN AN OSCILLATOR PHYSICAL REVIEW A 64 012310
able fidelity!, then we can use the purification protocol
implement Toffoli gates with very good fidelity.

XII. ENCODING

Now we have discussed how to execute universal qu
tum computation fault tolerantly, and how to perform err
recovery. But the discussion has all been premised on
assumption that we can prepare encoded states. It is fin
time to consider how this can be done. In fact, prepar
simultaneous eigenstates of the stabilizer genera
exp(2piq/a) and exp(2inpa) is a challenging task.

For the@@N,k## stabilizer codes that have been discuss
previously, encoding is not intrinsically difficult in that it ca
be accomplished with Clifford group gates. Acting by co
jugation, Clifford group transformations take tensor produ
of Pauli matrices to tensor products of Pauli operators.
particular, there is a Clifford group transformation that tak
the stateu0& ^ N ~the simultaneous eigenstate with eigenva
one of all N single-quditZ’s! to the encodedu0̄& ^ k ~the si-
multaneous eigenstate with eigenvalue one of (N2k) stabi-
lizer generators andk encodedZ̄’s!.

Where our codes are different, in both their finit
dimensional and infinite-dimensional incarnations, is tha
singlequdit or oscillator is required to obeytwo independent
stabilizer conditions—i.e., to be the simultaneous eigens
of two independent Pauli operators. Hence there is no C
ford group encoder. In the continuous variable case,
problem can be stated in more familiar language: the s
plectic transformations take Gaussian~coherent or squeezed!
states to Gaussian states. Hence no symplectic transfo
tion can take~say! the oscillator’s ground state to a state
the code subspace.

So encoding requires nonsymplectic operations, and a
as we know it cannot be accomplished by counting phot
either—we must resort to a nonlinear coupling between
cillators, such as ax (3) coupling. We will describe one pos
sible encoding scheme: First, we prepare a squeezed sta
eigenstate of the momentum withp50. This state is already
an eigenstate with eigenvalue one of the stabilizer gener
einpa, but not an eigenstate ofe2p iq/a; rather its value ofq is
completely indefinite. To obtain an encoded state, we m
project out the component with a definite value ofq modulo
a.

This can be achieved by coupling the oscillator to anot
oscillator that serves as a meter, via the perturbation of
Hamiltonian

H85lq~b†b!, ~155!

whereb is the annihilation operator of the meter.1 This per-
turbation modifies the frequency of the meter,

Dvmeter5lq; ~156!

1There is an extensive literature on the experimental realiza
and applications of this kind of coupling; see@33#.
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then if this coupling is turned on for a timet52p/lna, the
phase of the meter advances by

Dumeter52pq/na. ~157!

By reading out the phase, we can determine the valueq
modulona, and apply a shift if necessary to obtain the sta
with q[0 ~mod na), the known stateu0̄& in the code sub-
space.~See Fig. 8.!

Of course, in practice the state squeezed inp prepared in
the first step will be only finitely squeezed, and the measu
ment ofq modulona will have imperfect resolution. If the
squeezed state is Gaussian and the measurement h
Gaussian acceptance, then this procedure will produce
approximate code word of the sort described in Sec. V.

If we are able to prepare ‘‘good enough’’ encoded stat
we can distill better ones. The distillation protocol is simil
to the error recovery procedure, but where the ancilla u
for syndrome measurement may be fairly noisy. We mig
improve the convergence of the distillation procedure by d
carding the data oscillator if the measurement of the anc
oscillator yields a value ofq or p that is too distant from the
values allowed by the code stabilizer.

So far, we have described how to prepare encoded st
for the ‘‘single-oscillator’’ codes described in Sec. IV. T
prepare an encoded state for one of theN-oscillator codes
described in Sec. VI, we proceed in two steps. First we p
pare each ofN oscillators in a single-oscillator encoded sta
Then we apply a symplectic transformation to obtain t
encoded state of theN-oscillator code.

A particular known encoded state of a lattice stabiliz
code can itself be regarded as a code with
(n51)-dimensional code space. Hence it can be charac
ized by aself-dual symplectic lattice. For example, theX̄
51 state of a qunit encoded in a single oscillator is t
simultaneous eigenstate with eigenvalue of one of the op
tors e2 ipa and e2p iq/a—the state associated with the se
dual lattice whose basis vectors arepa/A2p andqA2p/a.

One encoded state can be transformed to another by s
plectic gates if there is a symplectic linear transformat
that takes the self-dual lattice associated with the first stat
n

FIG. 8. Preparation of an encoded state.~a! An eigenstate ofp is
prepared, which has an indefinite value ofq. ~b! The value ofq
modulona is measured, projecting out a state that differs from

encodedZ̄ eigenstate by a shift inq.
0-19
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the self-dual lattice associated with the second. In fact, s
a symplectic transformation exists for any pair of self-du
lattices.

A linear transformation acting on thep’s andq’s modifies
the generator matrixM of a lattice according to

M→MS; ~158!

this transformation is symplectic if

SvST5v, ~159!

where

v5S 0 I

2I 0D . ~160!

We saw in Sec. VI that we can always choose the gener
matrix M of a self-dual lattice so that the matrixA has the
form

A[MvMT5v; ~161!

that is, so thatM is a symplectic matrix. Therefore, the ge
erator matricesM1 andM2 of two self-dual lattices can eac
be chosen to be symplectic; then the linear transformatio

S5M1
21M2 ~162!

that takes one lattice to the other is also symplectic. Th
while the task of preparing the encoded states of the sin
oscillator codes can be accomplished only by introducin
nonlinear coupling between oscillators, proceeding fr
single-oscillator encoded states to many-oscillator enco
states can be achieved with linear optical operations
squeezing.

XIII. PHYSICAL FAULT TOLERANCE?

In a physical setting, making use of the continuous va
able quantum error-correcting codes proposed here~or
‘‘digital’’ quantum codes that have been proposed pre
ously! is a daunting challenge. We must continually meas
the stabilizer operators~the ‘‘error syndrome’’! to diagnose
the errors; to recover we must apply frequent shifts of
canonical variables that are conditioned on the measurem
outcomes. Cold ancilla oscillators must be provided that
steadily consumed by the syndrome measurements. The
cillas must be discarded~or refreshed! to rid the system of
excess entropy that has been introduced by the accumu
errors.

An alternative to this complex scheme was suggeste
Ref. @34#. Perhaps we can engineer a quantum system wh
~degenerate! ground state is the code subspace. Then
natural coupling of the system to its environment will allo
the system to relax to the code space, removing errors in
duced by quantum and thermal noise, or through the imp
fect execution of quantum gates. Such a system, if it could
built, would be a highly stable quantum memory.
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Continuous variable coding suggests possible approa
to implementing this type of physical fault tolerance. F
example, the Hamiltonian

H522@cosp1 cos~2pnq!# ~163!

has ann-fold degenerate~but nonnormalizable! ground state
that is just the code space of a continuous variable co
~The operators cosp and cos 2pnq commute and can be si
multaneously diagonalized.! The low-lying states of a rea
system whose Hamiltonian is a reasonable approximatio
H would resemble the approximate code words describe
Sec. V.

One possible way to realize physical fault tolerance
suggested by the codes for an electron in a Landau le
described in Sec. III. The wave functions in the code sp
are doubly periodic with a unit cell that enclosesn flux
quanta, wheren is the code’s dimension. If we turn on
tunable periodic potential whose unit cell matches that of
code, then the Landau level is split inton energy bands, and
the code words are the states with vanishing Bloch mom
tum. Therefore, an encoded state could be prepared by t
ing on the potential, waiting for dissipative effects to cau
the electrons to relax to the bottom of the lowest band, a
then adiabatically turning off the potential. If dissipative e
fects cause electrons to relax to the bottom of a band o
timescale that is short compared to spontaneous decay
one band to another, then more general encoded states c
be prepared by a similar method. Furthermore, turning on
potential from time to time would remove the accumulat
Bloch momentum introduced by errors, allowing the electr
to relax back to the code space.

XIV. CONCLUDING COMMENTS

We have described codes that protect quantum states
coded in a finite-dimensional subspace of the Hilbert sp
of a system described by continuous quantum variab
With these codes, continuous variable systems can be
for robust storage and fault-tolerant processing of quan
information.

For example, the coded information could reside in t
Hilbert space of a single-particle system described by
nonical quantum variablesq and p. In practice, these vari-
ables might describe the states of a mode of the electrom
netic field in a high-finesse microcavity, or the state of t
center of mass motion of an ion in a trap. Or the continuo
Hilbert space could be the state space of a rotor describe
an angular variableu and its conjugate angular momentu
L; in practice, these variables might be the phase and ch
of a superconducting quantum dot. Our coding scheme
also be applied to a charged particle in a magnetic field.

Our codes are designed to protect against small errors
occur continually—diffusive drifts in the values of the c
nonical variables. The codes are less effective in protec
against large errors that occur rarely. In some settings,
may desire protection against both kinds of errors. One w
to achieve that would be toconcatenateour continuous-
variable codes with conventional finite-dimensional quant
codes.
0-20
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When we consider how to manipulate continuous-varia
quantum information fault tolerantly, the issues that arise
rather different than in previous discussions of quantum fa
tolerance. With continuous variable codes, propagation
error from one oscillator to another is not necessarily a s
ous problem. More damaging are processes that ampli
small shift of the canonical variables to a large shift. W
have described how to implement a universal set of fa
tolerant quantum gates; with these, harmful error amplifi
tion can be avoided as the encoded state is processed.

Apart from encouraging the intriguing possibility th
continuous quantum variables might prove useful for
construction of robust quantum memories and comput
these new quantum codes also have important theore
applications. In this paper we have discussed an applica
to the theory of the quantum capacity of the Gaussian qu
tum channel. Furthermore, quantum codes can be invoke
investigate the efficacy of quantum cryptographic protoco
t

t

A

v
d

-

v
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even in cases where the protocol makes no direct use o
encoded states@35#. With continuous-variable codes, we ca
demonstrate the security of key distribution protocols ba
on the transmission of continuous variable quantum inform
tion. This application is discussed in a separate paper@36#.
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