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Nonholonomic quantum devices
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We analyze the possibility and efficiency of nonholonomic control over quantum devices with exponentially
large number of Hilbert space dimensions. We show that completely controllable devices of this type can be
assembled from elementary units of arbitrary physical nature, and can be employed efficiently for universal
guantum computations and simulation of quantum-field dynamics. As an example we describe a toy device that
can perform Toffoli-gate transformations and discrete Fourier transform on 9 qubits.
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[. INTRODUCTION versal quantum computations and simulation of quantum-
field dynamics(Sec. 1V) [18]. Finally, we describe a toy

What is the difference between a classical and a quanturélevice that can perform quantum computations on 9 qubits
device? Clearly it is not in the physical laws governing theirand show in particular how it can perform the discrete Fou-
dynamics, since classical mechanics follows from quantuniier transform on 9 qubitsSec. ).
mechanics as a limiting case, when mechanical action for
each degree of freedom is much larger than the Planck con- II. NONHOLONOMIC CONTROL
stant. Hence, all classical devices are quantum as well, and ) ) o
the basic difference between them is rather in the quantities | "€ idea of controlling a system by forcing it to have
of interest and in the interactions under control. Typically,9lobally unconstrained—nonholonomic—dynamics is natu-
the operators of main physical quantities have smooth depefj@): Since in order to ensure an arbitrary evolution one has
dence of their semiclassical matrix elements on the indicelirSt to get rid of the restrictions posed by the existing inte-
numerating the energy eigenstates, and therefore a state @f@!S 0f motion and all other constraints. In the nonholo-
the device is characterized by the position of the center of th°Mic control scheme, the system evolution is determined by
Ehrenfest wave packet in phase space. The average quar@il unperturbed HamiltoniaH, and a number of perturba-
ties are determined as functions of this position, whereas thgons Ciﬁ)i of fixed-operator structuré)i and controllable
finite packet width results in uncontrolled “quantum noise” strengthsC; that are applied to the system, so that the evo-
and is considered as an obstacle for the correct operation @ition is given by the time-dependent Hamiltonian
the classical device in the quantum limit.

The situation is different in the essentially quantum limit, . - .
where the action for each degree of freedom is of the order of H(t)=Ho+ > Ci(t)P;. (1)

f. Then, the matrix elements are not smooth anymore, and '

the consistent description of &level device relies not .onl_y The system becomes nonholonomic and completely control-
on quantum averages of operators, but also on all their higher ~ ™ N .
moments as well. Such description requires exhaustive infor@Pl€ if the commutators of all orders &f, and theP; span
mation about the state of the system, as given by a vector if'€ SPace of Hermitian operators in the Hilbert space of the
the N-dimensional Hilbert space of the system. Building aSyStem, that is, if an arbitrary Hermitian operator can be
completely controlled quantum device in practice impliesr€Presented as a linear combination of the operators

control over all the moments and therefore is a challenging . _ . A

task. It promises, however, adequately important practical  Ho,Pi,[Ho,Pi1.[Pi,P;], ... [P ,[P;,P ] ... . (2
benefits: coherent control of molecules, quantum cryptogra-

phy, and quantum computation are some of the potential apNote that at mosN? linearly independent terms are needed
plications[1-16]. for an N dimensional Hilbert space.

In this paper we describe a scheme for constructing com- The control scheme consists of two stefig:verification
pletely controllable quantum devices. We show that quantunthat the perturbations induce nonholonomic dynamics; and
systems perturbed in a certain time-dependent way beconi@) finding particular time dependencies for the perturbations
“nonholonomic,” which means that as a result of the pertur-that effect a given desired control. Stefi) is
bation all global constraints on the dynamics are removedtraightforward—by inspecting the commutation relations
and the system becomes fully controll€glec. I). We then  between the explicitly written Hamiltonian and perturbation
describe a simple, completely controllable “unit cell” that operators, one checks if the system under consideration is
can serve as a building block for compound devices of arbiindeed nonholonomic. But stefii) requires more art—one
trary size(Sec. ll), and show in particular that it can imple- has to put the system in such conditions that all unwanted
ment the Toffoli gatdAppendix [17]. We give examples of outcomes, present in abundance in a system with no con-
compound devices that can be employed efficiently for unistraints, experience a destructive quantum interference.
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Let us consider a quantum systemNvE 2" levels, com-
posed ofn interacting two-level subsystems. To be specific
we speak about two-level atoms in a laser field, although it
could as well be any other quantum object, such as interact-
ing spins in a magnetic field, Josephson junctions, Rydberg

atoms, rotating molecules, quantum dots on a surface, etc. T ;
The only requirement is that the object must be subjected to b R, A#A
a nonholonomic control, since only in this case it can per- (b) e DFHs pe 5
form any desired operation, no matter what the physical in- I6>=I1102, =t .
teractions in the system are. The choice of a practical real- Pis = " P;j:\/;:"" IWDA
ization of a nonholonomic system will therefore depend «'ﬁﬁ(ﬁ“- R A4A L
mainly on optimization of technical parameters such as sim- 7 12>=1010>, *I 1>=|0(‘)21~ i
plicity and costeffectiveness of construction, lifetime of {Dy=H} .~ AdA L
guantum coherendd 9], precision of available controls, and POV T
SO on. 10>=1000>

A crucial issue that determines the strategy of construc-

tion is the re:qullred extent of |_mmed|ate universality Of.thetwo-level atoms interacting with external electromagnetic and static
control. In principle, one can think about complete and direct,. fields.(a) Theith atom has ground and excited stat@
physical C‘?”“?' OV,er arzlevgll quantum system, e_\/en for a and|1); with excitation energyA; + A; that can be modified by the
largen, which implies the ability to ensure an arbitrary evo- gagic field; transition amplitude in the electromagnetic fiel¥/js
lution of the system, given by any predetermin€tx2"  the dipole-dipole coupling of thth andjth atoms isD;; . (b) The
unitary matrixU, and that requires Mphysical control pa- computational basis states and their relation to matrix elements of
rameters. For this purpose one should find an algorithm thahe principal HamiltoniarH, and the perturbation®,, and Pg of
determines these controls for any givién It might be diffi- ~ Eas.(3)-(5).

cult to find such algorithm, and even if found, its application

will require an enormous computational work that grows ex-

ponentially Withn, and will therefore be intractable. In addi- d|p0|e interaction between themselves and are Coup|ed to
tion, the cost of physically implementing the huge number ofyq external fields: an electromagnetic fiefg,= &, coswt

4" control parameters seems too high a price to pay for thig nearly resonant frequenaey, and a static electric fielHg.

kind of universality, which may not even be needed for prac‘|’he dipole-dipole interaction is fixed and determines the

tical purposes. For these reasons, one should presumab ¥ inal bed Hamiltoni fth - hi
give up direct universality and search for specialized ways t&'"¢iPal, unperturbed Hamiltonian of the systétg, while

build quantum devices for each particular task, with numbeghe external fields provide two controllable perturbatidhs,
of controls that is not exponentially larger then what is spe-and |55_ The Hilbert space of the system has a “computa-

FIG. 1. Realization of a unit cell: A compound system of three

cifically needed. tional basis” of N=23=8 states, |X)=|X,X;Xq)
=[X,)|X1)|Xo), X=0,1, . .. ,7where the state of thigh atom
encodes théth binary digit ofx=3?_.x,2" as a qubifsee

Ill. COMPLETELY CONTROLLED UNIT CELL Fig. 1(b)]. The crucial requirement is the nonholonomic

One way to construct a completely controlled but not im-character of the interaction. It implies thdp, P, Ps, and
mediately universal quantum device is to build it up from their commutators of all orders span the linear space of

small parts, “unit cells,” each of which is nonholonomic and 88 Hermitian matrice$21]. This is indeed the case for the
therefore directly and universally controllable. The properSystem shown in Fig. 1, which has principal Hamiltonian and
functioning of the device relies then on the appropriate conPerturbations given, in the computational basis and assuming
nection of the cell§20]. In this way the universality of the resonant approximation, by the matrices

device is obtained indirectly, not by applying a huge number
of controls, but by smartly connecting the cells and choosing
the sequence of operations performed. There is no general
prescription how to construct a particular device; this re-
quires expertise in the art of “programming” the operations
of the cells and their interactions.
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An example of a completely controlled unit cell is shown

in Fig. 1. It consists of three two-level atoms, each with 0 0 Dz 0 Do Ay
ground and excited stat¢8) and|1), having distinct transi- O 0O O 0O o0 ©
tion frequenciesn}, w3, andw§. The atoms have dipole- (3

)
o
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O O O O O ©o o o
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0O V., V, 0 V3 0O O O that denotes eithef,, or Eg, during thekth time interval,
V, 0 0 V, 0 Vs 0 O er_ending on the parity of[22]. .Thus, the system e\(olution

is given by a Hamiltonian that is constant in each interval,
V, 0 0 VvV, 0O 0 V3 O

0 V, V; 0 0 0 0 Vg H(t)=Ho+CPy, te[(k—1)TkT]. (6)
c,P,= ,
V; 0 0 0 0 V; V, 0 (i) We find 64 positiveC, values for which the total
0 V; 0 0 V, 0 0 V, evolution of the system will be the identity transformation,
0 0 V3 0 VZ 0 0 Vl 64 |
0 0 0 V3 0 V, V; O U(t=64T)Ekl:[l exp[—g(HﬁCkPk)T =l.
(4) B
To this end, we first solve the “eighth root” of E¢7),
0 O 0 0 0 0
8 .
0 A; O 0 0 0 O . r{ i . . .
Ut=8T)=[[| exg — - (Ho+CP)T|=1"8 (8
0 0Ab 0O O O O O ( ) kHl  (Hot CP) ®
Csl53= 0 0 0 4; 0 0 0 0 _ by minimizing the coefficients of the characteristic polyno-
6 0 0 0 A; O O O mial of U(t=8T) [14]. This gives a sequence of positive
O 0 0 O O A3 O 0 values,C;,C,, ... ,Cg, for which U(t=8T) has the eigen-
0 0 0 0 O 0 Ay O values e2™™8 m=12,...,8, andhence satisfieqU(t
0 0 0 0 O O 0 A =8T)]%=1 nondegenerately. Repeating this sequence eight

(5) times we obtain the required 6€, .

(iii) Now, by small variations5C, of the C, values we
Here D;;=d;d;/R} is the dipole-dipole coupling of thth  can obtain any unitary transformatidih, in a small neigh-
andjth atoms at distanc®;; , with d; theith atom dipole- borhood of the identity transformation,
matrix element, and&/;=¢£,d; is the dipole coupling of the
ith atom to the external electromagnetic field. The excitation- . ot i~ N -
energy detunings of single atoms=7(wl— w) determine U(t:64T)Ek1;[1 ex;{ - ﬁ(H0+[Ck+ SCIPIT|=U..
the detunings of pairs of atom&;=A;+A; and the total 9

detuningA,= A1+ A,+As. Their values can be changed by
variation of a static electric fiel&Eg (Stark effect, which  Indeed, we can present this “small” transformation as

results in energy shiftd;— A+ A; for single atoms, where

A= a;E5 depend on atom-specific electric permeability con- U =exp —iHe), (10)
stantse;, and similar shiftsAj;=A;+A; andA,=A;+A, A
+ A for two and three atomic detunings, respectively. with dimensionless 8 8 Hermitian Hamiltonian¥H that is

Note that by a proper choice df andw one can set tWo  pounded a$|7||<1 and is multiplied by a small parameter
of the threeA; to zero. Moreover, to simplify the presenta- ¢ . Now the variation$C are determined to first order in
remain just a part ofl,. Hence, hereafter all; denote just
the deviations from zero resulting from the variation of the
Stark field Eg. The latter together with the amplitude,
serve as time-dependent control parame@gsandC,,, re-
spectively. The matrice®s and P, contain therefore only Moreover, whene is sufficiently small, iterative Newton
thev permeabilitiesy; and the dipole moments;, respec- |\ o4 refinements of thaC, yield U (t=64T)=U0, with

50 (t=64T) e i "
“ &Ck k= "I Ae. ( )

tively. utmost accuracy14].
(iv) Finally, to perform an arbitrary unitary transformation
B. Cell control we again present it dd, in Eq. (10), but now the parameter
To exert direct universal control over the unit cell we € may take any value if0,27] and will not necessarily be
proceed as follows. small. We effect thelJ, by dividing it into m sufficiently

(i) We fix N2=64 consecutive time intervals of equal du- “small” steps U, [defined through Eq(10) with e re-
rationT in which the two perturbations will be applied to the placed bye/m] for which the procedure ifiii) yields di-
system in an :illterrjating sequence:Ain ﬂ:tb interval the rectIyO(t=64T)=UE,m. ApplyingUE,m repeatediyn times
perturbation isP,= P for odd k and P =P,, for evenk,  we obtain the complete transformation

wherek=1,2, .. .,64. The strength oP, is a controllable . A .
parameter, which we take to have a constant vélye and Ut=64mT)=(U ) =U.. (12
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FIG. 2. (a) Control parameter€, for the identity transformation
1. VariationssC, effecting on the cell the transformatith, g, with (b)

U.=(U.)® equal to(b) the permutatior ,;,; (c) the permutation @ @ @ @ @ @

U p23; (d) the Toffoli-gate transformatif)ﬁlToff. (&) VariationsCy Yt el e =k =t L

effecting the conditional phase shiB(¢)=exp(i¢Hg), at ¢ ) )

= /32, employed in the quantum discrete Fourier transform. FIG. 3. Two possible arrangements of cells for special purpose

devices:(a) treelike structure for quantum computatigb) planar

Our experience suggests that, for the problem under consi attice for simulating dynamics of quantum fields. The circled num-
P 99 P ers denote the rank of joints of the tre® or specify the order in

eration, direct control oy, is typically attainable withm which atoms are grouped into triads). The arrows show state
=16. Moreover, we expect that evem=1 will be sufficient  gychange to parent joints.
with more powerful numerical methods for solving ES)
and an optimized choice of the control perturbatipmé].
Thus, in contrast with earlier control schemes8,9], the
desired unitary transformation is effected within a few con-
trol cycles, with accuracy that depends, in principle, only on
the physical precision of the controls.

In Fig. 2 we show examples of unit cell control, where
appropriately chosen paramete®g and variationséC, ef-

two possible arrangements of unit cells for special purpose
devices: the first arrangement suits more the purpose of
quantum computing, while the second is more useful for
simulating lattice quantum field dynamics.

The first devicd Fig. 3(@)] is organized in a treelike struc-
ture, where the quantum state of one atom in each cell can be
) ) . X exchanged with the state of an atom at the closest parent
fect unitary .transformatlons on the unit ceI_I: the Toﬁ‘o!l—gatejoint of the tred23]. The simplest way to make the exchange
Eransformatlon(see the Appendjx two-qubit permutations  jq 4, displace the atom to the parent joint, however, the ex-
pija)ilb);=[b)ila); (a,b=0,1), and the conditional phase change or transport of the state without moving the atom can
shift employed in the quantum discrete Fourier transformpe more practical. The treelike architecture and the possibil-
(discussed in Sec. VThe transformation is achieved either jty to perform all the unitary transformations, including all
directly (m=1) or by eight repetitionsrg=8). The opera- the permutations, in each unit cell allow one to put together
torsHg, P, , andPs are chosen with arbitrary realistic val- and make interfering the states of any three two-level atoms
ues. We takeD,,=1.1E,, D,3=0.94&,, D,3=0.8€,, of the device after at most=6 logsn state exchanges, by
andT=2504/E,, whereE,~10 ®erg is the typical energy moving them toward the root of the tree to a common cell.
scale. For oddk we switch off the external electromagnetic Placing the new states ba¢k needed requires the same
field, V;.,.3=0, and tune the atomic excitation energies bynumber of inverse exchanges. This is a very modest number,
the Stark fieldEg such thatA;.,.5=(0.1;0.11;0.312,. For ~ s~40, even for a rather large device of 10° with Hilbert
evenk we setEg=0, that isA;.,.3=0, and takeV,,3 space ofN=2"~10°" dimensions. Hence, all basic opera-
=(0.3;0.33;0.24F,,. o " tions of quantum computation can be performed on any
physical system composed of nonholonomic triads of two-
level subsystems in a tree-like structure, and each operation
can be completed within 6416X 12Xlogs n control inter-

Once completely controlled unit cells can be constructedyals T. Note that the unity transformation should be applied
a compound device can be assembled from such elements. all other cells to preserve their states during the operation.
To be efficient, the architecture of the device will depend on The second arrangement of ceBig. 3(b)] is intended
the specific function it should perform. In Fig. 3 we show mainly for emulating the dynamics of quantum fields on lat-

IV. COMPLETELY CONTROLLED QUANTUM DEVICES
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tices. Of course, it can also perform general operations on
any triad, but for a higher cost sf=0(n*?). In this arrange-
ment, after each control period of B4he closest neighbor- @

oD
PEEEN (g)j
ing atoms are differently regrouped in tria@lls), with the \
original grouping repeating itself after three consecutive pe-
riods. Therefore, at each moment the change of the cell state
depends on the states of the neighboring cells, as it should be
in order to emulate the dynamics of the fields. Immediate
analogy to the Ising model emerges when we restrict our-
selves to small values af where terms of ordee? are neg- ®4 o @5
ligible, and then each @4period plays the role of the time

incrementAr=e. The evolution of such device is deter- g 4. A toy device, composed of nine Rydberg atoms, that can
mined by three sums of effective cell Hamiltoniarhl;(e'})f perform quantum computations on nine qubits. Each atom is a two-
=2q7:lq,p, one for each periogp=1,2,3, Wheré}:{q'p is the level system shown schematically by double orbits. Atoms of dif-

effective Hamiltonian of thejth cell at thepth period. ferent triads are excited to distinct pairs of Rydberg states. Each

We can cast the cell Hamiltonians to sums of tensor prodtiad p is controlled by an external field of distinct frequeney.

. .~ . One atom in each triad can be excited to a pair of higher Rydberg
ucts of Pauli matr.lceﬁa, where the G're.ek.lndeae.z.x,y,z states, thus forming a higher-level tria@,6,7. These excitations
denotes the matrix WPe and the Lgtln indezpecifies the (depicted by arrowscorrespond to state transportations.
two-level atom on which it acts. Since the cells are under

complete control, the coefficients of this development can b eraged over their translational quantum states. Note, how-
made an arbitrary function of the time and hence the ef- gyer that only for almost resonant atoms this interaction is

fective Hamiltonian reads important. By a proper choice of the atomic states and the
N 2 A WB PN By ik static fieldEg, we obtain three triadg=1,2,3, each com-
Hetl( 1) =A7 (7)o, + B} (1) 0,05+ C(iT (7)o 0507, prising three almost resonant two-level atoms with transition

13 frequencies centered around a distinct frequengy For

with implicit summation over repeated indices, wherg) ~ €ach triadp, the interactiond;; give the principal Hamil-
and (,j k) indicate pairs and triads of distinct atoms that aret®nian, while a microwave fiel&,,  at the frequencyw,,

periodically grouped in a common cell. This Hamiltonian Serves as a control perturbation. Transportation of the state of

results in the evolution equation for the Heisenberg operatorgne atom in each triad to the parent joint can be performed
by dipole or Ramanm transitions from the initial pair of

|
a7, Rydberg levels to a higher pair. With these higher pairs as-
5 (7) sumed nearly resonant with a frequeney, atoms 3, 6 and 7
ﬁL=A;Bj(r)(}jl;(r)+8io;ﬁ(jyk)(T)(Arfg( T)(}';( 7) form a higher-level triad—the parent joint of the first three
dr ’ s triads—which is controlled by a forth microwave fiel,,
+CLEY (Dah(n o (N7, (14  Of frequencyo,.

As an example of implementing quantum computation in
the toy device, using our nonholonomic control scheme, we

the commutation relations of the Pauli matrices. By a prope?ho‘"’ghOW to perform the discrete Fourier transform modulo
choice of the coefficientsh,B,C through the appropriate N=2 =512 [24]. This is the unitary transformation on 9
control sequences, one can simulate different linear and nofluPits that is given by

linear lattice models of quantum fields with time-dependent
parameters.

where the coefficients!, B,C are determined by,B,C and

1 N—1
Falx)= N yzo exp(2mixy/N)|y), (15
V. TOY DEVICE
We now describe a toy device that can p_erform quamuni)asis. The computational basis states are defined as
computations on 9 qubits. An ensemble of nine different Ry-
perature, as illustrated in Fig. 4. By different atoms we mean [X)=[xg)s - - - [Xa)l¥0):, (16)
atoms of different elements or identical atoms that are ex-
for such a device are the long-living states corresponding t5°t€S th? state of tfheh atrc:m—the_ith qubit.f The _algg)rith:jn
large angular momentum. By placing all the atoms in a statiVe €mploy to perform the Fourier transform is based on
tum number and performs tuning if needed. All the atoms 8
experience the dipole-dipole interactidD;; =didj<Ri]3), exp2mixy/2) =[] TI expi mxyd2 %), (17)
r=0 s=0

where |[x) and |y) are states of the system computational
dberg atoms is placed in a magneto-optical trap at low tem-
cited to distinct pairs of Rydberg states. The best candidate¥!t! x=327_%2'=0,1,... N—1 (x,=0,1), where ); de-
electric field one lifts the degeneracy of the magnetic quanSONStructing the exponent in E(L5) as
where the cube of the inverse distance between atoms is

012308-5
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wherex; =xg_, . We begin by reversing the order in which Performing these operations implies also application of state
the bits of the inpuk are stored in our 9-qubit register, that exchanges whenever one needs to transfer the states of atoms
is, we effect the unitary transformation i andj to a common unit cell for processing. A list of control
commands §C, sequencescorresponding to Eq$18) and
[Xg)g - - - [X1)2lXo)1—[X0)g - - - |X7)2|Xg)1 (18) (23 can be written straightforwardly.

by applying a sequence of state exchanfZy. Then we
complete the transform in nine steps: VI. CONCLUSION

(i) We “split” the first qubit (the state of atom )lby
applying the unitary transformation

S I

We have shown that quantum devices with exponentially
large Hilbert space dimension can be efficiently controlled,
provided they are assembled from completely controllable
unit cells in an architecture that is optimized for the specific
function they should perform. The unit cell can be con-

(199  structed from simple quantum objects of arbitrary physical

nature: two-level atoms, nuclear spins, rotating molecules,

which maps [0)—1/y2(|0)+]1)) and |1)—1/y2(]0)  quantum dots, etc. This allows to optimize critical properties
—|1)). Note that this would already complete the Fouriersuch as coherence time and control precision for practical
transform if we had only one qubit. realizations. The only requirement is that the unit cell could

(i) Next, we apply to the first and second qubits the con-be put under nonholonomic control, i.e., that it could be suf-
ditional phase shiftja),|b),;—e' ™?a),|b), (a,b=0,1), ficiently perturbed to have unconstrained dynamics. This en-
given explicitly by sures that the cell can be fully controlled and made perform

any desired operation.
0 As a concrete example, we have considered a quantum
system of 2 levels, composed af two-level atoms that are
=B(w/2), (20) coupled by dipole-dipole interactions. The atoms are
grouped into unit cells, each consisting of three nearly reso-
el ™2 nant atoms. Each cell is controlled with two time-dependent
perturbations: a static electric field and an electromagnetic
whereB( ) is the unitary transformation field nearly resonant with the atoms. We have shown that
any unitary transformation in the’2 8 dimensional Hilbert
0 space of the cell can be effected within a few control cycles,
each comprising 64 applications of the perturbations with
values fixed according to a nonholonomic control scheme. In
particular, the Toffoli-gate transformation on the cell re-
garded as a 3-qubit register and any permutation of the three
qubits can be performed. We have given two examples of

Then we “split” the second qubit by applying to it the trans- :‘:uerlllztlon-specmc devices that can be assembled from such

formationA. This accounts for the contribution of the second (i) By arranging the cells in a ternary treelike structure

L2l -1 Bl 1 -1-2

o O O -
o O +—» O
o » O O

0
0
0
0

B(¢)=exp —ig (21)

O O O ©o
O O O o

-1

most significant bit of the input. ~ we obtain a device that can perform efficient quantum com-
(iii) Similarly, in stepsi=3,4, . . i-;.g weapply the condi-  ytations onn qubits: any unitary transformation on any
tional phase shiftja);|b);—€ ™% |a)|b); (a,b=0,1), three qubits can be effected within order of Jogcontrol
that is, cycles. We have described a toy device that can perform
computations on 9 qubits, including, for example, the dis-
1 00 0 crete Fourier transform.
01 0 0 (i) When the atoms are arranged in a planar-lattice struc-
Bij =lo 0 1 0 =B(m/2 7]y, (22)  ture, where at each control cycle the closest neighboring at-
oms are differently grouped in triads, we can simulate vari-
0 0 0 27! ous linear and nonlinear lattice models of quantum fields

with time-dependent parameters.
to each pair of qubitsi(j), j=1,2,...J—1, and then apply
the transformatio;=A to theith qubit. Note that after the
ith step the first qubits store the Fourier transform of the
most significant bits ok. Hence, after the nineth step the  The authors are grateful to M. Gromov for discussions
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APPENDIX

The Toffoli-gate transformation is the unitary transforma-

tion on three qubits,

LAJToff|X2>|X1>|Xo>: |X2)[X1)|Xo XOR (X1 AND X7)),

Al)

which corresponds to the three-bit classical logic gate,
Xo—X5= Xy
X1— X1 = X1,

Xo—X§=Xo XOR(X; AND X;), (A2)

introduced by Toffoli as a universal gate for classical revers-

ible computation17]. It acts as a permutation of the com-
putational basis states|x)=|x,)|x1)[Xq), X=ZZ_x,2"
=0,1,...,7,given by the unitary matrix

0 0 O 0

Urori= (A3)

O O O O O O O
O O O o o O -
O O O o o~ O
O O O o » O O
OO O O B O O O O
O O »,r O O O O
R O O O O O O O
P O O O O O

PHYSICAL REVIEW A64 012308

This matrix can be presented as

Urrot=exp( —i mHtror), (A4)
with the (idempotent Hermitian matrix

0O 0 00 0O 0O O 0

0 000 OO0 O 0

0 000 OO0 O 0
- 110 0 0 0 O O O 0
Hroit=31 0 0 0 0 0 0 o o ¥

0 000 OO0 O 0

0 00000 1 -1

0 000 O O0-1 1

In our control scheme the Toffoli-gate transformation can be
effected on the unit cell by repeating eight times the trans-

formationU _g=exp(—imHo/8) (e= ), which is directly
attainable:U (t=64T)=U ;4 [see Fig. 2d)].
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