
PHYSICAL REVIEW A, VOLUME 64, 012308
Nonholonomic quantum devices
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We analyze the possibility and efficiency of nonholonomic control over quantum devices with exponentially
large number of Hilbert space dimensions. We show that completely controllable devices of this type can be
assembled from elementary units of arbitrary physical nature, and can be employed efficiently for universal
quantum computations and simulation of quantum-field dynamics. As an example we describe a toy device that
can perform Toffoli-gate transformations and discrete Fourier transform on 9 qubits.
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I. INTRODUCTION

What is the difference between a classical and a quan
device? Clearly it is not in the physical laws governing th
dynamics, since classical mechanics follows from quant
mechanics as a limiting case, when mechanical action
each degree of freedom is much larger than the Planck
stant\. Hence, all classical devices are quantum as well,
the basic difference between them is rather in the quant
of interest and in the interactions under control. Typica
the operators of main physical quantities have smooth de
dence of their semiclassical matrix elements on the ind
numerating the energy eigenstates, and therefore a sta
the device is characterized by the position of the center of
Ehrenfest wave packet in phase space. The average qu
ties are determined as functions of this position, whereas
finite packet width results in uncontrolled ‘‘quantum noise
and is considered as an obstacle for the correct operatio
the classical device in the quantum limit.

The situation is different in the essentially quantum lim
where the action for each degree of freedom is of the orde
\. Then, the matrix elements are not smooth anymore,
the consistent description of anN-level device relies not only
on quantum averages of operators, but also on all their hig
moments as well. Such description requires exhaustive in
mation about the state of the system, as given by a vecto
the N-dimensional Hilbert space of the system. Building
completely controlled quantum device in practice impl
control over all the moments and therefore is a challeng
task. It promises, however, adequately important pract
benefits: coherent control of molecules, quantum cryptog
phy, and quantum computation are some of the potential
plications@1–16#.

In this paper we describe a scheme for constructing c
pletely controllable quantum devices. We show that quan
systems perturbed in a certain time-dependent way bec
‘‘nonholonomic,’’ which means that as a result of the pertu
bation all global constraints on the dynamics are remo
and the system becomes fully controlled~Sec. II!. We then
describe a simple, completely controllable ‘‘unit cell’’ tha
can serve as a building block for compound devices of a
trary size~Sec. III!, and show in particular that it can imple
ment the Toffoli gate~Appendix! @17#. We give examples of
compound devices that can be employed efficiently for u
1050-2947/2001/64~1!/012308~8!/$20.00 64 0123
m
r
m
or
n-
d
s

,
n-
s
of
e

nti-
he

of

,
of
d

er
r-
in

g
al
a-
p-

-
m

e
-
d

i-

i-

versal quantum computations and simulation of quantu
field dynamics~Sec. IV! @18#. Finally, we describe a toy
device that can perform quantum computations on 9 qu
and show in particular how it can perform the discrete Fo
rier transform on 9 qubits~Sec. V!.

II. NONHOLONOMIC CONTROL

The idea of controlling a system by forcing it to hav
globally unconstrained—nonholonomic—dynamics is na
ral, since in order to ensure an arbitrary evolution one
first to get rid of the restrictions posed by the existing in
grals of motion and all other constraints. In the nonho
nomic control scheme, the system evolution is determined
an unperturbed HamiltonianĤ0 and a number of perturba
tions Ci P̂i of fixed-operator structureP̂i and controllable
strengthsCi that are applied to the system, so that the e
lution is given by the time-dependent Hamiltonian

Ĥ~ t !5Ĥ01(
i

Ci~ t !P̂i . ~1!

The system becomes nonholonomic and completely con
lable if the commutators of all orders ofĤ0 and theP̂i span
the space of Hermitian operators in the Hilbert space of
system, that is, if an arbitrary Hermitian operator can
represented as a linear combination of the operators

Ĥ0 ,P̂i ,@Ĥ0 ,P̂i #,@ P̂i ,P̂j #, . . . ,†P̂i ,@ P̂j ,P̂k#‡, . . . . ~2!

Note that at mostN2 linearly independent terms are need
for an N dimensional Hilbert space.

The control scheme consists of two steps:~i! verification
that the perturbations induce nonholonomic dynamics;
~ii ! finding particular time dependencies for the perturbatio
that effect a given desired control. Step~i! is
straightforward—by inspecting the commutation relatio
between the explicitly written Hamiltonian and perturbati
operators, one checks if the system under consideratio
indeed nonholonomic. But step~ii ! requires more art—one
has to put the system in such conditions that all unwan
outcomes, present in abundance in a system with no c
straints, experience a destructive quantum interference.
©2001 The American Physical Society08-1
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Let us consider a quantum system ofN52n levels, com-
posed ofn interacting two-level subsystems. To be spec
we speak about two-level atoms in a laser field, althoug
could as well be any other quantum object, such as inter
ing spins in a magnetic field, Josephson junctions, Rydb
atoms, rotating molecules, quantum dots on a surface,
The only requirement is that the object must be subjecte
a nonholonomic control, since only in this case it can p
form any desired operation, no matter what the physical
teractions in the system are. The choice of a practical r
ization of a nonholonomic system will therefore depe
mainly on optimization of technical parameters such as s
plicity and costeffectiveness of construction, lifetime
quantum coherence@19#, precision of available controls, an
so on.

A crucial issue that determines the strategy of constr
tion is the required extent of immediate universality of t
control. In principle, one can think about complete and dir
physical control over a 2n-level quantum system, even for
largen, which implies the ability to ensure an arbitrary ev
lution of the system, given by any predetermined 2n32n

unitary matrix Û, and that requires 4n physical control pa-
rameters. For this purpose one should find an algorithm
determines these controls for any givenÛ. It might be diffi-
cult to find such algorithm, and even if found, its applicati
will require an enormous computational work that grows e
ponentially withn, and will therefore be intractable. In add
tion, the cost of physically implementing the huge number
4n control parameters seems too high a price to pay for
kind of universality, which may not even be needed for pr
tical purposes. For these reasons, one should presum
give up direct universality and search for specialized way
build quantum devices for each particular task, with num
of controls that is not exponentially larger then what is s
cifically needed.

III. COMPLETELY CONTROLLED UNIT CELL

One way to construct a completely controlled but not i
mediately universal quantum device is to build it up fro
small parts, ‘‘unit cells,’’ each of which is nonholonomic an
therefore directly and universally controllable. The prop
functioning of the device relies then on the appropriate c
nection of the cells@20#. In this way the universality of the
device is obtained indirectly, not by applying a huge num
of controls, but by smartly connecting the cells and choos
the sequence of operations performed. There is no gen
prescription how to construct a particular device; this
quires expertise in the art of ‘‘programming’’ the operatio
of the cells and their interactions.

A. Cell structure

An example of a completely controlled unit cell is show
in Fig. 1. It consists of three two-level atoms, each w
ground and excited statesu0& andu1&, having distinct transi-
tion frequenciesv1

a , v2
a , andv3

a . The atoms have dipole
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dipole interaction between themselves and are coupled
two external fields: an electromagnetic fieldEv5Ev cosvt
of nearly resonant frequencyv, and a static electric fieldES .
The dipole-dipole interaction is fixed and determines

principal, unperturbed Hamiltonian of the systemĤ0, while

the external fields provide two controllable perturbations,P̂v

and P̂S . The Hilbert space of the system has a ‘‘compu
tional basis’’ of N52358 states, ux&[ux2x1x0&
[ux2&ux1&ux0&, x50,1, . . . ,7,where the state of thei th atom
encodes thei th binary digit ofx5( r 50

2 xr2
r as a qubit@see

Fig. 1~b!#. The crucial requirement is the nonholonom

character of the interaction. It implies thatĤ0 , P̂v , P̂S , and
their commutators of all orders span the linear space
838 Hermitian matrices@21#. This is indeed the case for th
system shown in Fig. 1, which has principal Hamiltonian a
perturbations given, in the computational basis and assum
resonant approximation, by the matrices

Ĥ051
0 0 0 0 0 0 0 0

0 A1 D12 0 D13 0 0 0

0 D21 A2 0 D23 0 0 0

0 0 0 A12 0 D23 D13 0

0 D31 D32 0 A3 0 0 0

0 0 0 D32 0 A13 D12 0

0 0 0 D31 0 D21 A23 0

0 0 0 0 0 0 0 As

2 ,

~3!

FIG. 1. Realization of a unit cell: A compound system of thr
two-level atoms interacting with external electromagnetic and st
electric fields.~a! The i th atom has ground and excited statesu0& i

and u1& i with excitation energyAi1D i that can be modified by the
static field; transition amplitude in the electromagnetic field isVi ;
the dipole-dipole coupling of thei th and j th atoms isDi j . ~b! The
computational basis states and their relation to matrix element

the principal HamiltonianĤ0 and the perturbationsP̂v and P̂S of
Eqs.~3!–~5!.
8-2
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CvP̂v51
0 V1 V2 0 V3 0 0 0

V1 0 0 V2 0 V3 0 0

V2 0 0 V1 0 0 V3 0

0 V2 V1 0 0 0 0 V3

V3 0 0 0 0 V1 V2 0

0 V3 0 0 V1 0 0 V2

0 0 V3 0 V2 0 0 V1

0 0 0 V3 0 V2 V1 0

2 ,

~4!

CSP̂S51
0 0 0 0 0 0 0 0

0 D1 0 0 0 0 0 0

0 0 D2 0 0 0 0 0

0 0 0 D12 0 0 0 0

0 0 0 0 D3 0 0 0

0 0 0 0 0 D13 0 0

0 0 0 0 0 0 D23 0

0 0 0 0 0 0 0 Ds

2 .

~5!

Here Di j 5didj /Ri j
3 is the dipole-dipole coupling of thei th

and j th atoms at distanceRi j , with di the i th atom dipole-
matrix element, andVi5Evdi is the dipole coupling of the
i th atom to the external electromagnetic field. The excitati
energy detunings of single atomsAi5\(v i

a2v) determine
the detunings of pairs of atomsAi j 5Ai1Aj and the total
detuningAs5A11A21A3. Their values can be changed b
variation of a static electric fieldES ~Stark effect!, which
results in energy shiftsAi→Ai1D i for single atoms, where
D i5a iES depend on atom-specific electric permeability co
stantsa i , and similar shiftsD i j 5D i1D j andDs5D11D2
1D3 for two and three atomic detunings, respectively.

Note that by a proper choice ofD i andv one can set two
of the threeAi to zero. Moreover, to simplify the present
tion we also set to zero the thirdAi , which would otherwise
remain just a part ofĤ0. Hence, hereafter allD i denote just
the deviations from zero resulting from the variation of t
Stark field ES . The latter together with the amplitudeEv

serve as time-dependent control parameters,CS andCv , re-
spectively. The matricesP̂S and P̂v contain therefore only
thev permeabilitiesa i and the dipole momentsdi , respec-
tively.

B. Cell control

To exert direct universal control over the unit cell w
proceed as follows.

~i! We fix N2564 consecutive time intervals of equal d
rationT in which the two perturbations will be applied to th
system in an alternating sequence: in thekth interval the
perturbation isP̂k5 P̂S for odd k and P̂k5 P̂v for even k,
where k51,2, . . .,64. The strength ofP̂k is a controllable
parameter, which we take to have a constant valueCk , and
01230
-

-

that denotes eitherEv or ES , during thekth time interval,
depending on the parity ofk @22#. Thus, the system evolution
is given by a Hamiltonian that is constant in each interva

Ĥ~ t !5Ĥ01CkP̂k , tP@~k21!T,kT#. ~6!

~ii ! We find 64 positiveCk values for which the total
evolution of the system will be the identity transformation

Û~ t564T![)
k51

64

expF2
i

\
~Ĥ01CkP̂k!TG5 Î . ~7!

To this end, we first solve the ‘‘eighth root’’ of Eq.~7!,

Û~ t58T![)
k51

8

expF2
i

\
~Ĥ01CkP̂k!TG5 Î 1/8, ~8!

by minimizing the coefficients of the characteristic polyn
mial of Û(t58T) @14#. This gives a sequence of positiv
values,C1 ,C2 , . . . ,C8, for which Û(t58T) has the eigen-
values e2p im/8, m51,2, . . . ,8, andhence satisfies@Û(t
58T)#85 Î nondegenerately. Repeating this sequence e
times we obtain the required 64Ck .

~iii ! Now, by small variationsdCk of the Ck values we
can obtain any unitary transformationÛe in a small neigh-
borhood of the identity transformation,

Û~ t564T![)
k51

64

expF2
i

\
~Ĥ01@Ck1dCk# P̂k!TG5Ûe .

~9!

Indeed, we can present this ‘‘small’’ transformation as

Ûe5exp~2 i Ĥe!, ~10!

with dimensionless 838 Hermitian HamiltonianĤ that is
bounded asuuĤuu<1 and is multiplied by a small paramete
e.0. Now the variationsdCk are determined to first order in
e by the ~generically full rank! linear equations

(
k51

64
]Û~ t564T!

]Ck
dCk52 i Ĥe. ~11!

Moreover, whene is sufficiently small, iterative Newton
method refinements of thedCk yield Û(t564T)5Ûe with
utmost accuracy@14#.

~iv! Finally, to perform an arbitrary unitary transformatio
we again present it asUe in Eq. ~10!, but now the paramete
e may take any value in@0,2p# and will not necessarily be
small. We effect theÛe by dividing it into m sufficiently
‘‘small’’ steps Ûe/m @defined through Eq.~10! with e re-
placed bye/m# for which the procedure in~iii ! yields di-
rectly Û(t564T)5Ûe/m . Applying Ûe/m repeatedlym times
we obtain the complete transformation

Û~ t564mT!5~Ûe/m!m5Ûe . ~12!
8-3
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Our experience suggests that, for the problem under con
eration, direct control ofÛe/m is typically attainable withm
<16. Moreover, we expect that evenm51 will be sufficient
with more powerful numerical methods for solving Eq.~9!
and an optimized choice of the control perturbations@16#.
Thus, in contrast with earlier control schemes@3,8,9#, the
desired unitary transformation is effected within a few co
trol cycles, with accuracy that depends, in principle, only
the physical precision of the controls.

In Fig. 2 we show examples of unit cell control, whe
appropriately chosen parametersCk and variationsdCk ef-
fect unitary transformations on the unit cell: the Toffoli-ga
transformation~see the Appendix!, two-qubit permutations
p̂i j ua& i ub& j5ub& i ua& j (a,b50,1), and the conditional phas
shift employed in the quantum discrete Fourier transfo
~discussed in Sec. V!. The transformation is achieved eith
directly (m51) or by eight repetitions (m58). The opera-
tors Ĥ0 , P̂v , andP̂S are chosen with arbitrary realistic va
ues. We takeD1251.1Eu , D2350.946Eu , D1350.86Eu ,
andT5250\/Eu , whereEu;10218 erg is the typical energy
scale. For oddk we switch off the external electromagnet
field, V1;2;350, and tune the atomic excitation energies
the Stark fieldES such thatD1;2;35(0.1;0.11;0.312)Eu . For
even k we set ES50, that is D1;2;350, and takeV1;2;3
5(0.3;0.33;0.24)Eu .

IV. COMPLETELY CONTROLLED QUANTUM DEVICES

Once completely controlled unit cells can be construct
a compound device can be assembled from such elem
To be efficient, the architecture of the device will depend
the specific function it should perform. In Fig. 3 we sho

FIG. 2. ~a! Control parametersCk for the identity transformation

Î . VariationsdCk effecting on the cell the transformationÛe/8 , with

Ûe[(Ûe/8)
8 equal to~b! the permutationÛp12; ~c! the permutation

Ûp23; ~d! the Toffoli-gate transformationÛTo f f . ~e! VariationsdCk

effecting the conditional phase shiftB̂(f)5exp(2ifĤB), at f
5p/32, employed in the quantum discrete Fourier transform.
01230
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two possible arrangements of unit cells for special purp
devices: the first arrangement suits more the purpose
quantum computing, while the second is more useful
simulating lattice quantum field dynamics.

The first device@Fig. 3~a!# is organized in a treelike struc
ture, where the quantum state of one atom in each cell ca
exchanged with the state of an atom at the closest pa
joint of the tree@23#. The simplest way to make the exchan
is to displace the atom to the parent joint, however, the
change or transport of the state without moving the atom
be more practical. The treelike architecture and the poss
ity to perform all the unitary transformations, including a
the permutations, in each unit cell allow one to put toget
and make interfering the states of any three two-level ato
of the device after at mosts56 log3n state exchanges, b
moving them toward the root of the tree to a common c
Placing the new states back~if needed! requires the same
number of inverse exchanges. This is a very modest num
s;40, even for a rather large device ofn;103 with Hilbert
space ofN52n;10300 dimensions. Hence, all basic oper
tions of quantum computation can be performed on a
physical system composed of nonholonomic triads of tw
level subsystems in a tree-like structure, and each opera
can be completed within 643163123 log3 n control inter-
vals T. Note that the unity transformation should be appli
to all other cells to preserve their states during the operat

The second arrangement of cells@Fig. 3~b!# is intended
mainly for emulating the dynamics of quantum fields on l

FIG. 3. Two possible arrangements of cells for special purp
devices:~a! treelike structure for quantum computation;~b! planar
lattice for simulating dynamics of quantum fields. The circled nu
bers denote the rank of joints of the tree~a! or specify the order in
which atoms are grouped into triads~b!. The arrows show state
exchange to parent joints.
8-4
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NONHOLONOMIC QUANTUM DEVICES PHYSICAL REVIEW A64 012308
tices. Of course, it can also perform general operations
any triad, but for a higher cost ofs5O(n1/2). In this arrange-
ment, after each control period of 64T the closest neighbor
ing atoms are differently regrouped in triads~cells!, with the
original grouping repeating itself after three consecutive
riods. Therefore, at each moment the change of the cell s
depends on the states of the neighboring cells, as it shou
in order to emulate the dynamics of the fields. Immedi
analogy to the Ising model emerges when we restrict o
selves to small values ofe where terms of ordere2 are neg-
ligible, and then each 64T period plays the role of the time
incrementDt5e. The evolution of such device is dete
mined by three sums of effective cell Hamiltonians,Ĥe f f

(p)

5(qĤq,p , one for each periodp51,2,3, whereĤq,p is the
effective Hamiltonian of theqth cell at thepth period.

We can cast the cell Hamiltonians to sums of tensor pr
ucts of Pauli matricesŝa

i , where the Greek indexa5x,y,z
denotes the matrix type and the Latin indexi specifies the
two-level atom on which it acts. Since the cells are un
complete control, the coefficients of this development can
made an arbitrary function of the timet, and hence the ef
fective Hamiltonian reads

Ĥe f f~t!5Ai
a~t!ŝa

i 1B( i , j )
ab ~t!ŝa

i ŝb
j 1C( i , j ,k)

abg ~t!ŝa
i ŝb

j ŝg
k ,
~13!

with implicit summation over repeated indices, where (i , j )
and (i , j ,k) indicate pairs and triads of distinct atoms that a
periodically grouped in a common cell. This Hamiltonia
results in the evolution equation for the Heisenberg opera
ŝa

i (t),

\
dŝa

i ~t!

dt
5Aa, j

i ,b~t!ŝb
j ~t!1Ba,( j ,k)

i ,bg ~t!ŝb
j ~t!ŝg

k~t!

1Ca,( j ,k,l )
i ,bgd ~t!ŝb

j ~t!ŝg
k~t!ŝd

l ~t!, ~14!

where the coefficientsA,B,C are determined byA,B,C and
the commutation relations of the Pauli matrices. By a pro
choice of the coefficientsA,B,C through the appropriate
control sequences, one can simulate different linear and n
linear lattice models of quantum fields with time-depend
parameters.

V. TOY DEVICE

We now describe a toy device that can perform quant
computations on 9 qubits. An ensemble of nine different R
dberg atoms is placed in a magneto-optical trap at low te
perature, as illustrated in Fig. 4. By different atoms we me
atoms of different elements or identical atoms that are
cited to distinct pairs of Rydberg states. The best candid
for such a device are the long-living states correspondin
large angular momentum. By placing all the atoms in a st
electric field one lifts the degeneracy of the magnetic qu
tum number and performs tuning if needed. All the ato
experience the dipole-dipole interactionD̂ i j 5d̂i d̂ j^Ri j

23&,
where the cube of the inverse distance between atom
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averaged over their translational quantum states. Note, h
ever, that only for almost resonant atoms this interaction
important. By a proper choice of the atomic states and
static fieldES , we obtain three triads,p51,2,3, each com-
prising three almost resonant two-level atoms with transit
frequencies centered around a distinct frequencyvp . For
each triadp, the interactionsD̂ i j give the principal Hamil-
tonian, while a microwave fieldEvp

at the frequencyvp

serves as a control perturbation. Transportation of the sta
one atom in each triad to the parent joint can be perform
by dipole or Ramanp transitions from the initial pair of
Rydberg levels to a higher pair. With these higher pairs
sumed nearly resonant with a frequencyv4, atoms 3, 6 and 7
form a higher-level triad—the parent joint of the first thre
triads—which is controlled by a forth microwave fieldEv4

of frequencyv4.
As an example of implementing quantum computation

the toy device, using our nonholonomic control scheme,
show how to perform the discrete Fourier transform mod
N5295512 @24#. This is the unitary transformation on
qubits that is given by

F̂Nux&5
1

AN
(
y50

N21

exp~2p ixy/N!uy&, ~15!

where ux& and uy& are states of the system computation
basis. The computational basis states are defined as

ux&[ux8&9 . . . ux1&2ux0&1 , ~16!

with x[( r 50
8 xr2

r50,1, . . . ,N21 (xr50,1), whereu & i de-
notes the state of thei th atom—thei th qubit. The algorithm
we employ to perform the Fourier transform is based
constructing the exponent in Eq.~15! as

exp~2p ixy/29!5)
r 50

8

)
s50

r

exp~ ipxr8ys/2
r 2s!, ~17!

FIG. 4. A toy device, composed of nine Rydberg atoms, that
perform quantum computations on nine qubits. Each atom is a t
level system shown schematically by double orbits. Atoms of d
ferent triads are excited to distinct pairs of Rydberg states. E
triad p is controlled by an external field of distinct frequencyvp .
One atom in each triad can be excited to a pair of higher Rydb
states, thus forming a higher-level triad:~3,6,7!. These excitations
~depicted by arrows! correspond to state transportations.
8-5
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V. M. AKULIN, V. GERSHKOVICH, AND G. HAREL PHYSICAL REVIEW A 64 012308
wherexr8[x82r . We begin by reversing the order in whic
the bits of the inputx are stored in our 9-qubit register, th
is, we effect the unitary transformation

ux8&9 . . . ux1&2ux0&1→ux0&9 . . . ux7&2ux8&1 ~18!

by applying a sequence of state exchanges@25#. Then we
complete the transform in nine steps:

~i! We ‘‘split’’ the first qubit ~the state of atom 1! by
applying the unitary transformation

Â[
1

A2
S 1 1

1 21D 5expF2 ip

A8
S 12A2 1

1 212A2
D G ,

~19!

which maps u0&→1/A2(u0&1u1&) and u1&→1/A2(u0&
2u1&). Note that this would already complete the Four
transform if we had only one qubit.

~ii ! Next, we apply to the first and second qubits the co
ditional phase shiftua&2ub&1→eipab/2ua&2ub&1 (a,b50,1),
given explicitly by

B̂21[S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eip/2

D 5B̂~p/2!, ~20!

whereB̂(f) is the unitary transformation

B̂~f!5expF 2 ifS 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D G . ~21!

Then we ‘‘split’’ the second qubit by applying to it the tran
formationÂ. This accounts for the contribution of the seco
most significant bit of the inputx.

~iii ! Similarly, in stepsi 53,4, . . . ,9 weapply the condi-
tional phase shiftua& i ub& j→eipab/2i 2 j

ua& i ub& j (a,b50,1),
that is,

B̂i j [S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eip/2i 2 j
D 5B̂~p/2i 2 j !, ~22!

to each pair of qubits (i , j ), j 51,2, . . . ,i 21, and then apply
the transformationÂi[Â to the i th qubit. Note that after the
i th step the firsti qubits store the Fourier transform of thei
most significant bits ofx. Hence, after the nineth step th
Fourier transform is completed,

F̂295~Â9B̂98•••B̂91!•••~Â3B̂32B̂31!~Â2B̂21!~Â1!.
~23!
01230
r

-

Performing these operations implies also application of s
exchanges whenever one needs to transfer the states of a
i andj to a common unit cell for processing. A list of contro
commands (dCk sequences! corresponding to Eqs.~18! and
~23! can be written straightforwardly.

VI. CONCLUSION

We have shown that quantum devices with exponentia
large Hilbert space dimension can be efficiently controlle
provided they are assembled from completely controlla
unit cells in an architecture that is optimized for the spec
function they should perform. The unit cell can be co
structed from simple quantum objects of arbitrary physi
nature: two-level atoms, nuclear spins, rotating molecu
quantum dots, etc. This allows to optimize critical propert
such as coherence time and control precision for pract
realizations. The only requirement is that the unit cell cou
be put under nonholonomic control, i.e., that it could be s
ficiently perturbed to have unconstrained dynamics. This
sures that the cell can be fully controlled and made perfo
any desired operation.

As a concrete example, we have considered a quan
system of 2n levels, composed ofn two-level atoms that are
coupled by dipole-dipole interactions. The atoms a
grouped into unit cells, each consisting of three nearly re
nant atoms. Each cell is controlled with two time-depend
perturbations: a static electric field and an electromagn
field nearly resonant with the atoms. We have shown t
any unitary transformation in the 2358 dimensional Hilbert
space of the cell can be effected within a few control cycl
each comprising 64 applications of the perturbations w
values fixed according to a nonholonomic control scheme
particular, the Toffoli-gate transformation on the cell r
garded as a 3-qubit register and any permutation of the th
qubits can be performed. We have given two examples
function-specific devices that can be assembled from s
cells.

~i! By arranging the cells in a ternary treelike structu
we obtain a device that can perform efficient quantum co
putations onn qubits: any unitary transformation on an
three qubits can be effected within order of log3 n control
cycles. We have described a toy device that can perfo
computations on 9 qubits, including, for example, the d
crete Fourier transform.

~ii ! When the atoms are arranged in a planar-lattice str
ture, where at each control cycle the closest neighboring
oms are differently grouped in triads, we can simulate va
ous linear and nonlinear lattice models of quantum fie
with time-dependent parameters.
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APPENDIX

The Toffoli-gate transformation is the unitary transform
tion on three qubits,

ÛTo f fux2&ux1&ux0&5ux2&ux1&ux0 XOR ~x1 AND x2!&,
~A1!

which corresponds to the three-bit classical logic gate,

x2→x285x2

x1→x185x1 ,

x0→x085x0 XOR ~x1 AND x2!, ~A2!

introduced by Toffoli as a universal gate for classical reve
ible computation@17#. It acts as a permutation of the com
putational basis states,ux&[ux2&ux1&ux0&, x[( r 50

2 xr2
r

50,1, . . . ,7,given by the unitary matrix

ÛTo f f51
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

2 . ~A3!
.

t.

v

R

01230
-

-

This matrix can be presented as

ÛTo f f5exp~2 ipĤTo f f!, ~A4!

with the ~idempotent! Hermitian matrix

ĤTo f f5
1

2 1
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 21

0 0 0 0 0 0 21 1

2 . ~A5!

In our control scheme the Toffoli-gate transformation can
effected on the unit cell by repeating eight times the tra

formationÛe/8[exp(2ipĤTo f f/8) (e5p), which is directly

attainable:Û(t564T)5Ûe/8 @see Fig. 2~d!#.
MR
v,

t

m
.P.

in,

nce
be

ce.
mic
ingle
@1# R.P. Feynman, Int. J. Theor. Phys.21, 467 ~1982!.
@2# G.M. Huang, T.J. Tarn, and J.W. Clark, J. Math. Phys.24,

2608 ~1983!.
@3# D. Deutsch, Proc. R. Soc. London, Ser. A400, 96 ~1985!; 425,

73 ~1989!.
@4# D.J. Tannor and S.A. Rice, J. Chem. Phys.83, 5013 ~1985!;

D.J. Tannor, R. Kosloff, and S.A. Rice,ibid. 85, 5805~1986!.
@5# M. Shapiro and P. Brumer, J. Chem. Phys.84, 4103~1986!; P.

Brumer and M. Shapiro, Chem. Phys. Lett.126, 54 ~1986!.
@6# A.P. Peirce, M.A. Dahleh, and H. Rabitz, Phys. Rev. A37,

4950 ~1988!; R.S. Judson and H. Rabitz, Phys. Rev. Lett.68,
1500 ~1992!; V. Ramakrishna, M.V. Salapaka, M. Dahleh, H
Rabitz, and A. Peirce, Phys. Rev. A51, 960 ~1995!; V. Ra-
makrishna and H. Rabitz,ibid. 54, 1715~1996!.

@7# K. Vogel, V.M. Akulin, and W.P. Schleich, Phys. Rev. Let
71, 1816~1993!.

@8# S. Lloyd, Science261, 1569~1993!; Phys. Rev. Lett.75, 346
~1995!; Science273, 1073~1996!.

@9# D.P. DiVincenzo, Phys. Rev. A51, 1015~1995!.
@10# J.I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091~1995!.
@11# G. Harel, G. Kurizki, J.K. McIver, and E. Coutsias, Phys. Re

A 53, 4534~1996!.
@12# C.K. Law and J.H. Eberly, Phys. Rev. Lett.76, 1055~1996!.
@13# For reviews on quantum computation see A. Ekert and

Jozsa, Rev. Mod. Phys.68, 733 ~1996!; J. Preskill, Proc. R.
.

.

Soc. London, Ser. A 454, 469 ~1998! ~e-print
quant-ph/9705032!.

@14# G. Harel and V.M. Akulin, Phys. Rev. Lett.82, 1 ~1999!.
@15# P. Zanardi and M. Rasetti, Phys. Lett. A264, 94 ~1999!; J.

Pachos, P. Zanardi, and M. Rasetti, Phys. Rev. A61, 010305
~1999!.

@16# V. Gershkovichet al., IHES Report No. IHES/P/00/01~un-
published!.

@17# T. Toffoli, Math. Systems Theory14, 13 ~1981!; see also
Barencoet al., Ref. @18#. Implementations of the Toffoli gate
and other three-qubit gates were described recently for N
quantum computation: A.R. Kessel’ and V.L. Ermako
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