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Quantum key distribution using multilevel encoding
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In this article, protocols for quantum key distribution based on encoding in higher dimensional systems in
N-dimensional Hilbert space are proposed. We extend the original Bennett-Brassard protocol using two
complementary bases and two-dimensional states toM mutually complementary bases andN orthogonal
vectors in each base. We study the mutual information between the legitimate parties and the eavesdropper and
the error rate by considering various incoherent eavesdropping attacks as a function of the dimension of the
Hilbert space.
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I. INTRODUCTION

Quantum cryptography ideally providesunconditionally
secure key distribution between two parties, Alice and B
followed by secret key cryptography over a public channe
convey the message to be kept secret. In the original prot
proposed by Bennett and Brassard~BB84! @1#, Alice and
Bob randomly choose between two complementary~conju-
gate! bases and the information for each basis is enco
using two orthogonal quantum states~qubits!. Complemen-
tary bases are defined such that if Alice prepares her sta
one basis, the outcome of a measurement in a complem
tary basis will be totally random. This is the feature used
guarantee that any eavesdropping will invariably introdu
errors in the transmission that can be detected by the c
municating parties. An extension made by Bruß@2# and
Bechmann-Pasquinucci and Gisin@3# to a six-state~three
complementary bases! protocol shows that an eavesdroppe
~by convention denoted by Eve! information gain for a given
impaired error rate is lower than in the BB84 protocol@2,3#.
Very recently Bechmann-Pasquinucci and Tittel@4# and
Bechmann-Pasquinucci and Peres@5# have considered
schemes using four states and two bases, and three state
four bases, respectively. In the present article, we genera
these results to encoding inN-dimensional Hilbert space us
ing M bases and show, for eachN, what is the optimal choice
of M.

II. QUANTUM KEY DISTRIBUTION PROTOCOL

In the BB84 protocol, Alice first randomly chooses
which of two bases she wants to prepare her state, and
ond, she decides which state to send. In anN-dimensional
Hilbert spaceHN , Alice first chooses in which ofM comple-
mentary bases she wants to prepare her state, and se
decides which of theN states to send. The information co
veyed in the state will from hereon be denoted by quN
Each symbol sent in theM bases andN quNits is chosen
randomly with equal probability, i.e., each of the possib
NM states appears with probability 1/(MN). We first define
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the bases$ca% and $cb% over anN-dimensional space to b
mutually complementary if the inner products between
possible pairs of vectors, with one state from each ba
have the same magnitude:

z^c i
auc j

b& z51/AN ; i , j . ~1!

If a quantum state is prepared in the$ca% basis, but mea-
sured in the complementary$cb% basis, the outcome is com
pletely random. Wootters and Fields have shown@6# that
whenN5pk, wherep is a prime andk an integer, which we
restrict ourselves to here, then there exists a set ofM5N
11 mutually complementary bases@6#. In general, we arbi-
trarily choose the first basis as

uc0
a&,uc1

a&, . . . ,ucN21
a &, ~2!

where the states satisfyz^ck
auc l

a& z5dkl . For the case of only
two complementary bases,M52, the components of the sec
ond basis can be chosen as

uck
b&5

1

AN
(
n50

N21

expS 2p ikn

N D ucn
a&. ~3!

For other cases one can use the explicit construction give
Ref. @6#. Every time Bob receives a quNit, he chooses ra
domly to measure it in one of theM bases. At the end of the
transmission Alice and Bob will, as in the qubit case, hav
public discussion where they only retain the symbols wh
they used the same basis. This procedure is referred t
sifting. Since they both make random choices, on aver
(121/M ) of the transmitted symbols have to be discarde

To estimate the mutual information between Alice a
Bob, and the information gain of the eavesdropper, the
evant information measure is the Shannon informationI S

N of
the sifted symbols given by

I S
N5 log2~N!2HN~p0 ,..,pN21! in bits, ~4!

where HN(p0 ,..,pN21)52(k50
N21pk log2 pk is the entropy

function andpk (for k50, . . . ,N21) are the probability
distributions of the possible outcomes~from hereon all infor-
mation measures are in units of bits!. Another important
©2001 The American Physical Society06-1
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quantity is the error probability, i.e. that a symbol is wrong
received at the receiver side,eBob

N,M , which for an ideal system
is a function only of Eve’s information gain. Alice and Bo
will use eBob

N,M to estimate the amount of eavesdropping. T
better the scheme, the larger is the impairedeBob

N,M for a given
amount of information for Eve. In what follows, we wi
discuss various eavesdropping strategies and compare
performance.

III. EAVESDROPPING ATTACKS

A. Intercept-resend strategy

The simplest possible eavesdropping strategy is
intercept-resend strategy, in which Eve intercepts the tra
mitted data from Alice, performs a measurement, and
cording to the outcome of her measurement, prepares a
state and sends it on to Bob. Suppose Alice prepares
sends the quantum stateuck

a& that belongs to the basis$ca%.
If Eve performs her measurement in the$ca% basis, she will
detect the correct stateuck

a& and she will subsequently pre
pare and send the correct state to Bob. Hence, Eve introd
no error and Bob detects the quantum state sent by A
provided that he chooses the correct measurement basi
instead, Eve measures in the$cb% basis withbÞa, her result
will be completely random, she will gain no information, an
will cause maximal disturbance. The average information
Eve, in the case when Eve eavesdrops only a fractionh of
the string sent by Alice, is given by

I Eve
N,M~h!5h

log2~N!

M
. ~5!

We note that the measurement result is deterministic e
time she uses the correct basis. The crucial reason to g
higher dimensional encoding is that in the quNit case,
eavesdropper introduces a higher error rate for Bob,

eBob
N,M~h!5hS 12

1

M D S 12
1

ND . ~6!

The mutual information between Bob and Alice as functi
of eBob

N,M is given by

I AB
N,M~h!5 log2~N!1@12eBob

N,M~h!# log2@12eBob
N,M~h!#

1eBob
N,M~h!log2S eBob

N,M~h!

N21 D . ~7!

As discussed by Bechmann-Pasquinucci and Peres@5#, if Al-
ice and Bob only want to know if Eve is active or not, a go
benchmark is the ratioeBob

N,M(h)/I Eve
N,M(h).

B. The intermediate basis

As in the qubit (N52) protocol case, Eve may als
choose to perform her measurement in what is known as
intermediate, or Breidbart, basis@7#, instead of using the
same bases Alice and Bob are using. Eavesdropping in
intermediate basis is the simplest example of a strategy
01230
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ing the eavesdropper probabilistic information. The interm
diate $cc% basis forM52 is defined with the following re-
quirements:

z^ck
cuck

a& z5 z^ck
cuck

b& z5maximum, ;k ~8!

and

z^ck
cuc l

a& z5 z^ck
cuc l

b& z5minimum, ;kÞ l . ~9!

The vector that gives the same~maximal! overlap withuck
a&

anduck
b& is the one with the same minimum distance to bo

of states, which is

uck
c&5

1

AC
~ uck

a&1uck
b&), ~10!

where C52(111/AN) is the normalization constant. Th
intermediate states defined by Eqs.~8! and ~9! satisfy

z^ck
cuck

a& z5 z^ck
cuck

b& z5

A11
1

N
1

2

AN

AC
,

z^ck
cuc l

a& z5 z^ck
cuc l

b& z5
1

ACN
. ~11!

Assume that Alice sends the stateuc0
a& and Eve measures in

the intermediate basis, i.e., in the$cc% basis. Then she will
find the following outcomes with the corresponding pro
abilities: P(c0

c)5(111/N12/AN)/C and P(c1
c)5•••

5P(cN21
c )51/NC. These probabilities give Eve the follow

ing Shannon information:

I Eve
N,2 5 log2~N!1P~c0

c!log2@P~c0
c!#

1 (
k51

N21

P~ck
c!log2@P~ck

c!#. ~12!

Bob will consequently have the following probability o
finding the correct state:

PBob
correct5P~c0

c!21 (
k51

N21

P~ck
c!2. ~13!

This means that even if Eve measures in the intermed
basis, she will introduce the following error rate:eBob

N,2 51
2PBob

correct . For M5N11, it can be shown@8# that an inter-
mediate measurement basis cannot be constructed with
properties above forN53 andN54. From this we conjec-
ture that intermediate bases do not exist forM5N11 when
N.2.

In Fig. 1 we show the ratioeBob
N,M(h)/I Eve

N,M(h) as a func-
tion of N for both intercept-resend and intermediate ba
eavesdropping, finding that the ratio is maximized if o
choosesM5N11. However, if we want to keep on usin
the channel by actively removing Eve’s information usi
6-2
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privacy amplification @9#, a better benchmark tha
eBob

N,M(h)/I Eve
N,M(h) could be the transmitted information pe

symbol. Taking the sifting, error correction, and privacy a
plification into account, we can define an effective transm
sion rate as

RAB
N,M~h!5

1

M
@ I AB

N,M~h!2I Eve
N,M~h!#. ~14!

As discussed by Ekert, Huttner, Palma, and Peres@10#,
this is the lower bound for thesecrecy capacityof Csiszár
and Körner @11#, giving the maximum rate at which Alice
can reliably send information to Bob such that the rate
which Eve obtains this information is arbitrarily small. Fro
the perspective of optimizing the impaired error rate fo
given RAB

N,M(h), which tells how easy it is for Bob to detec
Eve in the presence of technical noise, what is the optim
choice forM? First we note from the above that the ma
mum number of mutually complementary bases isM5N
11. We also note that for the case of no eavesdropping,
the effective transmission rate in bits per symbol after sift
cannot be more than log2(N)/M, so choosingM too large will
lower the rate. In Fig. 2 we show the rateRAB

N,M as a function
of number of complementary basesM and eBob

N,M for N58.
Due to the loss of symbols in the sifting procedure, i.e.,
1/M dependence in the rate, it seems that the lowerM ’s are
preferable. In the case when Alice and Bob useN11 bases,
we plot ~see Fig. 3! RAB

N,M as a function ofN andeBob
N,N11 . For

a lower error rate, we observe that the transmission rate
a maximum value forN'4 and starts to decrease whenN
increases. The zero transmission rate increases whenN in-
creases, and forN54 corresponds toeBob

4,5 '0.4.

C. Optimal eavesdropping: The case of the universal quantum
cloning machine

Let us finally discuss eavesdropping from the perspec
of quantum cloning. The basic idea is that Eve uses a

FIG. 1. The ratioeAB
N,M/I Eve

N,M as a function of the dimension o
Hilbert spaceN. Solid, dotted, and dash-dotted lines correspond
the case when Eve uses intercept-resend strategy forM5N11,
M53, andM52 complementary bases, respectively. The das
line corresponds to the intermediate basis strategy andM52.
01230
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versal quantum cloning machine~UQCM!, introduced by
Bužek and Hillery@12#, to obtain two copies of Alice’s quan
tum state, keep one of the copied states for herself, and
the other copy on to Bob. Then, after Bob and Alice ha
made their measurements and announced their basis,
does the same measurement as Bob, i.e., she measures
same basis as Alice and Bob, and therefore on the aver
she will obtain the same information as Bob. She can a
make a coherent measurement on her state of the clo
machine and her copy, and then also know if and when
introduced an error for Bob@3#. For increasing disturbance
Bob’s fidelity F, i.e., the probability that he and Alice wil
accept the transmitted state, decreases, while Eve’s prob
ity of guessing the symbol correctly increases. As shown
Ref. @12#, the maximal fidelity of copying a quNit is obtaine
using the UQCM. In theN-dimensional case, from the sym
metry of the problem, we conjecture~without proof! that for
M5N11, the optimal incoherent eavesdropping is ag
done using the UQCM.

o

d

FIG. 2. The effective transmission rateRAB
N,M as a function of the

number of complementary basesM and Bob’s error rateeBob
N,M for

the case of Hilbert space dimensionN52358.

FIG. 3. The effective transmission rateRAB
N,M as function of the

dimension of Hilbert spaceN for M5N11 complementary base
using either the intercept-resend or the universal cloning mac
eavesdropping strategies.
6-3
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If Alice sends the stateuck&Alice , then the operation of the
UQCM corresponds to the following unitary transformatio

uck&Aliceu0&EveuX&x →
UQCM

cuck&Aliceuck&EveuXk&x

1d (
lÞk

N

~ uck&Aliceuc l&Eve1uc l&Aliceuck&Eve)uXl&x ,

~15!

whereuck&Alice5uck&Eve are the two identical output quan
tum state copies anduXk&x is the orthonormal basis of Eve’
cloning machine Hilbert space. The cloner is initially pr
pared in particular stateuX&x and u0& l is an N-dimensional
ancilla state. From the unitarity of the transformation it fo
lows thatc and d satisfy c212(N21)d251. The maximal
value of the fidelityFUCM

N for the optimal cloning of a quNit
to two copies is given from Ref.@12# as FUCM

N 5(N
13)/@2(N11)# and the corresponding disturbance
DUCM

N [12FUCM
N 5(N21)/2(N11).

Assuming that Eve listens in on a fractionh of the sym-
bols sent to Bob, then we may define an equivalent error
eBob

N,M[hDUCM
N , and the relevant mutual informations b

comes

I AB
N 5 log2~N!1~12eBob

N,M !log2~12eBob
N,M !

1eBob
N,M log2S eBob

N,M

N21D , ~16!

I AE
N 5h log2~N!1~12eBob

N,M !log2~12eBob
N,M !

1eBob
N,M log2S eBob

N,M

N21D , ~17!

and the effective transmission rate is

RAB
N,M~h!5

12h

N11
log2~N!. ~18!

In Fig. 3 we have plotted the effective transmission r
RAB

N,M as a function of the dimension of Hilbert spaceN and
Bob’s error rate in the case when Eve is allowed to use
UQCM strategy. As can be seen, the maximum transmis
rate is forN'4. For low error rates, as Eve gets little info
mation, the rate is the upper bound of log2(N)/(N11). In all
cases, the UQCM gives the best performance~from the view-
point of the eavesdropper!, and forN54 we obtain a zero
transmission rate ateBob

4,5 '0.3. We conclude that in the cas
Pr

01230
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of individual eavesdropping attacks, Alice and Bob shou
use the UQCM estimate of information for Eve when app
ing privacy amplification.

IV. DISCUSSIONS AND CONCLUSION

So far, we have discussed the protocol without consid
ing the role of the error correction and privacy amplificati
stages@9#. A simple protocol for the multilevel coding goe
as follows: After Alice and Bob have recorded the sifted ke
they randomly choose pairs of symbols and compute th
XOR sum moduloN. For error correction, they announce th
XOR value and keep the first symbol if and only if they agr
on theXOR value ~the second symbol is always discarded!.
For privacy amplification, Alice and Bob do not announ
the XOR value, but discard the two randomly chosen sy
bols, while keeping theXOR sum for a new key with im-
proved privacy@9#. Note, however, that the estimate bas
on RAB

N,M(h) of Eqs.~14! and ~18! includes the privacy am-
plification by giving an upper limit assuming that for eachN
andM we can find algorithms that do not remove more b
than the difference between the mutual information Alic
Bob and Alice-Eve.

We can also generalize Ekert’s quantum cryptograp
protocol@13# based on quantum entanglement and the tes
the Bell inequality to detect the eavesdropping
N-dimensional Hilbert space. Recently Kaszlilowskiet al.
have shown@14# that the violations of local realism by two
entangled quNits are stronger than for two entangled qub
We conjecture that this would also imply a higher degree
security in entanglement based on multilevel quantum cr
tography.

As for an experimental realization of multilevel quantu
key distribution, this can be done as proposed in Ref.@4# for
the (N54 andM52) case by time multiplexing and phas
encoding in an interferometric system. ForN quantum states
andM52 bases, the time basis and energy basis, we can
the same experimental system, but withN different delay
times andN different phase encoding. In realistic quantu
key distribution systems, one limitation factor is the detec
noise and more precisely the dark count probabilityPdark .
One can show that the quantum bit error rate scales line
with (N21)Pdark .
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