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Quantum key distribution using multilevel encoding
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In this article, protocols for quantum key distribution based on encoding in higher dimensional systems in
N-dimensional Hilbert space are proposed. We extend the original Bennett-Brassard protocol using two
complementary bases and two-dimensional stateM toutually complementary bases aid orthogonal
vectors in each base. We study the mutual information between the legitimate parties and the eavesdropper and
the error rate by considering various incoherent eavesdropping attacks as a function of the dimension of the
Hilbert space.
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. INTRODUCTION the baseg4?} and{4"} over anN-dimensional space to be

) ) N mutually complementary if the inner products between all
Quantum cryptography ideally providesiconditionally  possible pairs of vectors, with one state from each basis,
secure key distribution between two parties, Alice and Bobhave the same magnitude:

followed by secret key cryptography over a public channel to

convey the message to be kept secret. In the original protocol [(2 ,/,}’>|: 1N Vi . (1)
proposed by Bennett and Brassdi®B84) [1], Alice and
Bob randomly choose between two complemeni@gnju-  If a quantum state is prepared in thg®} basis, but mea-

gatd bases and the information for each basis is encodedured in the complementafy,®} basis, the outcome is com-
using two orthogonal quantum stat@pibity. Complemen- pletely random. Wootters and Fields have sho\h that
tary bases are defined such that if Alice prepares her state ishenN= p¥, wherep is a prime and an integer, which we
one basis, the outcome of a measurement in a complemerestrict ourselves to here, then there exists a seflefN
tary basis will be totally random. This is the feature used to+ 1 mutually complementary basgs]. In general, we arbi-
guarantee that any eavesdropping will invariably introducerarily choose the first basis as

errors in the transmission that can be detected by the com-

municating parties. An extension made by Bri# and lwo) | vD), - i), ()
Bechmann-Pasquinucci and Gidifi] to a six-state(three

complementary baspprotocol shows that an eavesdropper’'swhere the states satisfy| y)|= 3 . For the case of only
(by convention denoted by Eynformation gain for a given two complementary basels| =2, the components of the sec-
impaired error rate is lower than in the BB84 protof®)3].  ond basis can be chosen as

Very recently Bechmann-Pasquinucci and Titfd] and
Bechmann-Pasquinucci and Per¢S] have considered b 1 2mikn)

schemes using four states and two bases, and three states and | = \/_ﬁ nZO ex N )|¢ﬂ>' ®)
four bases, respectively. In the present article, we generalize

these results to encoding M-dimensional Hilbert space us- For other cases one can use the explicit construction given in
ing M bases and show, for eabhwhat is the optimal choice Ref. [6]. Every time Bob receives a quNit, he chooses ran-
of M. domly to measure it in one of thd bases. At the end of the
transmission Alice and Bob will, as in the qubit case, have a
Il. QUANTUM KEY DISTRIBUTION PROTOCOL public discussion where t_hey oply retain the _symbols where
they used the same basis. This procedure is referred to as
In the BB84 protocol, Alice first randomly chooses in sifting. Since they both make random choices, on average
which of two bases she wants to prepare her state, and sect—1/M) of the transmitted symbols have to be discarded.
ond, she decides which state to send. InNadimensional To estimate the mutual information between Alice and
Hilbert spacety, Alice first chooses in which dfl comple-  Bob, and the information gain of the eavesdropper, the rel-

mentary bases she wants to prepare her state, and secoadant information measure is the Shannon informatof
decides which of thé\ states to send. The information con- the sifted symbols given by

veyed in the state will from hereon be denoted by quNits.
Each symbol sent in th&1 bases andN quNits is chosen I8=log,(N)—Hn(pg,...Pn—1)  in bits, (4)
randomly with equal probability, i.e., each of the possible
NM states appears with probability M(N). We first define  where Hy(pg,-.,.Pn_1)= —EE;&pklogz p« is the entropy
function andpy (for k=0, ... N—1) are the probability
distributions of the possible outcoméesom hereon all infor-
*Electronic address: boure@ele.kth.se mation measures are in units of BitsAnother important

N—-1
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guantity is the error probability, i.e. that a symbol is wrongly ing the eavesdropper probabilistic information. The interme-
received at the receiver side}y.1 , which for an ideal system diate{¢°} basis forM =2 is defined with the following re-

is a functiNog only of Eve’s information gain. Alice and Bob quirements:

will use egy), to estimate the amount of eavesdropping. The i

better the scheme, the larger is the impaie§gl! for a given Kyl widl=(vid yi)|=maximum, - vk (8)
amount of information for Eve. In what follows, we will

discuss various eavesdropping strategies and compare their

performance. Kl =Kyl up)l=minimum, vkl (9)

lll. EAVESDROPPING ATTACKS The vector that gives the sanimaxima) overlap with|3)
and|¢E) is the one with the same minimum distance to both
of states, which is

The simplest possible eavesdropping strategy is the
intercept-resend strategy, in which Eve intercepts the trans- 1
mitted data from Alice, performs a measurement, and ac- [ = \/——(|¢E>+|¢E>)' (10
cording to the outcome of her measurement, prepares a new c

state and sends it on to Bob. Suppose Alice prepares and _ . o
sends the quantum stal?) that belongs to the bas{s/?}. where C=2(1+1/{N) is the normalization constant. The

If Eve performs her measurement in thg®} basis, she will intermediate states defined by E¢8) and (9) satisfy

detect the correct state/y) and she will subsequently pre- 1 2
pare and send the correct state to Bob. Hence, Eve introduces 14+ —+ —

no error and Bob detects the quantum state sent by Alice, ol a b NN

provided that he chooses the correct measurement basis. If, Kid il =ICvid ‘ﬁk)l:T’

instead, Eve measures in thg®} basis witho+a, her result

will be completely random, she will gain no information, and 1

will cause maximal disturbance. The average information of | @\ = I{ 4l Py = ———

Eve, in the case when Eve eavesdrops only a fractiarf KoduDI=Koid vl @ 1y
the string sent by Alice, is given by

A. Intercept-resend strategy

Assume that Alice sends the stat&) and Eve measures in
M) log,(N) (5 the intermediate basis, .., in the°} basis. Then she will
Eve =T find the following outcomes with the corresponding prob-
abilities: P(¢§)=(1+1N+2//N)/C and P(y5)=---
We note that the measurement result is deterministic each p(y¢_,)=1/NC. These probabilities give Eve the follow-
time she uses the correct basis. The crucial reason to go {ag Shannon information:
higher dimensional encoding is that in the quNit case, the

eavesdropper introduces a higher error rate for Bob, Ia=1002(N) + P(/6)logo P(45)]
1 1 N-1
N,M _ c c
€Bon(7)= 77( 1- M) ( 1- N) : (6) + 2, P(ylogal P(yf)]. (12

The mutual information between Bob and Alice as functionBob will consequently have the following probability of
of ejn is given by finding the correct state:

[INM( Y| N) 41— NbM | 1— NbM N-1
AR (17)=10gx(N)+[ eBNb,\(A?)])OQZ[ €gob(7)] PE%rgeCt= P(¢8)2+I(21 P(z/xﬁ)z. 13
€gob( 7 ) -

+eEa“é<n>|ogz( N1

()

This means that even if Eve measures in the intermediate
basis, she will introduce the following error rate}; =1
—Pgoreet ForM=N+1, it can be showii8] that an inter-
mediate measurement basis cannot be constructed with the
properties above foN=3 andN=4. From this we conjec-

_ _ _ ture that intermediate bases do not existNb=N-+1 when
B. The intermediate basis N>2.

As discussed by Bechmann-Pasquinucci and Héiled Al-
ice and Bob only want to know if Eve is active or not, a good

benchmark is the ratiegan(7)/15:% (7).

As in the qubit N=2) protocol case, Eve may also  In Fig. 1 we show the rati@g n(7)/I1 % (7) as a func-

choose to perform her measurement in what is known as théon of N for both intercept-resend and intermediate bases
intermediate, or Breidbart, basf§], instead of using the eavesdropping, finding that the ratio is maximized if one
same bases Alice and Bob are using. Eavesdropping in thehoosesM =N+ 1. However, if we want to keep on using
intermediate basis is the simplest example of a strategy gihe channel by actively removing Eve’s information using
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FIG. 1. The ratioe)g"/IE,¥ as a function of the dimension of  FIG. 2. The effective transmission ré®y" as a function of the
Hilbert spaceN. Solid, dotted, and dash-dotted lines correspond tonumber of complementary basksand Bob's error rate},y for
the case when Eve uses intercept-resend strategfemN+1, the case of Hilbert space dimensibi=23=8.

M=3, andM =2 complementary bases, respectively. The dashed

line corresponds to the intermediate basis strategyMr®. . . .
P 9y versal quantum cloning machingdJQCM), introduced by

privacy amp"fication [9]’ a better benchmark than Buzek and H|”ery[12], to obtain two COpieS of Alice’s quan-

eNM(m)/1EM(5) could be the transmitted information per tum state, keep one of the copied states for herself, and pass

symbol. Taking the sifting, error correction, and privacy am-the other copy on to Bob. Then, after Bob and Alice have
plification into account, we can define an effective transmisimade their measurements and announced their basis, Eve

sion rate as does the same measurement as Bob, i.e., she measures in the
same basis as Alice and Bob, and therefore on the average,
RN'M( )= i[IN'M( )—IN'M( N (14) she will obtain the same information as Bob. She can also
A VD= Lias L) T TEve L) make a coherent measurement on her state of the cloning

machine and her copy, and then also know if and when she

As discussed by Ekert, Huttner, Palma, and P¢i€§,  introduced an error for Bof3]. For increasing disturbance,
this is the lower bound for theecrecy capacitpf Csisza  Bob's fidelity F, i.e., the probability that he and Alice will
and Kaner [11], giving the maximum rate at which Alice accept the transmitted state, decreases, while Eve’s probabil-
can reliably send information to Bob such that the rate atty of guessing the symbol correctly increases. As shown in
which Eve obtains this information is arbitrarily small. From Ref.[12], the maximal fidelity of copying a quNit is obtained
the perspective of optimizing the impaired error rate for aysing the UQCM. In thé\-dimensional case, from the sym-
given R)a"(77), which tells how easy it is for Bob to detect metry of the problem, we conjectuteithout proof that for
Eve in the presence of technical noise, what is the optimunM =N+1, the optimal incoherent eavesdropping is again
choice forM? First we note from the above that the maxi- done using the UQCM.
mum number of mutually complementary basesMs=N
+1. We also note that for the case of no eavesdropping, that
the effective transmission rate in bits per symbol after sifting
cannot be more than Ig@N)/M, so choosingv too large will
lower the rate. In Fig. 2 we show the rd®&y" as a function
of number of complementary bastt and eg.y for N=8.
Due to the loss of symbols in the sifting procedure, i.e., the !
1/M dependence in the rate, it seems that the lovi&r are i Intercept/Resend
preferable. In the case when Alice and Bob dkel bases,
we plot(see Fig. 3R)\a" as a function oN andef,,"*. For
a lower error rate, we observe that the transmission rate has
a maximum value foN~4 and starts to decrease whin
increases. The zero transmission rate increases \Whien
creases, and fdl=4 corresponds teg-,~0.4.

C. Optimal eavesdropping: The case of the universal quantum

. . FIG. 3. The effective transmission ra®a" as function of the
cloning machine

dimension of Hilbert spacél for M=N+1 complementary bases
Let us finally discuss eavesdropping from the perspectiveising either the intercept-resend or the universal cloning machine
of quantum cloning. The basic idea is that Eve uses a unieavesdropping strategies.
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If Alice sends the statR/y)ajice, then the operation of the
UQCM corresponds to the following unitary transformation:

Uocum
[ licel OV Evel X)x — Clth) aticel i) Evel Xk

N
+d ;k (1t aticel W) eve ™ |¥1) Alicel ¥ Eve) [ XD x »

(19

where| ) alice= | ) eve are the two identical output quan-
tum state copies an,), is the orthonormal basis of Eve’s
cloning machine Hilbert space. The cloner is initially pre-
pared in particular statgX), and|0), is an N-dimensional
ancilla state. From the unitarity of the transformation it fol-
lows thatc andd satisfy c>+2(N—1)d?=1. The maximal
value of the fidelityF{j,, for the optimal cloning of a quNit
to two copies is given from Ref[12] as Fjjcy=(N
+3)/[2(N+1)] and the corresponding disturbance
DYew=1—-FUcm=(N—=1)/2(N+1).

Assuming that Eve listens in on a fractionof the sym-

is
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of individual eavesdropping attacks, Alice and Bob should
use the UQCM estimate of information for Eve when apply-
ing privacy amplification.

IV. DISCUSSIONS AND CONCLUSION

So far, we have discussed the protocol without consider-
ing the role of the error correction and privacy amplification
stageqd9]. A simple protocol for the multilevel coding goes
as follows: After Alice and Bob have recorded the sifted key,
they randomly choose pairs of symbols and compute their
XOR sum moduloN. For error correction, they announce the
XOR value and keep the first symbol if and only if they agree
on thexoR value (the second symbol is always discariled
For privacy amplification, Alice and Bob do not announce
the XOR value, but discard the two randomly chosen sym-
bols, while keeping thexor sum for a new key with im-
proved privacy[9]. Note, however, that the estimate based
on RYa"(7) of Egs.(14) and (18) includes the privacy am-
plification by giving an upper limit assuming that for edgh
andM we can find algorithms that do not remove more bits
than the difference between the mutual information Alice-

bols sent to Bob, then we may define an equivalent error ratgop and Alice-Eve.

ehi=7DJcy, and the relevant mutual informations be-
comes
| Ae=1002(N) + (1~ €5p)10g5(1~ e

N,M
€Bob

!

INe=77100,(N)+ (1—e§an)log,(1—efon

+efon |092< (16)

N,M
€Bob

i

and the effective transmission rate is

17

N,M
+_eBob|092

(18)

1-9
RAS" (7) = §7710%(N).-

We can also generalize Ekert's quantum cryptographic
protocol[13] based on quantum entanglement and the test of
the Bell inequality to detect the eavesdropping to
N-dimensional Hilbert space. Recently KaszlilowsHi al.
have showr]14] that the violations of local realism by two
entangled quNits are stronger than for two entangled qubits.
We conjecture that this would also imply a higher degree of
security in entanglement based on multilevel quantum cryp-
tography.

As for an experimental realization of multilevel quantum
key distribution, this can be done as proposed in Rgffor
the (N=4 andM =2) case by time multiplexing and phase
encoding in an interferometric system. Rdiguantum states
andM =2 bases, the time basis and energy basis, we can use
the same experimental system, but withdifferent delay
times andN different phase encoding. In realistic quantum
key distribution systems, one limitation factor is the detector

In Fig. 3 we have plotted the effective transmission rateNoise and more precisely the dark count probabifty, .

RNa" as a function of the dimension of Hilbert spadeand

One can show that the quantum bit error rate scales linearly

Bob’s error rate in the case when Eve is allowed to use th&ith (N—1)Pgar.

UQCM strategy. As can be seen, the maximum transmission

rate is forN~4. For low error rates, as Eve gets little infor-
mation, the rate is the upper bound of JAd)/(N+1). In all
cases, the UQCM gives the best performafiaam the view-
point of the eavesdropperand forN=4 we obtain a zero
transmission rate atgo,~0.3. We conclude that in the case
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